linux/fs/eventpoll.c
<<
>>
Prefs
   1/*
   2 *  fs/eventpoll.c (Efficient event retrieval implementation)
   3 *  Copyright (C) 2001,...,2009  Davide Libenzi
   4 *
   5 *  This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation; either version 2 of the License, or
   8 *  (at your option) any later version.
   9 *
  10 *  Davide Libenzi <davidel@xmailserver.org>
  11 *
  12 */
  13
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/signal.h>
  17#include <linux/fs.h>
  18#include <linux/file.h>
  19#include <linux/signal.h>
  20#include <linux/errno.h>
  21#include <linux/mm.h>
  22#include <linux/slab.h>
  23#include <linux/poll.h>
  24#include <linux/string.h>
  25#include <linux/list.h>
  26#include <linux/hash.h>
  27#include <linux/spinlock.h>
  28#include <linux/syscalls.h>
  29#include <linux/rbtree.h>
  30#include <linux/wait.h>
  31#include <linux/eventpoll.h>
  32#include <linux/mount.h>
  33#include <linux/bitops.h>
  34#include <linux/mutex.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/device.h>
  37#include <linux/uaccess.h>
  38#include <asm/io.h>
  39#include <asm/mman.h>
  40#include <linux/atomic.h>
  41#include <linux/proc_fs.h>
  42#include <linux/seq_file.h>
  43#include <linux/compat.h>
  44#include <linux/rculist.h>
  45#include <net/busy_poll.h>
  46
  47/*
  48 * LOCKING:
  49 * There are three level of locking required by epoll :
  50 *
  51 * 1) epmutex (mutex)
  52 * 2) ep->mtx (mutex)
  53 * 3) ep->lock (spinlock)
  54 *
  55 * The acquire order is the one listed above, from 1 to 3.
  56 * We need a spinlock (ep->lock) because we manipulate objects
  57 * from inside the poll callback, that might be triggered from
  58 * a wake_up() that in turn might be called from IRQ context.
  59 * So we can't sleep inside the poll callback and hence we need
  60 * a spinlock. During the event transfer loop (from kernel to
  61 * user space) we could end up sleeping due a copy_to_user(), so
  62 * we need a lock that will allow us to sleep. This lock is a
  63 * mutex (ep->mtx). It is acquired during the event transfer loop,
  64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  65 * Then we also need a global mutex to serialize eventpoll_release_file()
  66 * and ep_free().
  67 * This mutex is acquired by ep_free() during the epoll file
  68 * cleanup path and it is also acquired by eventpoll_release_file()
  69 * if a file has been pushed inside an epoll set and it is then
  70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  71 * It is also acquired when inserting an epoll fd onto another epoll
  72 * fd. We do this so that we walk the epoll tree and ensure that this
  73 * insertion does not create a cycle of epoll file descriptors, which
  74 * could lead to deadlock. We need a global mutex to prevent two
  75 * simultaneous inserts (A into B and B into A) from racing and
  76 * constructing a cycle without either insert observing that it is
  77 * going to.
  78 * It is necessary to acquire multiple "ep->mtx"es at once in the
  79 * case when one epoll fd is added to another. In this case, we
  80 * always acquire the locks in the order of nesting (i.e. after
  81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  82 * before e2->mtx). Since we disallow cycles of epoll file
  83 * descriptors, this ensures that the mutexes are well-ordered. In
  84 * order to communicate this nesting to lockdep, when walking a tree
  85 * of epoll file descriptors, we use the current recursion depth as
  86 * the lockdep subkey.
  87 * It is possible to drop the "ep->mtx" and to use the global
  88 * mutex "epmutex" (together with "ep->lock") to have it working,
  89 * but having "ep->mtx" will make the interface more scalable.
  90 * Events that require holding "epmutex" are very rare, while for
  91 * normal operations the epoll private "ep->mtx" will guarantee
  92 * a better scalability.
  93 */
  94
  95/* Epoll private bits inside the event mask */
  96#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  97
  98#define EPOLLINOUT_BITS (POLLIN | POLLOUT)
  99
 100#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
 101                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
 102
 103/* Maximum number of nesting allowed inside epoll sets */
 104#define EP_MAX_NESTS 4
 105
 106#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 107
 108#define EP_UNACTIVE_PTR ((void *) -1L)
 109
 110#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 111
 112struct epoll_filefd {
 113        struct file *file;
 114        int fd;
 115} __packed;
 116
 117/*
 118 * Structure used to track possible nested calls, for too deep recursions
 119 * and loop cycles.
 120 */
 121struct nested_call_node {
 122        struct list_head llink;
 123        void *cookie;
 124        void *ctx;
 125};
 126
 127/*
 128 * This structure is used as collector for nested calls, to check for
 129 * maximum recursion dept and loop cycles.
 130 */
 131struct nested_calls {
 132        struct list_head tasks_call_list;
 133        spinlock_t lock;
 134};
 135
 136/*
 137 * Each file descriptor added to the eventpoll interface will
 138 * have an entry of this type linked to the "rbr" RB tree.
 139 * Avoid increasing the size of this struct, there can be many thousands
 140 * of these on a server and we do not want this to take another cache line.
 141 */
 142struct epitem {
 143        union {
 144                /* RB tree node links this structure to the eventpoll RB tree */
 145                struct rb_node rbn;
 146                /* Used to free the struct epitem */
 147                struct rcu_head rcu;
 148        };
 149
 150        /* List header used to link this structure to the eventpoll ready list */
 151        struct list_head rdllink;
 152
 153        /*
 154         * Works together "struct eventpoll"->ovflist in keeping the
 155         * single linked chain of items.
 156         */
 157        struct epitem *next;
 158
 159        /* The file descriptor information this item refers to */
 160        struct epoll_filefd ffd;
 161
 162        /* Number of active wait queue attached to poll operations */
 163        int nwait;
 164
 165        /* List containing poll wait queues */
 166        struct list_head pwqlist;
 167
 168        /* The "container" of this item */
 169        struct eventpoll *ep;
 170
 171        /* List header used to link this item to the "struct file" items list */
 172        struct list_head fllink;
 173
 174        /* wakeup_source used when EPOLLWAKEUP is set */
 175        struct wakeup_source __rcu *ws;
 176
 177        /* The structure that describe the interested events and the source fd */
 178        struct epoll_event event;
 179};
 180
 181/*
 182 * This structure is stored inside the "private_data" member of the file
 183 * structure and represents the main data structure for the eventpoll
 184 * interface.
 185 */
 186struct eventpoll {
 187        /* Protect the access to this structure */
 188        spinlock_t lock;
 189
 190        /*
 191         * This mutex is used to ensure that files are not removed
 192         * while epoll is using them. This is held during the event
 193         * collection loop, the file cleanup path, the epoll file exit
 194         * code and the ctl operations.
 195         */
 196        struct mutex mtx;
 197
 198        /* Wait queue used by sys_epoll_wait() */
 199        wait_queue_head_t wq;
 200
 201        /* Wait queue used by file->poll() */
 202        wait_queue_head_t poll_wait;
 203
 204        /* List of ready file descriptors */
 205        struct list_head rdllist;
 206
 207        /* RB tree root used to store monitored fd structs */
 208        struct rb_root_cached rbr;
 209
 210        /*
 211         * This is a single linked list that chains all the "struct epitem" that
 212         * happened while transferring ready events to userspace w/out
 213         * holding ->lock.
 214         */
 215        struct epitem *ovflist;
 216
 217        /* wakeup_source used when ep_scan_ready_list is running */
 218        struct wakeup_source *ws;
 219
 220        /* The user that created the eventpoll descriptor */
 221        struct user_struct *user;
 222
 223        struct file *file;
 224
 225        /* used to optimize loop detection check */
 226        int visited;
 227        struct list_head visited_list_link;
 228
 229#ifdef CONFIG_NET_RX_BUSY_POLL
 230        /* used to track busy poll napi_id */
 231        unsigned int napi_id;
 232#endif
 233};
 234
 235/* Wait structure used by the poll hooks */
 236struct eppoll_entry {
 237        /* List header used to link this structure to the "struct epitem" */
 238        struct list_head llink;
 239
 240        /* The "base" pointer is set to the container "struct epitem" */
 241        struct epitem *base;
 242
 243        /*
 244         * Wait queue item that will be linked to the target file wait
 245         * queue head.
 246         */
 247        wait_queue_entry_t wait;
 248
 249        /* The wait queue head that linked the "wait" wait queue item */
 250        wait_queue_head_t *whead;
 251};
 252
 253/* Wrapper struct used by poll queueing */
 254struct ep_pqueue {
 255        poll_table pt;
 256        struct epitem *epi;
 257};
 258
 259/* Used by the ep_send_events() function as callback private data */
 260struct ep_send_events_data {
 261        int maxevents;
 262        struct epoll_event __user *events;
 263};
 264
 265/*
 266 * Configuration options available inside /proc/sys/fs/epoll/
 267 */
 268/* Maximum number of epoll watched descriptors, per user */
 269static long max_user_watches __read_mostly;
 270
 271/*
 272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 273 */
 274static DEFINE_MUTEX(epmutex);
 275
 276/* Used to check for epoll file descriptor inclusion loops */
 277static struct nested_calls poll_loop_ncalls;
 278
 279/* Used for safe wake up implementation */
 280static struct nested_calls poll_safewake_ncalls;
 281
 282/* Used to call file's f_op->poll() under the nested calls boundaries */
 283static struct nested_calls poll_readywalk_ncalls;
 284
 285/* Slab cache used to allocate "struct epitem" */
 286static struct kmem_cache *epi_cache __read_mostly;
 287
 288/* Slab cache used to allocate "struct eppoll_entry" */
 289static struct kmem_cache *pwq_cache __read_mostly;
 290
 291/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
 292static LIST_HEAD(visited_list);
 293
 294/*
 295 * List of files with newly added links, where we may need to limit the number
 296 * of emanating paths. Protected by the epmutex.
 297 */
 298static LIST_HEAD(tfile_check_list);
 299
 300#ifdef CONFIG_SYSCTL
 301
 302#include <linux/sysctl.h>
 303
 304static long zero;
 305static long long_max = LONG_MAX;
 306
 307struct ctl_table epoll_table[] = {
 308        {
 309                .procname       = "max_user_watches",
 310                .data           = &max_user_watches,
 311                .maxlen         = sizeof(max_user_watches),
 312                .mode           = 0644,
 313                .proc_handler   = proc_doulongvec_minmax,
 314                .extra1         = &zero,
 315                .extra2         = &long_max,
 316        },
 317        { }
 318};
 319#endif /* CONFIG_SYSCTL */
 320
 321static const struct file_operations eventpoll_fops;
 322
 323static inline int is_file_epoll(struct file *f)
 324{
 325        return f->f_op == &eventpoll_fops;
 326}
 327
 328/* Setup the structure that is used as key for the RB tree */
 329static inline void ep_set_ffd(struct epoll_filefd *ffd,
 330                              struct file *file, int fd)
 331{
 332        ffd->file = file;
 333        ffd->fd = fd;
 334}
 335
 336/* Compare RB tree keys */
 337static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 338                             struct epoll_filefd *p2)
 339{
 340        return (p1->file > p2->file ? +1:
 341                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 342}
 343
 344/* Tells us if the item is currently linked */
 345static inline int ep_is_linked(struct list_head *p)
 346{
 347        return !list_empty(p);
 348}
 349
 350static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 351{
 352        return container_of(p, struct eppoll_entry, wait);
 353}
 354
 355/* Get the "struct epitem" from a wait queue pointer */
 356static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 357{
 358        return container_of(p, struct eppoll_entry, wait)->base;
 359}
 360
 361/* Get the "struct epitem" from an epoll queue wrapper */
 362static inline struct epitem *ep_item_from_epqueue(poll_table *p)
 363{
 364        return container_of(p, struct ep_pqueue, pt)->epi;
 365}
 366
 367/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
 368static inline int ep_op_has_event(int op)
 369{
 370        return op != EPOLL_CTL_DEL;
 371}
 372
 373/* Initialize the poll safe wake up structure */
 374static void ep_nested_calls_init(struct nested_calls *ncalls)
 375{
 376        INIT_LIST_HEAD(&ncalls->tasks_call_list);
 377        spin_lock_init(&ncalls->lock);
 378}
 379
 380/**
 381 * ep_events_available - Checks if ready events might be available.
 382 *
 383 * @ep: Pointer to the eventpoll context.
 384 *
 385 * Returns: Returns a value different than zero if ready events are available,
 386 *          or zero otherwise.
 387 */
 388static inline int ep_events_available(struct eventpoll *ep)
 389{
 390        return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
 391}
 392
 393#ifdef CONFIG_NET_RX_BUSY_POLL
 394static bool ep_busy_loop_end(void *p, unsigned long start_time)
 395{
 396        struct eventpoll *ep = p;
 397
 398        return ep_events_available(ep) || busy_loop_timeout(start_time);
 399}
 400#endif /* CONFIG_NET_RX_BUSY_POLL */
 401
 402/*
 403 * Busy poll if globally on and supporting sockets found && no events,
 404 * busy loop will return if need_resched or ep_events_available.
 405 *
 406 * we must do our busy polling with irqs enabled
 407 */
 408static void ep_busy_loop(struct eventpoll *ep, int nonblock)
 409{
 410#ifdef CONFIG_NET_RX_BUSY_POLL
 411        unsigned int napi_id = READ_ONCE(ep->napi_id);
 412
 413        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
 414                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
 415#endif
 416}
 417
 418static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
 419{
 420#ifdef CONFIG_NET_RX_BUSY_POLL
 421        if (ep->napi_id)
 422                ep->napi_id = 0;
 423#endif
 424}
 425
 426/*
 427 * Set epoll busy poll NAPI ID from sk.
 428 */
 429static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 430{
 431#ifdef CONFIG_NET_RX_BUSY_POLL
 432        struct eventpoll *ep;
 433        unsigned int napi_id;
 434        struct socket *sock;
 435        struct sock *sk;
 436        int err;
 437
 438        if (!net_busy_loop_on())
 439                return;
 440
 441        sock = sock_from_file(epi->ffd.file, &err);
 442        if (!sock)
 443                return;
 444
 445        sk = sock->sk;
 446        if (!sk)
 447                return;
 448
 449        napi_id = READ_ONCE(sk->sk_napi_id);
 450        ep = epi->ep;
 451
 452        /* Non-NAPI IDs can be rejected
 453         *      or
 454         * Nothing to do if we already have this ID
 455         */
 456        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 457                return;
 458
 459        /* record NAPI ID for use in next busy poll */
 460        ep->napi_id = napi_id;
 461#endif
 462}
 463
 464/**
 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
 466 *                  that the recursion limit is not exceeded, and that
 467 *                  the same nested call (by the meaning of same cookie) is
 468 *                  no re-entered.
 469 *
 470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
 471 * @max_nests: Maximum number of allowed nesting calls.
 472 * @nproc: Nested call core function pointer.
 473 * @priv: Opaque data to be passed to the @nproc callback.
 474 * @cookie: Cookie to be used to identify this nested call.
 475 * @ctx: This instance context.
 476 *
 477 * Returns: Returns the code returned by the @nproc callback, or -1 if
 478 *          the maximum recursion limit has been exceeded.
 479 */
 480static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
 481                          int (*nproc)(void *, void *, int), void *priv,
 482                          void *cookie, void *ctx)
 483{
 484        int error, call_nests = 0;
 485        unsigned long flags;
 486        struct list_head *lsthead = &ncalls->tasks_call_list;
 487        struct nested_call_node *tncur;
 488        struct nested_call_node tnode;
 489
 490        spin_lock_irqsave(&ncalls->lock, flags);
 491
 492        /*
 493         * Try to see if the current task is already inside this wakeup call.
 494         * We use a list here, since the population inside this set is always
 495         * very much limited.
 496         */
 497        list_for_each_entry(tncur, lsthead, llink) {
 498                if (tncur->ctx == ctx &&
 499                    (tncur->cookie == cookie || ++call_nests > max_nests)) {
 500                        /*
 501                         * Ops ... loop detected or maximum nest level reached.
 502                         * We abort this wake by breaking the cycle itself.
 503                         */
 504                        error = -1;
 505                        goto out_unlock;
 506                }
 507        }
 508
 509        /* Add the current task and cookie to the list */
 510        tnode.ctx = ctx;
 511        tnode.cookie = cookie;
 512        list_add(&tnode.llink, lsthead);
 513
 514        spin_unlock_irqrestore(&ncalls->lock, flags);
 515
 516        /* Call the nested function */
 517        error = (*nproc)(priv, cookie, call_nests);
 518
 519        /* Remove the current task from the list */
 520        spin_lock_irqsave(&ncalls->lock, flags);
 521        list_del(&tnode.llink);
 522out_unlock:
 523        spin_unlock_irqrestore(&ncalls->lock, flags);
 524
 525        return error;
 526}
 527
 528/*
 529 * As described in commit 0ccf831cb lockdep: annotate epoll
 530 * the use of wait queues used by epoll is done in a very controlled
 531 * manner. Wake ups can nest inside each other, but are never done
 532 * with the same locking. For example:
 533 *
 534 *   dfd = socket(...);
 535 *   efd1 = epoll_create();
 536 *   efd2 = epoll_create();
 537 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 538 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 539 *
 540 * When a packet arrives to the device underneath "dfd", the net code will
 541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 542 * callback wakeup entry on that queue, and the wake_up() performed by the
 543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 544 * (efd1) notices that it may have some event ready, so it needs to wake up
 545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 546 * that ends up in another wake_up(), after having checked about the
 547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 548 * avoid stack blasting.
 549 *
 550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 551 * this special case of epoll.
 552 */
 553#ifdef CONFIG_DEBUG_LOCK_ALLOC
 554static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
 555                                     unsigned long events, int subclass)
 556{
 557        unsigned long flags;
 558
 559        spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
 560        wake_up_locked_poll(wqueue, events);
 561        spin_unlock_irqrestore(&wqueue->lock, flags);
 562}
 563#else
 564static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
 565                                     unsigned long events, int subclass)
 566{
 567        wake_up_poll(wqueue, events);
 568}
 569#endif
 570
 571static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
 572{
 573        ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
 574                          1 + call_nests);
 575        return 0;
 576}
 577
 578/*
 579 * Perform a safe wake up of the poll wait list. The problem is that
 580 * with the new callback'd wake up system, it is possible that the
 581 * poll callback is reentered from inside the call to wake_up() done
 582 * on the poll wait queue head. The rule is that we cannot reenter the
 583 * wake up code from the same task more than EP_MAX_NESTS times,
 584 * and we cannot reenter the same wait queue head at all. This will
 585 * enable to have a hierarchy of epoll file descriptor of no more than
 586 * EP_MAX_NESTS deep.
 587 */
 588static void ep_poll_safewake(wait_queue_head_t *wq)
 589{
 590        int this_cpu = get_cpu();
 591
 592        ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
 593                       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
 594
 595        put_cpu();
 596}
 597
 598static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 599{
 600        wait_queue_head_t *whead;
 601
 602        rcu_read_lock();
 603        /*
 604         * If it is cleared by POLLFREE, it should be rcu-safe.
 605         * If we read NULL we need a barrier paired with
 606         * smp_store_release() in ep_poll_callback(), otherwise
 607         * we rely on whead->lock.
 608         */
 609        whead = smp_load_acquire(&pwq->whead);
 610        if (whead)
 611                remove_wait_queue(whead, &pwq->wait);
 612        rcu_read_unlock();
 613}
 614
 615/*
 616 * This function unregisters poll callbacks from the associated file
 617 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 618 * ep_free).
 619 */
 620static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 621{
 622        struct list_head *lsthead = &epi->pwqlist;
 623        struct eppoll_entry *pwq;
 624
 625        while (!list_empty(lsthead)) {
 626                pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
 627
 628                list_del(&pwq->llink);
 629                ep_remove_wait_queue(pwq);
 630                kmem_cache_free(pwq_cache, pwq);
 631        }
 632}
 633
 634/* call only when ep->mtx is held */
 635static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 636{
 637        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 638}
 639
 640/* call only when ep->mtx is held */
 641static inline void ep_pm_stay_awake(struct epitem *epi)
 642{
 643        struct wakeup_source *ws = ep_wakeup_source(epi);
 644
 645        if (ws)
 646                __pm_stay_awake(ws);
 647}
 648
 649static inline bool ep_has_wakeup_source(struct epitem *epi)
 650{
 651        return rcu_access_pointer(epi->ws) ? true : false;
 652}
 653
 654/* call when ep->mtx cannot be held (ep_poll_callback) */
 655static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 656{
 657        struct wakeup_source *ws;
 658
 659        rcu_read_lock();
 660        ws = rcu_dereference(epi->ws);
 661        if (ws)
 662                __pm_stay_awake(ws);
 663        rcu_read_unlock();
 664}
 665
 666/**
 667 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
 668 *                      the scan code, to call f_op->poll(). Also allows for
 669 *                      O(NumReady) performance.
 670 *
 671 * @ep: Pointer to the epoll private data structure.
 672 * @sproc: Pointer to the scan callback.
 673 * @priv: Private opaque data passed to the @sproc callback.
 674 * @depth: The current depth of recursive f_op->poll calls.
 675 * @ep_locked: caller already holds ep->mtx
 676 *
 677 * Returns: The same integer error code returned by the @sproc callback.
 678 */
 679static int ep_scan_ready_list(struct eventpoll *ep,
 680                              int (*sproc)(struct eventpoll *,
 681                                           struct list_head *, void *),
 682                              void *priv, int depth, bool ep_locked)
 683{
 684        int error, pwake = 0;
 685        unsigned long flags;
 686        struct epitem *epi, *nepi;
 687        LIST_HEAD(txlist);
 688
 689        /*
 690         * We need to lock this because we could be hit by
 691         * eventpoll_release_file() and epoll_ctl().
 692         */
 693
 694        if (!ep_locked)
 695                mutex_lock_nested(&ep->mtx, depth);
 696
 697        /*
 698         * Steal the ready list, and re-init the original one to the
 699         * empty list. Also, set ep->ovflist to NULL so that events
 700         * happening while looping w/out locks, are not lost. We cannot
 701         * have the poll callback to queue directly on ep->rdllist,
 702         * because we want the "sproc" callback to be able to do it
 703         * in a lockless way.
 704         */
 705        spin_lock_irqsave(&ep->lock, flags);
 706        list_splice_init(&ep->rdllist, &txlist);
 707        ep->ovflist = NULL;
 708        spin_unlock_irqrestore(&ep->lock, flags);
 709
 710        /*
 711         * Now call the callback function.
 712         */
 713        error = (*sproc)(ep, &txlist, priv);
 714
 715        spin_lock_irqsave(&ep->lock, flags);
 716        /*
 717         * During the time we spent inside the "sproc" callback, some
 718         * other events might have been queued by the poll callback.
 719         * We re-insert them inside the main ready-list here.
 720         */
 721        for (nepi = ep->ovflist; (epi = nepi) != NULL;
 722             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 723                /*
 724                 * We need to check if the item is already in the list.
 725                 * During the "sproc" callback execution time, items are
 726                 * queued into ->ovflist but the "txlist" might already
 727                 * contain them, and the list_splice() below takes care of them.
 728                 */
 729                if (!ep_is_linked(&epi->rdllink)) {
 730                        list_add_tail(&epi->rdllink, &ep->rdllist);
 731                        ep_pm_stay_awake(epi);
 732                }
 733        }
 734        /*
 735         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 736         * releasing the lock, events will be queued in the normal way inside
 737         * ep->rdllist.
 738         */
 739        ep->ovflist = EP_UNACTIVE_PTR;
 740
 741        /*
 742         * Quickly re-inject items left on "txlist".
 743         */
 744        list_splice(&txlist, &ep->rdllist);
 745        __pm_relax(ep->ws);
 746
 747        if (!list_empty(&ep->rdllist)) {
 748                /*
 749                 * Wake up (if active) both the eventpoll wait list and
 750                 * the ->poll() wait list (delayed after we release the lock).
 751                 */
 752                if (waitqueue_active(&ep->wq))
 753                        wake_up_locked(&ep->wq);
 754                if (waitqueue_active(&ep->poll_wait))
 755                        pwake++;
 756        }
 757        spin_unlock_irqrestore(&ep->lock, flags);
 758
 759        if (!ep_locked)
 760                mutex_unlock(&ep->mtx);
 761
 762        /* We have to call this outside the lock */
 763        if (pwake)
 764                ep_poll_safewake(&ep->poll_wait);
 765
 766        return error;
 767}
 768
 769static void epi_rcu_free(struct rcu_head *head)
 770{
 771        struct epitem *epi = container_of(head, struct epitem, rcu);
 772        kmem_cache_free(epi_cache, epi);
 773}
 774
 775/*
 776 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 777 * all the associated resources. Must be called with "mtx" held.
 778 */
 779static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 780{
 781        unsigned long flags;
 782        struct file *file = epi->ffd.file;
 783
 784        /*
 785         * Removes poll wait queue hooks. We _have_ to do this without holding
 786         * the "ep->lock" otherwise a deadlock might occur. This because of the
 787         * sequence of the lock acquisition. Here we do "ep->lock" then the wait
 788         * queue head lock when unregistering the wait queue. The wakeup callback
 789         * will run by holding the wait queue head lock and will call our callback
 790         * that will try to get "ep->lock".
 791         */
 792        ep_unregister_pollwait(ep, epi);
 793
 794        /* Remove the current item from the list of epoll hooks */
 795        spin_lock(&file->f_lock);
 796        list_del_rcu(&epi->fllink);
 797        spin_unlock(&file->f_lock);
 798
 799        rb_erase_cached(&epi->rbn, &ep->rbr);
 800
 801        spin_lock_irqsave(&ep->lock, flags);
 802        if (ep_is_linked(&epi->rdllink))
 803                list_del_init(&epi->rdllink);
 804        spin_unlock_irqrestore(&ep->lock, flags);
 805
 806        wakeup_source_unregister(ep_wakeup_source(epi));
 807        /*
 808         * At this point it is safe to free the eventpoll item. Use the union
 809         * field epi->rcu, since we are trying to minimize the size of
 810         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 811         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 812         * use of the rbn field.
 813         */
 814        call_rcu(&epi->rcu, epi_rcu_free);
 815
 816        atomic_long_dec(&ep->user->epoll_watches);
 817
 818        return 0;
 819}
 820
 821static void ep_free(struct eventpoll *ep)
 822{
 823        struct rb_node *rbp;
 824        struct epitem *epi;
 825
 826        /* We need to release all tasks waiting for these file */
 827        if (waitqueue_active(&ep->poll_wait))
 828                ep_poll_safewake(&ep->poll_wait);
 829
 830        /*
 831         * We need to lock this because we could be hit by
 832         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 833         * We do not need to hold "ep->mtx" here because the epoll file
 834         * is on the way to be removed and no one has references to it
 835         * anymore. The only hit might come from eventpoll_release_file() but
 836         * holding "epmutex" is sufficient here.
 837         */
 838        mutex_lock(&epmutex);
 839
 840        /*
 841         * Walks through the whole tree by unregistering poll callbacks.
 842         */
 843        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 844                epi = rb_entry(rbp, struct epitem, rbn);
 845
 846                ep_unregister_pollwait(ep, epi);
 847                cond_resched();
 848        }
 849
 850        /*
 851         * Walks through the whole tree by freeing each "struct epitem". At this
 852         * point we are sure no poll callbacks will be lingering around, and also by
 853         * holding "epmutex" we can be sure that no file cleanup code will hit
 854         * us during this operation. So we can avoid the lock on "ep->lock".
 855         * We do not need to lock ep->mtx, either, we only do it to prevent
 856         * a lockdep warning.
 857         */
 858        mutex_lock(&ep->mtx);
 859        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 860                epi = rb_entry(rbp, struct epitem, rbn);
 861                ep_remove(ep, epi);
 862                cond_resched();
 863        }
 864        mutex_unlock(&ep->mtx);
 865
 866        mutex_unlock(&epmutex);
 867        mutex_destroy(&ep->mtx);
 868        free_uid(ep->user);
 869        wakeup_source_unregister(ep->ws);
 870        kfree(ep);
 871}
 872
 873static int ep_eventpoll_release(struct inode *inode, struct file *file)
 874{
 875        struct eventpoll *ep = file->private_data;
 876
 877        if (ep)
 878                ep_free(ep);
 879
 880        return 0;
 881}
 882
 883static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
 884{
 885        pt->_key = epi->event.events;
 886
 887        return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
 888}
 889
 890static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
 891                               void *priv)
 892{
 893        struct epitem *epi, *tmp;
 894        poll_table pt;
 895
 896        init_poll_funcptr(&pt, NULL);
 897
 898        list_for_each_entry_safe(epi, tmp, head, rdllink) {
 899                if (ep_item_poll(epi, &pt))
 900                        return POLLIN | POLLRDNORM;
 901                else {
 902                        /*
 903                         * Item has been dropped into the ready list by the poll
 904                         * callback, but it's not actually ready, as far as
 905                         * caller requested events goes. We can remove it here.
 906                         */
 907                        __pm_relax(ep_wakeup_source(epi));
 908                        list_del_init(&epi->rdllink);
 909                }
 910        }
 911
 912        return 0;
 913}
 914
 915static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
 916                                 poll_table *pt);
 917
 918struct readyevents_arg {
 919        struct eventpoll *ep;
 920        bool locked;
 921};
 922
 923static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
 924{
 925        struct readyevents_arg *arg = priv;
 926
 927        return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
 928                                  call_nests + 1, arg->locked);
 929}
 930
 931static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
 932{
 933        int pollflags;
 934        struct eventpoll *ep = file->private_data;
 935        struct readyevents_arg arg;
 936
 937        /*
 938         * During ep_insert() we already hold the ep->mtx for the tfile.
 939         * Prevent re-aquisition.
 940         */
 941        arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
 942        arg.ep = ep;
 943
 944        /* Insert inside our poll wait queue */
 945        poll_wait(file, &ep->poll_wait, wait);
 946
 947        /*
 948         * Proceed to find out if wanted events are really available inside
 949         * the ready list. This need to be done under ep_call_nested()
 950         * supervision, since the call to f_op->poll() done on listed files
 951         * could re-enter here.
 952         */
 953        pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
 954                                   ep_poll_readyevents_proc, &arg, ep, current);
 955
 956        return pollflags != -1 ? pollflags : 0;
 957}
 958
 959#ifdef CONFIG_PROC_FS
 960static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 961{
 962        struct eventpoll *ep = f->private_data;
 963        struct rb_node *rbp;
 964
 965        mutex_lock(&ep->mtx);
 966        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 967                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 968                struct inode *inode = file_inode(epi->ffd.file);
 969
 970                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 971                           " pos:%lli ino:%lx sdev:%x\n",
 972                           epi->ffd.fd, epi->event.events,
 973                           (long long)epi->event.data,
 974                           (long long)epi->ffd.file->f_pos,
 975                           inode->i_ino, inode->i_sb->s_dev);
 976                if (seq_has_overflowed(m))
 977                        break;
 978        }
 979        mutex_unlock(&ep->mtx);
 980}
 981#endif
 982
 983/* File callbacks that implement the eventpoll file behaviour */
 984static const struct file_operations eventpoll_fops = {
 985#ifdef CONFIG_PROC_FS
 986        .show_fdinfo    = ep_show_fdinfo,
 987#endif
 988        .release        = ep_eventpoll_release,
 989        .poll           = ep_eventpoll_poll,
 990        .llseek         = noop_llseek,
 991};
 992
 993/*
 994 * This is called from eventpoll_release() to unlink files from the eventpoll
 995 * interface. We need to have this facility to cleanup correctly files that are
 996 * closed without being removed from the eventpoll interface.
 997 */
 998void eventpoll_release_file(struct file *file)
 999{
1000        struct eventpoll *ep;
1001        struct epitem *epi, *next;
1002
1003        /*
1004         * We don't want to get "file->f_lock" because it is not
1005         * necessary. It is not necessary because we're in the "struct file"
1006         * cleanup path, and this means that no one is using this file anymore.
1007         * So, for example, epoll_ctl() cannot hit here since if we reach this
1008         * point, the file counter already went to zero and fget() would fail.
1009         * The only hit might come from ep_free() but by holding the mutex
1010         * will correctly serialize the operation. We do need to acquire
1011         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1012         * from anywhere but ep_free().
1013         *
1014         * Besides, ep_remove() acquires the lock, so we can't hold it here.
1015         */
1016        mutex_lock(&epmutex);
1017        list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1018                ep = epi->ep;
1019                mutex_lock_nested(&ep->mtx, 0);
1020                ep_remove(ep, epi);
1021                mutex_unlock(&ep->mtx);
1022        }
1023        mutex_unlock(&epmutex);
1024}
1025
1026static int ep_alloc(struct eventpoll **pep)
1027{
1028        int error;
1029        struct user_struct *user;
1030        struct eventpoll *ep;
1031
1032        user = get_current_user();
1033        error = -ENOMEM;
1034        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1035        if (unlikely(!ep))
1036                goto free_uid;
1037
1038        spin_lock_init(&ep->lock);
1039        mutex_init(&ep->mtx);
1040        init_waitqueue_head(&ep->wq);
1041        init_waitqueue_head(&ep->poll_wait);
1042        INIT_LIST_HEAD(&ep->rdllist);
1043        ep->rbr = RB_ROOT_CACHED;
1044        ep->ovflist = EP_UNACTIVE_PTR;
1045        ep->user = user;
1046
1047        *pep = ep;
1048
1049        return 0;
1050
1051free_uid:
1052        free_uid(user);
1053        return error;
1054}
1055
1056/*
1057 * Search the file inside the eventpoll tree. The RB tree operations
1058 * are protected by the "mtx" mutex, and ep_find() must be called with
1059 * "mtx" held.
1060 */
1061static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1062{
1063        int kcmp;
1064        struct rb_node *rbp;
1065        struct epitem *epi, *epir = NULL;
1066        struct epoll_filefd ffd;
1067
1068        ep_set_ffd(&ffd, file, fd);
1069        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1070                epi = rb_entry(rbp, struct epitem, rbn);
1071                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1072                if (kcmp > 0)
1073                        rbp = rbp->rb_right;
1074                else if (kcmp < 0)
1075                        rbp = rbp->rb_left;
1076                else {
1077                        epir = epi;
1078                        break;
1079                }
1080        }
1081
1082        return epir;
1083}
1084
1085#ifdef CONFIG_CHECKPOINT_RESTORE
1086static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1087{
1088        struct rb_node *rbp;
1089        struct epitem *epi;
1090
1091        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1092                epi = rb_entry(rbp, struct epitem, rbn);
1093                if (epi->ffd.fd == tfd) {
1094                        if (toff == 0)
1095                                return epi;
1096                        else
1097                                toff--;
1098                }
1099                cond_resched();
1100        }
1101
1102        return NULL;
1103}
1104
1105struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1106                                     unsigned long toff)
1107{
1108        struct file *file_raw;
1109        struct eventpoll *ep;
1110        struct epitem *epi;
1111
1112        if (!is_file_epoll(file))
1113                return ERR_PTR(-EINVAL);
1114
1115        ep = file->private_data;
1116
1117        mutex_lock(&ep->mtx);
1118        epi = ep_find_tfd(ep, tfd, toff);
1119        if (epi)
1120                file_raw = epi->ffd.file;
1121        else
1122                file_raw = ERR_PTR(-ENOENT);
1123        mutex_unlock(&ep->mtx);
1124
1125        return file_raw;
1126}
1127#endif /* CONFIG_CHECKPOINT_RESTORE */
1128
1129/*
1130 * This is the callback that is passed to the wait queue wakeup
1131 * mechanism. It is called by the stored file descriptors when they
1132 * have events to report.
1133 */
1134static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1135{
1136        int pwake = 0;
1137        unsigned long flags;
1138        struct epitem *epi = ep_item_from_wait(wait);
1139        struct eventpoll *ep = epi->ep;
1140        int ewake = 0;
1141
1142        spin_lock_irqsave(&ep->lock, flags);
1143
1144        ep_set_busy_poll_napi_id(epi);
1145
1146        /*
1147         * If the event mask does not contain any poll(2) event, we consider the
1148         * descriptor to be disabled. This condition is likely the effect of the
1149         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1150         * until the next EPOLL_CTL_MOD will be issued.
1151         */
1152        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1153                goto out_unlock;
1154
1155        /*
1156         * Check the events coming with the callback. At this stage, not
1157         * every device reports the events in the "key" parameter of the
1158         * callback. We need to be able to handle both cases here, hence the
1159         * test for "key" != NULL before the event match test.
1160         */
1161        if (key && !((unsigned long) key & epi->event.events))
1162                goto out_unlock;
1163
1164        /*
1165         * If we are transferring events to userspace, we can hold no locks
1166         * (because we're accessing user memory, and because of linux f_op->poll()
1167         * semantics). All the events that happen during that period of time are
1168         * chained in ep->ovflist and requeued later on.
1169         */
1170        if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1171                if (epi->next == EP_UNACTIVE_PTR) {
1172                        epi->next = ep->ovflist;
1173                        ep->ovflist = epi;
1174                        if (epi->ws) {
1175                                /*
1176                                 * Activate ep->ws since epi->ws may get
1177                                 * deactivated at any time.
1178                                 */
1179                                __pm_stay_awake(ep->ws);
1180                        }
1181
1182                }
1183                goto out_unlock;
1184        }
1185
1186        /* If this file is already in the ready list we exit soon */
1187        if (!ep_is_linked(&epi->rdllink)) {
1188                list_add_tail(&epi->rdllink, &ep->rdllist);
1189                ep_pm_stay_awake_rcu(epi);
1190        }
1191
1192        /*
1193         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1194         * wait list.
1195         */
1196        if (waitqueue_active(&ep->wq)) {
1197                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1198                                        !((unsigned long)key & POLLFREE)) {
1199                        switch ((unsigned long)key & EPOLLINOUT_BITS) {
1200                        case POLLIN:
1201                                if (epi->event.events & POLLIN)
1202                                        ewake = 1;
1203                                break;
1204                        case POLLOUT:
1205                                if (epi->event.events & POLLOUT)
1206                                        ewake = 1;
1207                                break;
1208                        case 0:
1209                                ewake = 1;
1210                                break;
1211                        }
1212                }
1213                wake_up_locked(&ep->wq);
1214        }
1215        if (waitqueue_active(&ep->poll_wait))
1216                pwake++;
1217
1218out_unlock:
1219        spin_unlock_irqrestore(&ep->lock, flags);
1220
1221        /* We have to call this outside the lock */
1222        if (pwake)
1223                ep_poll_safewake(&ep->poll_wait);
1224
1225        if (!(epi->event.events & EPOLLEXCLUSIVE))
1226                ewake = 1;
1227
1228        if ((unsigned long)key & POLLFREE) {
1229                /*
1230                 * If we race with ep_remove_wait_queue() it can miss
1231                 * ->whead = NULL and do another remove_wait_queue() after
1232                 * us, so we can't use __remove_wait_queue().
1233                 */
1234                list_del_init(&wait->entry);
1235                /*
1236                 * ->whead != NULL protects us from the race with ep_free()
1237                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1238                 * held by the caller. Once we nullify it, nothing protects
1239                 * ep/epi or even wait.
1240                 */
1241                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1242        }
1243
1244        return ewake;
1245}
1246
1247/*
1248 * This is the callback that is used to add our wait queue to the
1249 * target file wakeup lists.
1250 */
1251static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1252                                 poll_table *pt)
1253{
1254        struct epitem *epi = ep_item_from_epqueue(pt);
1255        struct eppoll_entry *pwq;
1256
1257        if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1258                init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1259                pwq->whead = whead;
1260                pwq->base = epi;
1261                if (epi->event.events & EPOLLEXCLUSIVE)
1262                        add_wait_queue_exclusive(whead, &pwq->wait);
1263                else
1264                        add_wait_queue(whead, &pwq->wait);
1265                list_add_tail(&pwq->llink, &epi->pwqlist);
1266                epi->nwait++;
1267        } else {
1268                /* We have to signal that an error occurred */
1269                epi->nwait = -1;
1270        }
1271}
1272
1273static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1274{
1275        int kcmp;
1276        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1277        struct epitem *epic;
1278        bool leftmost = true;
1279
1280        while (*p) {
1281                parent = *p;
1282                epic = rb_entry(parent, struct epitem, rbn);
1283                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1284                if (kcmp > 0) {
1285                        p = &parent->rb_right;
1286                        leftmost = false;
1287                } else
1288                        p = &parent->rb_left;
1289        }
1290        rb_link_node(&epi->rbn, parent, p);
1291        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1292}
1293
1294
1295
1296#define PATH_ARR_SIZE 5
1297/*
1298 * These are the number paths of length 1 to 5, that we are allowing to emanate
1299 * from a single file of interest. For example, we allow 1000 paths of length
1300 * 1, to emanate from each file of interest. This essentially represents the
1301 * potential wakeup paths, which need to be limited in order to avoid massive
1302 * uncontrolled wakeup storms. The common use case should be a single ep which
1303 * is connected to n file sources. In this case each file source has 1 path
1304 * of length 1. Thus, the numbers below should be more than sufficient. These
1305 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1306 * and delete can't add additional paths. Protected by the epmutex.
1307 */
1308static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1309static int path_count[PATH_ARR_SIZE];
1310
1311static int path_count_inc(int nests)
1312{
1313        /* Allow an arbitrary number of depth 1 paths */
1314        if (nests == 0)
1315                return 0;
1316
1317        if (++path_count[nests] > path_limits[nests])
1318                return -1;
1319        return 0;
1320}
1321
1322static void path_count_init(void)
1323{
1324        int i;
1325
1326        for (i = 0; i < PATH_ARR_SIZE; i++)
1327                path_count[i] = 0;
1328}
1329
1330static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1331{
1332        int error = 0;
1333        struct file *file = priv;
1334        struct file *child_file;
1335        struct epitem *epi;
1336
1337        /* CTL_DEL can remove links here, but that can't increase our count */
1338        rcu_read_lock();
1339        list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1340                child_file = epi->ep->file;
1341                if (is_file_epoll(child_file)) {
1342                        if (list_empty(&child_file->f_ep_links)) {
1343                                if (path_count_inc(call_nests)) {
1344                                        error = -1;
1345                                        break;
1346                                }
1347                        } else {
1348                                error = ep_call_nested(&poll_loop_ncalls,
1349                                                        EP_MAX_NESTS,
1350                                                        reverse_path_check_proc,
1351                                                        child_file, child_file,
1352                                                        current);
1353                        }
1354                        if (error != 0)
1355                                break;
1356                } else {
1357                        printk(KERN_ERR "reverse_path_check_proc: "
1358                                "file is not an ep!\n");
1359                }
1360        }
1361        rcu_read_unlock();
1362        return error;
1363}
1364
1365/**
1366 * reverse_path_check - The tfile_check_list is list of file *, which have
1367 *                      links that are proposed to be newly added. We need to
1368 *                      make sure that those added links don't add too many
1369 *                      paths such that we will spend all our time waking up
1370 *                      eventpoll objects.
1371 *
1372 * Returns: Returns zero if the proposed links don't create too many paths,
1373 *          -1 otherwise.
1374 */
1375static int reverse_path_check(void)
1376{
1377        int error = 0;
1378        struct file *current_file;
1379
1380        /* let's call this for all tfiles */
1381        list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1382                path_count_init();
1383                error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1384                                        reverse_path_check_proc, current_file,
1385                                        current_file, current);
1386                if (error)
1387                        break;
1388        }
1389        return error;
1390}
1391
1392static int ep_create_wakeup_source(struct epitem *epi)
1393{
1394        const char *name;
1395        struct wakeup_source *ws;
1396
1397        if (!epi->ep->ws) {
1398                epi->ep->ws = wakeup_source_register("eventpoll");
1399                if (!epi->ep->ws)
1400                        return -ENOMEM;
1401        }
1402
1403        name = epi->ffd.file->f_path.dentry->d_name.name;
1404        ws = wakeup_source_register(name);
1405
1406        if (!ws)
1407                return -ENOMEM;
1408        rcu_assign_pointer(epi->ws, ws);
1409
1410        return 0;
1411}
1412
1413/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1414static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1415{
1416        struct wakeup_source *ws = ep_wakeup_source(epi);
1417
1418        RCU_INIT_POINTER(epi->ws, NULL);
1419
1420        /*
1421         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1422         * used internally by wakeup_source_remove, too (called by
1423         * wakeup_source_unregister), so we cannot use call_rcu
1424         */
1425        synchronize_rcu();
1426        wakeup_source_unregister(ws);
1427}
1428
1429/*
1430 * Must be called with "mtx" held.
1431 */
1432static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1433                     struct file *tfile, int fd, int full_check)
1434{
1435        int error, revents, pwake = 0;
1436        unsigned long flags;
1437        long user_watches;
1438        struct epitem *epi;
1439        struct ep_pqueue epq;
1440
1441        user_watches = atomic_long_read(&ep->user->epoll_watches);
1442        if (unlikely(user_watches >= max_user_watches))
1443                return -ENOSPC;
1444        if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1445                return -ENOMEM;
1446
1447        /* Item initialization follow here ... */
1448        INIT_LIST_HEAD(&epi->rdllink);
1449        INIT_LIST_HEAD(&epi->fllink);
1450        INIT_LIST_HEAD(&epi->pwqlist);
1451        epi->ep = ep;
1452        ep_set_ffd(&epi->ffd, tfile, fd);
1453        epi->event = *event;
1454        epi->nwait = 0;
1455        epi->next = EP_UNACTIVE_PTR;
1456        if (epi->event.events & EPOLLWAKEUP) {
1457                error = ep_create_wakeup_source(epi);
1458                if (error)
1459                        goto error_create_wakeup_source;
1460        } else {
1461                RCU_INIT_POINTER(epi->ws, NULL);
1462        }
1463
1464        /* Initialize the poll table using the queue callback */
1465        epq.epi = epi;
1466        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1467
1468        /*
1469         * Attach the item to the poll hooks and get current event bits.
1470         * We can safely use the file* here because its usage count has
1471         * been increased by the caller of this function. Note that after
1472         * this operation completes, the poll callback can start hitting
1473         * the new item.
1474         */
1475        revents = ep_item_poll(epi, &epq.pt);
1476
1477        /*
1478         * We have to check if something went wrong during the poll wait queue
1479         * install process. Namely an allocation for a wait queue failed due
1480         * high memory pressure.
1481         */
1482        error = -ENOMEM;
1483        if (epi->nwait < 0)
1484                goto error_unregister;
1485
1486        /* Add the current item to the list of active epoll hook for this file */
1487        spin_lock(&tfile->f_lock);
1488        list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1489        spin_unlock(&tfile->f_lock);
1490
1491        /*
1492         * Add the current item to the RB tree. All RB tree operations are
1493         * protected by "mtx", and ep_insert() is called with "mtx" held.
1494         */
1495        ep_rbtree_insert(ep, epi);
1496
1497        /* now check if we've created too many backpaths */
1498        error = -EINVAL;
1499        if (full_check && reverse_path_check())
1500                goto error_remove_epi;
1501
1502        /* We have to drop the new item inside our item list to keep track of it */
1503        spin_lock_irqsave(&ep->lock, flags);
1504
1505        /* record NAPI ID of new item if present */
1506        ep_set_busy_poll_napi_id(epi);
1507
1508        /* If the file is already "ready" we drop it inside the ready list */
1509        if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1510                list_add_tail(&epi->rdllink, &ep->rdllist);
1511                ep_pm_stay_awake(epi);
1512
1513                /* Notify waiting tasks that events are available */
1514                if (waitqueue_active(&ep->wq))
1515                        wake_up_locked(&ep->wq);
1516                if (waitqueue_active(&ep->poll_wait))
1517                        pwake++;
1518        }
1519
1520        spin_unlock_irqrestore(&ep->lock, flags);
1521
1522        atomic_long_inc(&ep->user->epoll_watches);
1523
1524        /* We have to call this outside the lock */
1525        if (pwake)
1526                ep_poll_safewake(&ep->poll_wait);
1527
1528        return 0;
1529
1530error_remove_epi:
1531        spin_lock(&tfile->f_lock);
1532        list_del_rcu(&epi->fllink);
1533        spin_unlock(&tfile->f_lock);
1534
1535        rb_erase_cached(&epi->rbn, &ep->rbr);
1536
1537error_unregister:
1538        ep_unregister_pollwait(ep, epi);
1539
1540        /*
1541         * We need to do this because an event could have been arrived on some
1542         * allocated wait queue. Note that we don't care about the ep->ovflist
1543         * list, since that is used/cleaned only inside a section bound by "mtx".
1544         * And ep_insert() is called with "mtx" held.
1545         */
1546        spin_lock_irqsave(&ep->lock, flags);
1547        if (ep_is_linked(&epi->rdllink))
1548                list_del_init(&epi->rdllink);
1549        spin_unlock_irqrestore(&ep->lock, flags);
1550
1551        wakeup_source_unregister(ep_wakeup_source(epi));
1552
1553error_create_wakeup_source:
1554        kmem_cache_free(epi_cache, epi);
1555
1556        return error;
1557}
1558
1559/*
1560 * Modify the interest event mask by dropping an event if the new mask
1561 * has a match in the current file status. Must be called with "mtx" held.
1562 */
1563static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1564{
1565        int pwake = 0;
1566        unsigned int revents;
1567        poll_table pt;
1568
1569        init_poll_funcptr(&pt, NULL);
1570
1571        /*
1572         * Set the new event interest mask before calling f_op->poll();
1573         * otherwise we might miss an event that happens between the
1574         * f_op->poll() call and the new event set registering.
1575         */
1576        epi->event.events = event->events; /* need barrier below */
1577        epi->event.data = event->data; /* protected by mtx */
1578        if (epi->event.events & EPOLLWAKEUP) {
1579                if (!ep_has_wakeup_source(epi))
1580                        ep_create_wakeup_source(epi);
1581        } else if (ep_has_wakeup_source(epi)) {
1582                ep_destroy_wakeup_source(epi);
1583        }
1584
1585        /*
1586         * The following barrier has two effects:
1587         *
1588         * 1) Flush epi changes above to other CPUs.  This ensures
1589         *    we do not miss events from ep_poll_callback if an
1590         *    event occurs immediately after we call f_op->poll().
1591         *    We need this because we did not take ep->lock while
1592         *    changing epi above (but ep_poll_callback does take
1593         *    ep->lock).
1594         *
1595         * 2) We also need to ensure we do not miss _past_ events
1596         *    when calling f_op->poll().  This barrier also
1597         *    pairs with the barrier in wq_has_sleeper (see
1598         *    comments for wq_has_sleeper).
1599         *
1600         * This barrier will now guarantee ep_poll_callback or f_op->poll
1601         * (or both) will notice the readiness of an item.
1602         */
1603        smp_mb();
1604
1605        /*
1606         * Get current event bits. We can safely use the file* here because
1607         * its usage count has been increased by the caller of this function.
1608         */
1609        revents = ep_item_poll(epi, &pt);
1610
1611        /*
1612         * If the item is "hot" and it is not registered inside the ready
1613         * list, push it inside.
1614         */
1615        if (revents & event->events) {
1616                spin_lock_irq(&ep->lock);
1617                if (!ep_is_linked(&epi->rdllink)) {
1618                        list_add_tail(&epi->rdllink, &ep->rdllist);
1619                        ep_pm_stay_awake(epi);
1620
1621                        /* Notify waiting tasks that events are available */
1622                        if (waitqueue_active(&ep->wq))
1623                                wake_up_locked(&ep->wq);
1624                        if (waitqueue_active(&ep->poll_wait))
1625                                pwake++;
1626                }
1627                spin_unlock_irq(&ep->lock);
1628        }
1629
1630        /* We have to call this outside the lock */
1631        if (pwake)
1632                ep_poll_safewake(&ep->poll_wait);
1633
1634        return 0;
1635}
1636
1637static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1638                               void *priv)
1639{
1640        struct ep_send_events_data *esed = priv;
1641        int eventcnt;
1642        unsigned int revents;
1643        struct epitem *epi;
1644        struct epoll_event __user *uevent;
1645        struct wakeup_source *ws;
1646        poll_table pt;
1647
1648        init_poll_funcptr(&pt, NULL);
1649
1650        /*
1651         * We can loop without lock because we are passed a task private list.
1652         * Items cannot vanish during the loop because ep_scan_ready_list() is
1653         * holding "mtx" during this call.
1654         */
1655        for (eventcnt = 0, uevent = esed->events;
1656             !list_empty(head) && eventcnt < esed->maxevents;) {
1657                epi = list_first_entry(head, struct epitem, rdllink);
1658
1659                /*
1660                 * Activate ep->ws before deactivating epi->ws to prevent
1661                 * triggering auto-suspend here (in case we reactive epi->ws
1662                 * below).
1663                 *
1664                 * This could be rearranged to delay the deactivation of epi->ws
1665                 * instead, but then epi->ws would temporarily be out of sync
1666                 * with ep_is_linked().
1667                 */
1668                ws = ep_wakeup_source(epi);
1669                if (ws) {
1670                        if (ws->active)
1671                                __pm_stay_awake(ep->ws);
1672                        __pm_relax(ws);
1673                }
1674
1675                list_del_init(&epi->rdllink);
1676
1677                revents = ep_item_poll(epi, &pt);
1678
1679                /*
1680                 * If the event mask intersect the caller-requested one,
1681                 * deliver the event to userspace. Again, ep_scan_ready_list()
1682                 * is holding "mtx", so no operations coming from userspace
1683                 * can change the item.
1684                 */
1685                if (revents) {
1686                        if (__put_user(revents, &uevent->events) ||
1687                            __put_user(epi->event.data, &uevent->data)) {
1688                                list_add(&epi->rdllink, head);
1689                                ep_pm_stay_awake(epi);
1690                                return eventcnt ? eventcnt : -EFAULT;
1691                        }
1692                        eventcnt++;
1693                        uevent++;
1694                        if (epi->event.events & EPOLLONESHOT)
1695                                epi->event.events &= EP_PRIVATE_BITS;
1696                        else if (!(epi->event.events & EPOLLET)) {
1697                                /*
1698                                 * If this file has been added with Level
1699                                 * Trigger mode, we need to insert back inside
1700                                 * the ready list, so that the next call to
1701                                 * epoll_wait() will check again the events
1702                                 * availability. At this point, no one can insert
1703                                 * into ep->rdllist besides us. The epoll_ctl()
1704                                 * callers are locked out by
1705                                 * ep_scan_ready_list() holding "mtx" and the
1706                                 * poll callback will queue them in ep->ovflist.
1707                                 */
1708                                list_add_tail(&epi->rdllink, &ep->rdllist);
1709                                ep_pm_stay_awake(epi);
1710                        }
1711                }
1712        }
1713
1714        return eventcnt;
1715}
1716
1717static int ep_send_events(struct eventpoll *ep,
1718                          struct epoll_event __user *events, int maxevents)
1719{
1720        struct ep_send_events_data esed;
1721
1722        esed.maxevents = maxevents;
1723        esed.events = events;
1724
1725        return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1726}
1727
1728static inline struct timespec64 ep_set_mstimeout(long ms)
1729{
1730        struct timespec64 now, ts = {
1731                .tv_sec = ms / MSEC_PER_SEC,
1732                .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1733        };
1734
1735        ktime_get_ts64(&now);
1736        return timespec64_add_safe(now, ts);
1737}
1738
1739/**
1740 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1741 *           event buffer.
1742 *
1743 * @ep: Pointer to the eventpoll context.
1744 * @events: Pointer to the userspace buffer where the ready events should be
1745 *          stored.
1746 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1747 * @timeout: Maximum timeout for the ready events fetch operation, in
1748 *           milliseconds. If the @timeout is zero, the function will not block,
1749 *           while if the @timeout is less than zero, the function will block
1750 *           until at least one event has been retrieved (or an error
1751 *           occurred).
1752 *
1753 * Returns: Returns the number of ready events which have been fetched, or an
1754 *          error code, in case of error.
1755 */
1756static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1757                   int maxevents, long timeout)
1758{
1759        int res = 0, eavail, timed_out = 0;
1760        unsigned long flags;
1761        u64 slack = 0;
1762        wait_queue_entry_t wait;
1763        ktime_t expires, *to = NULL;
1764
1765        if (timeout > 0) {
1766                struct timespec64 end_time = ep_set_mstimeout(timeout);
1767
1768                slack = select_estimate_accuracy(&end_time);
1769                to = &expires;
1770                *to = timespec64_to_ktime(end_time);
1771        } else if (timeout == 0) {
1772                /*
1773                 * Avoid the unnecessary trip to the wait queue loop, if the
1774                 * caller specified a non blocking operation.
1775                 */
1776                timed_out = 1;
1777                spin_lock_irqsave(&ep->lock, flags);
1778                goto check_events;
1779        }
1780
1781fetch_events:
1782
1783        if (!ep_events_available(ep))
1784                ep_busy_loop(ep, timed_out);
1785
1786        spin_lock_irqsave(&ep->lock, flags);
1787
1788        if (!ep_events_available(ep)) {
1789                /*
1790                 * Busy poll timed out.  Drop NAPI ID for now, we can add
1791                 * it back in when we have moved a socket with a valid NAPI
1792                 * ID onto the ready list.
1793                 */
1794                ep_reset_busy_poll_napi_id(ep);
1795
1796                /*
1797                 * We don't have any available event to return to the caller.
1798                 * We need to sleep here, and we will be wake up by
1799                 * ep_poll_callback() when events will become available.
1800                 */
1801                init_waitqueue_entry(&wait, current);
1802                __add_wait_queue_exclusive(&ep->wq, &wait);
1803
1804                for (;;) {
1805                        /*
1806                         * We don't want to sleep if the ep_poll_callback() sends us
1807                         * a wakeup in between. That's why we set the task state
1808                         * to TASK_INTERRUPTIBLE before doing the checks.
1809                         */
1810                        set_current_state(TASK_INTERRUPTIBLE);
1811                        /*
1812                         * Always short-circuit for fatal signals to allow
1813                         * threads to make a timely exit without the chance of
1814                         * finding more events available and fetching
1815                         * repeatedly.
1816                         */
1817                        if (fatal_signal_pending(current)) {
1818                                res = -EINTR;
1819                                break;
1820                        }
1821                        if (ep_events_available(ep) || timed_out)
1822                                break;
1823                        if (signal_pending(current)) {
1824                                res = -EINTR;
1825                                break;
1826                        }
1827
1828                        spin_unlock_irqrestore(&ep->lock, flags);
1829                        if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1830                                timed_out = 1;
1831
1832                        spin_lock_irqsave(&ep->lock, flags);
1833                }
1834
1835                __remove_wait_queue(&ep->wq, &wait);
1836                __set_current_state(TASK_RUNNING);
1837        }
1838check_events:
1839        /* Is it worth to try to dig for events ? */
1840        eavail = ep_events_available(ep);
1841
1842        spin_unlock_irqrestore(&ep->lock, flags);
1843
1844        /*
1845         * Try to transfer events to user space. In case we get 0 events and
1846         * there's still timeout left over, we go trying again in search of
1847         * more luck.
1848         */
1849        if (!res && eavail &&
1850            !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1851                goto fetch_events;
1852
1853        return res;
1854}
1855
1856/**
1857 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1858 *                      API, to verify that adding an epoll file inside another
1859 *                      epoll structure, does not violate the constraints, in
1860 *                      terms of closed loops, or too deep chains (which can
1861 *                      result in excessive stack usage).
1862 *
1863 * @priv: Pointer to the epoll file to be currently checked.
1864 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1865 *          data structure pointer.
1866 * @call_nests: Current dept of the @ep_call_nested() call stack.
1867 *
1868 * Returns: Returns zero if adding the epoll @file inside current epoll
1869 *          structure @ep does not violate the constraints, or -1 otherwise.
1870 */
1871static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1872{
1873        int error = 0;
1874        struct file *file = priv;
1875        struct eventpoll *ep = file->private_data;
1876        struct eventpoll *ep_tovisit;
1877        struct rb_node *rbp;
1878        struct epitem *epi;
1879
1880        mutex_lock_nested(&ep->mtx, call_nests + 1);
1881        ep->visited = 1;
1882        list_add(&ep->visited_list_link, &visited_list);
1883        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1884                epi = rb_entry(rbp, struct epitem, rbn);
1885                if (unlikely(is_file_epoll(epi->ffd.file))) {
1886                        ep_tovisit = epi->ffd.file->private_data;
1887                        if (ep_tovisit->visited)
1888                                continue;
1889                        error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1890                                        ep_loop_check_proc, epi->ffd.file,
1891                                        ep_tovisit, current);
1892                        if (error != 0)
1893                                break;
1894                } else {
1895                        /*
1896                         * If we've reached a file that is not associated with
1897                         * an ep, then we need to check if the newly added
1898                         * links are going to add too many wakeup paths. We do
1899                         * this by adding it to the tfile_check_list, if it's
1900                         * not already there, and calling reverse_path_check()
1901                         * during ep_insert().
1902                         */
1903                        if (list_empty(&epi->ffd.file->f_tfile_llink))
1904                                list_add(&epi->ffd.file->f_tfile_llink,
1905                                         &tfile_check_list);
1906                }
1907        }
1908        mutex_unlock(&ep->mtx);
1909
1910        return error;
1911}
1912
1913/**
1914 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1915 *                 another epoll file (represented by @ep) does not create
1916 *                 closed loops or too deep chains.
1917 *
1918 * @ep: Pointer to the epoll private data structure.
1919 * @file: Pointer to the epoll file to be checked.
1920 *
1921 * Returns: Returns zero if adding the epoll @file inside current epoll
1922 *          structure @ep does not violate the constraints, or -1 otherwise.
1923 */
1924static int ep_loop_check(struct eventpoll *ep, struct file *file)
1925{
1926        int ret;
1927        struct eventpoll *ep_cur, *ep_next;
1928
1929        ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1930                              ep_loop_check_proc, file, ep, current);
1931        /* clear visited list */
1932        list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1933                                                        visited_list_link) {
1934                ep_cur->visited = 0;
1935                list_del(&ep_cur->visited_list_link);
1936        }
1937        return ret;
1938}
1939
1940static void clear_tfile_check_list(void)
1941{
1942        struct file *file;
1943
1944        /* first clear the tfile_check_list */
1945        while (!list_empty(&tfile_check_list)) {
1946                file = list_first_entry(&tfile_check_list, struct file,
1947                                        f_tfile_llink);
1948                list_del_init(&file->f_tfile_llink);
1949        }
1950        INIT_LIST_HEAD(&tfile_check_list);
1951}
1952
1953/*
1954 * Open an eventpoll file descriptor.
1955 */
1956SYSCALL_DEFINE1(epoll_create1, int, flags)
1957{
1958        int error, fd;
1959        struct eventpoll *ep = NULL;
1960        struct file *file;
1961
1962        /* Check the EPOLL_* constant for consistency.  */
1963        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1964
1965        if (flags & ~EPOLL_CLOEXEC)
1966                return -EINVAL;
1967        /*
1968         * Create the internal data structure ("struct eventpoll").
1969         */
1970        error = ep_alloc(&ep);
1971        if (error < 0)
1972                return error;
1973        /*
1974         * Creates all the items needed to setup an eventpoll file. That is,
1975         * a file structure and a free file descriptor.
1976         */
1977        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1978        if (fd < 0) {
1979                error = fd;
1980                goto out_free_ep;
1981        }
1982        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1983                                 O_RDWR | (flags & O_CLOEXEC));
1984        if (IS_ERR(file)) {
1985                error = PTR_ERR(file);
1986                goto out_free_fd;
1987        }
1988        ep->file = file;
1989        fd_install(fd, file);
1990        return fd;
1991
1992out_free_fd:
1993        put_unused_fd(fd);
1994out_free_ep:
1995        ep_free(ep);
1996        return error;
1997}
1998
1999SYSCALL_DEFINE1(epoll_create, int, size)
2000{
2001        if (size <= 0)
2002                return -EINVAL;
2003
2004        return sys_epoll_create1(0);
2005}
2006
2007/*
2008 * The following function implements the controller interface for
2009 * the eventpoll file that enables the insertion/removal/change of
2010 * file descriptors inside the interest set.
2011 */
2012SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2013                struct epoll_event __user *, event)
2014{
2015        int error;
2016        int full_check = 0;
2017        struct fd f, tf;
2018        struct eventpoll *ep;
2019        struct epitem *epi;
2020        struct epoll_event epds;
2021        struct eventpoll *tep = NULL;
2022
2023        error = -EFAULT;
2024        if (ep_op_has_event(op) &&
2025            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2026                goto error_return;
2027
2028        error = -EBADF;
2029        f = fdget(epfd);
2030        if (!f.file)
2031                goto error_return;
2032
2033        /* Get the "struct file *" for the target file */
2034        tf = fdget(fd);
2035        if (!tf.file)
2036                goto error_fput;
2037
2038        /* The target file descriptor must support poll */
2039        error = -EPERM;
2040        if (!tf.file->f_op->poll)
2041                goto error_tgt_fput;
2042
2043        /* Check if EPOLLWAKEUP is allowed */
2044        if (ep_op_has_event(op))
2045                ep_take_care_of_epollwakeup(&epds);
2046
2047        /*
2048         * We have to check that the file structure underneath the file descriptor
2049         * the user passed to us _is_ an eventpoll file. And also we do not permit
2050         * adding an epoll file descriptor inside itself.
2051         */
2052        error = -EINVAL;
2053        if (f.file == tf.file || !is_file_epoll(f.file))
2054                goto error_tgt_fput;
2055
2056        /*
2057         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2058         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2059         * Also, we do not currently supported nested exclusive wakeups.
2060         */
2061        if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2062                if (op == EPOLL_CTL_MOD)
2063                        goto error_tgt_fput;
2064                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2065                                (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2066                        goto error_tgt_fput;
2067        }
2068
2069        /*
2070         * At this point it is safe to assume that the "private_data" contains
2071         * our own data structure.
2072         */
2073        ep = f.file->private_data;
2074
2075        /*
2076         * When we insert an epoll file descriptor, inside another epoll file
2077         * descriptor, there is the change of creating closed loops, which are
2078         * better be handled here, than in more critical paths. While we are
2079         * checking for loops we also determine the list of files reachable
2080         * and hang them on the tfile_check_list, so we can check that we
2081         * haven't created too many possible wakeup paths.
2082         *
2083         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2084         * the epoll file descriptor is attaching directly to a wakeup source,
2085         * unless the epoll file descriptor is nested. The purpose of taking the
2086         * 'epmutex' on add is to prevent complex toplogies such as loops and
2087         * deep wakeup paths from forming in parallel through multiple
2088         * EPOLL_CTL_ADD operations.
2089         */
2090        mutex_lock_nested(&ep->mtx, 0);
2091        if (op == EPOLL_CTL_ADD) {
2092                if (!list_empty(&f.file->f_ep_links) ||
2093                                                is_file_epoll(tf.file)) {
2094                        full_check = 1;
2095                        mutex_unlock(&ep->mtx);
2096                        mutex_lock(&epmutex);
2097                        if (is_file_epoll(tf.file)) {
2098                                error = -ELOOP;
2099                                if (ep_loop_check(ep, tf.file) != 0) {
2100                                        clear_tfile_check_list();
2101                                        goto error_tgt_fput;
2102                                }
2103                        } else
2104                                list_add(&tf.file->f_tfile_llink,
2105                                                        &tfile_check_list);
2106                        mutex_lock_nested(&ep->mtx, 0);
2107                        if (is_file_epoll(tf.file)) {
2108                                tep = tf.file->private_data;
2109                                mutex_lock_nested(&tep->mtx, 1);
2110                        }
2111                }
2112        }
2113
2114        /*
2115         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2116         * above, we can be sure to be able to use the item looked up by
2117         * ep_find() till we release the mutex.
2118         */
2119        epi = ep_find(ep, tf.file, fd);
2120
2121        error = -EINVAL;
2122        switch (op) {
2123        case EPOLL_CTL_ADD:
2124                if (!epi) {
2125                        epds.events |= POLLERR | POLLHUP;
2126                        error = ep_insert(ep, &epds, tf.file, fd, full_check);
2127                } else
2128                        error = -EEXIST;
2129                if (full_check)
2130                        clear_tfile_check_list();
2131                break;
2132        case EPOLL_CTL_DEL:
2133                if (epi)
2134                        error = ep_remove(ep, epi);
2135                else
2136                        error = -ENOENT;
2137                break;
2138        case EPOLL_CTL_MOD:
2139                if (epi) {
2140                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2141                                epds.events |= POLLERR | POLLHUP;
2142                                error = ep_modify(ep, epi, &epds);
2143                        }
2144                } else
2145                        error = -ENOENT;
2146                break;
2147        }
2148        if (tep != NULL)
2149                mutex_unlock(&tep->mtx);
2150        mutex_unlock(&ep->mtx);
2151
2152error_tgt_fput:
2153        if (full_check)
2154                mutex_unlock(&epmutex);
2155
2156        fdput(tf);
2157error_fput:
2158        fdput(f);
2159error_return:
2160
2161        return error;
2162}
2163
2164/*
2165 * Implement the event wait interface for the eventpoll file. It is the kernel
2166 * part of the user space epoll_wait(2).
2167 */
2168SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2169                int, maxevents, int, timeout)
2170{
2171        int error;
2172        struct fd f;
2173        struct eventpoll *ep;
2174
2175        /* The maximum number of event must be greater than zero */
2176        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2177                return -EINVAL;
2178
2179        /* Verify that the area passed by the user is writeable */
2180        if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2181                return -EFAULT;
2182
2183        /* Get the "struct file *" for the eventpoll file */
2184        f = fdget(epfd);
2185        if (!f.file)
2186                return -EBADF;
2187
2188        /*
2189         * We have to check that the file structure underneath the fd
2190         * the user passed to us _is_ an eventpoll file.
2191         */
2192        error = -EINVAL;
2193        if (!is_file_epoll(f.file))
2194                goto error_fput;
2195
2196        /*
2197         * At this point it is safe to assume that the "private_data" contains
2198         * our own data structure.
2199         */
2200        ep = f.file->private_data;
2201
2202        /* Time to fish for events ... */
2203        error = ep_poll(ep, events, maxevents, timeout);
2204
2205error_fput:
2206        fdput(f);
2207        return error;
2208}
2209
2210/*
2211 * Implement the event wait interface for the eventpoll file. It is the kernel
2212 * part of the user space epoll_pwait(2).
2213 */
2214SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2215                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2216                size_t, sigsetsize)
2217{
2218        int error;
2219        sigset_t ksigmask, sigsaved;
2220
2221        /*
2222         * If the caller wants a certain signal mask to be set during the wait,
2223         * we apply it here.
2224         */
2225        if (sigmask) {
2226                if (sigsetsize != sizeof(sigset_t))
2227                        return -EINVAL;
2228                if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2229                        return -EFAULT;
2230                sigsaved = current->blocked;
2231                set_current_blocked(&ksigmask);
2232        }
2233
2234        error = sys_epoll_wait(epfd, events, maxevents, timeout);
2235
2236        /*
2237         * If we changed the signal mask, we need to restore the original one.
2238         * In case we've got a signal while waiting, we do not restore the
2239         * signal mask yet, and we allow do_signal() to deliver the signal on
2240         * the way back to userspace, before the signal mask is restored.
2241         */
2242        if (sigmask) {
2243                if (error == -EINTR) {
2244                        memcpy(&current->saved_sigmask, &sigsaved,
2245                               sizeof(sigsaved));
2246                        set_restore_sigmask();
2247                } else
2248                        set_current_blocked(&sigsaved);
2249        }
2250
2251        return error;
2252}
2253
2254#ifdef CONFIG_COMPAT
2255COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2256                        struct epoll_event __user *, events,
2257                        int, maxevents, int, timeout,
2258                        const compat_sigset_t __user *, sigmask,
2259                        compat_size_t, sigsetsize)
2260{
2261        long err;
2262        compat_sigset_t csigmask;
2263        sigset_t ksigmask, sigsaved;
2264
2265        /*
2266         * If the caller wants a certain signal mask to be set during the wait,
2267         * we apply it here.
2268         */
2269        if (sigmask) {
2270                if (sigsetsize != sizeof(compat_sigset_t))
2271                        return -EINVAL;
2272                if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2273                        return -EFAULT;
2274                sigset_from_compat(&ksigmask, &csigmask);
2275                sigsaved = current->blocked;
2276                set_current_blocked(&ksigmask);
2277        }
2278
2279        err = sys_epoll_wait(epfd, events, maxevents, timeout);
2280
2281        /*
2282         * If we changed the signal mask, we need to restore the original one.
2283         * In case we've got a signal while waiting, we do not restore the
2284         * signal mask yet, and we allow do_signal() to deliver the signal on
2285         * the way back to userspace, before the signal mask is restored.
2286         */
2287        if (sigmask) {
2288                if (err == -EINTR) {
2289                        memcpy(&current->saved_sigmask, &sigsaved,
2290                               sizeof(sigsaved));
2291                        set_restore_sigmask();
2292                } else
2293                        set_current_blocked(&sigsaved);
2294        }
2295
2296        return err;
2297}
2298#endif
2299
2300static int __init eventpoll_init(void)
2301{
2302        struct sysinfo si;
2303
2304        si_meminfo(&si);
2305        /*
2306         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2307         */
2308        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2309                EP_ITEM_COST;
2310        BUG_ON(max_user_watches < 0);
2311
2312        /*
2313         * Initialize the structure used to perform epoll file descriptor
2314         * inclusion loops checks.
2315         */
2316        ep_nested_calls_init(&poll_loop_ncalls);
2317
2318        /* Initialize the structure used to perform safe poll wait head wake ups */
2319        ep_nested_calls_init(&poll_safewake_ncalls);
2320
2321        /* Initialize the structure used to perform file's f_op->poll() calls */
2322        ep_nested_calls_init(&poll_readywalk_ncalls);
2323
2324        /*
2325         * We can have many thousands of epitems, so prevent this from
2326         * using an extra cache line on 64-bit (and smaller) CPUs
2327         */
2328        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2329
2330        /* Allocates slab cache used to allocate "struct epitem" items */
2331        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2332                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2333
2334        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2335        pwq_cache = kmem_cache_create("eventpoll_pwq",
2336                        sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2337
2338        return 0;
2339}
2340fs_initcall(eventpoll_init);
2341