linux/include/asm-generic/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_PGTABLE_H
   3#define _ASM_GENERIC_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6
   7#ifndef __ASSEMBLY__
   8#ifdef CONFIG_MMU
   9
  10#include <linux/mm_types.h>
  11#include <linux/bug.h>
  12#include <linux/errno.h>
  13
  14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  15        defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  17#endif
  18
  19/*
  20 * On almost all architectures and configurations, 0 can be used as the
  21 * upper ceiling to free_pgtables(): on many architectures it has the same
  22 * effect as using TASK_SIZE.  However, there is one configuration which
  23 * must impose a more careful limit, to avoid freeing kernel pgtables.
  24 */
  25#ifndef USER_PGTABLES_CEILING
  26#define USER_PGTABLES_CEILING   0UL
  27#endif
  28
  29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  30extern int ptep_set_access_flags(struct vm_area_struct *vma,
  31                                 unsigned long address, pte_t *ptep,
  32                                 pte_t entry, int dirty);
  33#endif
  34
  35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  36#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  37extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  38                                 unsigned long address, pmd_t *pmdp,
  39                                 pmd_t entry, int dirty);
  40extern int pudp_set_access_flags(struct vm_area_struct *vma,
  41                                 unsigned long address, pud_t *pudp,
  42                                 pud_t entry, int dirty);
  43#else
  44static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  45                                        unsigned long address, pmd_t *pmdp,
  46                                        pmd_t entry, int dirty)
  47{
  48        BUILD_BUG();
  49        return 0;
  50}
  51static inline int pudp_set_access_flags(struct vm_area_struct *vma,
  52                                        unsigned long address, pud_t *pudp,
  53                                        pud_t entry, int dirty)
  54{
  55        BUILD_BUG();
  56        return 0;
  57}
  58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  59#endif
  60
  61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  63                                            unsigned long address,
  64                                            pte_t *ptep)
  65{
  66        pte_t pte = *ptep;
  67        int r = 1;
  68        if (!pte_young(pte))
  69                r = 0;
  70        else
  71                set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  72        return r;
  73}
  74#endif
  75
  76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  77#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  79                                            unsigned long address,
  80                                            pmd_t *pmdp)
  81{
  82        pmd_t pmd = *pmdp;
  83        int r = 1;
  84        if (!pmd_young(pmd))
  85                r = 0;
  86        else
  87                set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  88        return r;
  89}
  90#else
  91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  92                                            unsigned long address,
  93                                            pmd_t *pmdp)
  94{
  95        BUILD_BUG();
  96        return 0;
  97}
  98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  99#endif
 100
 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 102int ptep_clear_flush_young(struct vm_area_struct *vma,
 103                           unsigned long address, pte_t *ptep);
 104#endif
 105
 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 109                                  unsigned long address, pmd_t *pmdp);
 110#else
 111/*
 112 * Despite relevant to THP only, this API is called from generic rmap code
 113 * under PageTransHuge(), hence needs a dummy implementation for !THP
 114 */
 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 116                                         unsigned long address, pmd_t *pmdp)
 117{
 118        BUILD_BUG();
 119        return 0;
 120}
 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 122#endif
 123
 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 126                                       unsigned long address,
 127                                       pte_t *ptep)
 128{
 129        pte_t pte = *ptep;
 130        pte_clear(mm, address, ptep);
 131        return pte;
 132}
 133#endif
 134
 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 138                                            unsigned long address,
 139                                            pmd_t *pmdp)
 140{
 141        pmd_t pmd = *pmdp;
 142        pmd_clear(pmdp);
 143        return pmd;
 144}
 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 148                                            unsigned long address,
 149                                            pud_t *pudp)
 150{
 151        pud_t pud = *pudp;
 152
 153        pud_clear(pudp);
 154        return pud;
 155}
 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 158
 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
 162                                            unsigned long address, pmd_t *pmdp,
 163                                            int full)
 164{
 165        return pmdp_huge_get_and_clear(mm, address, pmdp);
 166}
 167#endif
 168
 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 171                                            unsigned long address, pud_t *pudp,
 172                                            int full)
 173{
 174        return pudp_huge_get_and_clear(mm, address, pudp);
 175}
 176#endif
 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 178
 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 181                                            unsigned long address, pte_t *ptep,
 182                                            int full)
 183{
 184        pte_t pte;
 185        pte = ptep_get_and_clear(mm, address, ptep);
 186        return pte;
 187}
 188#endif
 189
 190/*
 191 * Some architectures may be able to avoid expensive synchronization
 192 * primitives when modifications are made to PTE's which are already
 193 * not present, or in the process of an address space destruction.
 194 */
 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 196static inline void pte_clear_not_present_full(struct mm_struct *mm,
 197                                              unsigned long address,
 198                                              pte_t *ptep,
 199                                              int full)
 200{
 201        pte_clear(mm, address, ptep);
 202}
 203#endif
 204
 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 207                              unsigned long address,
 208                              pte_t *ptep);
 209#endif
 210
 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 213                              unsigned long address,
 214                              pmd_t *pmdp);
 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 216                              unsigned long address,
 217                              pud_t *pudp);
 218#endif
 219
 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 221struct mm_struct;
 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 223{
 224        pte_t old_pte = *ptep;
 225        set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 226}
 227#endif
 228
 229#ifndef pte_savedwrite
 230#define pte_savedwrite pte_write
 231#endif
 232
 233#ifndef pte_mk_savedwrite
 234#define pte_mk_savedwrite pte_mkwrite
 235#endif
 236
 237#ifndef pte_clear_savedwrite
 238#define pte_clear_savedwrite pte_wrprotect
 239#endif
 240
 241#ifndef pmd_savedwrite
 242#define pmd_savedwrite pmd_write
 243#endif
 244
 245#ifndef pmd_mk_savedwrite
 246#define pmd_mk_savedwrite pmd_mkwrite
 247#endif
 248
 249#ifndef pmd_clear_savedwrite
 250#define pmd_clear_savedwrite pmd_wrprotect
 251#endif
 252
 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 255static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 256                                      unsigned long address, pmd_t *pmdp)
 257{
 258        pmd_t old_pmd = *pmdp;
 259        set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 260}
 261#else
 262static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 263                                      unsigned long address, pmd_t *pmdp)
 264{
 265        BUILD_BUG();
 266}
 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 268#endif
 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 271static inline void pudp_set_wrprotect(struct mm_struct *mm,
 272                                      unsigned long address, pud_t *pudp)
 273{
 274        pud_t old_pud = *pudp;
 275
 276        set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 277}
 278#else
 279static inline void pudp_set_wrprotect(struct mm_struct *mm,
 280                                      unsigned long address, pud_t *pudp)
 281{
 282        BUILD_BUG();
 283}
 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 285#endif
 286
 287#ifndef pmdp_collapse_flush
 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 290                                 unsigned long address, pmd_t *pmdp);
 291#else
 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 293                                        unsigned long address,
 294                                        pmd_t *pmdp)
 295{
 296        BUILD_BUG();
 297        return *pmdp;
 298}
 299#define pmdp_collapse_flush pmdp_collapse_flush
 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 301#endif
 302
 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 305                                       pgtable_t pgtable);
 306#endif
 307
 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 310#endif
 311
 312#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 313extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 314                            pmd_t *pmdp);
 315#endif
 316
 317#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
 318static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
 319                                           unsigned long address, pmd_t *pmdp)
 320{
 321
 322}
 323#endif
 324
 325#ifndef __HAVE_ARCH_PTE_SAME
 326static inline int pte_same(pte_t pte_a, pte_t pte_b)
 327{
 328        return pte_val(pte_a) == pte_val(pte_b);
 329}
 330#endif
 331
 332#ifndef __HAVE_ARCH_PTE_UNUSED
 333/*
 334 * Some architectures provide facilities to virtualization guests
 335 * so that they can flag allocated pages as unused. This allows the
 336 * host to transparently reclaim unused pages. This function returns
 337 * whether the pte's page is unused.
 338 */
 339static inline int pte_unused(pte_t pte)
 340{
 341        return 0;
 342}
 343#endif
 344
 345#ifndef pte_access_permitted
 346#define pte_access_permitted(pte, write) \
 347        (pte_present(pte) && (!(write) || pte_write(pte)))
 348#endif
 349
 350#ifndef pmd_access_permitted
 351#define pmd_access_permitted(pmd, write) \
 352        (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 353#endif
 354
 355#ifndef pud_access_permitted
 356#define pud_access_permitted(pud, write) \
 357        (pud_present(pud) && (!(write) || pud_write(pud)))
 358#endif
 359
 360#ifndef p4d_access_permitted
 361#define p4d_access_permitted(p4d, write) \
 362        (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 363#endif
 364
 365#ifndef pgd_access_permitted
 366#define pgd_access_permitted(pgd, write) \
 367        (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 368#endif
 369
 370#ifndef __HAVE_ARCH_PMD_SAME
 371#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 372static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 373{
 374        return pmd_val(pmd_a) == pmd_val(pmd_b);
 375}
 376
 377static inline int pud_same(pud_t pud_a, pud_t pud_b)
 378{
 379        return pud_val(pud_a) == pud_val(pud_b);
 380}
 381#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 382static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 383{
 384        BUILD_BUG();
 385        return 0;
 386}
 387
 388static inline int pud_same(pud_t pud_a, pud_t pud_b)
 389{
 390        BUILD_BUG();
 391        return 0;
 392}
 393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 394#endif
 395
 396#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 397#define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
 398#endif
 399
 400#ifndef __HAVE_ARCH_MOVE_PTE
 401#define move_pte(pte, prot, old_addr, new_addr) (pte)
 402#endif
 403
 404#ifndef pte_accessible
 405# define pte_accessible(mm, pte)        ((void)(pte), 1)
 406#endif
 407
 408#ifndef flush_tlb_fix_spurious_fault
 409#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 410#endif
 411
 412#ifndef pgprot_noncached
 413#define pgprot_noncached(prot)  (prot)
 414#endif
 415
 416#ifndef pgprot_writecombine
 417#define pgprot_writecombine pgprot_noncached
 418#endif
 419
 420#ifndef pgprot_writethrough
 421#define pgprot_writethrough pgprot_noncached
 422#endif
 423
 424#ifndef pgprot_device
 425#define pgprot_device pgprot_noncached
 426#endif
 427
 428#ifndef pgprot_modify
 429#define pgprot_modify pgprot_modify
 430static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 431{
 432        if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 433                newprot = pgprot_noncached(newprot);
 434        if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 435                newprot = pgprot_writecombine(newprot);
 436        if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 437                newprot = pgprot_device(newprot);
 438        return newprot;
 439}
 440#endif
 441
 442/*
 443 * When walking page tables, get the address of the next boundary,
 444 * or the end address of the range if that comes earlier.  Although no
 445 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 446 */
 447
 448#define pgd_addr_end(addr, end)                                         \
 449({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
 450        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 451})
 452
 453#ifndef p4d_addr_end
 454#define p4d_addr_end(addr, end)                                         \
 455({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
 456        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 457})
 458#endif
 459
 460#ifndef pud_addr_end
 461#define pud_addr_end(addr, end)                                         \
 462({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
 463        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 464})
 465#endif
 466
 467#ifndef pmd_addr_end
 468#define pmd_addr_end(addr, end)                                         \
 469({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
 470        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 471})
 472#endif
 473
 474/*
 475 * When walking page tables, we usually want to skip any p?d_none entries;
 476 * and any p?d_bad entries - reporting the error before resetting to none.
 477 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 478 */
 479void pgd_clear_bad(pgd_t *);
 480void p4d_clear_bad(p4d_t *);
 481void pud_clear_bad(pud_t *);
 482void pmd_clear_bad(pmd_t *);
 483
 484static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 485{
 486        if (pgd_none(*pgd))
 487                return 1;
 488        if (unlikely(pgd_bad(*pgd))) {
 489                pgd_clear_bad(pgd);
 490                return 1;
 491        }
 492        return 0;
 493}
 494
 495static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 496{
 497        if (p4d_none(*p4d))
 498                return 1;
 499        if (unlikely(p4d_bad(*p4d))) {
 500                p4d_clear_bad(p4d);
 501                return 1;
 502        }
 503        return 0;
 504}
 505
 506static inline int pud_none_or_clear_bad(pud_t *pud)
 507{
 508        if (pud_none(*pud))
 509                return 1;
 510        if (unlikely(pud_bad(*pud))) {
 511                pud_clear_bad(pud);
 512                return 1;
 513        }
 514        return 0;
 515}
 516
 517static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 518{
 519        if (pmd_none(*pmd))
 520                return 1;
 521        if (unlikely(pmd_bad(*pmd))) {
 522                pmd_clear_bad(pmd);
 523                return 1;
 524        }
 525        return 0;
 526}
 527
 528static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
 529                                             unsigned long addr,
 530                                             pte_t *ptep)
 531{
 532        /*
 533         * Get the current pte state, but zero it out to make it
 534         * non-present, preventing the hardware from asynchronously
 535         * updating it.
 536         */
 537        return ptep_get_and_clear(mm, addr, ptep);
 538}
 539
 540static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
 541                                             unsigned long addr,
 542                                             pte_t *ptep, pte_t pte)
 543{
 544        /*
 545         * The pte is non-present, so there's no hardware state to
 546         * preserve.
 547         */
 548        set_pte_at(mm, addr, ptep, pte);
 549}
 550
 551#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 552/*
 553 * Start a pte protection read-modify-write transaction, which
 554 * protects against asynchronous hardware modifications to the pte.
 555 * The intention is not to prevent the hardware from making pte
 556 * updates, but to prevent any updates it may make from being lost.
 557 *
 558 * This does not protect against other software modifications of the
 559 * pte; the appropriate pte lock must be held over the transation.
 560 *
 561 * Note that this interface is intended to be batchable, meaning that
 562 * ptep_modify_prot_commit may not actually update the pte, but merely
 563 * queue the update to be done at some later time.  The update must be
 564 * actually committed before the pte lock is released, however.
 565 */
 566static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
 567                                           unsigned long addr,
 568                                           pte_t *ptep)
 569{
 570        return __ptep_modify_prot_start(mm, addr, ptep);
 571}
 572
 573/*
 574 * Commit an update to a pte, leaving any hardware-controlled bits in
 575 * the PTE unmodified.
 576 */
 577static inline void ptep_modify_prot_commit(struct mm_struct *mm,
 578                                           unsigned long addr,
 579                                           pte_t *ptep, pte_t pte)
 580{
 581        __ptep_modify_prot_commit(mm, addr, ptep, pte);
 582}
 583#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 584#endif /* CONFIG_MMU */
 585
 586/*
 587 * No-op macros that just return the current protection value. Defined here
 588 * because these macros can be used used even if CONFIG_MMU is not defined.
 589 */
 590#ifndef pgprot_encrypted
 591#define pgprot_encrypted(prot)  (prot)
 592#endif
 593
 594#ifndef pgprot_decrypted
 595#define pgprot_decrypted(prot)  (prot)
 596#endif
 597
 598/*
 599 * A facility to provide lazy MMU batching.  This allows PTE updates and
 600 * page invalidations to be delayed until a call to leave lazy MMU mode
 601 * is issued.  Some architectures may benefit from doing this, and it is
 602 * beneficial for both shadow and direct mode hypervisors, which may batch
 603 * the PTE updates which happen during this window.  Note that using this
 604 * interface requires that read hazards be removed from the code.  A read
 605 * hazard could result in the direct mode hypervisor case, since the actual
 606 * write to the page tables may not yet have taken place, so reads though
 607 * a raw PTE pointer after it has been modified are not guaranteed to be
 608 * up to date.  This mode can only be entered and left under the protection of
 609 * the page table locks for all page tables which may be modified.  In the UP
 610 * case, this is required so that preemption is disabled, and in the SMP case,
 611 * it must synchronize the delayed page table writes properly on other CPUs.
 612 */
 613#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 614#define arch_enter_lazy_mmu_mode()      do {} while (0)
 615#define arch_leave_lazy_mmu_mode()      do {} while (0)
 616#define arch_flush_lazy_mmu_mode()      do {} while (0)
 617#endif
 618
 619/*
 620 * A facility to provide batching of the reload of page tables and
 621 * other process state with the actual context switch code for
 622 * paravirtualized guests.  By convention, only one of the batched
 623 * update (lazy) modes (CPU, MMU) should be active at any given time,
 624 * entry should never be nested, and entry and exits should always be
 625 * paired.  This is for sanity of maintaining and reasoning about the
 626 * kernel code.  In this case, the exit (end of the context switch) is
 627 * in architecture-specific code, and so doesn't need a generic
 628 * definition.
 629 */
 630#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 631#define arch_start_context_switch(prev) do {} while (0)
 632#endif
 633
 634#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 635#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 636static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 637{
 638        return pmd;
 639}
 640
 641static inline int pmd_swp_soft_dirty(pmd_t pmd)
 642{
 643        return 0;
 644}
 645
 646static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 647{
 648        return pmd;
 649}
 650#endif
 651#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 652static inline int pte_soft_dirty(pte_t pte)
 653{
 654        return 0;
 655}
 656
 657static inline int pmd_soft_dirty(pmd_t pmd)
 658{
 659        return 0;
 660}
 661
 662static inline pte_t pte_mksoft_dirty(pte_t pte)
 663{
 664        return pte;
 665}
 666
 667static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 668{
 669        return pmd;
 670}
 671
 672static inline pte_t pte_clear_soft_dirty(pte_t pte)
 673{
 674        return pte;
 675}
 676
 677static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 678{
 679        return pmd;
 680}
 681
 682static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 683{
 684        return pte;
 685}
 686
 687static inline int pte_swp_soft_dirty(pte_t pte)
 688{
 689        return 0;
 690}
 691
 692static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 693{
 694        return pte;
 695}
 696
 697static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 698{
 699        return pmd;
 700}
 701
 702static inline int pmd_swp_soft_dirty(pmd_t pmd)
 703{
 704        return 0;
 705}
 706
 707static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 708{
 709        return pmd;
 710}
 711#endif
 712
 713#ifndef __HAVE_PFNMAP_TRACKING
 714/*
 715 * Interfaces that can be used by architecture code to keep track of
 716 * memory type of pfn mappings specified by the remap_pfn_range,
 717 * vm_insert_pfn.
 718 */
 719
 720/*
 721 * track_pfn_remap is called when a _new_ pfn mapping is being established
 722 * by remap_pfn_range() for physical range indicated by pfn and size.
 723 */
 724static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 725                                  unsigned long pfn, unsigned long addr,
 726                                  unsigned long size)
 727{
 728        return 0;
 729}
 730
 731/*
 732 * track_pfn_insert is called when a _new_ single pfn is established
 733 * by vm_insert_pfn().
 734 */
 735static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 736                                    pfn_t pfn)
 737{
 738}
 739
 740/*
 741 * track_pfn_copy is called when vma that is covering the pfnmap gets
 742 * copied through copy_page_range().
 743 */
 744static inline int track_pfn_copy(struct vm_area_struct *vma)
 745{
 746        return 0;
 747}
 748
 749/*
 750 * untrack_pfn is called while unmapping a pfnmap for a region.
 751 * untrack can be called for a specific region indicated by pfn and size or
 752 * can be for the entire vma (in which case pfn, size are zero).
 753 */
 754static inline void untrack_pfn(struct vm_area_struct *vma,
 755                               unsigned long pfn, unsigned long size)
 756{
 757}
 758
 759/*
 760 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 761 */
 762static inline void untrack_pfn_moved(struct vm_area_struct *vma)
 763{
 764}
 765#else
 766extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 767                           unsigned long pfn, unsigned long addr,
 768                           unsigned long size);
 769extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 770                             pfn_t pfn);
 771extern int track_pfn_copy(struct vm_area_struct *vma);
 772extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 773                        unsigned long size);
 774extern void untrack_pfn_moved(struct vm_area_struct *vma);
 775#endif
 776
 777#ifdef __HAVE_COLOR_ZERO_PAGE
 778static inline int is_zero_pfn(unsigned long pfn)
 779{
 780        extern unsigned long zero_pfn;
 781        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 782        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 783}
 784
 785#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
 786
 787#else
 788static inline int is_zero_pfn(unsigned long pfn)
 789{
 790        extern unsigned long zero_pfn;
 791        return pfn == zero_pfn;
 792}
 793
 794static inline unsigned long my_zero_pfn(unsigned long addr)
 795{
 796        extern unsigned long zero_pfn;
 797        return zero_pfn;
 798}
 799#endif
 800
 801#ifdef CONFIG_MMU
 802
 803#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 804static inline int pmd_trans_huge(pmd_t pmd)
 805{
 806        return 0;
 807}
 808#ifndef __HAVE_ARCH_PMD_WRITE
 809static inline int pmd_write(pmd_t pmd)
 810{
 811        BUG();
 812        return 0;
 813}
 814#endif /* __HAVE_ARCH_PMD_WRITE */
 815#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 816
 817#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 818        (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 819         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
 820static inline int pud_trans_huge(pud_t pud)
 821{
 822        return 0;
 823}
 824#endif
 825
 826#ifndef pmd_read_atomic
 827static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 828{
 829        /*
 830         * Depend on compiler for an atomic pmd read. NOTE: this is
 831         * only going to work, if the pmdval_t isn't larger than
 832         * an unsigned long.
 833         */
 834        return *pmdp;
 835}
 836#endif
 837
 838#ifndef arch_needs_pgtable_deposit
 839#define arch_needs_pgtable_deposit() (false)
 840#endif
 841/*
 842 * This function is meant to be used by sites walking pagetables with
 843 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 844 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 845 * into a null pmd and the transhuge page fault can convert a null pmd
 846 * into an hugepmd or into a regular pmd (if the hugepage allocation
 847 * fails). While holding the mmap_sem in read mode the pmd becomes
 848 * stable and stops changing under us only if it's not null and not a
 849 * transhuge pmd. When those races occurs and this function makes a
 850 * difference vs the standard pmd_none_or_clear_bad, the result is
 851 * undefined so behaving like if the pmd was none is safe (because it
 852 * can return none anyway). The compiler level barrier() is critically
 853 * important to compute the two checks atomically on the same pmdval.
 854 *
 855 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 856 * care of reading the pmd atomically to avoid SMP race conditions
 857 * against pmd_populate() when the mmap_sem is hold for reading by the
 858 * caller (a special atomic read not done by "gcc" as in the generic
 859 * version above, is also needed when THP is disabled because the page
 860 * fault can populate the pmd from under us).
 861 */
 862static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 863{
 864        pmd_t pmdval = pmd_read_atomic(pmd);
 865        /*
 866         * The barrier will stabilize the pmdval in a register or on
 867         * the stack so that it will stop changing under the code.
 868         *
 869         * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 870         * pmd_read_atomic is allowed to return a not atomic pmdval
 871         * (for example pointing to an hugepage that has never been
 872         * mapped in the pmd). The below checks will only care about
 873         * the low part of the pmd with 32bit PAE x86 anyway, with the
 874         * exception of pmd_none(). So the important thing is that if
 875         * the low part of the pmd is found null, the high part will
 876         * be also null or the pmd_none() check below would be
 877         * confused.
 878         */
 879#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 880        barrier();
 881#endif
 882        /*
 883         * !pmd_present() checks for pmd migration entries
 884         *
 885         * The complete check uses is_pmd_migration_entry() in linux/swapops.h
 886         * But using that requires moving current function and pmd_trans_unstable()
 887         * to linux/swapops.h to resovle dependency, which is too much code move.
 888         *
 889         * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
 890         * because !pmd_present() pages can only be under migration not swapped
 891         * out.
 892         *
 893         * pmd_none() is preseved for future condition checks on pmd migration
 894         * entries and not confusing with this function name, although it is
 895         * redundant with !pmd_present().
 896         */
 897        if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
 898                (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
 899                return 1;
 900        if (unlikely(pmd_bad(pmdval))) {
 901                pmd_clear_bad(pmd);
 902                return 1;
 903        }
 904        return 0;
 905}
 906
 907/*
 908 * This is a noop if Transparent Hugepage Support is not built into
 909 * the kernel. Otherwise it is equivalent to
 910 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 911 * places that already verified the pmd is not none and they want to
 912 * walk ptes while holding the mmap sem in read mode (write mode don't
 913 * need this). If THP is not enabled, the pmd can't go away under the
 914 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 915 * run a pmd_trans_unstable before walking the ptes after
 916 * split_huge_page_pmd returns (because it may have run when the pmd
 917 * become null, but then a page fault can map in a THP and not a
 918 * regular page).
 919 */
 920static inline int pmd_trans_unstable(pmd_t *pmd)
 921{
 922#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 923        return pmd_none_or_trans_huge_or_clear_bad(pmd);
 924#else
 925        return 0;
 926#endif
 927}
 928
 929#ifndef CONFIG_NUMA_BALANCING
 930/*
 931 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 932 * the only case the kernel cares is for NUMA balancing and is only ever set
 933 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
 934 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
 935 * is the responsibility of the caller to distinguish between PROT_NONE
 936 * protections and NUMA hinting fault protections.
 937 */
 938static inline int pte_protnone(pte_t pte)
 939{
 940        return 0;
 941}
 942
 943static inline int pmd_protnone(pmd_t pmd)
 944{
 945        return 0;
 946}
 947#endif /* CONFIG_NUMA_BALANCING */
 948
 949#endif /* CONFIG_MMU */
 950
 951#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 952
 953#ifndef __PAGETABLE_P4D_FOLDED
 954int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
 955int p4d_clear_huge(p4d_t *p4d);
 956#else
 957static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 958{
 959        return 0;
 960}
 961static inline int p4d_clear_huge(p4d_t *p4d)
 962{
 963        return 0;
 964}
 965#endif /* !__PAGETABLE_P4D_FOLDED */
 966
 967int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
 968int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
 969int pud_clear_huge(pud_t *pud);
 970int pmd_clear_huge(pmd_t *pmd);
 971#else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
 972static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 973{
 974        return 0;
 975}
 976static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
 977{
 978        return 0;
 979}
 980static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
 981{
 982        return 0;
 983}
 984static inline int p4d_clear_huge(p4d_t *p4d)
 985{
 986        return 0;
 987}
 988static inline int pud_clear_huge(pud_t *pud)
 989{
 990        return 0;
 991}
 992static inline int pmd_clear_huge(pmd_t *pmd)
 993{
 994        return 0;
 995}
 996#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
 997
 998#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
 999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1000/*
1001 * ARCHes with special requirements for evicting THP backing TLB entries can
1002 * implement this. Otherwise also, it can help optimize normal TLB flush in
1003 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1004 * entire TLB TLB if flush span is greater than a threshold, which will
1005 * likely be true for a single huge page. Thus a single thp flush will
1006 * invalidate the entire TLB which is not desitable.
1007 * e.g. see arch/arc: flush_pmd_tlb_range
1008 */
1009#define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1010#define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1011#else
1012#define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1013#define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1014#endif
1015#endif
1016
1017struct file;
1018int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1019                        unsigned long size, pgprot_t *vma_prot);
1020#endif /* !__ASSEMBLY__ */
1021
1022#ifndef io_remap_pfn_range
1023#define io_remap_pfn_range remap_pfn_range
1024#endif
1025
1026#ifndef has_transparent_hugepage
1027#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1028#define has_transparent_hugepage() 1
1029#else
1030#define has_transparent_hugepage() 0
1031#endif
1032#endif
1033
1034#endif /* _ASM_GENERIC_PGTABLE_H */
1035