1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173/** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @pm_usage_cnt: PM usage counter for this interface 204 * @reset_ws: Used for scheduling resets from atomic context. 205 * @resetting_device: USB core reset the device, so use alt setting 0 as 206 * current; needs bandwidth alloc after reset. 207 * 208 * USB device drivers attach to interfaces on a physical device. Each 209 * interface encapsulates a single high level function, such as feeding 210 * an audio stream to a speaker or reporting a change in a volume control. 211 * Many USB devices only have one interface. The protocol used to talk to 212 * an interface's endpoints can be defined in a usb "class" specification, 213 * or by a product's vendor. The (default) control endpoint is part of 214 * every interface, but is never listed among the interface's descriptors. 215 * 216 * The driver that is bound to the interface can use standard driver model 217 * calls such as dev_get_drvdata() on the dev member of this structure. 218 * 219 * Each interface may have alternate settings. The initial configuration 220 * of a device sets altsetting 0, but the device driver can change 221 * that setting using usb_set_interface(). Alternate settings are often 222 * used to control the use of periodic endpoints, such as by having 223 * different endpoints use different amounts of reserved USB bandwidth. 224 * All standards-conformant USB devices that use isochronous endpoints 225 * will use them in non-default settings. 226 * 227 * The USB specification says that alternate setting numbers must run from 228 * 0 to one less than the total number of alternate settings. But some 229 * devices manage to mess this up, and the structures aren't necessarily 230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 231 * look up an alternate setting in the altsetting array based on its number. 232 */ 233struct usb_interface { 234 /* array of alternate settings for this interface, 235 * stored in no particular order */ 236 struct usb_host_interface *altsetting; 237 238 struct usb_host_interface *cur_altsetting; /* the currently 239 * active alternate setting */ 240 unsigned num_altsetting; /* number of alternate settings */ 241 242 /* If there is an interface association descriptor then it will list 243 * the associated interfaces */ 244 struct usb_interface_assoc_descriptor *intf_assoc; 245 246 int minor; /* minor number this interface is 247 * bound to */ 248 enum usb_interface_condition condition; /* state of binding */ 249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 250 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 251 unsigned unregistering:1; /* unregistration is in progress */ 252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 254 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 256 unsigned authorized:1; /* used for interface authorization */ 257 258 struct device dev; /* interface specific device info */ 259 struct device *usb_dev; 260 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 261 struct work_struct reset_ws; /* for resets in atomic context */ 262}; 263#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 264 265static inline void *usb_get_intfdata(struct usb_interface *intf) 266{ 267 return dev_get_drvdata(&intf->dev); 268} 269 270static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 271{ 272 dev_set_drvdata(&intf->dev, data); 273} 274 275struct usb_interface *usb_get_intf(struct usb_interface *intf); 276void usb_put_intf(struct usb_interface *intf); 277 278/* Hard limit */ 279#define USB_MAXENDPOINTS 30 280/* this maximum is arbitrary */ 281#define USB_MAXINTERFACES 32 282#define USB_MAXIADS (USB_MAXINTERFACES/2) 283 284/* 285 * USB Resume Timer: Every Host controller driver should drive the resume 286 * signalling on the bus for the amount of time defined by this macro. 287 * 288 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 289 * 290 * Note that the USB Specification states we should drive resume for *at least* 291 * 20 ms, but it doesn't give an upper bound. This creates two possible 292 * situations which we want to avoid: 293 * 294 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 295 * us to fail USB Electrical Tests, thus failing Certification 296 * 297 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 298 * and while we can argue that's against the USB Specification, we don't have 299 * control over which devices a certification laboratory will be using for 300 * certification. If CertLab uses a device which was tested against Windows and 301 * that happens to have relaxed resume signalling rules, we might fall into 302 * situations where we fail interoperability and electrical tests. 303 * 304 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 305 * should cope with both LPJ calibration errors and devices not following every 306 * detail of the USB Specification. 307 */ 308#define USB_RESUME_TIMEOUT 40 /* ms */ 309 310/** 311 * struct usb_interface_cache - long-term representation of a device interface 312 * @num_altsetting: number of altsettings defined. 313 * @ref: reference counter. 314 * @altsetting: variable-length array of interface structures, one for 315 * each alternate setting that may be selected. Each one includes a 316 * set of endpoint configurations. They will be in no particular order. 317 * 318 * These structures persist for the lifetime of a usb_device, unlike 319 * struct usb_interface (which persists only as long as its configuration 320 * is installed). The altsetting arrays can be accessed through these 321 * structures at any time, permitting comparison of configurations and 322 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 323 */ 324struct usb_interface_cache { 325 unsigned num_altsetting; /* number of alternate settings */ 326 struct kref ref; /* reference counter */ 327 328 /* variable-length array of alternate settings for this interface, 329 * stored in no particular order */ 330 struct usb_host_interface altsetting[0]; 331}; 332#define ref_to_usb_interface_cache(r) \ 333 container_of(r, struct usb_interface_cache, ref) 334#define altsetting_to_usb_interface_cache(a) \ 335 container_of(a, struct usb_interface_cache, altsetting[0]) 336 337/** 338 * struct usb_host_config - representation of a device's configuration 339 * @desc: the device's configuration descriptor. 340 * @string: pointer to the cached version of the iConfiguration string, if 341 * present for this configuration. 342 * @intf_assoc: list of any interface association descriptors in this config 343 * @interface: array of pointers to usb_interface structures, one for each 344 * interface in the configuration. The number of interfaces is stored 345 * in desc.bNumInterfaces. These pointers are valid only while the 346 * the configuration is active. 347 * @intf_cache: array of pointers to usb_interface_cache structures, one 348 * for each interface in the configuration. These structures exist 349 * for the entire life of the device. 350 * @extra: pointer to buffer containing all extra descriptors associated 351 * with this configuration (those preceding the first interface 352 * descriptor). 353 * @extralen: length of the extra descriptors buffer. 354 * 355 * USB devices may have multiple configurations, but only one can be active 356 * at any time. Each encapsulates a different operational environment; 357 * for example, a dual-speed device would have separate configurations for 358 * full-speed and high-speed operation. The number of configurations 359 * available is stored in the device descriptor as bNumConfigurations. 360 * 361 * A configuration can contain multiple interfaces. Each corresponds to 362 * a different function of the USB device, and all are available whenever 363 * the configuration is active. The USB standard says that interfaces 364 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 365 * of devices get this wrong. In addition, the interface array is not 366 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 367 * look up an interface entry based on its number. 368 * 369 * Device drivers should not attempt to activate configurations. The choice 370 * of which configuration to install is a policy decision based on such 371 * considerations as available power, functionality provided, and the user's 372 * desires (expressed through userspace tools). However, drivers can call 373 * usb_reset_configuration() to reinitialize the current configuration and 374 * all its interfaces. 375 */ 376struct usb_host_config { 377 struct usb_config_descriptor desc; 378 379 char *string; /* iConfiguration string, if present */ 380 381 /* List of any Interface Association Descriptors in this 382 * configuration. */ 383 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 384 385 /* the interfaces associated with this configuration, 386 * stored in no particular order */ 387 struct usb_interface *interface[USB_MAXINTERFACES]; 388 389 /* Interface information available even when this is not the 390 * active configuration */ 391 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 392 393 unsigned char *extra; /* Extra descriptors */ 394 int extralen; 395}; 396 397/* USB2.0 and USB3.0 device BOS descriptor set */ 398struct usb_host_bos { 399 struct usb_bos_descriptor *desc; 400 401 /* wireless cap descriptor is handled by wusb */ 402 struct usb_ext_cap_descriptor *ext_cap; 403 struct usb_ss_cap_descriptor *ss_cap; 404 struct usb_ssp_cap_descriptor *ssp_cap; 405 struct usb_ss_container_id_descriptor *ss_id; 406 struct usb_ptm_cap_descriptor *ptm_cap; 407}; 408 409int __usb_get_extra_descriptor(char *buffer, unsigned size, 410 unsigned char type, void **ptr); 411#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 412 __usb_get_extra_descriptor((ifpoint)->extra, \ 413 (ifpoint)->extralen, \ 414 type, (void **)ptr) 415 416/* ----------------------------------------------------------------------- */ 417 418/* USB device number allocation bitmap */ 419struct usb_devmap { 420 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 421}; 422 423/* 424 * Allocated per bus (tree of devices) we have: 425 */ 426struct usb_bus { 427 struct device *controller; /* host/master side hardware */ 428 struct device *sysdev; /* as seen from firmware or bus */ 429 int busnum; /* Bus number (in order of reg) */ 430 const char *bus_name; /* stable id (PCI slot_name etc) */ 431 u8 uses_dma; /* Does the host controller use DMA? */ 432 u8 uses_pio_for_control; /* 433 * Does the host controller use PIO 434 * for control transfers? 435 */ 436 u8 otg_port; /* 0, or number of OTG/HNP port */ 437 unsigned is_b_host:1; /* true during some HNP roleswitches */ 438 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 439 unsigned no_stop_on_short:1; /* 440 * Quirk: some controllers don't stop 441 * the ep queue on a short transfer 442 * with the URB_SHORT_NOT_OK flag set. 443 */ 444 unsigned no_sg_constraint:1; /* no sg constraint */ 445 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 446 447 int devnum_next; /* Next open device number in 448 * round-robin allocation */ 449 struct mutex devnum_next_mutex; /* devnum_next mutex */ 450 451 struct usb_devmap devmap; /* device address allocation map */ 452 struct usb_device *root_hub; /* Root hub */ 453 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 454 455 int bandwidth_allocated; /* on this bus: how much of the time 456 * reserved for periodic (intr/iso) 457 * requests is used, on average? 458 * Units: microseconds/frame. 459 * Limits: Full/low speed reserve 90%, 460 * while high speed reserves 80%. 461 */ 462 int bandwidth_int_reqs; /* number of Interrupt requests */ 463 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 464 465 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 466 467#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 468 struct mon_bus *mon_bus; /* non-null when associated */ 469 int monitored; /* non-zero when monitored */ 470#endif 471}; 472 473struct usb_dev_state; 474 475/* ----------------------------------------------------------------------- */ 476 477struct usb_tt; 478 479enum usb_device_removable { 480 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 481 USB_DEVICE_REMOVABLE, 482 USB_DEVICE_FIXED, 483}; 484 485enum usb_port_connect_type { 486 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 487 USB_PORT_CONNECT_TYPE_HOT_PLUG, 488 USB_PORT_CONNECT_TYPE_HARD_WIRED, 489 USB_PORT_NOT_USED, 490}; 491 492/* 493 * USB 2.0 Link Power Management (LPM) parameters. 494 */ 495struct usb2_lpm_parameters { 496 /* Best effort service latency indicate how long the host will drive 497 * resume on an exit from L1. 498 */ 499 unsigned int besl; 500 501 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 502 * When the timer counts to zero, the parent hub will initiate a LPM 503 * transition to L1. 504 */ 505 int timeout; 506}; 507 508/* 509 * USB 3.0 Link Power Management (LPM) parameters. 510 * 511 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 512 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 513 * All three are stored in nanoseconds. 514 */ 515struct usb3_lpm_parameters { 516 /* 517 * Maximum exit latency (MEL) for the host to send a packet to the 518 * device (either a Ping for isoc endpoints, or a data packet for 519 * interrupt endpoints), the hubs to decode the packet, and for all hubs 520 * in the path to transition the links to U0. 521 */ 522 unsigned int mel; 523 /* 524 * Maximum exit latency for a device-initiated LPM transition to bring 525 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 526 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 527 */ 528 unsigned int pel; 529 530 /* 531 * The System Exit Latency (SEL) includes PEL, and three other 532 * latencies. After a device initiates a U0 transition, it will take 533 * some time from when the device sends the ERDY to when it will finally 534 * receive the data packet. Basically, SEL should be the worse-case 535 * latency from when a device starts initiating a U0 transition to when 536 * it will get data. 537 */ 538 unsigned int sel; 539 /* 540 * The idle timeout value that is currently programmed into the parent 541 * hub for this device. When the timer counts to zero, the parent hub 542 * will initiate an LPM transition to either U1 or U2. 543 */ 544 int timeout; 545}; 546 547/** 548 * struct usb_device - kernel's representation of a USB device 549 * @devnum: device number; address on a USB bus 550 * @devpath: device ID string for use in messages (e.g., /port/...) 551 * @route: tree topology hex string for use with xHCI 552 * @state: device state: configured, not attached, etc. 553 * @speed: device speed: high/full/low (or error) 554 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 555 * @ttport: device port on that tt hub 556 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 557 * @parent: our hub, unless we're the root 558 * @bus: bus we're part of 559 * @ep0: endpoint 0 data (default control pipe) 560 * @dev: generic device interface 561 * @descriptor: USB device descriptor 562 * @bos: USB device BOS descriptor set 563 * @config: all of the device's configs 564 * @actconfig: the active configuration 565 * @ep_in: array of IN endpoints 566 * @ep_out: array of OUT endpoints 567 * @rawdescriptors: raw descriptors for each config 568 * @bus_mA: Current available from the bus 569 * @portnum: parent port number (origin 1) 570 * @level: number of USB hub ancestors 571 * @can_submit: URBs may be submitted 572 * @persist_enabled: USB_PERSIST enabled for this device 573 * @have_langid: whether string_langid is valid 574 * @authorized: policy has said we can use it; 575 * (user space) policy determines if we authorize this device to be 576 * used or not. By default, wired USB devices are authorized. 577 * WUSB devices are not, until we authorize them from user space. 578 * FIXME -- complete doc 579 * @authenticated: Crypto authentication passed 580 * @wusb: device is Wireless USB 581 * @lpm_capable: device supports LPM 582 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 583 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 584 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 585 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 586 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 587 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 588 * @string_langid: language ID for strings 589 * @product: iProduct string, if present (static) 590 * @manufacturer: iManufacturer string, if present (static) 591 * @serial: iSerialNumber string, if present (static) 592 * @filelist: usbfs files that are open to this device 593 * @maxchild: number of ports if hub 594 * @quirks: quirks of the whole device 595 * @urbnum: number of URBs submitted for the whole device 596 * @active_duration: total time device is not suspended 597 * @connect_time: time device was first connected 598 * @do_remote_wakeup: remote wakeup should be enabled 599 * @reset_resume: needs reset instead of resume 600 * @port_is_suspended: the upstream port is suspended (L2 or U3) 601 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 602 * specific data for the device. 603 * @slot_id: Slot ID assigned by xHCI 604 * @removable: Device can be physically removed from this port 605 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 606 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 607 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 608 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 609 * to keep track of the number of functions that require USB 3.0 Link Power 610 * Management to be disabled for this usb_device. This count should only 611 * be manipulated by those functions, with the bandwidth_mutex is held. 612 * 613 * Notes: 614 * Usbcore drivers should not set usbdev->state directly. Instead use 615 * usb_set_device_state(). 616 */ 617struct usb_device { 618 int devnum; 619 char devpath[16]; 620 u32 route; 621 enum usb_device_state state; 622 enum usb_device_speed speed; 623 624 struct usb_tt *tt; 625 int ttport; 626 627 unsigned int toggle[2]; 628 629 struct usb_device *parent; 630 struct usb_bus *bus; 631 struct usb_host_endpoint ep0; 632 633 struct device dev; 634 635 struct usb_device_descriptor descriptor; 636 struct usb_host_bos *bos; 637 struct usb_host_config *config; 638 639 struct usb_host_config *actconfig; 640 struct usb_host_endpoint *ep_in[16]; 641 struct usb_host_endpoint *ep_out[16]; 642 643 char **rawdescriptors; 644 645 unsigned short bus_mA; 646 u8 portnum; 647 u8 level; 648 649 unsigned can_submit:1; 650 unsigned persist_enabled:1; 651 unsigned have_langid:1; 652 unsigned authorized:1; 653 unsigned authenticated:1; 654 unsigned wusb:1; 655 unsigned lpm_capable:1; 656 unsigned usb2_hw_lpm_capable:1; 657 unsigned usb2_hw_lpm_besl_capable:1; 658 unsigned usb2_hw_lpm_enabled:1; 659 unsigned usb2_hw_lpm_allowed:1; 660 unsigned usb3_lpm_u1_enabled:1; 661 unsigned usb3_lpm_u2_enabled:1; 662 int string_langid; 663 664 /* static strings from the device */ 665 char *product; 666 char *manufacturer; 667 char *serial; 668 669 struct list_head filelist; 670 671 int maxchild; 672 673 u32 quirks; 674 atomic_t urbnum; 675 676 unsigned long active_duration; 677 678#ifdef CONFIG_PM 679 unsigned long connect_time; 680 681 unsigned do_remote_wakeup:1; 682 unsigned reset_resume:1; 683 unsigned port_is_suspended:1; 684#endif 685 struct wusb_dev *wusb_dev; 686 int slot_id; 687 enum usb_device_removable removable; 688 struct usb2_lpm_parameters l1_params; 689 struct usb3_lpm_parameters u1_params; 690 struct usb3_lpm_parameters u2_params; 691 unsigned lpm_disable_count; 692}; 693#define to_usb_device(d) container_of(d, struct usb_device, dev) 694 695static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 696{ 697 return to_usb_device(intf->dev.parent); 698} 699 700extern struct usb_device *usb_get_dev(struct usb_device *dev); 701extern void usb_put_dev(struct usb_device *dev); 702extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 703 int port1); 704 705/** 706 * usb_hub_for_each_child - iterate over all child devices on the hub 707 * @hdev: USB device belonging to the usb hub 708 * @port1: portnum associated with child device 709 * @child: child device pointer 710 */ 711#define usb_hub_for_each_child(hdev, port1, child) \ 712 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 713 port1 <= hdev->maxchild; \ 714 child = usb_hub_find_child(hdev, ++port1)) \ 715 if (!child) continue; else 716 717/* USB device locking */ 718#define usb_lock_device(udev) device_lock(&(udev)->dev) 719#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 720#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 721#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 722extern int usb_lock_device_for_reset(struct usb_device *udev, 723 const struct usb_interface *iface); 724 725/* USB port reset for device reinitialization */ 726extern int usb_reset_device(struct usb_device *dev); 727extern void usb_queue_reset_device(struct usb_interface *dev); 728 729#ifdef CONFIG_ACPI 730extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 731 bool enable); 732extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 733#else 734static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 735 bool enable) { return 0; } 736static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 737 { return true; } 738#endif 739 740/* USB autosuspend and autoresume */ 741#ifdef CONFIG_PM 742extern void usb_enable_autosuspend(struct usb_device *udev); 743extern void usb_disable_autosuspend(struct usb_device *udev); 744 745extern int usb_autopm_get_interface(struct usb_interface *intf); 746extern void usb_autopm_put_interface(struct usb_interface *intf); 747extern int usb_autopm_get_interface_async(struct usb_interface *intf); 748extern void usb_autopm_put_interface_async(struct usb_interface *intf); 749extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 750extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 751 752static inline void usb_mark_last_busy(struct usb_device *udev) 753{ 754 pm_runtime_mark_last_busy(&udev->dev); 755} 756 757#else 758 759static inline int usb_enable_autosuspend(struct usb_device *udev) 760{ return 0; } 761static inline int usb_disable_autosuspend(struct usb_device *udev) 762{ return 0; } 763 764static inline int usb_autopm_get_interface(struct usb_interface *intf) 765{ return 0; } 766static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 767{ return 0; } 768 769static inline void usb_autopm_put_interface(struct usb_interface *intf) 770{ } 771static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 772{ } 773static inline void usb_autopm_get_interface_no_resume( 774 struct usb_interface *intf) 775{ } 776static inline void usb_autopm_put_interface_no_suspend( 777 struct usb_interface *intf) 778{ } 779static inline void usb_mark_last_busy(struct usb_device *udev) 780{ } 781#endif 782 783extern int usb_disable_lpm(struct usb_device *udev); 784extern void usb_enable_lpm(struct usb_device *udev); 785/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 786extern int usb_unlocked_disable_lpm(struct usb_device *udev); 787extern void usb_unlocked_enable_lpm(struct usb_device *udev); 788 789extern int usb_disable_ltm(struct usb_device *udev); 790extern void usb_enable_ltm(struct usb_device *udev); 791 792static inline bool usb_device_supports_ltm(struct usb_device *udev) 793{ 794 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 795 return false; 796 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 797} 798 799static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 800{ 801 return udev && udev->bus && udev->bus->no_sg_constraint; 802} 803 804 805/*-------------------------------------------------------------------------*/ 806 807/* for drivers using iso endpoints */ 808extern int usb_get_current_frame_number(struct usb_device *usb_dev); 809 810/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 811extern int usb_alloc_streams(struct usb_interface *interface, 812 struct usb_host_endpoint **eps, unsigned int num_eps, 813 unsigned int num_streams, gfp_t mem_flags); 814 815/* Reverts a group of bulk endpoints back to not using stream IDs. */ 816extern int usb_free_streams(struct usb_interface *interface, 817 struct usb_host_endpoint **eps, unsigned int num_eps, 818 gfp_t mem_flags); 819 820/* used these for multi-interface device registration */ 821extern int usb_driver_claim_interface(struct usb_driver *driver, 822 struct usb_interface *iface, void *priv); 823 824/** 825 * usb_interface_claimed - returns true iff an interface is claimed 826 * @iface: the interface being checked 827 * 828 * Return: %true (nonzero) iff the interface is claimed, else %false 829 * (zero). 830 * 831 * Note: 832 * Callers must own the driver model's usb bus readlock. So driver 833 * probe() entries don't need extra locking, but other call contexts 834 * may need to explicitly claim that lock. 835 * 836 */ 837static inline int usb_interface_claimed(struct usb_interface *iface) 838{ 839 return (iface->dev.driver != NULL); 840} 841 842extern void usb_driver_release_interface(struct usb_driver *driver, 843 struct usb_interface *iface); 844const struct usb_device_id *usb_match_id(struct usb_interface *interface, 845 const struct usb_device_id *id); 846extern int usb_match_one_id(struct usb_interface *interface, 847 const struct usb_device_id *id); 848 849extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 850extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 851 int minor); 852extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 853 unsigned ifnum); 854extern struct usb_host_interface *usb_altnum_to_altsetting( 855 const struct usb_interface *intf, unsigned int altnum); 856extern struct usb_host_interface *usb_find_alt_setting( 857 struct usb_host_config *config, 858 unsigned int iface_num, 859 unsigned int alt_num); 860 861/* port claiming functions */ 862int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 863 struct usb_dev_state *owner); 864int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 865 struct usb_dev_state *owner); 866 867/** 868 * usb_make_path - returns stable device path in the usb tree 869 * @dev: the device whose path is being constructed 870 * @buf: where to put the string 871 * @size: how big is "buf"? 872 * 873 * Return: Length of the string (> 0) or negative if size was too small. 874 * 875 * Note: 876 * This identifier is intended to be "stable", reflecting physical paths in 877 * hardware such as physical bus addresses for host controllers or ports on 878 * USB hubs. That makes it stay the same until systems are physically 879 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 880 * controllers. Adding and removing devices, including virtual root hubs 881 * in host controller driver modules, does not change these path identifiers; 882 * neither does rebooting or re-enumerating. These are more useful identifiers 883 * than changeable ("unstable") ones like bus numbers or device addresses. 884 * 885 * With a partial exception for devices connected to USB 2.0 root hubs, these 886 * identifiers are also predictable. So long as the device tree isn't changed, 887 * plugging any USB device into a given hub port always gives it the same path. 888 * Because of the use of "companion" controllers, devices connected to ports on 889 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 890 * high speed, and a different one if they are full or low speed. 891 */ 892static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 893{ 894 int actual; 895 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 896 dev->devpath); 897 return (actual >= (int)size) ? -1 : actual; 898} 899 900/*-------------------------------------------------------------------------*/ 901 902#define USB_DEVICE_ID_MATCH_DEVICE \ 903 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 904#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 905 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 906#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 907 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 908#define USB_DEVICE_ID_MATCH_DEV_INFO \ 909 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 910 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 911 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 912#define USB_DEVICE_ID_MATCH_INT_INFO \ 913 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 914 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 915 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 916 917/** 918 * USB_DEVICE - macro used to describe a specific usb device 919 * @vend: the 16 bit USB Vendor ID 920 * @prod: the 16 bit USB Product ID 921 * 922 * This macro is used to create a struct usb_device_id that matches a 923 * specific device. 924 */ 925#define USB_DEVICE(vend, prod) \ 926 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 927 .idVendor = (vend), \ 928 .idProduct = (prod) 929/** 930 * USB_DEVICE_VER - describe a specific usb device with a version range 931 * @vend: the 16 bit USB Vendor ID 932 * @prod: the 16 bit USB Product ID 933 * @lo: the bcdDevice_lo value 934 * @hi: the bcdDevice_hi value 935 * 936 * This macro is used to create a struct usb_device_id that matches a 937 * specific device, with a version range. 938 */ 939#define USB_DEVICE_VER(vend, prod, lo, hi) \ 940 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 941 .idVendor = (vend), \ 942 .idProduct = (prod), \ 943 .bcdDevice_lo = (lo), \ 944 .bcdDevice_hi = (hi) 945 946/** 947 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 948 * @vend: the 16 bit USB Vendor ID 949 * @prod: the 16 bit USB Product ID 950 * @cl: bInterfaceClass value 951 * 952 * This macro is used to create a struct usb_device_id that matches a 953 * specific interface class of devices. 954 */ 955#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 956 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 957 USB_DEVICE_ID_MATCH_INT_CLASS, \ 958 .idVendor = (vend), \ 959 .idProduct = (prod), \ 960 .bInterfaceClass = (cl) 961 962/** 963 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 964 * @vend: the 16 bit USB Vendor ID 965 * @prod: the 16 bit USB Product ID 966 * @pr: bInterfaceProtocol value 967 * 968 * This macro is used to create a struct usb_device_id that matches a 969 * specific interface protocol of devices. 970 */ 971#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 972 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 973 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 974 .idVendor = (vend), \ 975 .idProduct = (prod), \ 976 .bInterfaceProtocol = (pr) 977 978/** 979 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 980 * @vend: the 16 bit USB Vendor ID 981 * @prod: the 16 bit USB Product ID 982 * @num: bInterfaceNumber value 983 * 984 * This macro is used to create a struct usb_device_id that matches a 985 * specific interface number of devices. 986 */ 987#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 988 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 989 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 990 .idVendor = (vend), \ 991 .idProduct = (prod), \ 992 .bInterfaceNumber = (num) 993 994/** 995 * USB_DEVICE_INFO - macro used to describe a class of usb devices 996 * @cl: bDeviceClass value 997 * @sc: bDeviceSubClass value 998 * @pr: bDeviceProtocol value 999 * 1000 * This macro is used to create a struct usb_device_id that matches a
1001 * specific class of devices. 1002 */ 1003#define USB_DEVICE_INFO(cl, sc, pr) \ 1004 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1005 .bDeviceClass = (cl), \ 1006 .bDeviceSubClass = (sc), \ 1007 .bDeviceProtocol = (pr) 1008 1009/** 1010 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1011 * @cl: bInterfaceClass value 1012 * @sc: bInterfaceSubClass value 1013 * @pr: bInterfaceProtocol value 1014 * 1015 * This macro is used to create a struct usb_device_id that matches a 1016 * specific class of interfaces. 1017 */ 1018#define USB_INTERFACE_INFO(cl, sc, pr) \ 1019 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1020 .bInterfaceClass = (cl), \ 1021 .bInterfaceSubClass = (sc), \ 1022 .bInterfaceProtocol = (pr) 1023 1024/** 1025 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1026 * @vend: the 16 bit USB Vendor ID 1027 * @prod: the 16 bit USB Product ID 1028 * @cl: bInterfaceClass value 1029 * @sc: bInterfaceSubClass value 1030 * @pr: bInterfaceProtocol value 1031 * 1032 * This macro is used to create a struct usb_device_id that matches a 1033 * specific device with a specific class of interfaces. 1034 * 1035 * This is especially useful when explicitly matching devices that have 1036 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1037 */ 1038#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1039 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1040 | USB_DEVICE_ID_MATCH_DEVICE, \ 1041 .idVendor = (vend), \ 1042 .idProduct = (prod), \ 1043 .bInterfaceClass = (cl), \ 1044 .bInterfaceSubClass = (sc), \ 1045 .bInterfaceProtocol = (pr) 1046 1047/** 1048 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1049 * @vend: the 16 bit USB Vendor ID 1050 * @cl: bInterfaceClass value 1051 * @sc: bInterfaceSubClass value 1052 * @pr: bInterfaceProtocol value 1053 * 1054 * This macro is used to create a struct usb_device_id that matches a 1055 * specific vendor with a specific class of interfaces. 1056 * 1057 * This is especially useful when explicitly matching devices that have 1058 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1059 */ 1060#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1061 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1062 | USB_DEVICE_ID_MATCH_VENDOR, \ 1063 .idVendor = (vend), \ 1064 .bInterfaceClass = (cl), \ 1065 .bInterfaceSubClass = (sc), \ 1066 .bInterfaceProtocol = (pr) 1067 1068/* ----------------------------------------------------------------------- */ 1069 1070/* Stuff for dynamic usb ids */ 1071struct usb_dynids { 1072 spinlock_t lock; 1073 struct list_head list; 1074}; 1075 1076struct usb_dynid { 1077 struct list_head node; 1078 struct usb_device_id id; 1079}; 1080 1081extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1082 const struct usb_device_id *id_table, 1083 struct device_driver *driver, 1084 const char *buf, size_t count); 1085 1086extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1087 1088/** 1089 * struct usbdrv_wrap - wrapper for driver-model structure 1090 * @driver: The driver-model core driver structure. 1091 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1092 */ 1093struct usbdrv_wrap { 1094 struct device_driver driver; 1095 int for_devices; 1096}; 1097 1098/** 1099 * struct usb_driver - identifies USB interface driver to usbcore 1100 * @name: The driver name should be unique among USB drivers, 1101 * and should normally be the same as the module name. 1102 * @probe: Called to see if the driver is willing to manage a particular 1103 * interface on a device. If it is, probe returns zero and uses 1104 * usb_set_intfdata() to associate driver-specific data with the 1105 * interface. It may also use usb_set_interface() to specify the 1106 * appropriate altsetting. If unwilling to manage the interface, 1107 * return -ENODEV, if genuine IO errors occurred, an appropriate 1108 * negative errno value. 1109 * @disconnect: Called when the interface is no longer accessible, usually 1110 * because its device has been (or is being) disconnected or the 1111 * driver module is being unloaded. 1112 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1113 * the "usbfs" filesystem. This lets devices provide ways to 1114 * expose information to user space regardless of where they 1115 * do (or don't) show up otherwise in the filesystem. 1116 * @suspend: Called when the device is going to be suspended by the 1117 * system either from system sleep or runtime suspend context. The 1118 * return value will be ignored in system sleep context, so do NOT 1119 * try to continue using the device if suspend fails in this case. 1120 * Instead, let the resume or reset-resume routine recover from 1121 * the failure. 1122 * @resume: Called when the device is being resumed by the system. 1123 * @reset_resume: Called when the suspended device has been reset instead 1124 * of being resumed. 1125 * @pre_reset: Called by usb_reset_device() when the device is about to be 1126 * reset. This routine must not return until the driver has no active 1127 * URBs for the device, and no more URBs may be submitted until the 1128 * post_reset method is called. 1129 * @post_reset: Called by usb_reset_device() after the device 1130 * has been reset 1131 * @id_table: USB drivers use ID table to support hotplugging. 1132 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1133 * or your driver's probe function will never get called. 1134 * @dynids: used internally to hold the list of dynamically added device 1135 * ids for this driver. 1136 * @drvwrap: Driver-model core structure wrapper. 1137 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1138 * added to this driver by preventing the sysfs file from being created. 1139 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1140 * for interfaces bound to this driver. 1141 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1142 * endpoints before calling the driver's disconnect method. 1143 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1144 * to initiate lower power link state transitions when an idle timeout 1145 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1146 * 1147 * USB interface drivers must provide a name, probe() and disconnect() 1148 * methods, and an id_table. Other driver fields are optional. 1149 * 1150 * The id_table is used in hotplugging. It holds a set of descriptors, 1151 * and specialized data may be associated with each entry. That table 1152 * is used by both user and kernel mode hotplugging support. 1153 * 1154 * The probe() and disconnect() methods are called in a context where 1155 * they can sleep, but they should avoid abusing the privilege. Most 1156 * work to connect to a device should be done when the device is opened, 1157 * and undone at the last close. The disconnect code needs to address 1158 * concurrency issues with respect to open() and close() methods, as 1159 * well as forcing all pending I/O requests to complete (by unlinking 1160 * them as necessary, and blocking until the unlinks complete). 1161 */ 1162struct usb_driver { 1163 const char *name; 1164 1165 int (*probe) (struct usb_interface *intf, 1166 const struct usb_device_id *id); 1167 1168 void (*disconnect) (struct usb_interface *intf); 1169 1170 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1171 void *buf); 1172 1173 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1174 int (*resume) (struct usb_interface *intf); 1175 int (*reset_resume)(struct usb_interface *intf); 1176 1177 int (*pre_reset)(struct usb_interface *intf); 1178 int (*post_reset)(struct usb_interface *intf); 1179 1180 const struct usb_device_id *id_table; 1181 1182 struct usb_dynids dynids; 1183 struct usbdrv_wrap drvwrap; 1184 unsigned int no_dynamic_id:1; 1185 unsigned int supports_autosuspend:1; 1186 unsigned int disable_hub_initiated_lpm:1; 1187 unsigned int soft_unbind:1; 1188}; 1189#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1190 1191/** 1192 * struct usb_device_driver - identifies USB device driver to usbcore 1193 * @name: The driver name should be unique among USB drivers, 1194 * and should normally be the same as the module name. 1195 * @probe: Called to see if the driver is willing to manage a particular 1196 * device. If it is, probe returns zero and uses dev_set_drvdata() 1197 * to associate driver-specific data with the device. If unwilling 1198 * to manage the device, return a negative errno value. 1199 * @disconnect: Called when the device is no longer accessible, usually 1200 * because it has been (or is being) disconnected or the driver's 1201 * module is being unloaded. 1202 * @suspend: Called when the device is going to be suspended by the system. 1203 * @resume: Called when the device is being resumed by the system. 1204 * @drvwrap: Driver-model core structure wrapper. 1205 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1206 * for devices bound to this driver. 1207 * 1208 * USB drivers must provide all the fields listed above except drvwrap. 1209 */ 1210struct usb_device_driver { 1211 const char *name; 1212 1213 int (*probe) (struct usb_device *udev); 1214 void (*disconnect) (struct usb_device *udev); 1215 1216 int (*suspend) (struct usb_device *udev, pm_message_t message); 1217 int (*resume) (struct usb_device *udev, pm_message_t message); 1218 struct usbdrv_wrap drvwrap; 1219 unsigned int supports_autosuspend:1; 1220}; 1221#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1222 drvwrap.driver) 1223 1224extern struct bus_type usb_bus_type; 1225 1226/** 1227 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1228 * @name: the usb class device name for this driver. Will show up in sysfs. 1229 * @devnode: Callback to provide a naming hint for a possible 1230 * device node to create. 1231 * @fops: pointer to the struct file_operations of this driver. 1232 * @minor_base: the start of the minor range for this driver. 1233 * 1234 * This structure is used for the usb_register_dev() and 1235 * usb_deregister_dev() functions, to consolidate a number of the 1236 * parameters used for them. 1237 */ 1238struct usb_class_driver { 1239 char *name; 1240 char *(*devnode)(struct device *dev, umode_t *mode); 1241 const struct file_operations *fops; 1242 int minor_base; 1243}; 1244 1245/* 1246 * use these in module_init()/module_exit() 1247 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1248 */ 1249extern int usb_register_driver(struct usb_driver *, struct module *, 1250 const char *); 1251 1252/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1253#define usb_register(driver) \ 1254 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1255 1256extern void usb_deregister(struct usb_driver *); 1257 1258/** 1259 * module_usb_driver() - Helper macro for registering a USB driver 1260 * @__usb_driver: usb_driver struct 1261 * 1262 * Helper macro for USB drivers which do not do anything special in module 1263 * init/exit. This eliminates a lot of boilerplate. Each module may only 1264 * use this macro once, and calling it replaces module_init() and module_exit() 1265 */ 1266#define module_usb_driver(__usb_driver) \ 1267 module_driver(__usb_driver, usb_register, \ 1268 usb_deregister) 1269 1270extern int usb_register_device_driver(struct usb_device_driver *, 1271 struct module *); 1272extern void usb_deregister_device_driver(struct usb_device_driver *); 1273 1274extern int usb_register_dev(struct usb_interface *intf, 1275 struct usb_class_driver *class_driver); 1276extern void usb_deregister_dev(struct usb_interface *intf, 1277 struct usb_class_driver *class_driver); 1278 1279extern int usb_disabled(void); 1280 1281/* ----------------------------------------------------------------------- */ 1282 1283/* 1284 * URB support, for asynchronous request completions 1285 */ 1286 1287/* 1288 * urb->transfer_flags: 1289 * 1290 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1291 */ 1292#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1293#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1294 * slot in the schedule */ 1295#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1296#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1297#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1298#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1299 * needed */ 1300#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1301 1302/* The following flags are used internally by usbcore and HCDs */ 1303#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1304#define URB_DIR_OUT 0 1305#define URB_DIR_MASK URB_DIR_IN 1306 1307#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1308#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1309#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1310#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1311#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1312#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1313#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1314#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1315 1316struct usb_iso_packet_descriptor { 1317 unsigned int offset; 1318 unsigned int length; /* expected length */ 1319 unsigned int actual_length; 1320 int status; 1321}; 1322 1323struct urb; 1324 1325struct usb_anchor { 1326 struct list_head urb_list; 1327 wait_queue_head_t wait; 1328 spinlock_t lock; 1329 atomic_t suspend_wakeups; 1330 unsigned int poisoned:1; 1331}; 1332 1333static inline void init_usb_anchor(struct usb_anchor *anchor) 1334{ 1335 memset(anchor, 0, sizeof(*anchor)); 1336 INIT_LIST_HEAD(&anchor->urb_list); 1337 init_waitqueue_head(&anchor->wait); 1338 spin_lock_init(&anchor->lock); 1339} 1340 1341typedef void (*usb_complete_t)(struct urb *); 1342 1343/** 1344 * struct urb - USB Request Block 1345 * @urb_list: For use by current owner of the URB. 1346 * @anchor_list: membership in the list of an anchor 1347 * @anchor: to anchor URBs to a common mooring 1348 * @ep: Points to the endpoint's data structure. Will eventually 1349 * replace @pipe. 1350 * @pipe: Holds endpoint number, direction, type, and more. 1351 * Create these values with the eight macros available; 1352 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1353 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1354 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1355 * numbers range from zero to fifteen. Note that "in" endpoint two 1356 * is a different endpoint (and pipe) from "out" endpoint two. 1357 * The current configuration controls the existence, type, and 1358 * maximum packet size of any given endpoint. 1359 * @stream_id: the endpoint's stream ID for bulk streams 1360 * @dev: Identifies the USB device to perform the request. 1361 * @status: This is read in non-iso completion functions to get the 1362 * status of the particular request. ISO requests only use it 1363 * to tell whether the URB was unlinked; detailed status for 1364 * each frame is in the fields of the iso_frame-desc. 1365 * @transfer_flags: A variety of flags may be used to affect how URB 1366 * submission, unlinking, or operation are handled. Different 1367 * kinds of URB can use different flags. 1368 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1369 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1370 * (however, do not leave garbage in transfer_buffer even then). 1371 * This buffer must be suitable for DMA; allocate it with 1372 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1373 * of this buffer will be modified. This buffer is used for the data 1374 * stage of control transfers. 1375 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1376 * the device driver is saying that it provided this DMA address, 1377 * which the host controller driver should use in preference to the 1378 * transfer_buffer. 1379 * @sg: scatter gather buffer list, the buffer size of each element in 1380 * the list (except the last) must be divisible by the endpoint's 1381 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1382 * @num_mapped_sgs: (internal) number of mapped sg entries 1383 * @num_sgs: number of entries in the sg list 1384 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1385 * be broken up into chunks according to the current maximum packet 1386 * size for the endpoint, which is a function of the configuration 1387 * and is encoded in the pipe. When the length is zero, neither 1388 * transfer_buffer nor transfer_dma is used. 1389 * @actual_length: This is read in non-iso completion functions, and 1390 * it tells how many bytes (out of transfer_buffer_length) were 1391 * transferred. It will normally be the same as requested, unless 1392 * either an error was reported or a short read was performed. 1393 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1394 * short reads be reported as errors. 1395 * @setup_packet: Only used for control transfers, this points to eight bytes 1396 * of setup data. Control transfers always start by sending this data 1397 * to the device. Then transfer_buffer is read or written, if needed. 1398 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1399 * this field; setup_packet must point to a valid buffer. 1400 * @start_frame: Returns the initial frame for isochronous transfers. 1401 * @number_of_packets: Lists the number of ISO transfer buffers. 1402 * @interval: Specifies the polling interval for interrupt or isochronous 1403 * transfers. The units are frames (milliseconds) for full and low 1404 * speed devices, and microframes (1/8 millisecond) for highspeed 1405 * and SuperSpeed devices. 1406 * @error_count: Returns the number of ISO transfers that reported errors. 1407 * @context: For use in completion functions. This normally points to 1408 * request-specific driver context. 1409 * @complete: Completion handler. This URB is passed as the parameter to the 1410 * completion function. The completion function may then do what 1411 * it likes with the URB, including resubmitting or freeing it. 1412 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1413 * collect the transfer status for each buffer. 1414 * 1415 * This structure identifies USB transfer requests. URBs must be allocated by 1416 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1417 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1418 * are submitted using usb_submit_urb(), and pending requests may be canceled 1419 * using usb_unlink_urb() or usb_kill_urb(). 1420 * 1421 * Data Transfer Buffers: 1422 * 1423 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1424 * taken from the general page pool. That is provided by transfer_buffer 1425 * (control requests also use setup_packet), and host controller drivers 1426 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1427 * mapping operations can be expensive on some platforms (perhaps using a dma 1428 * bounce buffer or talking to an IOMMU), 1429 * although they're cheap on commodity x86 and ppc hardware. 1430 * 1431 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1432 * which tells the host controller driver that no such mapping is needed for 1433 * the transfer_buffer since 1434 * the device driver is DMA-aware. For example, a device driver might 1435 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1436 * When this transfer flag is provided, host controller drivers will 1437 * attempt to use the dma address found in the transfer_dma 1438 * field rather than determining a dma address themselves. 1439 * 1440 * Note that transfer_buffer must still be set if the controller 1441 * does not support DMA (as indicated by bus.uses_dma) and when talking 1442 * to root hub. If you have to trasfer between highmem zone and the device 1443 * on such controller, create a bounce buffer or bail out with an error. 1444 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1445 * capable, assign NULL to it, so that usbmon knows not to use the value. 1446 * The setup_packet must always be set, so it cannot be located in highmem. 1447 * 1448 * Initialization: 1449 * 1450 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1451 * zero), and complete fields. All URBs must also initialize 1452 * transfer_buffer and transfer_buffer_length. They may provide the 1453 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1454 * to be treated as errors; that flag is invalid for write requests. 1455 * 1456 * Bulk URBs may 1457 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1458 * should always terminate with a short packet, even if it means adding an 1459 * extra zero length packet. 1460 * 1461 * Control URBs must provide a valid pointer in the setup_packet field. 1462 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1463 * beforehand. 1464 * 1465 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1466 * or, for highspeed devices, 125 microsecond units) 1467 * to poll for transfers. After the URB has been submitted, the interval 1468 * field reflects how the transfer was actually scheduled. 1469 * The polling interval may be more frequent than requested. 1470 * For example, some controllers have a maximum interval of 32 milliseconds, 1471 * while others support intervals of up to 1024 milliseconds. 1472 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1473 * endpoints, as well as high speed interrupt endpoints, the encoding of 1474 * the transfer interval in the endpoint descriptor is logarithmic. 1475 * Device drivers must convert that value to linear units themselves.) 1476 * 1477 * If an isochronous endpoint queue isn't already running, the host 1478 * controller will schedule a new URB to start as soon as bandwidth 1479 * utilization allows. If the queue is running then a new URB will be 1480 * scheduled to start in the first transfer slot following the end of the 1481 * preceding URB, if that slot has not already expired. If the slot has 1482 * expired (which can happen when IRQ delivery is delayed for a long time), 1483 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1484 * is clear then the URB will be scheduled to start in the expired slot, 1485 * implying that some of its packets will not be transferred; if the flag 1486 * is set then the URB will be scheduled in the first unexpired slot, 1487 * breaking the queue's synchronization. Upon URB completion, the 1488 * start_frame field will be set to the (micro)frame number in which the 1489 * transfer was scheduled. Ranges for frame counter values are HC-specific 1490 * and can go from as low as 256 to as high as 65536 frames. 1491 * 1492 * Isochronous URBs have a different data transfer model, in part because 1493 * the quality of service is only "best effort". Callers provide specially 1494 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1495 * at the end. Each such packet is an individual ISO transfer. Isochronous 1496 * URBs are normally queued, submitted by drivers to arrange that 1497 * transfers are at least double buffered, and then explicitly resubmitted 1498 * in completion handlers, so 1499 * that data (such as audio or video) streams at as constant a rate as the 1500 * host controller scheduler can support. 1501 * 1502 * Completion Callbacks: 1503 * 1504 * The completion callback is made in_interrupt(), and one of the first 1505 * things that a completion handler should do is check the status field. 1506 * The status field is provided for all URBs. It is used to report 1507 * unlinked URBs, and status for all non-ISO transfers. It should not 1508 * be examined before the URB is returned to the completion handler. 1509 * 1510 * The context field is normally used to link URBs back to the relevant 1511 * driver or request state. 1512 * 1513 * When the completion callback is invoked for non-isochronous URBs, the 1514 * actual_length field tells how many bytes were transferred. This field 1515 * is updated even when the URB terminated with an error or was unlinked. 1516 * 1517 * ISO transfer status is reported in the status and actual_length fields 1518 * of the iso_frame_desc array, and the number of errors is reported in 1519 * error_count. Completion callbacks for ISO transfers will normally 1520 * (re)submit URBs to ensure a constant transfer rate. 1521 * 1522 * Note that even fields marked "public" should not be touched by the driver 1523 * when the urb is owned by the hcd, that is, since the call to 1524 * usb_submit_urb() till the entry into the completion routine. 1525 */ 1526struct urb { 1527 /* private: usb core and host controller only fields in the urb */ 1528 struct kref kref; /* reference count of the URB */ 1529 void *hcpriv; /* private data for host controller */ 1530 atomic_t use_count; /* concurrent submissions counter */ 1531 atomic_t reject; /* submissions will fail */ 1532 int unlinked; /* unlink error code */ 1533 1534 /* public: documented fields in the urb that can be used by drivers */ 1535 struct list_head urb_list; /* list head for use by the urb's 1536 * current owner */ 1537 struct list_head anchor_list; /* the URB may be anchored */ 1538 struct usb_anchor *anchor; 1539 struct usb_device *dev; /* (in) pointer to associated device */ 1540 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1541 unsigned int pipe; /* (in) pipe information */ 1542 unsigned int stream_id; /* (in) stream ID */ 1543 int status; /* (return) non-ISO status */ 1544 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1545 void *transfer_buffer; /* (in) associated data buffer */ 1546 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1547 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1548 int num_mapped_sgs; /* (internal) mapped sg entries */ 1549 int num_sgs; /* (in) number of entries in the sg list */ 1550 u32 transfer_buffer_length; /* (in) data buffer length */ 1551 u32 actual_length; /* (return) actual transfer length */ 1552 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1553 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1554 int start_frame; /* (modify) start frame (ISO) */ 1555 int number_of_packets; /* (in) number of ISO packets */ 1556 int interval; /* (modify) transfer interval 1557 * (INT/ISO) */ 1558 int error_count; /* (return) number of ISO errors */ 1559 void *context; /* (in) context for completion */ 1560 usb_complete_t complete; /* (in) completion routine */ 1561 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1562 /* (in) ISO ONLY */ 1563}; 1564 1565/* ----------------------------------------------------------------------- */ 1566 1567/** 1568 * usb_fill_control_urb - initializes a control urb 1569 * @urb: pointer to the urb to initialize. 1570 * @dev: pointer to the struct usb_device for this urb. 1571 * @pipe: the endpoint pipe 1572 * @setup_packet: pointer to the setup_packet buffer 1573 * @transfer_buffer: pointer to the transfer buffer 1574 * @buffer_length: length of the transfer buffer 1575 * @complete_fn: pointer to the usb_complete_t function 1576 * @context: what to set the urb context to. 1577 * 1578 * Initializes a control urb with the proper information needed to submit 1579 * it to a device. 1580 */ 1581static inline void usb_fill_control_urb(struct urb *urb, 1582 struct usb_device *dev, 1583 unsigned int pipe, 1584 unsigned char *setup_packet, 1585 void *transfer_buffer, 1586 int buffer_length, 1587 usb_complete_t complete_fn, 1588 void *context) 1589{ 1590 urb->dev = dev; 1591 urb->pipe = pipe; 1592 urb->setup_packet = setup_packet; 1593 urb->transfer_buffer = transfer_buffer; 1594 urb->transfer_buffer_length = buffer_length; 1595 urb->complete = complete_fn; 1596 urb->context = context; 1597} 1598 1599/** 1600 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1601 * @urb: pointer to the urb to initialize. 1602 * @dev: pointer to the struct usb_device for this urb. 1603 * @pipe: the endpoint pipe 1604 * @transfer_buffer: pointer to the transfer buffer 1605 * @buffer_length: length of the transfer buffer 1606 * @complete_fn: pointer to the usb_complete_t function 1607 * @context: what to set the urb context to. 1608 * 1609 * Initializes a bulk urb with the proper information needed to submit it 1610 * to a device. 1611 */ 1612static inline void usb_fill_bulk_urb(struct urb *urb, 1613 struct usb_device *dev, 1614 unsigned int pipe, 1615 void *transfer_buffer, 1616 int buffer_length, 1617 usb_complete_t complete_fn, 1618 void *context) 1619{ 1620 urb->dev = dev; 1621 urb->pipe = pipe; 1622 urb->transfer_buffer = transfer_buffer; 1623 urb->transfer_buffer_length = buffer_length; 1624 urb->complete = complete_fn; 1625 urb->context = context; 1626} 1627 1628/** 1629 * usb_fill_int_urb - macro to help initialize a interrupt urb 1630 * @urb: pointer to the urb to initialize. 1631 * @dev: pointer to the struct usb_device for this urb. 1632 * @pipe: the endpoint pipe 1633 * @transfer_buffer: pointer to the transfer buffer 1634 * @buffer_length: length of the transfer buffer 1635 * @complete_fn: pointer to the usb_complete_t function 1636 * @context: what to set the urb context to. 1637 * @interval: what to set the urb interval to, encoded like 1638 * the endpoint descriptor's bInterval value. 1639 * 1640 * Initializes a interrupt urb with the proper information needed to submit 1641 * it to a device. 1642 * 1643 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1644 * encoding of the endpoint interval, and express polling intervals in 1645 * microframes (eight per millisecond) rather than in frames (one per 1646 * millisecond). 1647 * 1648 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1649 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1650 * through to the host controller, rather than being translated into microframe 1651 * units. 1652 */ 1653static inline void usb_fill_int_urb(struct urb *urb, 1654 struct usb_device *dev, 1655 unsigned int pipe, 1656 void *transfer_buffer, 1657 int buffer_length, 1658 usb_complete_t complete_fn, 1659 void *context, 1660 int interval) 1661{ 1662 urb->dev = dev; 1663 urb->pipe = pipe; 1664 urb->transfer_buffer = transfer_buffer; 1665 urb->transfer_buffer_length = buffer_length; 1666 urb->complete = complete_fn; 1667 urb->context = context; 1668 1669 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1670 /* make sure interval is within allowed range */ 1671 interval = clamp(interval, 1, 16); 1672 1673 urb->interval = 1 << (interval - 1); 1674 } else { 1675 urb->interval = interval; 1676 } 1677 1678 urb->start_frame = -1; 1679} 1680 1681extern void usb_init_urb(struct urb *urb); 1682extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1683extern void usb_free_urb(struct urb *urb); 1684#define usb_put_urb usb_free_urb 1685extern struct urb *usb_get_urb(struct urb *urb); 1686extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1687extern int usb_unlink_urb(struct urb *urb); 1688extern void usb_kill_urb(struct urb *urb); 1689extern void usb_poison_urb(struct urb *urb); 1690extern void usb_unpoison_urb(struct urb *urb); 1691extern void usb_block_urb(struct urb *urb); 1692extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1693extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1694extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1695extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1696extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1697extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1698extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1699extern void usb_unanchor_urb(struct urb *urb); 1700extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1701 unsigned int timeout); 1702extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1703extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1704extern int usb_anchor_empty(struct usb_anchor *anchor); 1705 1706#define usb_unblock_urb usb_unpoison_urb 1707 1708/** 1709 * usb_urb_dir_in - check if an URB describes an IN transfer 1710 * @urb: URB to be checked 1711 * 1712 * Return: 1 if @urb describes an IN transfer (device-to-host), 1713 * otherwise 0. 1714 */ 1715static inline int usb_urb_dir_in(struct urb *urb) 1716{ 1717 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1718} 1719 1720/** 1721 * usb_urb_dir_out - check if an URB describes an OUT transfer 1722 * @urb: URB to be checked 1723 * 1724 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1725 * otherwise 0. 1726 */ 1727static inline int usb_urb_dir_out(struct urb *urb) 1728{ 1729 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1730} 1731 1732void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1733 gfp_t mem_flags, dma_addr_t *dma); 1734void usb_free_coherent(struct usb_device *dev, size_t size, 1735 void *addr, dma_addr_t dma); 1736 1737#if 0 1738struct urb *usb_buffer_map(struct urb *urb); 1739void usb_buffer_dmasync(struct urb *urb); 1740void usb_buffer_unmap(struct urb *urb); 1741#endif 1742 1743struct scatterlist; 1744int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1745 struct scatterlist *sg, int nents); 1746#if 0 1747void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1748 struct scatterlist *sg, int n_hw_ents); 1749#endif 1750void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1751 struct scatterlist *sg, int n_hw_ents); 1752 1753/*-------------------------------------------------------------------* 1754 * SYNCHRONOUS CALL SUPPORT * 1755 *-------------------------------------------------------------------*/ 1756 1757extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1758 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1759 void *data, __u16 size, int timeout); 1760extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1761 void *data, int len, int *actual_length, int timeout); 1762extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1763 void *data, int len, int *actual_length, 1764 int timeout); 1765 1766/* wrappers around usb_control_msg() for the most common standard requests */ 1767extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1768 unsigned char descindex, void *buf, int size); 1769extern int usb_get_status(struct usb_device *dev, 1770 int type, int target, void *data); 1771extern int usb_string(struct usb_device *dev, int index, 1772 char *buf, size_t size); 1773 1774/* wrappers that also update important state inside usbcore */ 1775extern int usb_clear_halt(struct usb_device *dev, int pipe); 1776extern int usb_reset_configuration(struct usb_device *dev); 1777extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1778extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1779 1780/* this request isn't really synchronous, but it belongs with the others */ 1781extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1782 1783/* choose and set configuration for device */ 1784extern int usb_choose_configuration(struct usb_device *udev); 1785extern int usb_set_configuration(struct usb_device *dev, int configuration); 1786 1787/* 1788 * timeouts, in milliseconds, used for sending/receiving control messages 1789 * they typically complete within a few frames (msec) after they're issued 1790 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1791 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1792 */ 1793#define USB_CTRL_GET_TIMEOUT 5000 1794#define USB_CTRL_SET_TIMEOUT 5000 1795 1796 1797/** 1798 * struct usb_sg_request - support for scatter/gather I/O 1799 * @status: zero indicates success, else negative errno 1800 * @bytes: counts bytes transferred. 1801 * 1802 * These requests are initialized using usb_sg_init(), and then are used 1803 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1804 * members of the request object aren't for driver access. 1805 * 1806 * The status and bytecount values are valid only after usb_sg_wait() 1807 * returns. If the status is zero, then the bytecount matches the total 1808 * from the request. 1809 * 1810 * After an error completion, drivers may need to clear a halt condition 1811 * on the endpoint. 1812 */ 1813struct usb_sg_request { 1814 int status; 1815 size_t bytes; 1816 1817 /* private: 1818 * members below are private to usbcore, 1819 * and are not provided for driver access! 1820 */ 1821 spinlock_t lock; 1822 1823 struct usb_device *dev; 1824 int pipe; 1825 1826 int entries; 1827 struct urb **urbs; 1828 1829 int count; 1830 struct completion complete; 1831}; 1832 1833int usb_sg_init( 1834 struct usb_sg_request *io, 1835 struct usb_device *dev, 1836 unsigned pipe, 1837 unsigned period, 1838 struct scatterlist *sg, 1839 int nents, 1840 size_t length, 1841 gfp_t mem_flags 1842); 1843void usb_sg_cancel(struct usb_sg_request *io); 1844void usb_sg_wait(struct usb_sg_request *io); 1845 1846 1847/* ----------------------------------------------------------------------- */ 1848 1849/* 1850 * For various legacy reasons, Linux has a small cookie that's paired with 1851 * a struct usb_device to identify an endpoint queue. Queue characteristics 1852 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1853 * an unsigned int encoded as: 1854 * 1855 * - direction: bit 7 (0 = Host-to-Device [Out], 1856 * 1 = Device-to-Host [In] ... 1857 * like endpoint bEndpointAddress) 1858 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1859 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1860 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1861 * 10 = control, 11 = bulk) 1862 * 1863 * Given the device address and endpoint descriptor, pipes are redundant. 1864 */ 1865 1866/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1867/* (yet ... they're the values used by usbfs) */ 1868#define PIPE_ISOCHRONOUS 0 1869#define PIPE_INTERRUPT 1 1870#define PIPE_CONTROL 2 1871#define PIPE_BULK 3 1872 1873#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1874#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1875 1876#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1877#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1878 1879#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1880#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1881#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1882#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1883#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1884 1885static inline unsigned int __create_pipe(struct usb_device *dev, 1886 unsigned int endpoint) 1887{ 1888 return (dev->devnum << 8) | (endpoint << 15); 1889} 1890 1891/* Create various pipes... */ 1892#define usb_sndctrlpipe(dev, endpoint) \ 1893 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1894#define usb_rcvctrlpipe(dev, endpoint) \ 1895 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1896#define usb_sndisocpipe(dev, endpoint) \ 1897 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1898#define usb_rcvisocpipe(dev, endpoint) \ 1899 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1900#define usb_sndbulkpipe(dev, endpoint) \ 1901 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1902#define usb_rcvbulkpipe(dev, endpoint) \ 1903 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1904#define usb_sndintpipe(dev, endpoint) \ 1905 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1906#define usb_rcvintpipe(dev, endpoint) \ 1907 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1908 1909static inline struct usb_host_endpoint * 1910usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1911{ 1912 struct usb_host_endpoint **eps; 1913 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1914 return eps[usb_pipeendpoint(pipe)]; 1915} 1916 1917/*-------------------------------------------------------------------------*/ 1918 1919static inline __u16 1920usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1921{ 1922 struct usb_host_endpoint *ep; 1923 unsigned epnum = usb_pipeendpoint(pipe); 1924 1925 if (is_out) { 1926 WARN_ON(usb_pipein(pipe)); 1927 ep = udev->ep_out[epnum]; 1928 } else { 1929 WARN_ON(usb_pipeout(pipe)); 1930 ep = udev->ep_in[epnum]; 1931 } 1932 if (!ep) 1933 return 0; 1934 1935 /* NOTE: only 0x07ff bits are for packet size... */ 1936 return usb_endpoint_maxp(&ep->desc); 1937} 1938 1939/* ----------------------------------------------------------------------- */ 1940 1941/* translate USB error codes to codes user space understands */ 1942static inline int usb_translate_errors(int error_code) 1943{ 1944 switch (error_code) { 1945 case 0: 1946 case -ENOMEM: 1947 case -ENODEV: 1948 case -EOPNOTSUPP: 1949 return error_code; 1950 default: 1951 return -EIO; 1952 } 1953} 1954 1955/* Events from the usb core */ 1956#define USB_DEVICE_ADD 0x0001 1957#define USB_DEVICE_REMOVE 0x0002 1958#define USB_BUS_ADD 0x0003 1959#define USB_BUS_REMOVE 0x0004 1960extern void usb_register_notify(struct notifier_block *nb); 1961extern void usb_unregister_notify(struct notifier_block *nb); 1962 1963/* debugfs stuff */ 1964extern struct dentry *usb_debug_root; 1965 1966/* LED triggers */ 1967enum usb_led_event { 1968 USB_LED_EVENT_HOST = 0, 1969 USB_LED_EVENT_GADGET = 1, 1970}; 1971 1972#ifdef CONFIG_USB_LED_TRIG 1973extern void usb_led_activity(enum usb_led_event ev); 1974#else 1975static inline void usb_led_activity(enum usb_led_event ev) {} 1976#endif 1977 1978#endif /* __KERNEL__ */ 1979 1980#endif 1981