linux/include/linux/usb.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_USB_H
   3#define __LINUX_USB_H
   4
   5#include <linux/mod_devicetable.h>
   6#include <linux/usb/ch9.h>
   7
   8#define USB_MAJOR                       180
   9#define USB_DEVICE_MAJOR                189
  10
  11
  12#ifdef __KERNEL__
  13
  14#include <linux/errno.h>        /* for -ENODEV */
  15#include <linux/delay.h>        /* for mdelay() */
  16#include <linux/interrupt.h>    /* for in_interrupt() */
  17#include <linux/list.h>         /* for struct list_head */
  18#include <linux/kref.h>         /* for struct kref */
  19#include <linux/device.h>       /* for struct device */
  20#include <linux/fs.h>           /* for struct file_operations */
  21#include <linux/completion.h>   /* for struct completion */
  22#include <linux/sched.h>        /* for current && schedule_timeout */
  23#include <linux/mutex.h>        /* for struct mutex */
  24#include <linux/pm_runtime.h>   /* for runtime PM */
  25
  26struct usb_device;
  27struct usb_driver;
  28struct wusb_dev;
  29
  30/*-------------------------------------------------------------------------*/
  31
  32/*
  33 * Host-side wrappers for standard USB descriptors ... these are parsed
  34 * from the data provided by devices.  Parsing turns them from a flat
  35 * sequence of descriptors into a hierarchy:
  36 *
  37 *  - devices have one (usually) or more configs;
  38 *  - configs have one (often) or more interfaces;
  39 *  - interfaces have one (usually) or more settings;
  40 *  - each interface setting has zero or (usually) more endpoints.
  41 *  - a SuperSpeed endpoint has a companion descriptor
  42 *
  43 * And there might be other descriptors mixed in with those.
  44 *
  45 * Devices may also have class-specific or vendor-specific descriptors.
  46 */
  47
  48struct ep_device;
  49
  50/**
  51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
  55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  57 *      with one or more transfer descriptors (TDs) per urb
  58 * @ep_dev: ep_device for sysfs info
  59 * @extra: descriptors following this endpoint in the configuration
  60 * @extralen: how many bytes of "extra" are valid
  61 * @enabled: URBs may be submitted to this endpoint
  62 * @streams: number of USB-3 streams allocated on the endpoint
  63 *
  64 * USB requests are always queued to a given endpoint, identified by a
  65 * descriptor within an active interface in a given USB configuration.
  66 */
  67struct usb_host_endpoint {
  68        struct usb_endpoint_descriptor          desc;
  69        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  70        struct usb_ssp_isoc_ep_comp_descriptor  ssp_isoc_ep_comp;
  71        struct list_head                urb_list;
  72        void                            *hcpriv;
  73        struct ep_device                *ep_dev;        /* For sysfs info */
  74
  75        unsigned char *extra;   /* Extra descriptors */
  76        int extralen;
  77        int enabled;
  78        int streams;
  79};
  80
  81/* host-side wrapper for one interface setting's parsed descriptors */
  82struct usb_host_interface {
  83        struct usb_interface_descriptor desc;
  84
  85        int extralen;
  86        unsigned char *extra;   /* Extra descriptors */
  87
  88        /* array of desc.bNumEndpoints endpoints associated with this
  89         * interface setting.  these will be in no particular order.
  90         */
  91        struct usb_host_endpoint *endpoint;
  92
  93        char *string;           /* iInterface string, if present */
  94};
  95
  96enum usb_interface_condition {
  97        USB_INTERFACE_UNBOUND = 0,
  98        USB_INTERFACE_BINDING,
  99        USB_INTERFACE_BOUND,
 100        USB_INTERFACE_UNBINDING,
 101};
 102
 103int __must_check
 104usb_find_common_endpoints(struct usb_host_interface *alt,
 105                struct usb_endpoint_descriptor **bulk_in,
 106                struct usb_endpoint_descriptor **bulk_out,
 107                struct usb_endpoint_descriptor **int_in,
 108                struct usb_endpoint_descriptor **int_out);
 109
 110int __must_check
 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 112                struct usb_endpoint_descriptor **bulk_in,
 113                struct usb_endpoint_descriptor **bulk_out,
 114                struct usb_endpoint_descriptor **int_in,
 115                struct usb_endpoint_descriptor **int_out);
 116
 117static inline int __must_check
 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
 119                struct usb_endpoint_descriptor **bulk_in)
 120{
 121        return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
 122}
 123
 124static inline int __must_check
 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
 126                struct usb_endpoint_descriptor **bulk_out)
 127{
 128        return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
 129}
 130
 131static inline int __must_check
 132usb_find_int_in_endpoint(struct usb_host_interface *alt,
 133                struct usb_endpoint_descriptor **int_in)
 134{
 135        return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
 136}
 137
 138static inline int __must_check
 139usb_find_int_out_endpoint(struct usb_host_interface *alt,
 140                struct usb_endpoint_descriptor **int_out)
 141{
 142        return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
 143}
 144
 145static inline int __must_check
 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
 147                struct usb_endpoint_descriptor **bulk_in)
 148{
 149        return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
 150}
 151
 152static inline int __must_check
 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
 154                struct usb_endpoint_descriptor **bulk_out)
 155{
 156        return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
 157}
 158
 159static inline int __must_check
 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
 161                struct usb_endpoint_descriptor **int_in)
 162{
 163        return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
 164}
 165
 166static inline int __must_check
 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
 168                struct usb_endpoint_descriptor **int_out)
 169{
 170        return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
 171}
 172
 173/**
 174 * struct usb_interface - what usb device drivers talk to
 175 * @altsetting: array of interface structures, one for each alternate
 176 *      setting that may be selected.  Each one includes a set of
 177 *      endpoint configurations.  They will be in no particular order.
 178 * @cur_altsetting: the current altsetting.
 179 * @num_altsetting: number of altsettings defined.
 180 * @intf_assoc: interface association descriptor
 181 * @minor: the minor number assigned to this interface, if this
 182 *      interface is bound to a driver that uses the USB major number.
 183 *      If this interface does not use the USB major, this field should
 184 *      be unused.  The driver should set this value in the probe()
 185 *      function of the driver, after it has been assigned a minor
 186 *      number from the USB core by calling usb_register_dev().
 187 * @condition: binding state of the interface: not bound, binding
 188 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 189 * @sysfs_files_created: sysfs attributes exist
 190 * @ep_devs_created: endpoint child pseudo-devices exist
 191 * @unregistering: flag set when the interface is being unregistered
 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 193 *      capability during autosuspend.
 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 195 *      has been deferred.
 196 * @needs_binding: flag set when the driver should be re-probed or unbound
 197 *      following a reset or suspend operation it doesn't support.
 198 * @authorized: This allows to (de)authorize individual interfaces instead
 199 *      a whole device in contrast to the device authorization.
 200 * @dev: driver model's view of this device
 201 * @usb_dev: if an interface is bound to the USB major, this will point
 202 *      to the sysfs representation for that device.
 203 * @pm_usage_cnt: PM usage counter for this interface
 204 * @reset_ws: Used for scheduling resets from atomic context.
 205 * @resetting_device: USB core reset the device, so use alt setting 0 as
 206 *      current; needs bandwidth alloc after reset.
 207 *
 208 * USB device drivers attach to interfaces on a physical device.  Each
 209 * interface encapsulates a single high level function, such as feeding
 210 * an audio stream to a speaker or reporting a change in a volume control.
 211 * Many USB devices only have one interface.  The protocol used to talk to
 212 * an interface's endpoints can be defined in a usb "class" specification,
 213 * or by a product's vendor.  The (default) control endpoint is part of
 214 * every interface, but is never listed among the interface's descriptors.
 215 *
 216 * The driver that is bound to the interface can use standard driver model
 217 * calls such as dev_get_drvdata() on the dev member of this structure.
 218 *
 219 * Each interface may have alternate settings.  The initial configuration
 220 * of a device sets altsetting 0, but the device driver can change
 221 * that setting using usb_set_interface().  Alternate settings are often
 222 * used to control the use of periodic endpoints, such as by having
 223 * different endpoints use different amounts of reserved USB bandwidth.
 224 * All standards-conformant USB devices that use isochronous endpoints
 225 * will use them in non-default settings.
 226 *
 227 * The USB specification says that alternate setting numbers must run from
 228 * 0 to one less than the total number of alternate settings.  But some
 229 * devices manage to mess this up, and the structures aren't necessarily
 230 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 231 * look up an alternate setting in the altsetting array based on its number.
 232 */
 233struct usb_interface {
 234        /* array of alternate settings for this interface,
 235         * stored in no particular order */
 236        struct usb_host_interface *altsetting;
 237
 238        struct usb_host_interface *cur_altsetting;      /* the currently
 239                                         * active alternate setting */
 240        unsigned num_altsetting;        /* number of alternate settings */
 241
 242        /* If there is an interface association descriptor then it will list
 243         * the associated interfaces */
 244        struct usb_interface_assoc_descriptor *intf_assoc;
 245
 246        int minor;                      /* minor number this interface is
 247                                         * bound to */
 248        enum usb_interface_condition condition;         /* state of binding */
 249        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 250        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 251        unsigned unregistering:1;       /* unregistration is in progress */
 252        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 253        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 254        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 255        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 256        unsigned authorized:1;          /* used for interface authorization */
 257
 258        struct device dev;              /* interface specific device info */
 259        struct device *usb_dev;
 260        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 261        struct work_struct reset_ws;    /* for resets in atomic context */
 262};
 263#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 264
 265static inline void *usb_get_intfdata(struct usb_interface *intf)
 266{
 267        return dev_get_drvdata(&intf->dev);
 268}
 269
 270static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 271{
 272        dev_set_drvdata(&intf->dev, data);
 273}
 274
 275struct usb_interface *usb_get_intf(struct usb_interface *intf);
 276void usb_put_intf(struct usb_interface *intf);
 277
 278/* Hard limit */
 279#define USB_MAXENDPOINTS        30
 280/* this maximum is arbitrary */
 281#define USB_MAXINTERFACES       32
 282#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 283
 284/*
 285 * USB Resume Timer: Every Host controller driver should drive the resume
 286 * signalling on the bus for the amount of time defined by this macro.
 287 *
 288 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 289 *
 290 * Note that the USB Specification states we should drive resume for *at least*
 291 * 20 ms, but it doesn't give an upper bound. This creates two possible
 292 * situations which we want to avoid:
 293 *
 294 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 295 * us to fail USB Electrical Tests, thus failing Certification
 296 *
 297 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 298 * and while we can argue that's against the USB Specification, we don't have
 299 * control over which devices a certification laboratory will be using for
 300 * certification. If CertLab uses a device which was tested against Windows and
 301 * that happens to have relaxed resume signalling rules, we might fall into
 302 * situations where we fail interoperability and electrical tests.
 303 *
 304 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 305 * should cope with both LPJ calibration errors and devices not following every
 306 * detail of the USB Specification.
 307 */
 308#define USB_RESUME_TIMEOUT      40 /* ms */
 309
 310/**
 311 * struct usb_interface_cache - long-term representation of a device interface
 312 * @num_altsetting: number of altsettings defined.
 313 * @ref: reference counter.
 314 * @altsetting: variable-length array of interface structures, one for
 315 *      each alternate setting that may be selected.  Each one includes a
 316 *      set of endpoint configurations.  They will be in no particular order.
 317 *
 318 * These structures persist for the lifetime of a usb_device, unlike
 319 * struct usb_interface (which persists only as long as its configuration
 320 * is installed).  The altsetting arrays can be accessed through these
 321 * structures at any time, permitting comparison of configurations and
 322 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
 323 */
 324struct usb_interface_cache {
 325        unsigned num_altsetting;        /* number of alternate settings */
 326        struct kref ref;                /* reference counter */
 327
 328        /* variable-length array of alternate settings for this interface,
 329         * stored in no particular order */
 330        struct usb_host_interface altsetting[0];
 331};
 332#define ref_to_usb_interface_cache(r) \
 333                container_of(r, struct usb_interface_cache, ref)
 334#define altsetting_to_usb_interface_cache(a) \
 335                container_of(a, struct usb_interface_cache, altsetting[0])
 336
 337/**
 338 * struct usb_host_config - representation of a device's configuration
 339 * @desc: the device's configuration descriptor.
 340 * @string: pointer to the cached version of the iConfiguration string, if
 341 *      present for this configuration.
 342 * @intf_assoc: list of any interface association descriptors in this config
 343 * @interface: array of pointers to usb_interface structures, one for each
 344 *      interface in the configuration.  The number of interfaces is stored
 345 *      in desc.bNumInterfaces.  These pointers are valid only while the
 346 *      the configuration is active.
 347 * @intf_cache: array of pointers to usb_interface_cache structures, one
 348 *      for each interface in the configuration.  These structures exist
 349 *      for the entire life of the device.
 350 * @extra: pointer to buffer containing all extra descriptors associated
 351 *      with this configuration (those preceding the first interface
 352 *      descriptor).
 353 * @extralen: length of the extra descriptors buffer.
 354 *
 355 * USB devices may have multiple configurations, but only one can be active
 356 * at any time.  Each encapsulates a different operational environment;
 357 * for example, a dual-speed device would have separate configurations for
 358 * full-speed and high-speed operation.  The number of configurations
 359 * available is stored in the device descriptor as bNumConfigurations.
 360 *
 361 * A configuration can contain multiple interfaces.  Each corresponds to
 362 * a different function of the USB device, and all are available whenever
 363 * the configuration is active.  The USB standard says that interfaces
 364 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 365 * of devices get this wrong.  In addition, the interface array is not
 366 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 367 * look up an interface entry based on its number.
 368 *
 369 * Device drivers should not attempt to activate configurations.  The choice
 370 * of which configuration to install is a policy decision based on such
 371 * considerations as available power, functionality provided, and the user's
 372 * desires (expressed through userspace tools).  However, drivers can call
 373 * usb_reset_configuration() to reinitialize the current configuration and
 374 * all its interfaces.
 375 */
 376struct usb_host_config {
 377        struct usb_config_descriptor    desc;
 378
 379        char *string;           /* iConfiguration string, if present */
 380
 381        /* List of any Interface Association Descriptors in this
 382         * configuration. */
 383        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 384
 385        /* the interfaces associated with this configuration,
 386         * stored in no particular order */
 387        struct usb_interface *interface[USB_MAXINTERFACES];
 388
 389        /* Interface information available even when this is not the
 390         * active configuration */
 391        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 392
 393        unsigned char *extra;   /* Extra descriptors */
 394        int extralen;
 395};
 396
 397/* USB2.0 and USB3.0 device BOS descriptor set */
 398struct usb_host_bos {
 399        struct usb_bos_descriptor       *desc;
 400
 401        /* wireless cap descriptor is handled by wusb */
 402        struct usb_ext_cap_descriptor   *ext_cap;
 403        struct usb_ss_cap_descriptor    *ss_cap;
 404        struct usb_ssp_cap_descriptor   *ssp_cap;
 405        struct usb_ss_container_id_descriptor   *ss_id;
 406        struct usb_ptm_cap_descriptor   *ptm_cap;
 407};
 408
 409int __usb_get_extra_descriptor(char *buffer, unsigned size,
 410        unsigned char type, void **ptr);
 411#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 412                                __usb_get_extra_descriptor((ifpoint)->extra, \
 413                                (ifpoint)->extralen, \
 414                                type, (void **)ptr)
 415
 416/* ----------------------------------------------------------------------- */
 417
 418/* USB device number allocation bitmap */
 419struct usb_devmap {
 420        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 421};
 422
 423/*
 424 * Allocated per bus (tree of devices) we have:
 425 */
 426struct usb_bus {
 427        struct device *controller;      /* host/master side hardware */
 428        struct device *sysdev;          /* as seen from firmware or bus */
 429        int busnum;                     /* Bus number (in order of reg) */
 430        const char *bus_name;           /* stable id (PCI slot_name etc) */
 431        u8 uses_dma;                    /* Does the host controller use DMA? */
 432        u8 uses_pio_for_control;        /*
 433                                         * Does the host controller use PIO
 434                                         * for control transfers?
 435                                         */
 436        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 437        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 438        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 439        unsigned no_stop_on_short:1;    /*
 440                                         * Quirk: some controllers don't stop
 441                                         * the ep queue on a short transfer
 442                                         * with the URB_SHORT_NOT_OK flag set.
 443                                         */
 444        unsigned no_sg_constraint:1;    /* no sg constraint */
 445        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 446
 447        int devnum_next;                /* Next open device number in
 448                                         * round-robin allocation */
 449        struct mutex devnum_next_mutex; /* devnum_next mutex */
 450
 451        struct usb_devmap devmap;       /* device address allocation map */
 452        struct usb_device *root_hub;    /* Root hub */
 453        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 454
 455        int bandwidth_allocated;        /* on this bus: how much of the time
 456                                         * reserved for periodic (intr/iso)
 457                                         * requests is used, on average?
 458                                         * Units: microseconds/frame.
 459                                         * Limits: Full/low speed reserve 90%,
 460                                         * while high speed reserves 80%.
 461                                         */
 462        int bandwidth_int_reqs;         /* number of Interrupt requests */
 463        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 464
 465        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 466
 467#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 468        struct mon_bus *mon_bus;        /* non-null when associated */
 469        int monitored;                  /* non-zero when monitored */
 470#endif
 471};
 472
 473struct usb_dev_state;
 474
 475/* ----------------------------------------------------------------------- */
 476
 477struct usb_tt;
 478
 479enum usb_device_removable {
 480        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 481        USB_DEVICE_REMOVABLE,
 482        USB_DEVICE_FIXED,
 483};
 484
 485enum usb_port_connect_type {
 486        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 487        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 488        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 489        USB_PORT_NOT_USED,
 490};
 491
 492/*
 493 * USB 2.0 Link Power Management (LPM) parameters.
 494 */
 495struct usb2_lpm_parameters {
 496        /* Best effort service latency indicate how long the host will drive
 497         * resume on an exit from L1.
 498         */
 499        unsigned int besl;
 500
 501        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 502         * When the timer counts to zero, the parent hub will initiate a LPM
 503         * transition to L1.
 504         */
 505        int timeout;
 506};
 507
 508/*
 509 * USB 3.0 Link Power Management (LPM) parameters.
 510 *
 511 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 512 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 513 * All three are stored in nanoseconds.
 514 */
 515struct usb3_lpm_parameters {
 516        /*
 517         * Maximum exit latency (MEL) for the host to send a packet to the
 518         * device (either a Ping for isoc endpoints, or a data packet for
 519         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 520         * in the path to transition the links to U0.
 521         */
 522        unsigned int mel;
 523        /*
 524         * Maximum exit latency for a device-initiated LPM transition to bring
 525         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 526         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 527         */
 528        unsigned int pel;
 529
 530        /*
 531         * The System Exit Latency (SEL) includes PEL, and three other
 532         * latencies.  After a device initiates a U0 transition, it will take
 533         * some time from when the device sends the ERDY to when it will finally
 534         * receive the data packet.  Basically, SEL should be the worse-case
 535         * latency from when a device starts initiating a U0 transition to when
 536         * it will get data.
 537         */
 538        unsigned int sel;
 539        /*
 540         * The idle timeout value that is currently programmed into the parent
 541         * hub for this device.  When the timer counts to zero, the parent hub
 542         * will initiate an LPM transition to either U1 or U2.
 543         */
 544        int timeout;
 545};
 546
 547/**
 548 * struct usb_device - kernel's representation of a USB device
 549 * @devnum: device number; address on a USB bus
 550 * @devpath: device ID string for use in messages (e.g., /port/...)
 551 * @route: tree topology hex string for use with xHCI
 552 * @state: device state: configured, not attached, etc.
 553 * @speed: device speed: high/full/low (or error)
 554 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 555 * @ttport: device port on that tt hub
 556 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 557 * @parent: our hub, unless we're the root
 558 * @bus: bus we're part of
 559 * @ep0: endpoint 0 data (default control pipe)
 560 * @dev: generic device interface
 561 * @descriptor: USB device descriptor
 562 * @bos: USB device BOS descriptor set
 563 * @config: all of the device's configs
 564 * @actconfig: the active configuration
 565 * @ep_in: array of IN endpoints
 566 * @ep_out: array of OUT endpoints
 567 * @rawdescriptors: raw descriptors for each config
 568 * @bus_mA: Current available from the bus
 569 * @portnum: parent port number (origin 1)
 570 * @level: number of USB hub ancestors
 571 * @can_submit: URBs may be submitted
 572 * @persist_enabled:  USB_PERSIST enabled for this device
 573 * @have_langid: whether string_langid is valid
 574 * @authorized: policy has said we can use it;
 575 *      (user space) policy determines if we authorize this device to be
 576 *      used or not. By default, wired USB devices are authorized.
 577 *      WUSB devices are not, until we authorize them from user space.
 578 *      FIXME -- complete doc
 579 * @authenticated: Crypto authentication passed
 580 * @wusb: device is Wireless USB
 581 * @lpm_capable: device supports LPM
 582 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 583 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 584 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 585 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 586 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
 587 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
 588 * @string_langid: language ID for strings
 589 * @product: iProduct string, if present (static)
 590 * @manufacturer: iManufacturer string, if present (static)
 591 * @serial: iSerialNumber string, if present (static)
 592 * @filelist: usbfs files that are open to this device
 593 * @maxchild: number of ports if hub
 594 * @quirks: quirks of the whole device
 595 * @urbnum: number of URBs submitted for the whole device
 596 * @active_duration: total time device is not suspended
 597 * @connect_time: time device was first connected
 598 * @do_remote_wakeup:  remote wakeup should be enabled
 599 * @reset_resume: needs reset instead of resume
 600 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 601 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 602 *      specific data for the device.
 603 * @slot_id: Slot ID assigned by xHCI
 604 * @removable: Device can be physically removed from this port
 605 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 606 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 607 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 608 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 609 *      to keep track of the number of functions that require USB 3.0 Link Power
 610 *      Management to be disabled for this usb_device.  This count should only
 611 *      be manipulated by those functions, with the bandwidth_mutex is held.
 612 *
 613 * Notes:
 614 * Usbcore drivers should not set usbdev->state directly.  Instead use
 615 * usb_set_device_state().
 616 */
 617struct usb_device {
 618        int             devnum;
 619        char            devpath[16];
 620        u32             route;
 621        enum usb_device_state   state;
 622        enum usb_device_speed   speed;
 623
 624        struct usb_tt   *tt;
 625        int             ttport;
 626
 627        unsigned int toggle[2];
 628
 629        struct usb_device *parent;
 630        struct usb_bus *bus;
 631        struct usb_host_endpoint ep0;
 632
 633        struct device dev;
 634
 635        struct usb_device_descriptor descriptor;
 636        struct usb_host_bos *bos;
 637        struct usb_host_config *config;
 638
 639        struct usb_host_config *actconfig;
 640        struct usb_host_endpoint *ep_in[16];
 641        struct usb_host_endpoint *ep_out[16];
 642
 643        char **rawdescriptors;
 644
 645        unsigned short bus_mA;
 646        u8 portnum;
 647        u8 level;
 648
 649        unsigned can_submit:1;
 650        unsigned persist_enabled:1;
 651        unsigned have_langid:1;
 652        unsigned authorized:1;
 653        unsigned authenticated:1;
 654        unsigned wusb:1;
 655        unsigned lpm_capable:1;
 656        unsigned usb2_hw_lpm_capable:1;
 657        unsigned usb2_hw_lpm_besl_capable:1;
 658        unsigned usb2_hw_lpm_enabled:1;
 659        unsigned usb2_hw_lpm_allowed:1;
 660        unsigned usb3_lpm_u1_enabled:1;
 661        unsigned usb3_lpm_u2_enabled:1;
 662        int string_langid;
 663
 664        /* static strings from the device */
 665        char *product;
 666        char *manufacturer;
 667        char *serial;
 668
 669        struct list_head filelist;
 670
 671        int maxchild;
 672
 673        u32 quirks;
 674        atomic_t urbnum;
 675
 676        unsigned long active_duration;
 677
 678#ifdef CONFIG_PM
 679        unsigned long connect_time;
 680
 681        unsigned do_remote_wakeup:1;
 682        unsigned reset_resume:1;
 683        unsigned port_is_suspended:1;
 684#endif
 685        struct wusb_dev *wusb_dev;
 686        int slot_id;
 687        enum usb_device_removable removable;
 688        struct usb2_lpm_parameters l1_params;
 689        struct usb3_lpm_parameters u1_params;
 690        struct usb3_lpm_parameters u2_params;
 691        unsigned lpm_disable_count;
 692};
 693#define to_usb_device(d) container_of(d, struct usb_device, dev)
 694
 695static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 696{
 697        return to_usb_device(intf->dev.parent);
 698}
 699
 700extern struct usb_device *usb_get_dev(struct usb_device *dev);
 701extern void usb_put_dev(struct usb_device *dev);
 702extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 703        int port1);
 704
 705/**
 706 * usb_hub_for_each_child - iterate over all child devices on the hub
 707 * @hdev:  USB device belonging to the usb hub
 708 * @port1: portnum associated with child device
 709 * @child: child device pointer
 710 */
 711#define usb_hub_for_each_child(hdev, port1, child) \
 712        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 713                        port1 <= hdev->maxchild; \
 714                        child = usb_hub_find_child(hdev, ++port1)) \
 715                if (!child) continue; else
 716
 717/* USB device locking */
 718#define usb_lock_device(udev)                   device_lock(&(udev)->dev)
 719#define usb_unlock_device(udev)                 device_unlock(&(udev)->dev)
 720#define usb_lock_device_interruptible(udev)     device_lock_interruptible(&(udev)->dev)
 721#define usb_trylock_device(udev)                device_trylock(&(udev)->dev)
 722extern int usb_lock_device_for_reset(struct usb_device *udev,
 723                                     const struct usb_interface *iface);
 724
 725/* USB port reset for device reinitialization */
 726extern int usb_reset_device(struct usb_device *dev);
 727extern void usb_queue_reset_device(struct usb_interface *dev);
 728
 729#ifdef CONFIG_ACPI
 730extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 731        bool enable);
 732extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 733#else
 734static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 735        bool enable) { return 0; }
 736static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 737        { return true; }
 738#endif
 739
 740/* USB autosuspend and autoresume */
 741#ifdef CONFIG_PM
 742extern void usb_enable_autosuspend(struct usb_device *udev);
 743extern void usb_disable_autosuspend(struct usb_device *udev);
 744
 745extern int usb_autopm_get_interface(struct usb_interface *intf);
 746extern void usb_autopm_put_interface(struct usb_interface *intf);
 747extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 748extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 749extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 750extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 751
 752static inline void usb_mark_last_busy(struct usb_device *udev)
 753{
 754        pm_runtime_mark_last_busy(&udev->dev);
 755}
 756
 757#else
 758
 759static inline int usb_enable_autosuspend(struct usb_device *udev)
 760{ return 0; }
 761static inline int usb_disable_autosuspend(struct usb_device *udev)
 762{ return 0; }
 763
 764static inline int usb_autopm_get_interface(struct usb_interface *intf)
 765{ return 0; }
 766static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 767{ return 0; }
 768
 769static inline void usb_autopm_put_interface(struct usb_interface *intf)
 770{ }
 771static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 772{ }
 773static inline void usb_autopm_get_interface_no_resume(
 774                struct usb_interface *intf)
 775{ }
 776static inline void usb_autopm_put_interface_no_suspend(
 777                struct usb_interface *intf)
 778{ }
 779static inline void usb_mark_last_busy(struct usb_device *udev)
 780{ }
 781#endif
 782
 783extern int usb_disable_lpm(struct usb_device *udev);
 784extern void usb_enable_lpm(struct usb_device *udev);
 785/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 786extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 787extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 788
 789extern int usb_disable_ltm(struct usb_device *udev);
 790extern void usb_enable_ltm(struct usb_device *udev);
 791
 792static inline bool usb_device_supports_ltm(struct usb_device *udev)
 793{
 794        if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 795                return false;
 796        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 797}
 798
 799static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 800{
 801        return udev && udev->bus && udev->bus->no_sg_constraint;
 802}
 803
 804
 805/*-------------------------------------------------------------------------*/
 806
 807/* for drivers using iso endpoints */
 808extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 809
 810/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 811extern int usb_alloc_streams(struct usb_interface *interface,
 812                struct usb_host_endpoint **eps, unsigned int num_eps,
 813                unsigned int num_streams, gfp_t mem_flags);
 814
 815/* Reverts a group of bulk endpoints back to not using stream IDs. */
 816extern int usb_free_streams(struct usb_interface *interface,
 817                struct usb_host_endpoint **eps, unsigned int num_eps,
 818                gfp_t mem_flags);
 819
 820/* used these for multi-interface device registration */
 821extern int usb_driver_claim_interface(struct usb_driver *driver,
 822                        struct usb_interface *iface, void *priv);
 823
 824/**
 825 * usb_interface_claimed - returns true iff an interface is claimed
 826 * @iface: the interface being checked
 827 *
 828 * Return: %true (nonzero) iff the interface is claimed, else %false
 829 * (zero).
 830 *
 831 * Note:
 832 * Callers must own the driver model's usb bus readlock.  So driver
 833 * probe() entries don't need extra locking, but other call contexts
 834 * may need to explicitly claim that lock.
 835 *
 836 */
 837static inline int usb_interface_claimed(struct usb_interface *iface)
 838{
 839        return (iface->dev.driver != NULL);
 840}
 841
 842extern void usb_driver_release_interface(struct usb_driver *driver,
 843                        struct usb_interface *iface);
 844const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 845                                         const struct usb_device_id *id);
 846extern int usb_match_one_id(struct usb_interface *interface,
 847                            const struct usb_device_id *id);
 848
 849extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 850extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 851                int minor);
 852extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 853                unsigned ifnum);
 854extern struct usb_host_interface *usb_altnum_to_altsetting(
 855                const struct usb_interface *intf, unsigned int altnum);
 856extern struct usb_host_interface *usb_find_alt_setting(
 857                struct usb_host_config *config,
 858                unsigned int iface_num,
 859                unsigned int alt_num);
 860
 861/* port claiming functions */
 862int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 863                struct usb_dev_state *owner);
 864int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 865                struct usb_dev_state *owner);
 866
 867/**
 868 * usb_make_path - returns stable device path in the usb tree
 869 * @dev: the device whose path is being constructed
 870 * @buf: where to put the string
 871 * @size: how big is "buf"?
 872 *
 873 * Return: Length of the string (> 0) or negative if size was too small.
 874 *
 875 * Note:
 876 * This identifier is intended to be "stable", reflecting physical paths in
 877 * hardware such as physical bus addresses for host controllers or ports on
 878 * USB hubs.  That makes it stay the same until systems are physically
 879 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 880 * controllers.  Adding and removing devices, including virtual root hubs
 881 * in host controller driver modules, does not change these path identifiers;
 882 * neither does rebooting or re-enumerating.  These are more useful identifiers
 883 * than changeable ("unstable") ones like bus numbers or device addresses.
 884 *
 885 * With a partial exception for devices connected to USB 2.0 root hubs, these
 886 * identifiers are also predictable.  So long as the device tree isn't changed,
 887 * plugging any USB device into a given hub port always gives it the same path.
 888 * Because of the use of "companion" controllers, devices connected to ports on
 889 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 890 * high speed, and a different one if they are full or low speed.
 891 */
 892static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 893{
 894        int actual;
 895        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 896                          dev->devpath);
 897        return (actual >= (int)size) ? -1 : actual;
 898}
 899
 900/*-------------------------------------------------------------------------*/
 901
 902#define USB_DEVICE_ID_MATCH_DEVICE \
 903                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 904#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 905                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 906#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 907                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 908#define USB_DEVICE_ID_MATCH_DEV_INFO \
 909                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 910                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 911                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 912#define USB_DEVICE_ID_MATCH_INT_INFO \
 913                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 914                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 915                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 916
 917/**
 918 * USB_DEVICE - macro used to describe a specific usb device
 919 * @vend: the 16 bit USB Vendor ID
 920 * @prod: the 16 bit USB Product ID
 921 *
 922 * This macro is used to create a struct usb_device_id that matches a
 923 * specific device.
 924 */
 925#define USB_DEVICE(vend, prod) \
 926        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 927        .idVendor = (vend), \
 928        .idProduct = (prod)
 929/**
 930 * USB_DEVICE_VER - describe a specific usb device with a version range
 931 * @vend: the 16 bit USB Vendor ID
 932 * @prod: the 16 bit USB Product ID
 933 * @lo: the bcdDevice_lo value
 934 * @hi: the bcdDevice_hi value
 935 *
 936 * This macro is used to create a struct usb_device_id that matches a
 937 * specific device, with a version range.
 938 */
 939#define USB_DEVICE_VER(vend, prod, lo, hi) \
 940        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 941        .idVendor = (vend), \
 942        .idProduct = (prod), \
 943        .bcdDevice_lo = (lo), \
 944        .bcdDevice_hi = (hi)
 945
 946/**
 947 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 948 * @vend: the 16 bit USB Vendor ID
 949 * @prod: the 16 bit USB Product ID
 950 * @cl: bInterfaceClass value
 951 *
 952 * This macro is used to create a struct usb_device_id that matches a
 953 * specific interface class of devices.
 954 */
 955#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 956        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 957                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 958        .idVendor = (vend), \
 959        .idProduct = (prod), \
 960        .bInterfaceClass = (cl)
 961
 962/**
 963 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 964 * @vend: the 16 bit USB Vendor ID
 965 * @prod: the 16 bit USB Product ID
 966 * @pr: bInterfaceProtocol value
 967 *
 968 * This macro is used to create a struct usb_device_id that matches a
 969 * specific interface protocol of devices.
 970 */
 971#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 972        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 973                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 974        .idVendor = (vend), \
 975        .idProduct = (prod), \
 976        .bInterfaceProtocol = (pr)
 977
 978/**
 979 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 980 * @vend: the 16 bit USB Vendor ID
 981 * @prod: the 16 bit USB Product ID
 982 * @num: bInterfaceNumber value
 983 *
 984 * This macro is used to create a struct usb_device_id that matches a
 985 * specific interface number of devices.
 986 */
 987#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 988        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 989                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 990        .idVendor = (vend), \
 991        .idProduct = (prod), \
 992        .bInterfaceNumber = (num)
 993
 994/**
 995 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 996 * @cl: bDeviceClass value
 997 * @sc: bDeviceSubClass value
 998 * @pr: bDeviceProtocol value
 999 *
1000 * This macro is used to create a struct usb_device_id that matches a
1001 * specific class of devices.
1002 */
1003#define USB_DEVICE_INFO(cl, sc, pr) \
1004        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1005        .bDeviceClass = (cl), \
1006        .bDeviceSubClass = (sc), \
1007        .bDeviceProtocol = (pr)
1008
1009/**
1010 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1011 * @cl: bInterfaceClass value
1012 * @sc: bInterfaceSubClass value
1013 * @pr: bInterfaceProtocol value
1014 *
1015 * This macro is used to create a struct usb_device_id that matches a
1016 * specific class of interfaces.
1017 */
1018#define USB_INTERFACE_INFO(cl, sc, pr) \
1019        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1020        .bInterfaceClass = (cl), \
1021        .bInterfaceSubClass = (sc), \
1022        .bInterfaceProtocol = (pr)
1023
1024/**
1025 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1026 * @vend: the 16 bit USB Vendor ID
1027 * @prod: the 16 bit USB Product ID
1028 * @cl: bInterfaceClass value
1029 * @sc: bInterfaceSubClass value
1030 * @pr: bInterfaceProtocol value
1031 *
1032 * This macro is used to create a struct usb_device_id that matches a
1033 * specific device with a specific class of interfaces.
1034 *
1035 * This is especially useful when explicitly matching devices that have
1036 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1037 */
1038#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1039        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1040                | USB_DEVICE_ID_MATCH_DEVICE, \
1041        .idVendor = (vend), \
1042        .idProduct = (prod), \
1043        .bInterfaceClass = (cl), \
1044        .bInterfaceSubClass = (sc), \
1045        .bInterfaceProtocol = (pr)
1046
1047/**
1048 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1049 * @vend: the 16 bit USB Vendor ID
1050 * @cl: bInterfaceClass value
1051 * @sc: bInterfaceSubClass value
1052 * @pr: bInterfaceProtocol value
1053 *
1054 * This macro is used to create a struct usb_device_id that matches a
1055 * specific vendor with a specific class of interfaces.
1056 *
1057 * This is especially useful when explicitly matching devices that have
1058 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1059 */
1060#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1061        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1062                | USB_DEVICE_ID_MATCH_VENDOR, \
1063        .idVendor = (vend), \
1064        .bInterfaceClass = (cl), \
1065        .bInterfaceSubClass = (sc), \
1066        .bInterfaceProtocol = (pr)
1067
1068/* ----------------------------------------------------------------------- */
1069
1070/* Stuff for dynamic usb ids */
1071struct usb_dynids {
1072        spinlock_t lock;
1073        struct list_head list;
1074};
1075
1076struct usb_dynid {
1077        struct list_head node;
1078        struct usb_device_id id;
1079};
1080
1081extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1082                                const struct usb_device_id *id_table,
1083                                struct device_driver *driver,
1084                                const char *buf, size_t count);
1085
1086extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1087
1088/**
1089 * struct usbdrv_wrap - wrapper for driver-model structure
1090 * @driver: The driver-model core driver structure.
1091 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1092 */
1093struct usbdrv_wrap {
1094        struct device_driver driver;
1095        int for_devices;
1096};
1097
1098/**
1099 * struct usb_driver - identifies USB interface driver to usbcore
1100 * @name: The driver name should be unique among USB drivers,
1101 *      and should normally be the same as the module name.
1102 * @probe: Called to see if the driver is willing to manage a particular
1103 *      interface on a device.  If it is, probe returns zero and uses
1104 *      usb_set_intfdata() to associate driver-specific data with the
1105 *      interface.  It may also use usb_set_interface() to specify the
1106 *      appropriate altsetting.  If unwilling to manage the interface,
1107 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1108 *      negative errno value.
1109 * @disconnect: Called when the interface is no longer accessible, usually
1110 *      because its device has been (or is being) disconnected or the
1111 *      driver module is being unloaded.
1112 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1113 *      the "usbfs" filesystem.  This lets devices provide ways to
1114 *      expose information to user space regardless of where they
1115 *      do (or don't) show up otherwise in the filesystem.
1116 * @suspend: Called when the device is going to be suspended by the
1117 *      system either from system sleep or runtime suspend context. The
1118 *      return value will be ignored in system sleep context, so do NOT
1119 *      try to continue using the device if suspend fails in this case.
1120 *      Instead, let the resume or reset-resume routine recover from
1121 *      the failure.
1122 * @resume: Called when the device is being resumed by the system.
1123 * @reset_resume: Called when the suspended device has been reset instead
1124 *      of being resumed.
1125 * @pre_reset: Called by usb_reset_device() when the device is about to be
1126 *      reset.  This routine must not return until the driver has no active
1127 *      URBs for the device, and no more URBs may be submitted until the
1128 *      post_reset method is called.
1129 * @post_reset: Called by usb_reset_device() after the device
1130 *      has been reset
1131 * @id_table: USB drivers use ID table to support hotplugging.
1132 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1133 *      or your driver's probe function will never get called.
1134 * @dynids: used internally to hold the list of dynamically added device
1135 *      ids for this driver.
1136 * @drvwrap: Driver-model core structure wrapper.
1137 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1138 *      added to this driver by preventing the sysfs file from being created.
1139 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1140 *      for interfaces bound to this driver.
1141 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1142 *      endpoints before calling the driver's disconnect method.
1143 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1144 *      to initiate lower power link state transitions when an idle timeout
1145 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1146 *
1147 * USB interface drivers must provide a name, probe() and disconnect()
1148 * methods, and an id_table.  Other driver fields are optional.
1149 *
1150 * The id_table is used in hotplugging.  It holds a set of descriptors,
1151 * and specialized data may be associated with each entry.  That table
1152 * is used by both user and kernel mode hotplugging support.
1153 *
1154 * The probe() and disconnect() methods are called in a context where
1155 * they can sleep, but they should avoid abusing the privilege.  Most
1156 * work to connect to a device should be done when the device is opened,
1157 * and undone at the last close.  The disconnect code needs to address
1158 * concurrency issues with respect to open() and close() methods, as
1159 * well as forcing all pending I/O requests to complete (by unlinking
1160 * them as necessary, and blocking until the unlinks complete).
1161 */
1162struct usb_driver {
1163        const char *name;
1164
1165        int (*probe) (struct usb_interface *intf,
1166                      const struct usb_device_id *id);
1167
1168        void (*disconnect) (struct usb_interface *intf);
1169
1170        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1171                        void *buf);
1172
1173        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1174        int (*resume) (struct usb_interface *intf);
1175        int (*reset_resume)(struct usb_interface *intf);
1176
1177        int (*pre_reset)(struct usb_interface *intf);
1178        int (*post_reset)(struct usb_interface *intf);
1179
1180        const struct usb_device_id *id_table;
1181
1182        struct usb_dynids dynids;
1183        struct usbdrv_wrap drvwrap;
1184        unsigned int no_dynamic_id:1;
1185        unsigned int supports_autosuspend:1;
1186        unsigned int disable_hub_initiated_lpm:1;
1187        unsigned int soft_unbind:1;
1188};
1189#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1190
1191/**
1192 * struct usb_device_driver - identifies USB device driver to usbcore
1193 * @name: The driver name should be unique among USB drivers,
1194 *      and should normally be the same as the module name.
1195 * @probe: Called to see if the driver is willing to manage a particular
1196 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1197 *      to associate driver-specific data with the device.  If unwilling
1198 *      to manage the device, return a negative errno value.
1199 * @disconnect: Called when the device is no longer accessible, usually
1200 *      because it has been (or is being) disconnected or the driver's
1201 *      module is being unloaded.
1202 * @suspend: Called when the device is going to be suspended by the system.
1203 * @resume: Called when the device is being resumed by the system.
1204 * @drvwrap: Driver-model core structure wrapper.
1205 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1206 *      for devices bound to this driver.
1207 *
1208 * USB drivers must provide all the fields listed above except drvwrap.
1209 */
1210struct usb_device_driver {
1211        const char *name;
1212
1213        int (*probe) (struct usb_device *udev);
1214        void (*disconnect) (struct usb_device *udev);
1215
1216        int (*suspend) (struct usb_device *udev, pm_message_t message);
1217        int (*resume) (struct usb_device *udev, pm_message_t message);
1218        struct usbdrv_wrap drvwrap;
1219        unsigned int supports_autosuspend:1;
1220};
1221#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1222                drvwrap.driver)
1223
1224extern struct bus_type usb_bus_type;
1225
1226/**
1227 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1228 * @name: the usb class device name for this driver.  Will show up in sysfs.
1229 * @devnode: Callback to provide a naming hint for a possible
1230 *      device node to create.
1231 * @fops: pointer to the struct file_operations of this driver.
1232 * @minor_base: the start of the minor range for this driver.
1233 *
1234 * This structure is used for the usb_register_dev() and
1235 * usb_deregister_dev() functions, to consolidate a number of the
1236 * parameters used for them.
1237 */
1238struct usb_class_driver {
1239        char *name;
1240        char *(*devnode)(struct device *dev, umode_t *mode);
1241        const struct file_operations *fops;
1242        int minor_base;
1243};
1244
1245/*
1246 * use these in module_init()/module_exit()
1247 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1248 */
1249extern int usb_register_driver(struct usb_driver *, struct module *,
1250                               const char *);
1251
1252/* use a define to avoid include chaining to get THIS_MODULE & friends */
1253#define usb_register(driver) \
1254        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1255
1256extern void usb_deregister(struct usb_driver *);
1257
1258/**
1259 * module_usb_driver() - Helper macro for registering a USB driver
1260 * @__usb_driver: usb_driver struct
1261 *
1262 * Helper macro for USB drivers which do not do anything special in module
1263 * init/exit. This eliminates a lot of boilerplate. Each module may only
1264 * use this macro once, and calling it replaces module_init() and module_exit()
1265 */
1266#define module_usb_driver(__usb_driver) \
1267        module_driver(__usb_driver, usb_register, \
1268                       usb_deregister)
1269
1270extern int usb_register_device_driver(struct usb_device_driver *,
1271                        struct module *);
1272extern void usb_deregister_device_driver(struct usb_device_driver *);
1273
1274extern int usb_register_dev(struct usb_interface *intf,
1275                            struct usb_class_driver *class_driver);
1276extern void usb_deregister_dev(struct usb_interface *intf,
1277                               struct usb_class_driver *class_driver);
1278
1279extern int usb_disabled(void);
1280
1281/* ----------------------------------------------------------------------- */
1282
1283/*
1284 * URB support, for asynchronous request completions
1285 */
1286
1287/*
1288 * urb->transfer_flags:
1289 *
1290 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1291 */
1292#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1293#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1294                                         * slot in the schedule */
1295#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1296#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1297#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1298#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1299                                         * needed */
1300#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1301
1302/* The following flags are used internally by usbcore and HCDs */
1303#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1304#define URB_DIR_OUT             0
1305#define URB_DIR_MASK            URB_DIR_IN
1306
1307#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1308#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1309#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1310#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1311#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1312#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1313#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1314#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1315
1316struct usb_iso_packet_descriptor {
1317        unsigned int offset;
1318        unsigned int length;            /* expected length */
1319        unsigned int actual_length;
1320        int status;
1321};
1322
1323struct urb;
1324
1325struct usb_anchor {
1326        struct list_head urb_list;
1327        wait_queue_head_t wait;
1328        spinlock_t lock;
1329        atomic_t suspend_wakeups;
1330        unsigned int poisoned:1;
1331};
1332
1333static inline void init_usb_anchor(struct usb_anchor *anchor)
1334{
1335        memset(anchor, 0, sizeof(*anchor));
1336        INIT_LIST_HEAD(&anchor->urb_list);
1337        init_waitqueue_head(&anchor->wait);
1338        spin_lock_init(&anchor->lock);
1339}
1340
1341typedef void (*usb_complete_t)(struct urb *);
1342
1343/**
1344 * struct urb - USB Request Block
1345 * @urb_list: For use by current owner of the URB.
1346 * @anchor_list: membership in the list of an anchor
1347 * @anchor: to anchor URBs to a common mooring
1348 * @ep: Points to the endpoint's data structure.  Will eventually
1349 *      replace @pipe.
1350 * @pipe: Holds endpoint number, direction, type, and more.
1351 *      Create these values with the eight macros available;
1352 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1353 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1354 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1355 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1356 *      is a different endpoint (and pipe) from "out" endpoint two.
1357 *      The current configuration controls the existence, type, and
1358 *      maximum packet size of any given endpoint.
1359 * @stream_id: the endpoint's stream ID for bulk streams
1360 * @dev: Identifies the USB device to perform the request.
1361 * @status: This is read in non-iso completion functions to get the
1362 *      status of the particular request.  ISO requests only use it
1363 *      to tell whether the URB was unlinked; detailed status for
1364 *      each frame is in the fields of the iso_frame-desc.
1365 * @transfer_flags: A variety of flags may be used to affect how URB
1366 *      submission, unlinking, or operation are handled.  Different
1367 *      kinds of URB can use different flags.
1368 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1369 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1370 *      (however, do not leave garbage in transfer_buffer even then).
1371 *      This buffer must be suitable for DMA; allocate it with
1372 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1373 *      of this buffer will be modified.  This buffer is used for the data
1374 *      stage of control transfers.
1375 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1376 *      the device driver is saying that it provided this DMA address,
1377 *      which the host controller driver should use in preference to the
1378 *      transfer_buffer.
1379 * @sg: scatter gather buffer list, the buffer size of each element in
1380 *      the list (except the last) must be divisible by the endpoint's
1381 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1382 * @num_mapped_sgs: (internal) number of mapped sg entries
1383 * @num_sgs: number of entries in the sg list
1384 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1385 *      be broken up into chunks according to the current maximum packet
1386 *      size for the endpoint, which is a function of the configuration
1387 *      and is encoded in the pipe.  When the length is zero, neither
1388 *      transfer_buffer nor transfer_dma is used.
1389 * @actual_length: This is read in non-iso completion functions, and
1390 *      it tells how many bytes (out of transfer_buffer_length) were
1391 *      transferred.  It will normally be the same as requested, unless
1392 *      either an error was reported or a short read was performed.
1393 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1394 *      short reads be reported as errors.
1395 * @setup_packet: Only used for control transfers, this points to eight bytes
1396 *      of setup data.  Control transfers always start by sending this data
1397 *      to the device.  Then transfer_buffer is read or written, if needed.
1398 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1399 *      this field; setup_packet must point to a valid buffer.
1400 * @start_frame: Returns the initial frame for isochronous transfers.
1401 * @number_of_packets: Lists the number of ISO transfer buffers.
1402 * @interval: Specifies the polling interval for interrupt or isochronous
1403 *      transfers.  The units are frames (milliseconds) for full and low
1404 *      speed devices, and microframes (1/8 millisecond) for highspeed
1405 *      and SuperSpeed devices.
1406 * @error_count: Returns the number of ISO transfers that reported errors.
1407 * @context: For use in completion functions.  This normally points to
1408 *      request-specific driver context.
1409 * @complete: Completion handler. This URB is passed as the parameter to the
1410 *      completion function.  The completion function may then do what
1411 *      it likes with the URB, including resubmitting or freeing it.
1412 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1413 *      collect the transfer status for each buffer.
1414 *
1415 * This structure identifies USB transfer requests.  URBs must be allocated by
1416 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1417 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1418 * are submitted using usb_submit_urb(), and pending requests may be canceled
1419 * using usb_unlink_urb() or usb_kill_urb().
1420 *
1421 * Data Transfer Buffers:
1422 *
1423 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1424 * taken from the general page pool.  That is provided by transfer_buffer
1425 * (control requests also use setup_packet), and host controller drivers
1426 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1427 * mapping operations can be expensive on some platforms (perhaps using a dma
1428 * bounce buffer or talking to an IOMMU),
1429 * although they're cheap on commodity x86 and ppc hardware.
1430 *
1431 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1432 * which tells the host controller driver that no such mapping is needed for
1433 * the transfer_buffer since
1434 * the device driver is DMA-aware.  For example, a device driver might
1435 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1436 * When this transfer flag is provided, host controller drivers will
1437 * attempt to use the dma address found in the transfer_dma
1438 * field rather than determining a dma address themselves.
1439 *
1440 * Note that transfer_buffer must still be set if the controller
1441 * does not support DMA (as indicated by bus.uses_dma) and when talking
1442 * to root hub. If you have to trasfer between highmem zone and the device
1443 * on such controller, create a bounce buffer or bail out with an error.
1444 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1445 * capable, assign NULL to it, so that usbmon knows not to use the value.
1446 * The setup_packet must always be set, so it cannot be located in highmem.
1447 *
1448 * Initialization:
1449 *
1450 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1451 * zero), and complete fields.  All URBs must also initialize
1452 * transfer_buffer and transfer_buffer_length.  They may provide the
1453 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1454 * to be treated as errors; that flag is invalid for write requests.
1455 *
1456 * Bulk URBs may
1457 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1458 * should always terminate with a short packet, even if it means adding an
1459 * extra zero length packet.
1460 *
1461 * Control URBs must provide a valid pointer in the setup_packet field.
1462 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1463 * beforehand.
1464 *
1465 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1466 * or, for highspeed devices, 125 microsecond units)
1467 * to poll for transfers.  After the URB has been submitted, the interval
1468 * field reflects how the transfer was actually scheduled.
1469 * The polling interval may be more frequent than requested.
1470 * For example, some controllers have a maximum interval of 32 milliseconds,
1471 * while others support intervals of up to 1024 milliseconds.
1472 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1473 * endpoints, as well as high speed interrupt endpoints, the encoding of
1474 * the transfer interval in the endpoint descriptor is logarithmic.
1475 * Device drivers must convert that value to linear units themselves.)
1476 *
1477 * If an isochronous endpoint queue isn't already running, the host
1478 * controller will schedule a new URB to start as soon as bandwidth
1479 * utilization allows.  If the queue is running then a new URB will be
1480 * scheduled to start in the first transfer slot following the end of the
1481 * preceding URB, if that slot has not already expired.  If the slot has
1482 * expired (which can happen when IRQ delivery is delayed for a long time),
1483 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1484 * is clear then the URB will be scheduled to start in the expired slot,
1485 * implying that some of its packets will not be transferred; if the flag
1486 * is set then the URB will be scheduled in the first unexpired slot,
1487 * breaking the queue's synchronization.  Upon URB completion, the
1488 * start_frame field will be set to the (micro)frame number in which the
1489 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1490 * and can go from as low as 256 to as high as 65536 frames.
1491 *
1492 * Isochronous URBs have a different data transfer model, in part because
1493 * the quality of service is only "best effort".  Callers provide specially
1494 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1495 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1496 * URBs are normally queued, submitted by drivers to arrange that
1497 * transfers are at least double buffered, and then explicitly resubmitted
1498 * in completion handlers, so
1499 * that data (such as audio or video) streams at as constant a rate as the
1500 * host controller scheduler can support.
1501 *
1502 * Completion Callbacks:
1503 *
1504 * The completion callback is made in_interrupt(), and one of the first
1505 * things that a completion handler should do is check the status field.
1506 * The status field is provided for all URBs.  It is used to report
1507 * unlinked URBs, and status for all non-ISO transfers.  It should not
1508 * be examined before the URB is returned to the completion handler.
1509 *
1510 * The context field is normally used to link URBs back to the relevant
1511 * driver or request state.
1512 *
1513 * When the completion callback is invoked for non-isochronous URBs, the
1514 * actual_length field tells how many bytes were transferred.  This field
1515 * is updated even when the URB terminated with an error or was unlinked.
1516 *
1517 * ISO transfer status is reported in the status and actual_length fields
1518 * of the iso_frame_desc array, and the number of errors is reported in
1519 * error_count.  Completion callbacks for ISO transfers will normally
1520 * (re)submit URBs to ensure a constant transfer rate.
1521 *
1522 * Note that even fields marked "public" should not be touched by the driver
1523 * when the urb is owned by the hcd, that is, since the call to
1524 * usb_submit_urb() till the entry into the completion routine.
1525 */
1526struct urb {
1527        /* private: usb core and host controller only fields in the urb */
1528        struct kref kref;               /* reference count of the URB */
1529        void *hcpriv;                   /* private data for host controller */
1530        atomic_t use_count;             /* concurrent submissions counter */
1531        atomic_t reject;                /* submissions will fail */
1532        int unlinked;                   /* unlink error code */
1533
1534        /* public: documented fields in the urb that can be used by drivers */
1535        struct list_head urb_list;      /* list head for use by the urb's
1536                                         * current owner */
1537        struct list_head anchor_list;   /* the URB may be anchored */
1538        struct usb_anchor *anchor;
1539        struct usb_device *dev;         /* (in) pointer to associated device */
1540        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1541        unsigned int pipe;              /* (in) pipe information */
1542        unsigned int stream_id;         /* (in) stream ID */
1543        int status;                     /* (return) non-ISO status */
1544        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1545        void *transfer_buffer;          /* (in) associated data buffer */
1546        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1547        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1548        int num_mapped_sgs;             /* (internal) mapped sg entries */
1549        int num_sgs;                    /* (in) number of entries in the sg list */
1550        u32 transfer_buffer_length;     /* (in) data buffer length */
1551        u32 actual_length;              /* (return) actual transfer length */
1552        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1553        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1554        int start_frame;                /* (modify) start frame (ISO) */
1555        int number_of_packets;          /* (in) number of ISO packets */
1556        int interval;                   /* (modify) transfer interval
1557                                         * (INT/ISO) */
1558        int error_count;                /* (return) number of ISO errors */
1559        void *context;                  /* (in) context for completion */
1560        usb_complete_t complete;        /* (in) completion routine */
1561        struct usb_iso_packet_descriptor iso_frame_desc[0];
1562                                        /* (in) ISO ONLY */
1563};
1564
1565/* ----------------------------------------------------------------------- */
1566
1567/**
1568 * usb_fill_control_urb - initializes a control urb
1569 * @urb: pointer to the urb to initialize.
1570 * @dev: pointer to the struct usb_device for this urb.
1571 * @pipe: the endpoint pipe
1572 * @setup_packet: pointer to the setup_packet buffer
1573 * @transfer_buffer: pointer to the transfer buffer
1574 * @buffer_length: length of the transfer buffer
1575 * @complete_fn: pointer to the usb_complete_t function
1576 * @context: what to set the urb context to.
1577 *
1578 * Initializes a control urb with the proper information needed to submit
1579 * it to a device.
1580 */
1581static inline void usb_fill_control_urb(struct urb *urb,
1582                                        struct usb_device *dev,
1583                                        unsigned int pipe,
1584                                        unsigned char *setup_packet,
1585                                        void *transfer_buffer,
1586                                        int buffer_length,
1587                                        usb_complete_t complete_fn,
1588                                        void *context)
1589{
1590        urb->dev = dev;
1591        urb->pipe = pipe;
1592        urb->setup_packet = setup_packet;
1593        urb->transfer_buffer = transfer_buffer;
1594        urb->transfer_buffer_length = buffer_length;
1595        urb->complete = complete_fn;
1596        urb->context = context;
1597}
1598
1599/**
1600 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1601 * @urb: pointer to the urb to initialize.
1602 * @dev: pointer to the struct usb_device for this urb.
1603 * @pipe: the endpoint pipe
1604 * @transfer_buffer: pointer to the transfer buffer
1605 * @buffer_length: length of the transfer buffer
1606 * @complete_fn: pointer to the usb_complete_t function
1607 * @context: what to set the urb context to.
1608 *
1609 * Initializes a bulk urb with the proper information needed to submit it
1610 * to a device.
1611 */
1612static inline void usb_fill_bulk_urb(struct urb *urb,
1613                                     struct usb_device *dev,
1614                                     unsigned int pipe,
1615                                     void *transfer_buffer,
1616                                     int buffer_length,
1617                                     usb_complete_t complete_fn,
1618                                     void *context)
1619{
1620        urb->dev = dev;
1621        urb->pipe = pipe;
1622        urb->transfer_buffer = transfer_buffer;
1623        urb->transfer_buffer_length = buffer_length;
1624        urb->complete = complete_fn;
1625        urb->context = context;
1626}
1627
1628/**
1629 * usb_fill_int_urb - macro to help initialize a interrupt urb
1630 * @urb: pointer to the urb to initialize.
1631 * @dev: pointer to the struct usb_device for this urb.
1632 * @pipe: the endpoint pipe
1633 * @transfer_buffer: pointer to the transfer buffer
1634 * @buffer_length: length of the transfer buffer
1635 * @complete_fn: pointer to the usb_complete_t function
1636 * @context: what to set the urb context to.
1637 * @interval: what to set the urb interval to, encoded like
1638 *      the endpoint descriptor's bInterval value.
1639 *
1640 * Initializes a interrupt urb with the proper information needed to submit
1641 * it to a device.
1642 *
1643 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1644 * encoding of the endpoint interval, and express polling intervals in
1645 * microframes (eight per millisecond) rather than in frames (one per
1646 * millisecond).
1647 *
1648 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1649 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1650 * through to the host controller, rather than being translated into microframe
1651 * units.
1652 */
1653static inline void usb_fill_int_urb(struct urb *urb,
1654                                    struct usb_device *dev,
1655                                    unsigned int pipe,
1656                                    void *transfer_buffer,
1657                                    int buffer_length,
1658                                    usb_complete_t complete_fn,
1659                                    void *context,
1660                                    int interval)
1661{
1662        urb->dev = dev;
1663        urb->pipe = pipe;
1664        urb->transfer_buffer = transfer_buffer;
1665        urb->transfer_buffer_length = buffer_length;
1666        urb->complete = complete_fn;
1667        urb->context = context;
1668
1669        if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1670                /* make sure interval is within allowed range */
1671                interval = clamp(interval, 1, 16);
1672
1673                urb->interval = 1 << (interval - 1);
1674        } else {
1675                urb->interval = interval;
1676        }
1677
1678        urb->start_frame = -1;
1679}
1680
1681extern void usb_init_urb(struct urb *urb);
1682extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1683extern void usb_free_urb(struct urb *urb);
1684#define usb_put_urb usb_free_urb
1685extern struct urb *usb_get_urb(struct urb *urb);
1686extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1687extern int usb_unlink_urb(struct urb *urb);
1688extern void usb_kill_urb(struct urb *urb);
1689extern void usb_poison_urb(struct urb *urb);
1690extern void usb_unpoison_urb(struct urb *urb);
1691extern void usb_block_urb(struct urb *urb);
1692extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1693extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1694extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1695extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1696extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1697extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1698extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1699extern void usb_unanchor_urb(struct urb *urb);
1700extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1701                                         unsigned int timeout);
1702extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1703extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1704extern int usb_anchor_empty(struct usb_anchor *anchor);
1705
1706#define usb_unblock_urb usb_unpoison_urb
1707
1708/**
1709 * usb_urb_dir_in - check if an URB describes an IN transfer
1710 * @urb: URB to be checked
1711 *
1712 * Return: 1 if @urb describes an IN transfer (device-to-host),
1713 * otherwise 0.
1714 */
1715static inline int usb_urb_dir_in(struct urb *urb)
1716{
1717        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1718}
1719
1720/**
1721 * usb_urb_dir_out - check if an URB describes an OUT transfer
1722 * @urb: URB to be checked
1723 *
1724 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1725 * otherwise 0.
1726 */
1727static inline int usb_urb_dir_out(struct urb *urb)
1728{
1729        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1730}
1731
1732void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1733        gfp_t mem_flags, dma_addr_t *dma);
1734void usb_free_coherent(struct usb_device *dev, size_t size,
1735        void *addr, dma_addr_t dma);
1736
1737#if 0
1738struct urb *usb_buffer_map(struct urb *urb);
1739void usb_buffer_dmasync(struct urb *urb);
1740void usb_buffer_unmap(struct urb *urb);
1741#endif
1742
1743struct scatterlist;
1744int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1745                      struct scatterlist *sg, int nents);
1746#if 0
1747void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1748                           struct scatterlist *sg, int n_hw_ents);
1749#endif
1750void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1751                         struct scatterlist *sg, int n_hw_ents);
1752
1753/*-------------------------------------------------------------------*
1754 *                         SYNCHRONOUS CALL SUPPORT                  *
1755 *-------------------------------------------------------------------*/
1756
1757extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1758        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1759        void *data, __u16 size, int timeout);
1760extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1761        void *data, int len, int *actual_length, int timeout);
1762extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1763        void *data, int len, int *actual_length,
1764        int timeout);
1765
1766/* wrappers around usb_control_msg() for the most common standard requests */
1767extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1768        unsigned char descindex, void *buf, int size);
1769extern int usb_get_status(struct usb_device *dev,
1770        int type, int target, void *data);
1771extern int usb_string(struct usb_device *dev, int index,
1772        char *buf, size_t size);
1773
1774/* wrappers that also update important state inside usbcore */
1775extern int usb_clear_halt(struct usb_device *dev, int pipe);
1776extern int usb_reset_configuration(struct usb_device *dev);
1777extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1778extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1779
1780/* this request isn't really synchronous, but it belongs with the others */
1781extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1782
1783/* choose and set configuration for device */
1784extern int usb_choose_configuration(struct usb_device *udev);
1785extern int usb_set_configuration(struct usb_device *dev, int configuration);
1786
1787/*
1788 * timeouts, in milliseconds, used for sending/receiving control messages
1789 * they typically complete within a few frames (msec) after they're issued
1790 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1791 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1792 */
1793#define USB_CTRL_GET_TIMEOUT    5000
1794#define USB_CTRL_SET_TIMEOUT    5000
1795
1796
1797/**
1798 * struct usb_sg_request - support for scatter/gather I/O
1799 * @status: zero indicates success, else negative errno
1800 * @bytes: counts bytes transferred.
1801 *
1802 * These requests are initialized using usb_sg_init(), and then are used
1803 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1804 * members of the request object aren't for driver access.
1805 *
1806 * The status and bytecount values are valid only after usb_sg_wait()
1807 * returns.  If the status is zero, then the bytecount matches the total
1808 * from the request.
1809 *
1810 * After an error completion, drivers may need to clear a halt condition
1811 * on the endpoint.
1812 */
1813struct usb_sg_request {
1814        int                     status;
1815        size_t                  bytes;
1816
1817        /* private:
1818         * members below are private to usbcore,
1819         * and are not provided for driver access!
1820         */
1821        spinlock_t              lock;
1822
1823        struct usb_device       *dev;
1824        int                     pipe;
1825
1826        int                     entries;
1827        struct urb              **urbs;
1828
1829        int                     count;
1830        struct completion       complete;
1831};
1832
1833int usb_sg_init(
1834        struct usb_sg_request   *io,
1835        struct usb_device       *dev,
1836        unsigned                pipe,
1837        unsigned                period,
1838        struct scatterlist      *sg,
1839        int                     nents,
1840        size_t                  length,
1841        gfp_t                   mem_flags
1842);
1843void usb_sg_cancel(struct usb_sg_request *io);
1844void usb_sg_wait(struct usb_sg_request *io);
1845
1846
1847/* ----------------------------------------------------------------------- */
1848
1849/*
1850 * For various legacy reasons, Linux has a small cookie that's paired with
1851 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1852 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1853 * an unsigned int encoded as:
1854 *
1855 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1856 *                                       1 = Device-to-Host [In] ...
1857 *                                      like endpoint bEndpointAddress)
1858 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1859 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1860 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1861 *                                       10 = control, 11 = bulk)
1862 *
1863 * Given the device address and endpoint descriptor, pipes are redundant.
1864 */
1865
1866/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1867/* (yet ... they're the values used by usbfs) */
1868#define PIPE_ISOCHRONOUS                0
1869#define PIPE_INTERRUPT                  1
1870#define PIPE_CONTROL                    2
1871#define PIPE_BULK                       3
1872
1873#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1874#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1875
1876#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1877#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1878
1879#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1880#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1881#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1882#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1883#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1884
1885static inline unsigned int __create_pipe(struct usb_device *dev,
1886                unsigned int endpoint)
1887{
1888        return (dev->devnum << 8) | (endpoint << 15);
1889}
1890
1891/* Create various pipes... */
1892#define usb_sndctrlpipe(dev, endpoint)  \
1893        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1894#define usb_rcvctrlpipe(dev, endpoint)  \
1895        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1896#define usb_sndisocpipe(dev, endpoint)  \
1897        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1898#define usb_rcvisocpipe(dev, endpoint)  \
1899        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1900#define usb_sndbulkpipe(dev, endpoint)  \
1901        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1902#define usb_rcvbulkpipe(dev, endpoint)  \
1903        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1904#define usb_sndintpipe(dev, endpoint)   \
1905        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1906#define usb_rcvintpipe(dev, endpoint)   \
1907        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1908
1909static inline struct usb_host_endpoint *
1910usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1911{
1912        struct usb_host_endpoint **eps;
1913        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1914        return eps[usb_pipeendpoint(pipe)];
1915}
1916
1917/*-------------------------------------------------------------------------*/
1918
1919static inline __u16
1920usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1921{
1922        struct usb_host_endpoint        *ep;
1923        unsigned                        epnum = usb_pipeendpoint(pipe);
1924
1925        if (is_out) {
1926                WARN_ON(usb_pipein(pipe));
1927                ep = udev->ep_out[epnum];
1928        } else {
1929                WARN_ON(usb_pipeout(pipe));
1930                ep = udev->ep_in[epnum];
1931        }
1932        if (!ep)
1933                return 0;
1934
1935        /* NOTE:  only 0x07ff bits are for packet size... */
1936        return usb_endpoint_maxp(&ep->desc);
1937}
1938
1939/* ----------------------------------------------------------------------- */
1940
1941/* translate USB error codes to codes user space understands */
1942static inline int usb_translate_errors(int error_code)
1943{
1944        switch (error_code) {
1945        case 0:
1946        case -ENOMEM:
1947        case -ENODEV:
1948        case -EOPNOTSUPP:
1949                return error_code;
1950        default:
1951                return -EIO;
1952        }
1953}
1954
1955/* Events from the usb core */
1956#define USB_DEVICE_ADD          0x0001
1957#define USB_DEVICE_REMOVE       0x0002
1958#define USB_BUS_ADD             0x0003
1959#define USB_BUS_REMOVE          0x0004
1960extern void usb_register_notify(struct notifier_block *nb);
1961extern void usb_unregister_notify(struct notifier_block *nb);
1962
1963/* debugfs stuff */
1964extern struct dentry *usb_debug_root;
1965
1966/* LED triggers */
1967enum usb_led_event {
1968        USB_LED_EVENT_HOST = 0,
1969        USB_LED_EVENT_GADGET = 1,
1970};
1971
1972#ifdef CONFIG_USB_LED_TRIG
1973extern void usb_led_activity(enum usb_led_event ev);
1974#else
1975static inline void usb_led_activity(enum usb_led_event ev) {}
1976#endif
1977
1978#endif  /* __KERNEL__ */
1979
1980#endif
1981