linux/include/linux/pagemap.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PAGEMAP_H
   3#define _LINUX_PAGEMAP_H
   4
   5/*
   6 * Copyright 1995 Linus Torvalds
   7 */
   8#include <linux/mm.h>
   9#include <linux/fs.h>
  10#include <linux/list.h>
  11#include <linux/highmem.h>
  12#include <linux/compiler.h>
  13#include <linux/uaccess.h>
  14#include <linux/gfp.h>
  15#include <linux/bitops.h>
  16#include <linux/hardirq.h> /* for in_interrupt() */
  17#include <linux/hugetlb_inline.h>
  18
  19/*
  20 * Bits in mapping->flags.
  21 */
  22enum mapping_flags {
  23        AS_EIO          = 0,    /* IO error on async write */
  24        AS_ENOSPC       = 1,    /* ENOSPC on async write */
  25        AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
  26        AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
  27        AS_EXITING      = 4,    /* final truncate in progress */
  28        /* writeback related tags are not used */
  29        AS_NO_WRITEBACK_TAGS = 5,
  30};
  31
  32/**
  33 * mapping_set_error - record a writeback error in the address_space
  34 * @mapping - the mapping in which an error should be set
  35 * @error - the error to set in the mapping
  36 *
  37 * When writeback fails in some way, we must record that error so that
  38 * userspace can be informed when fsync and the like are called.  We endeavor
  39 * to report errors on any file that was open at the time of the error.  Some
  40 * internal callers also need to know when writeback errors have occurred.
  41 *
  42 * When a writeback error occurs, most filesystems will want to call
  43 * mapping_set_error to record the error in the mapping so that it can be
  44 * reported when the application calls fsync(2).
  45 */
  46static inline void mapping_set_error(struct address_space *mapping, int error)
  47{
  48        if (likely(!error))
  49                return;
  50
  51        /* Record in wb_err for checkers using errseq_t based tracking */
  52        filemap_set_wb_err(mapping, error);
  53
  54        /* Record it in flags for now, for legacy callers */
  55        if (error == -ENOSPC)
  56                set_bit(AS_ENOSPC, &mapping->flags);
  57        else
  58                set_bit(AS_EIO, &mapping->flags);
  59}
  60
  61static inline void mapping_set_unevictable(struct address_space *mapping)
  62{
  63        set_bit(AS_UNEVICTABLE, &mapping->flags);
  64}
  65
  66static inline void mapping_clear_unevictable(struct address_space *mapping)
  67{
  68        clear_bit(AS_UNEVICTABLE, &mapping->flags);
  69}
  70
  71static inline int mapping_unevictable(struct address_space *mapping)
  72{
  73        if (mapping)
  74                return test_bit(AS_UNEVICTABLE, &mapping->flags);
  75        return !!mapping;
  76}
  77
  78static inline void mapping_set_exiting(struct address_space *mapping)
  79{
  80        set_bit(AS_EXITING, &mapping->flags);
  81}
  82
  83static inline int mapping_exiting(struct address_space *mapping)
  84{
  85        return test_bit(AS_EXITING, &mapping->flags);
  86}
  87
  88static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
  89{
  90        set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
  91}
  92
  93static inline int mapping_use_writeback_tags(struct address_space *mapping)
  94{
  95        return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
  96}
  97
  98static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  99{
 100        return mapping->gfp_mask;
 101}
 102
 103/* Restricts the given gfp_mask to what the mapping allows. */
 104static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
 105                gfp_t gfp_mask)
 106{
 107        return mapping_gfp_mask(mapping) & gfp_mask;
 108}
 109
 110/*
 111 * This is non-atomic.  Only to be used before the mapping is activated.
 112 * Probably needs a barrier...
 113 */
 114static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
 115{
 116        m->gfp_mask = mask;
 117}
 118
 119void release_pages(struct page **pages, int nr, bool cold);
 120
 121/*
 122 * speculatively take a reference to a page.
 123 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
 124 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
 125 *
 126 * This function must be called inside the same rcu_read_lock() section as has
 127 * been used to lookup the page in the pagecache radix-tree (or page table):
 128 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
 129 *
 130 * Unless an RCU grace period has passed, the count of all pages coming out
 131 * of the allocator must be considered unstable. page_count may return higher
 132 * than expected, and put_page must be able to do the right thing when the
 133 * page has been finished with, no matter what it is subsequently allocated
 134 * for (because put_page is what is used here to drop an invalid speculative
 135 * reference).
 136 *
 137 * This is the interesting part of the lockless pagecache (and lockless
 138 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
 139 * has the following pattern:
 140 * 1. find page in radix tree
 141 * 2. conditionally increment refcount
 142 * 3. check the page is still in pagecache (if no, goto 1)
 143 *
 144 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
 145 * following (with tree_lock held for write):
 146 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
 147 * B. remove page from pagecache
 148 * C. free the page
 149 *
 150 * There are 2 critical interleavings that matter:
 151 * - 2 runs before A: in this case, A sees elevated refcount and bails out
 152 * - A runs before 2: in this case, 2 sees zero refcount and retries;
 153 *   subsequently, B will complete and 1 will find no page, causing the
 154 *   lookup to return NULL.
 155 *
 156 * It is possible that between 1 and 2, the page is removed then the exact same
 157 * page is inserted into the same position in pagecache. That's OK: the
 158 * old find_get_page using tree_lock could equally have run before or after
 159 * such a re-insertion, depending on order that locks are granted.
 160 *
 161 * Lookups racing against pagecache insertion isn't a big problem: either 1
 162 * will find the page or it will not. Likewise, the old find_get_page could run
 163 * either before the insertion or afterwards, depending on timing.
 164 */
 165static inline int page_cache_get_speculative(struct page *page)
 166{
 167#ifdef CONFIG_TINY_RCU
 168# ifdef CONFIG_PREEMPT_COUNT
 169        VM_BUG_ON(!in_atomic() && !irqs_disabled());
 170# endif
 171        /*
 172         * Preempt must be disabled here - we rely on rcu_read_lock doing
 173         * this for us.
 174         *
 175         * Pagecache won't be truncated from interrupt context, so if we have
 176         * found a page in the radix tree here, we have pinned its refcount by
 177         * disabling preempt, and hence no need for the "speculative get" that
 178         * SMP requires.
 179         */
 180        VM_BUG_ON_PAGE(page_count(page) == 0, page);
 181        page_ref_inc(page);
 182
 183#else
 184        if (unlikely(!get_page_unless_zero(page))) {
 185                /*
 186                 * Either the page has been freed, or will be freed.
 187                 * In either case, retry here and the caller should
 188                 * do the right thing (see comments above).
 189                 */
 190                return 0;
 191        }
 192#endif
 193        VM_BUG_ON_PAGE(PageTail(page), page);
 194
 195        return 1;
 196}
 197
 198/*
 199 * Same as above, but add instead of inc (could just be merged)
 200 */
 201static inline int page_cache_add_speculative(struct page *page, int count)
 202{
 203        VM_BUG_ON(in_interrupt());
 204
 205#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
 206# ifdef CONFIG_PREEMPT_COUNT
 207        VM_BUG_ON(!in_atomic() && !irqs_disabled());
 208# endif
 209        VM_BUG_ON_PAGE(page_count(page) == 0, page);
 210        page_ref_add(page, count);
 211
 212#else
 213        if (unlikely(!page_ref_add_unless(page, count, 0)))
 214                return 0;
 215#endif
 216        VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
 217
 218        return 1;
 219}
 220
 221#ifdef CONFIG_NUMA
 222extern struct page *__page_cache_alloc(gfp_t gfp);
 223#else
 224static inline struct page *__page_cache_alloc(gfp_t gfp)
 225{
 226        return alloc_pages(gfp, 0);
 227}
 228#endif
 229
 230static inline struct page *page_cache_alloc(struct address_space *x)
 231{
 232        return __page_cache_alloc(mapping_gfp_mask(x));
 233}
 234
 235static inline struct page *page_cache_alloc_cold(struct address_space *x)
 236{
 237        return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
 238}
 239
 240static inline gfp_t readahead_gfp_mask(struct address_space *x)
 241{
 242        return mapping_gfp_mask(x) |
 243                                  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
 244}
 245
 246typedef int filler_t(void *, struct page *);
 247
 248pgoff_t page_cache_next_hole(struct address_space *mapping,
 249                             pgoff_t index, unsigned long max_scan);
 250pgoff_t page_cache_prev_hole(struct address_space *mapping,
 251                             pgoff_t index, unsigned long max_scan);
 252
 253#define FGP_ACCESSED            0x00000001
 254#define FGP_LOCK                0x00000002
 255#define FGP_CREAT               0x00000004
 256#define FGP_WRITE               0x00000008
 257#define FGP_NOFS                0x00000010
 258#define FGP_NOWAIT              0x00000020
 259
 260struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
 261                int fgp_flags, gfp_t cache_gfp_mask);
 262
 263/**
 264 * find_get_page - find and get a page reference
 265 * @mapping: the address_space to search
 266 * @offset: the page index
 267 *
 268 * Looks up the page cache slot at @mapping & @offset.  If there is a
 269 * page cache page, it is returned with an increased refcount.
 270 *
 271 * Otherwise, %NULL is returned.
 272 */
 273static inline struct page *find_get_page(struct address_space *mapping,
 274                                        pgoff_t offset)
 275{
 276        return pagecache_get_page(mapping, offset, 0, 0);
 277}
 278
 279static inline struct page *find_get_page_flags(struct address_space *mapping,
 280                                        pgoff_t offset, int fgp_flags)
 281{
 282        return pagecache_get_page(mapping, offset, fgp_flags, 0);
 283}
 284
 285/**
 286 * find_lock_page - locate, pin and lock a pagecache page
 287 * @mapping: the address_space to search
 288 * @offset: the page index
 289 *
 290 * Looks up the page cache slot at @mapping & @offset.  If there is a
 291 * page cache page, it is returned locked and with an increased
 292 * refcount.
 293 *
 294 * Otherwise, %NULL is returned.
 295 *
 296 * find_lock_page() may sleep.
 297 */
 298static inline struct page *find_lock_page(struct address_space *mapping,
 299                                        pgoff_t offset)
 300{
 301        return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
 302}
 303
 304/**
 305 * find_or_create_page - locate or add a pagecache page
 306 * @mapping: the page's address_space
 307 * @index: the page's index into the mapping
 308 * @gfp_mask: page allocation mode
 309 *
 310 * Looks up the page cache slot at @mapping & @offset.  If there is a
 311 * page cache page, it is returned locked and with an increased
 312 * refcount.
 313 *
 314 * If the page is not present, a new page is allocated using @gfp_mask
 315 * and added to the page cache and the VM's LRU list.  The page is
 316 * returned locked and with an increased refcount.
 317 *
 318 * On memory exhaustion, %NULL is returned.
 319 *
 320 * find_or_create_page() may sleep, even if @gfp_flags specifies an
 321 * atomic allocation!
 322 */
 323static inline struct page *find_or_create_page(struct address_space *mapping,
 324                                        pgoff_t offset, gfp_t gfp_mask)
 325{
 326        return pagecache_get_page(mapping, offset,
 327                                        FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
 328                                        gfp_mask);
 329}
 330
 331/**
 332 * grab_cache_page_nowait - returns locked page at given index in given cache
 333 * @mapping: target address_space
 334 * @index: the page index
 335 *
 336 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 337 * This is intended for speculative data generators, where the data can
 338 * be regenerated if the page couldn't be grabbed.  This routine should
 339 * be safe to call while holding the lock for another page.
 340 *
 341 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 342 * and deadlock against the caller's locked page.
 343 */
 344static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
 345                                pgoff_t index)
 346{
 347        return pagecache_get_page(mapping, index,
 348                        FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 349                        mapping_gfp_mask(mapping));
 350}
 351
 352struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
 353struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
 354unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
 355                          unsigned int nr_entries, struct page **entries,
 356                          pgoff_t *indices);
 357unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
 358                        pgoff_t end, unsigned int nr_pages,
 359                        struct page **pages);
 360static inline unsigned find_get_pages(struct address_space *mapping,
 361                        pgoff_t *start, unsigned int nr_pages,
 362                        struct page **pages)
 363{
 364        return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
 365                                    pages);
 366}
 367unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
 368                               unsigned int nr_pages, struct page **pages);
 369unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 370                        int tag, unsigned int nr_pages, struct page **pages);
 371unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
 372                        int tag, unsigned int nr_entries,
 373                        struct page **entries, pgoff_t *indices);
 374
 375struct page *grab_cache_page_write_begin(struct address_space *mapping,
 376                        pgoff_t index, unsigned flags);
 377
 378/*
 379 * Returns locked page at given index in given cache, creating it if needed.
 380 */
 381static inline struct page *grab_cache_page(struct address_space *mapping,
 382                                                                pgoff_t index)
 383{
 384        return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
 385}
 386
 387extern struct page * read_cache_page(struct address_space *mapping,
 388                                pgoff_t index, filler_t *filler, void *data);
 389extern struct page * read_cache_page_gfp(struct address_space *mapping,
 390                                pgoff_t index, gfp_t gfp_mask);
 391extern int read_cache_pages(struct address_space *mapping,
 392                struct list_head *pages, filler_t *filler, void *data);
 393
 394static inline struct page *read_mapping_page(struct address_space *mapping,
 395                                pgoff_t index, void *data)
 396{
 397        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 398        return read_cache_page(mapping, index, filler, data);
 399}
 400
 401/*
 402 * Get index of the page with in radix-tree
 403 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
 404 */
 405static inline pgoff_t page_to_index(struct page *page)
 406{
 407        pgoff_t pgoff;
 408
 409        if (likely(!PageTransTail(page)))
 410                return page->index;
 411
 412        /*
 413         *  We don't initialize ->index for tail pages: calculate based on
 414         *  head page
 415         */
 416        pgoff = compound_head(page)->index;
 417        pgoff += page - compound_head(page);
 418        return pgoff;
 419}
 420
 421/*
 422 * Get the offset in PAGE_SIZE.
 423 * (TODO: hugepage should have ->index in PAGE_SIZE)
 424 */
 425static inline pgoff_t page_to_pgoff(struct page *page)
 426{
 427        if (unlikely(PageHeadHuge(page)))
 428                return page->index << compound_order(page);
 429
 430        return page_to_index(page);
 431}
 432
 433/*
 434 * Return byte-offset into filesystem object for page.
 435 */
 436static inline loff_t page_offset(struct page *page)
 437{
 438        return ((loff_t)page->index) << PAGE_SHIFT;
 439}
 440
 441static inline loff_t page_file_offset(struct page *page)
 442{
 443        return ((loff_t)page_index(page)) << PAGE_SHIFT;
 444}
 445
 446extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 447                                     unsigned long address);
 448
 449static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
 450                                        unsigned long address)
 451{
 452        pgoff_t pgoff;
 453        if (unlikely(is_vm_hugetlb_page(vma)))
 454                return linear_hugepage_index(vma, address);
 455        pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
 456        pgoff += vma->vm_pgoff;
 457        return pgoff;
 458}
 459
 460extern void __lock_page(struct page *page);
 461extern int __lock_page_killable(struct page *page);
 462extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 463                                unsigned int flags);
 464extern void unlock_page(struct page *page);
 465
 466static inline int trylock_page(struct page *page)
 467{
 468        page = compound_head(page);
 469        return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
 470}
 471
 472/*
 473 * lock_page may only be called if we have the page's inode pinned.
 474 */
 475static inline void lock_page(struct page *page)
 476{
 477        might_sleep();
 478        if (!trylock_page(page))
 479                __lock_page(page);
 480}
 481
 482/*
 483 * lock_page_killable is like lock_page but can be interrupted by fatal
 484 * signals.  It returns 0 if it locked the page and -EINTR if it was
 485 * killed while waiting.
 486 */
 487static inline int lock_page_killable(struct page *page)
 488{
 489        might_sleep();
 490        if (!trylock_page(page))
 491                return __lock_page_killable(page);
 492        return 0;
 493}
 494
 495/*
 496 * lock_page_or_retry - Lock the page, unless this would block and the
 497 * caller indicated that it can handle a retry.
 498 *
 499 * Return value and mmap_sem implications depend on flags; see
 500 * __lock_page_or_retry().
 501 */
 502static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
 503                                     unsigned int flags)
 504{
 505        might_sleep();
 506        return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
 507}
 508
 509/*
 510 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
 511 * and should not be used directly.
 512 */
 513extern void wait_on_page_bit(struct page *page, int bit_nr);
 514extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
 515
 516/* 
 517 * Wait for a page to be unlocked.
 518 *
 519 * This must be called with the caller "holding" the page,
 520 * ie with increased "page->count" so that the page won't
 521 * go away during the wait..
 522 */
 523static inline void wait_on_page_locked(struct page *page)
 524{
 525        if (PageLocked(page))
 526                wait_on_page_bit(compound_head(page), PG_locked);
 527}
 528
 529static inline int wait_on_page_locked_killable(struct page *page)
 530{
 531        if (!PageLocked(page))
 532                return 0;
 533        return wait_on_page_bit_killable(compound_head(page), PG_locked);
 534}
 535
 536/* 
 537 * Wait for a page to complete writeback
 538 */
 539static inline void wait_on_page_writeback(struct page *page)
 540{
 541        if (PageWriteback(page))
 542                wait_on_page_bit(page, PG_writeback);
 543}
 544
 545extern void end_page_writeback(struct page *page);
 546void wait_for_stable_page(struct page *page);
 547
 548void page_endio(struct page *page, bool is_write, int err);
 549
 550/*
 551 * Add an arbitrary waiter to a page's wait queue
 552 */
 553extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
 554
 555/*
 556 * Fault everything in given userspace address range in.
 557 */
 558static inline int fault_in_pages_writeable(char __user *uaddr, int size)
 559{
 560        char __user *end = uaddr + size - 1;
 561
 562        if (unlikely(size == 0))
 563                return 0;
 564
 565        if (unlikely(uaddr > end))
 566                return -EFAULT;
 567        /*
 568         * Writing zeroes into userspace here is OK, because we know that if
 569         * the zero gets there, we'll be overwriting it.
 570         */
 571        do {
 572                if (unlikely(__put_user(0, uaddr) != 0))
 573                        return -EFAULT;
 574                uaddr += PAGE_SIZE;
 575        } while (uaddr <= end);
 576
 577        /* Check whether the range spilled into the next page. */
 578        if (((unsigned long)uaddr & PAGE_MASK) ==
 579                        ((unsigned long)end & PAGE_MASK))
 580                return __put_user(0, end);
 581
 582        return 0;
 583}
 584
 585static inline int fault_in_pages_readable(const char __user *uaddr, int size)
 586{
 587        volatile char c;
 588        const char __user *end = uaddr + size - 1;
 589
 590        if (unlikely(size == 0))
 591                return 0;
 592
 593        if (unlikely(uaddr > end))
 594                return -EFAULT;
 595
 596        do {
 597                if (unlikely(__get_user(c, uaddr) != 0))
 598                        return -EFAULT;
 599                uaddr += PAGE_SIZE;
 600        } while (uaddr <= end);
 601
 602        /* Check whether the range spilled into the next page. */
 603        if (((unsigned long)uaddr & PAGE_MASK) ==
 604                        ((unsigned long)end & PAGE_MASK)) {
 605                return __get_user(c, end);
 606        }
 607
 608        (void)c;
 609        return 0;
 610}
 611
 612int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 613                                pgoff_t index, gfp_t gfp_mask);
 614int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 615                                pgoff_t index, gfp_t gfp_mask);
 616extern void delete_from_page_cache(struct page *page);
 617extern void __delete_from_page_cache(struct page *page, void *shadow);
 618int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
 619
 620/*
 621 * Like add_to_page_cache_locked, but used to add newly allocated pages:
 622 * the page is new, so we can just run __SetPageLocked() against it.
 623 */
 624static inline int add_to_page_cache(struct page *page,
 625                struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
 626{
 627        int error;
 628
 629        __SetPageLocked(page);
 630        error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
 631        if (unlikely(error))
 632                __ClearPageLocked(page);
 633        return error;
 634}
 635
 636static inline unsigned long dir_pages(struct inode *inode)
 637{
 638        return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
 639                               PAGE_SHIFT;
 640}
 641
 642#endif /* _LINUX_PAGEMAP_H */
 643