linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
  67
  68#include <linux/atomic.h>
  69#include <linux/refcount.h>
  70#include <net/dst.h>
  71#include <net/checksum.h>
  72#include <net/tcp_states.h>
  73#include <linux/net_tstamp.h>
  74#include <net/smc.h>
  75
  76/*
  77 * This structure really needs to be cleaned up.
  78 * Most of it is for TCP, and not used by any of
  79 * the other protocols.
  80 */
  81
  82/* Define this to get the SOCK_DBG debugging facility. */
  83#define SOCK_DEBUGGING
  84#ifdef SOCK_DEBUGGING
  85#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  86                                        printk(KERN_DEBUG msg); } while (0)
  87#else
  88/* Validate arguments and do nothing */
  89static inline __printf(2, 3)
  90void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  91{
  92}
  93#endif
  94
  95/* This is the per-socket lock.  The spinlock provides a synchronization
  96 * between user contexts and software interrupt processing, whereas the
  97 * mini-semaphore synchronizes multiple users amongst themselves.
  98 */
  99typedef struct {
 100        spinlock_t              slock;
 101        int                     owned;
 102        wait_queue_head_t       wq;
 103        /*
 104         * We express the mutex-alike socket_lock semantics
 105         * to the lock validator by explicitly managing
 106         * the slock as a lock variant (in addition to
 107         * the slock itself):
 108         */
 109#ifdef CONFIG_DEBUG_LOCK_ALLOC
 110        struct lockdep_map dep_map;
 111#endif
 112} socket_lock_t;
 113
 114struct sock;
 115struct proto;
 116struct net;
 117
 118typedef __u32 __bitwise __portpair;
 119typedef __u64 __bitwise __addrpair;
 120
 121/**
 122 *      struct sock_common - minimal network layer representation of sockets
 123 *      @skc_daddr: Foreign IPv4 addr
 124 *      @skc_rcv_saddr: Bound local IPv4 addr
 125 *      @skc_hash: hash value used with various protocol lookup tables
 126 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 127 *      @skc_dport: placeholder for inet_dport/tw_dport
 128 *      @skc_num: placeholder for inet_num/tw_num
 129 *      @skc_family: network address family
 130 *      @skc_state: Connection state
 131 *      @skc_reuse: %SO_REUSEADDR setting
 132 *      @skc_reuseport: %SO_REUSEPORT setting
 133 *      @skc_bound_dev_if: bound device index if != 0
 134 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *      @skc_prot: protocol handlers inside a network family
 137 *      @skc_net: reference to the network namespace of this socket
 138 *      @skc_node: main hash linkage for various protocol lookup tables
 139 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 140 *      @skc_tx_queue_mapping: tx queue number for this connection
 141 *      @skc_flags: place holder for sk_flags
 142 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 143 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 144 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 145 *      @skc_refcnt: reference count
 146 *
 147 *      This is the minimal network layer representation of sockets, the header
 148 *      for struct sock and struct inet_timewait_sock.
 149 */
 150struct sock_common {
 151        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 152         * address on 64bit arches : cf INET_MATCH()
 153         */
 154        union {
 155                __addrpair      skc_addrpair;
 156                struct {
 157                        __be32  skc_daddr;
 158                        __be32  skc_rcv_saddr;
 159                };
 160        };
 161        union  {
 162                unsigned int    skc_hash;
 163                __u16           skc_u16hashes[2];
 164        };
 165        /* skc_dport && skc_num must be grouped as well */
 166        union {
 167                __portpair      skc_portpair;
 168                struct {
 169                        __be16  skc_dport;
 170                        __u16   skc_num;
 171                };
 172        };
 173
 174        unsigned short          skc_family;
 175        volatile unsigned char  skc_state;
 176        unsigned char           skc_reuse:4;
 177        unsigned char           skc_reuseport:1;
 178        unsigned char           skc_ipv6only:1;
 179        unsigned char           skc_net_refcnt:1;
 180        int                     skc_bound_dev_if;
 181        union {
 182                struct hlist_node       skc_bind_node;
 183                struct hlist_node       skc_portaddr_node;
 184        };
 185        struct proto            *skc_prot;
 186        possible_net_t          skc_net;
 187
 188#if IS_ENABLED(CONFIG_IPV6)
 189        struct in6_addr         skc_v6_daddr;
 190        struct in6_addr         skc_v6_rcv_saddr;
 191#endif
 192
 193        atomic64_t              skc_cookie;
 194
 195        /* following fields are padding to force
 196         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 197         * assuming IPV6 is enabled. We use this padding differently
 198         * for different kind of 'sockets'
 199         */
 200        union {
 201                unsigned long   skc_flags;
 202                struct sock     *skc_listener; /* request_sock */
 203                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 204        };
 205        /*
 206         * fields between dontcopy_begin/dontcopy_end
 207         * are not copied in sock_copy()
 208         */
 209        /* private: */
 210        int                     skc_dontcopy_begin[0];
 211        /* public: */
 212        union {
 213                struct hlist_node       skc_node;
 214                struct hlist_nulls_node skc_nulls_node;
 215        };
 216        int                     skc_tx_queue_mapping;
 217        union {
 218                int             skc_incoming_cpu;
 219                u32             skc_rcv_wnd;
 220                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 221        };
 222
 223        refcount_t              skc_refcnt;
 224        /* private: */
 225        int                     skc_dontcopy_end[0];
 226        union {
 227                u32             skc_rxhash;
 228                u32             skc_window_clamp;
 229                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 230        };
 231        /* public: */
 232};
 233
 234/**
 235  *     struct sock - network layer representation of sockets
 236  *     @__sk_common: shared layout with inet_timewait_sock
 237  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 238  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 239  *     @sk_lock:       synchronizer
 240  *     @sk_kern_sock: True if sock is using kernel lock classes
 241  *     @sk_rcvbuf: size of receive buffer in bytes
 242  *     @sk_wq: sock wait queue and async head
 243  *     @sk_rx_dst: receive input route used by early demux
 244  *     @sk_dst_cache: destination cache
 245  *     @sk_dst_pending_confirm: need to confirm neighbour
 246  *     @sk_policy: flow policy
 247  *     @sk_receive_queue: incoming packets
 248  *     @sk_wmem_alloc: transmit queue bytes committed
 249  *     @sk_tsq_flags: TCP Small Queues flags
 250  *     @sk_write_queue: Packet sending queue
 251  *     @sk_omem_alloc: "o" is "option" or "other"
 252  *     @sk_wmem_queued: persistent queue size
 253  *     @sk_forward_alloc: space allocated forward
 254  *     @sk_napi_id: id of the last napi context to receive data for sk
 255  *     @sk_ll_usec: usecs to busypoll when there is no data
 256  *     @sk_allocation: allocation mode
 257  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 258  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 259  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 260  *     @sk_sndbuf: size of send buffer in bytes
 261  *     @__sk_flags_offset: empty field used to determine location of bitfield
 262  *     @sk_padding: unused element for alignment
 263  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 264  *     @sk_no_check_rx: allow zero checksum in RX packets
 265  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 266  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 267  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 268  *     @sk_gso_max_size: Maximum GSO segment size to build
 269  *     @sk_gso_max_segs: Maximum number of GSO segments
 270  *     @sk_lingertime: %SO_LINGER l_linger setting
 271  *     @sk_backlog: always used with the per-socket spinlock held
 272  *     @sk_callback_lock: used with the callbacks in the end of this struct
 273  *     @sk_error_queue: rarely used
 274  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 275  *                       IPV6_ADDRFORM for instance)
 276  *     @sk_err: last error
 277  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 278  *                   persistent failure not just 'timed out'
 279  *     @sk_drops: raw/udp drops counter
 280  *     @sk_ack_backlog: current listen backlog
 281  *     @sk_max_ack_backlog: listen backlog set in listen()
 282  *     @sk_uid: user id of owner
 283  *     @sk_priority: %SO_PRIORITY setting
 284  *     @sk_type: socket type (%SOCK_STREAM, etc)
 285  *     @sk_protocol: which protocol this socket belongs in this network family
 286  *     @sk_peer_pid: &struct pid for this socket's peer
 287  *     @sk_peer_cred: %SO_PEERCRED setting
 288  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 289  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 290  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 291  *     @sk_txhash: computed flow hash for use on transmit
 292  *     @sk_filter: socket filtering instructions
 293  *     @sk_timer: sock cleanup timer
 294  *     @sk_stamp: time stamp of last packet received
 295  *     @sk_tsflags: SO_TIMESTAMPING socket options
 296  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 297  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 298  *     @sk_socket: Identd and reporting IO signals
 299  *     @sk_user_data: RPC layer private data
 300  *     @sk_frag: cached page frag
 301  *     @sk_peek_off: current peek_offset value
 302  *     @sk_send_head: front of stuff to transmit
 303  *     @sk_security: used by security modules
 304  *     @sk_mark: generic packet mark
 305  *     @sk_cgrp_data: cgroup data for this cgroup
 306  *     @sk_memcg: this socket's memory cgroup association
 307  *     @sk_write_pending: a write to stream socket waits to start
 308  *     @sk_state_change: callback to indicate change in the state of the sock
 309  *     @sk_data_ready: callback to indicate there is data to be processed
 310  *     @sk_write_space: callback to indicate there is bf sending space available
 311  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 312  *     @sk_backlog_rcv: callback to process the backlog
 313  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 314  *     @sk_reuseport_cb: reuseport group container
 315  *     @sk_rcu: used during RCU grace period
 316  */
 317struct sock {
 318        /*
 319         * Now struct inet_timewait_sock also uses sock_common, so please just
 320         * don't add nothing before this first member (__sk_common) --acme
 321         */
 322        struct sock_common      __sk_common;
 323#define sk_node                 __sk_common.skc_node
 324#define sk_nulls_node           __sk_common.skc_nulls_node
 325#define sk_refcnt               __sk_common.skc_refcnt
 326#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 327
 328#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 329#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 330#define sk_hash                 __sk_common.skc_hash
 331#define sk_portpair             __sk_common.skc_portpair
 332#define sk_num                  __sk_common.skc_num
 333#define sk_dport                __sk_common.skc_dport
 334#define sk_addrpair             __sk_common.skc_addrpair
 335#define sk_daddr                __sk_common.skc_daddr
 336#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 337#define sk_family               __sk_common.skc_family
 338#define sk_state                __sk_common.skc_state
 339#define sk_reuse                __sk_common.skc_reuse
 340#define sk_reuseport            __sk_common.skc_reuseport
 341#define sk_ipv6only             __sk_common.skc_ipv6only
 342#define sk_net_refcnt           __sk_common.skc_net_refcnt
 343#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 344#define sk_bind_node            __sk_common.skc_bind_node
 345#define sk_prot                 __sk_common.skc_prot
 346#define sk_net                  __sk_common.skc_net
 347#define sk_v6_daddr             __sk_common.skc_v6_daddr
 348#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 349#define sk_cookie               __sk_common.skc_cookie
 350#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 351#define sk_flags                __sk_common.skc_flags
 352#define sk_rxhash               __sk_common.skc_rxhash
 353
 354        socket_lock_t           sk_lock;
 355        atomic_t                sk_drops;
 356        int                     sk_rcvlowat;
 357        struct sk_buff_head     sk_error_queue;
 358        struct sk_buff_head     sk_receive_queue;
 359        /*
 360         * The backlog queue is special, it is always used with
 361         * the per-socket spinlock held and requires low latency
 362         * access. Therefore we special case it's implementation.
 363         * Note : rmem_alloc is in this structure to fill a hole
 364         * on 64bit arches, not because its logically part of
 365         * backlog.
 366         */
 367        struct {
 368                atomic_t        rmem_alloc;
 369                int             len;
 370                struct sk_buff  *head;
 371                struct sk_buff  *tail;
 372        } sk_backlog;
 373#define sk_rmem_alloc sk_backlog.rmem_alloc
 374
 375        int                     sk_forward_alloc;
 376#ifdef CONFIG_NET_RX_BUSY_POLL
 377        unsigned int            sk_ll_usec;
 378        /* ===== mostly read cache line ===== */
 379        unsigned int            sk_napi_id;
 380#endif
 381        int                     sk_rcvbuf;
 382
 383        struct sk_filter __rcu  *sk_filter;
 384        union {
 385                struct socket_wq __rcu  *sk_wq;
 386                struct socket_wq        *sk_wq_raw;
 387        };
 388#ifdef CONFIG_XFRM
 389        struct xfrm_policy __rcu *sk_policy[2];
 390#endif
 391        struct dst_entry        *sk_rx_dst;
 392        struct dst_entry __rcu  *sk_dst_cache;
 393        atomic_t                sk_omem_alloc;
 394        int                     sk_sndbuf;
 395
 396        /* ===== cache line for TX ===== */
 397        int                     sk_wmem_queued;
 398        refcount_t              sk_wmem_alloc;
 399        unsigned long           sk_tsq_flags;
 400        struct sk_buff          *sk_send_head;
 401        struct sk_buff_head     sk_write_queue;
 402        __s32                   sk_peek_off;
 403        int                     sk_write_pending;
 404        __u32                   sk_dst_pending_confirm;
 405        u32                     sk_pacing_status; /* see enum sk_pacing */
 406        long                    sk_sndtimeo;
 407        struct timer_list       sk_timer;
 408        __u32                   sk_priority;
 409        __u32                   sk_mark;
 410        u32                     sk_pacing_rate; /* bytes per second */
 411        u32                     sk_max_pacing_rate;
 412        struct page_frag        sk_frag;
 413        netdev_features_t       sk_route_caps;
 414        netdev_features_t       sk_route_nocaps;
 415        int                     sk_gso_type;
 416        unsigned int            sk_gso_max_size;
 417        gfp_t                   sk_allocation;
 418        __u32                   sk_txhash;
 419
 420        /*
 421         * Because of non atomicity rules, all
 422         * changes are protected by socket lock.
 423         */
 424        unsigned int            __sk_flags_offset[0];
 425#ifdef __BIG_ENDIAN_BITFIELD
 426#define SK_FL_PROTO_SHIFT  16
 427#define SK_FL_PROTO_MASK   0x00ff0000
 428
 429#define SK_FL_TYPE_SHIFT   0
 430#define SK_FL_TYPE_MASK    0x0000ffff
 431#else
 432#define SK_FL_PROTO_SHIFT  8
 433#define SK_FL_PROTO_MASK   0x0000ff00
 434
 435#define SK_FL_TYPE_SHIFT   16
 436#define SK_FL_TYPE_MASK    0xffff0000
 437#endif
 438
 439        kmemcheck_bitfield_begin(flags);
 440        unsigned int            sk_padding : 1,
 441                                sk_kern_sock : 1,
 442                                sk_no_check_tx : 1,
 443                                sk_no_check_rx : 1,
 444                                sk_userlocks : 4,
 445                                sk_protocol  : 8,
 446                                sk_type      : 16;
 447#define SK_PROTOCOL_MAX U8_MAX
 448        kmemcheck_bitfield_end(flags);
 449
 450        u16                     sk_gso_max_segs;
 451        unsigned long           sk_lingertime;
 452        struct proto            *sk_prot_creator;
 453        rwlock_t                sk_callback_lock;
 454        int                     sk_err,
 455                                sk_err_soft;
 456        u32                     sk_ack_backlog;
 457        u32                     sk_max_ack_backlog;
 458        kuid_t                  sk_uid;
 459        struct pid              *sk_peer_pid;
 460        const struct cred       *sk_peer_cred;
 461        long                    sk_rcvtimeo;
 462        ktime_t                 sk_stamp;
 463        u16                     sk_tsflags;
 464        u8                      sk_shutdown;
 465        u32                     sk_tskey;
 466        atomic_t                sk_zckey;
 467        struct socket           *sk_socket;
 468        void                    *sk_user_data;
 469#ifdef CONFIG_SECURITY
 470        void                    *sk_security;
 471#endif
 472        struct sock_cgroup_data sk_cgrp_data;
 473        struct mem_cgroup       *sk_memcg;
 474        void                    (*sk_state_change)(struct sock *sk);
 475        void                    (*sk_data_ready)(struct sock *sk);
 476        void                    (*sk_write_space)(struct sock *sk);
 477        void                    (*sk_error_report)(struct sock *sk);
 478        int                     (*sk_backlog_rcv)(struct sock *sk,
 479                                                  struct sk_buff *skb);
 480        void                    (*sk_destruct)(struct sock *sk);
 481        struct sock_reuseport __rcu     *sk_reuseport_cb;
 482        struct rcu_head         sk_rcu;
 483};
 484
 485enum sk_pacing {
 486        SK_PACING_NONE          = 0,
 487        SK_PACING_NEEDED        = 1,
 488        SK_PACING_FQ            = 2,
 489};
 490
 491#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 492
 493#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 494#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 495
 496/*
 497 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 498 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 499 * on a socket means that the socket will reuse everybody else's port
 500 * without looking at the other's sk_reuse value.
 501 */
 502
 503#define SK_NO_REUSE     0
 504#define SK_CAN_REUSE    1
 505#define SK_FORCE_REUSE  2
 506
 507int sk_set_peek_off(struct sock *sk, int val);
 508
 509static inline int sk_peek_offset(struct sock *sk, int flags)
 510{
 511        if (unlikely(flags & MSG_PEEK)) {
 512                return READ_ONCE(sk->sk_peek_off);
 513        }
 514
 515        return 0;
 516}
 517
 518static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 519{
 520        s32 off = READ_ONCE(sk->sk_peek_off);
 521
 522        if (unlikely(off >= 0)) {
 523                off = max_t(s32, off - val, 0);
 524                WRITE_ONCE(sk->sk_peek_off, off);
 525        }
 526}
 527
 528static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 529{
 530        sk_peek_offset_bwd(sk, -val);
 531}
 532
 533/*
 534 * Hashed lists helper routines
 535 */
 536static inline struct sock *sk_entry(const struct hlist_node *node)
 537{
 538        return hlist_entry(node, struct sock, sk_node);
 539}
 540
 541static inline struct sock *__sk_head(const struct hlist_head *head)
 542{
 543        return hlist_entry(head->first, struct sock, sk_node);
 544}
 545
 546static inline struct sock *sk_head(const struct hlist_head *head)
 547{
 548        return hlist_empty(head) ? NULL : __sk_head(head);
 549}
 550
 551static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 552{
 553        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 554}
 555
 556static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 557{
 558        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 559}
 560
 561static inline struct sock *sk_next(const struct sock *sk)
 562{
 563        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 564}
 565
 566static inline struct sock *sk_nulls_next(const struct sock *sk)
 567{
 568        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 569                hlist_nulls_entry(sk->sk_nulls_node.next,
 570                                  struct sock, sk_nulls_node) :
 571                NULL;
 572}
 573
 574static inline bool sk_unhashed(const struct sock *sk)
 575{
 576        return hlist_unhashed(&sk->sk_node);
 577}
 578
 579static inline bool sk_hashed(const struct sock *sk)
 580{
 581        return !sk_unhashed(sk);
 582}
 583
 584static inline void sk_node_init(struct hlist_node *node)
 585{
 586        node->pprev = NULL;
 587}
 588
 589static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 590{
 591        node->pprev = NULL;
 592}
 593
 594static inline void __sk_del_node(struct sock *sk)
 595{
 596        __hlist_del(&sk->sk_node);
 597}
 598
 599/* NB: equivalent to hlist_del_init_rcu */
 600static inline bool __sk_del_node_init(struct sock *sk)
 601{
 602        if (sk_hashed(sk)) {
 603                __sk_del_node(sk);
 604                sk_node_init(&sk->sk_node);
 605                return true;
 606        }
 607        return false;
 608}
 609
 610/* Grab socket reference count. This operation is valid only
 611   when sk is ALREADY grabbed f.e. it is found in hash table
 612   or a list and the lookup is made under lock preventing hash table
 613   modifications.
 614 */
 615
 616static __always_inline void sock_hold(struct sock *sk)
 617{
 618        refcount_inc(&sk->sk_refcnt);
 619}
 620
 621/* Ungrab socket in the context, which assumes that socket refcnt
 622   cannot hit zero, f.e. it is true in context of any socketcall.
 623 */
 624static __always_inline void __sock_put(struct sock *sk)
 625{
 626        refcount_dec(&sk->sk_refcnt);
 627}
 628
 629static inline bool sk_del_node_init(struct sock *sk)
 630{
 631        bool rc = __sk_del_node_init(sk);
 632
 633        if (rc) {
 634                /* paranoid for a while -acme */
 635                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 636                __sock_put(sk);
 637        }
 638        return rc;
 639}
 640#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 641
 642static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 643{
 644        if (sk_hashed(sk)) {
 645                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 646                return true;
 647        }
 648        return false;
 649}
 650
 651static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 652{
 653        bool rc = __sk_nulls_del_node_init_rcu(sk);
 654
 655        if (rc) {
 656                /* paranoid for a while -acme */
 657                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 658                __sock_put(sk);
 659        }
 660        return rc;
 661}
 662
 663static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 664{
 665        hlist_add_head(&sk->sk_node, list);
 666}
 667
 668static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 669{
 670        sock_hold(sk);
 671        __sk_add_node(sk, list);
 672}
 673
 674static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 675{
 676        sock_hold(sk);
 677        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 678            sk->sk_family == AF_INET6)
 679                hlist_add_tail_rcu(&sk->sk_node, list);
 680        else
 681                hlist_add_head_rcu(&sk->sk_node, list);
 682}
 683
 684static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 685{
 686        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 687            sk->sk_family == AF_INET6)
 688                hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 689        else
 690                hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 691}
 692
 693static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 694{
 695        sock_hold(sk);
 696        __sk_nulls_add_node_rcu(sk, list);
 697}
 698
 699static inline void __sk_del_bind_node(struct sock *sk)
 700{
 701        __hlist_del(&sk->sk_bind_node);
 702}
 703
 704static inline void sk_add_bind_node(struct sock *sk,
 705                                        struct hlist_head *list)
 706{
 707        hlist_add_head(&sk->sk_bind_node, list);
 708}
 709
 710#define sk_for_each(__sk, list) \
 711        hlist_for_each_entry(__sk, list, sk_node)
 712#define sk_for_each_rcu(__sk, list) \
 713        hlist_for_each_entry_rcu(__sk, list, sk_node)
 714#define sk_nulls_for_each(__sk, node, list) \
 715        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 716#define sk_nulls_for_each_rcu(__sk, node, list) \
 717        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 718#define sk_for_each_from(__sk) \
 719        hlist_for_each_entry_from(__sk, sk_node)
 720#define sk_nulls_for_each_from(__sk, node) \
 721        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 722                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 723#define sk_for_each_safe(__sk, tmp, list) \
 724        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 725#define sk_for_each_bound(__sk, list) \
 726        hlist_for_each_entry(__sk, list, sk_bind_node)
 727
 728/**
 729 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 730 * @tpos:       the type * to use as a loop cursor.
 731 * @pos:        the &struct hlist_node to use as a loop cursor.
 732 * @head:       the head for your list.
 733 * @offset:     offset of hlist_node within the struct.
 734 *
 735 */
 736#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 737        for (pos = rcu_dereference((head)->first);                             \
 738             pos != NULL &&                                                    \
 739                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 740             pos = rcu_dereference(pos->next))
 741
 742static inline struct user_namespace *sk_user_ns(struct sock *sk)
 743{
 744        /* Careful only use this in a context where these parameters
 745         * can not change and must all be valid, such as recvmsg from
 746         * userspace.
 747         */
 748        return sk->sk_socket->file->f_cred->user_ns;
 749}
 750
 751/* Sock flags */
 752enum sock_flags {
 753        SOCK_DEAD,
 754        SOCK_DONE,
 755        SOCK_URGINLINE,
 756        SOCK_KEEPOPEN,
 757        SOCK_LINGER,
 758        SOCK_DESTROY,
 759        SOCK_BROADCAST,
 760        SOCK_TIMESTAMP,
 761        SOCK_ZAPPED,
 762        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 763        SOCK_DBG, /* %SO_DEBUG setting */
 764        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 765        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 766        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 767        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 768        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 769        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 770        SOCK_FASYNC, /* fasync() active */
 771        SOCK_RXQ_OVFL,
 772        SOCK_ZEROCOPY, /* buffers from userspace */
 773        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 774        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 775                     * Will use last 4 bytes of packet sent from
 776                     * user-space instead.
 777                     */
 778        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 779        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 780        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 781};
 782
 783#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 784
 785static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 786{
 787        nsk->sk_flags = osk->sk_flags;
 788}
 789
 790static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 791{
 792        __set_bit(flag, &sk->sk_flags);
 793}
 794
 795static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 796{
 797        __clear_bit(flag, &sk->sk_flags);
 798}
 799
 800static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 801{
 802        return test_bit(flag, &sk->sk_flags);
 803}
 804
 805#ifdef CONFIG_NET
 806extern struct static_key memalloc_socks;
 807static inline int sk_memalloc_socks(void)
 808{
 809        return static_key_false(&memalloc_socks);
 810}
 811#else
 812
 813static inline int sk_memalloc_socks(void)
 814{
 815        return 0;
 816}
 817
 818#endif
 819
 820static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 821{
 822        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 823}
 824
 825static inline void sk_acceptq_removed(struct sock *sk)
 826{
 827        sk->sk_ack_backlog--;
 828}
 829
 830static inline void sk_acceptq_added(struct sock *sk)
 831{
 832        sk->sk_ack_backlog++;
 833}
 834
 835static inline bool sk_acceptq_is_full(const struct sock *sk)
 836{
 837        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 838}
 839
 840/*
 841 * Compute minimal free write space needed to queue new packets.
 842 */
 843static inline int sk_stream_min_wspace(const struct sock *sk)
 844{
 845        return sk->sk_wmem_queued >> 1;
 846}
 847
 848static inline int sk_stream_wspace(const struct sock *sk)
 849{
 850        return sk->sk_sndbuf - sk->sk_wmem_queued;
 851}
 852
 853void sk_stream_write_space(struct sock *sk);
 854
 855/* OOB backlog add */
 856static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 857{
 858        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 859        skb_dst_force(skb);
 860
 861        if (!sk->sk_backlog.tail)
 862                sk->sk_backlog.head = skb;
 863        else
 864                sk->sk_backlog.tail->next = skb;
 865
 866        sk->sk_backlog.tail = skb;
 867        skb->next = NULL;
 868}
 869
 870/*
 871 * Take into account size of receive queue and backlog queue
 872 * Do not take into account this skb truesize,
 873 * to allow even a single big packet to come.
 874 */
 875static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 876{
 877        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 878
 879        return qsize > limit;
 880}
 881
 882/* The per-socket spinlock must be held here. */
 883static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 884                                              unsigned int limit)
 885{
 886        if (sk_rcvqueues_full(sk, limit))
 887                return -ENOBUFS;
 888
 889        /*
 890         * If the skb was allocated from pfmemalloc reserves, only
 891         * allow SOCK_MEMALLOC sockets to use it as this socket is
 892         * helping free memory
 893         */
 894        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 895                return -ENOMEM;
 896
 897        __sk_add_backlog(sk, skb);
 898        sk->sk_backlog.len += skb->truesize;
 899        return 0;
 900}
 901
 902int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 903
 904static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 905{
 906        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 907                return __sk_backlog_rcv(sk, skb);
 908
 909        return sk->sk_backlog_rcv(sk, skb);
 910}
 911
 912static inline void sk_incoming_cpu_update(struct sock *sk)
 913{
 914        int cpu = raw_smp_processor_id();
 915
 916        if (unlikely(sk->sk_incoming_cpu != cpu))
 917                sk->sk_incoming_cpu = cpu;
 918}
 919
 920static inline void sock_rps_record_flow_hash(__u32 hash)
 921{
 922#ifdef CONFIG_RPS
 923        struct rps_sock_flow_table *sock_flow_table;
 924
 925        rcu_read_lock();
 926        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 927        rps_record_sock_flow(sock_flow_table, hash);
 928        rcu_read_unlock();
 929#endif
 930}
 931
 932static inline void sock_rps_record_flow(const struct sock *sk)
 933{
 934#ifdef CONFIG_RPS
 935        if (static_key_false(&rfs_needed)) {
 936                /* Reading sk->sk_rxhash might incur an expensive cache line
 937                 * miss.
 938                 *
 939                 * TCP_ESTABLISHED does cover almost all states where RFS
 940                 * might be useful, and is cheaper [1] than testing :
 941                 *      IPv4: inet_sk(sk)->inet_daddr
 942                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
 943                 * OR   an additional socket flag
 944                 * [1] : sk_state and sk_prot are in the same cache line.
 945                 */
 946                if (sk->sk_state == TCP_ESTABLISHED)
 947                        sock_rps_record_flow_hash(sk->sk_rxhash);
 948        }
 949#endif
 950}
 951
 952static inline void sock_rps_save_rxhash(struct sock *sk,
 953                                        const struct sk_buff *skb)
 954{
 955#ifdef CONFIG_RPS
 956        if (unlikely(sk->sk_rxhash != skb->hash))
 957                sk->sk_rxhash = skb->hash;
 958#endif
 959}
 960
 961static inline void sock_rps_reset_rxhash(struct sock *sk)
 962{
 963#ifdef CONFIG_RPS
 964        sk->sk_rxhash = 0;
 965#endif
 966}
 967
 968#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
 969        ({      int __rc;                                               \
 970                release_sock(__sk);                                     \
 971                __rc = __condition;                                     \
 972                if (!__rc) {                                            \
 973                        *(__timeo) = wait_woken(__wait,                 \
 974                                                TASK_INTERRUPTIBLE,     \
 975                                                *(__timeo));            \
 976                }                                                       \
 977                sched_annotate_sleep();                                 \
 978                lock_sock(__sk);                                        \
 979                __rc = __condition;                                     \
 980                __rc;                                                   \
 981        })
 982
 983int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 984int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 985void sk_stream_wait_close(struct sock *sk, long timeo_p);
 986int sk_stream_error(struct sock *sk, int flags, int err);
 987void sk_stream_kill_queues(struct sock *sk);
 988void sk_set_memalloc(struct sock *sk);
 989void sk_clear_memalloc(struct sock *sk);
 990
 991void __sk_flush_backlog(struct sock *sk);
 992
 993static inline bool sk_flush_backlog(struct sock *sk)
 994{
 995        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
 996                __sk_flush_backlog(sk);
 997                return true;
 998        }
 999        return false;
1000}
1001
1002int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1003
1004struct request_sock_ops;
1005struct timewait_sock_ops;
1006struct inet_hashinfo;
1007struct raw_hashinfo;
1008struct smc_hashinfo;
1009struct module;
1010
1011/*
1012 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1013 * un-modified. Special care is taken when initializing object to zero.
1014 */
1015static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1016{
1017        if (offsetof(struct sock, sk_node.next) != 0)
1018                memset(sk, 0, offsetof(struct sock, sk_node.next));
1019        memset(&sk->sk_node.pprev, 0,
1020               size - offsetof(struct sock, sk_node.pprev));
1021}
1022
1023/* Networking protocol blocks we attach to sockets.
1024 * socket layer -> transport layer interface
1025 */
1026struct proto {
1027        void                    (*close)(struct sock *sk,
1028                                        long timeout);
1029        int                     (*connect)(struct sock *sk,
1030                                        struct sockaddr *uaddr,
1031                                        int addr_len);
1032        int                     (*disconnect)(struct sock *sk, int flags);
1033
1034        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1035                                          bool kern);
1036
1037        int                     (*ioctl)(struct sock *sk, int cmd,
1038                                         unsigned long arg);
1039        int                     (*init)(struct sock *sk);
1040        void                    (*destroy)(struct sock *sk);
1041        void                    (*shutdown)(struct sock *sk, int how);
1042        int                     (*setsockopt)(struct sock *sk, int level,
1043                                        int optname, char __user *optval,
1044                                        unsigned int optlen);
1045        int                     (*getsockopt)(struct sock *sk, int level,
1046                                        int optname, char __user *optval,
1047                                        int __user *option);
1048        void                    (*keepalive)(struct sock *sk, int valbool);
1049#ifdef CONFIG_COMPAT
1050        int                     (*compat_setsockopt)(struct sock *sk,
1051                                        int level,
1052                                        int optname, char __user *optval,
1053                                        unsigned int optlen);
1054        int                     (*compat_getsockopt)(struct sock *sk,
1055                                        int level,
1056                                        int optname, char __user *optval,
1057                                        int __user *option);
1058        int                     (*compat_ioctl)(struct sock *sk,
1059                                        unsigned int cmd, unsigned long arg);
1060#endif
1061        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1062                                           size_t len);
1063        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1064                                           size_t len, int noblock, int flags,
1065                                           int *addr_len);
1066        int                     (*sendpage)(struct sock *sk, struct page *page,
1067                                        int offset, size_t size, int flags);
1068        int                     (*bind)(struct sock *sk,
1069                                        struct sockaddr *uaddr, int addr_len);
1070
1071        int                     (*backlog_rcv) (struct sock *sk,
1072                                                struct sk_buff *skb);
1073
1074        void            (*release_cb)(struct sock *sk);
1075
1076        /* Keeping track of sk's, looking them up, and port selection methods. */
1077        int                     (*hash)(struct sock *sk);
1078        void                    (*unhash)(struct sock *sk);
1079        void                    (*rehash)(struct sock *sk);
1080        int                     (*get_port)(struct sock *sk, unsigned short snum);
1081
1082        /* Keeping track of sockets in use */
1083#ifdef CONFIG_PROC_FS
1084        unsigned int            inuse_idx;
1085#endif
1086
1087        bool                    (*stream_memory_free)(const struct sock *sk);
1088        /* Memory pressure */
1089        void                    (*enter_memory_pressure)(struct sock *sk);
1090        void                    (*leave_memory_pressure)(struct sock *sk);
1091        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1092        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1093        /*
1094         * Pressure flag: try to collapse.
1095         * Technical note: it is used by multiple contexts non atomically.
1096         * All the __sk_mem_schedule() is of this nature: accounting
1097         * is strict, actions are advisory and have some latency.
1098         */
1099        unsigned long           *memory_pressure;
1100        long                    *sysctl_mem;
1101        int                     *sysctl_wmem;
1102        int                     *sysctl_rmem;
1103        int                     max_header;
1104        bool                    no_autobind;
1105
1106        struct kmem_cache       *slab;
1107        unsigned int            obj_size;
1108        int                     slab_flags;
1109
1110        struct percpu_counter   *orphan_count;
1111
1112        struct request_sock_ops *rsk_prot;
1113        struct timewait_sock_ops *twsk_prot;
1114
1115        union {
1116                struct inet_hashinfo    *hashinfo;
1117                struct udp_table        *udp_table;
1118                struct raw_hashinfo     *raw_hash;
1119                struct smc_hashinfo     *smc_hash;
1120        } h;
1121
1122        struct module           *owner;
1123
1124        char                    name[32];
1125
1126        struct list_head        node;
1127#ifdef SOCK_REFCNT_DEBUG
1128        atomic_t                socks;
1129#endif
1130        int                     (*diag_destroy)(struct sock *sk, int err);
1131} __randomize_layout;
1132
1133int proto_register(struct proto *prot, int alloc_slab);
1134void proto_unregister(struct proto *prot);
1135
1136#ifdef SOCK_REFCNT_DEBUG
1137static inline void sk_refcnt_debug_inc(struct sock *sk)
1138{
1139        atomic_inc(&sk->sk_prot->socks);
1140}
1141
1142static inline void sk_refcnt_debug_dec(struct sock *sk)
1143{
1144        atomic_dec(&sk->sk_prot->socks);
1145        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1146               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1147}
1148
1149static inline void sk_refcnt_debug_release(const struct sock *sk)
1150{
1151        if (refcount_read(&sk->sk_refcnt) != 1)
1152                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1153                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1154}
1155#else /* SOCK_REFCNT_DEBUG */
1156#define sk_refcnt_debug_inc(sk) do { } while (0)
1157#define sk_refcnt_debug_dec(sk) do { } while (0)
1158#define sk_refcnt_debug_release(sk) do { } while (0)
1159#endif /* SOCK_REFCNT_DEBUG */
1160
1161static inline bool sk_stream_memory_free(const struct sock *sk)
1162{
1163        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1164                return false;
1165
1166        return sk->sk_prot->stream_memory_free ?
1167                sk->sk_prot->stream_memory_free(sk) : true;
1168}
1169
1170static inline bool sk_stream_is_writeable(const struct sock *sk)
1171{
1172        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1173               sk_stream_memory_free(sk);
1174}
1175
1176static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1177                                            struct cgroup *ancestor)
1178{
1179#ifdef CONFIG_SOCK_CGROUP_DATA
1180        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1181                                    ancestor);
1182#else
1183        return -ENOTSUPP;
1184#endif
1185}
1186
1187static inline bool sk_has_memory_pressure(const struct sock *sk)
1188{
1189        return sk->sk_prot->memory_pressure != NULL;
1190}
1191
1192static inline bool sk_under_memory_pressure(const struct sock *sk)
1193{
1194        if (!sk->sk_prot->memory_pressure)
1195                return false;
1196
1197        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1198            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1199                return true;
1200
1201        return !!*sk->sk_prot->memory_pressure;
1202}
1203
1204static inline long
1205sk_memory_allocated(const struct sock *sk)
1206{
1207        return atomic_long_read(sk->sk_prot->memory_allocated);
1208}
1209
1210static inline long
1211sk_memory_allocated_add(struct sock *sk, int amt)
1212{
1213        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1214}
1215
1216static inline void
1217sk_memory_allocated_sub(struct sock *sk, int amt)
1218{
1219        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1220}
1221
1222static inline void sk_sockets_allocated_dec(struct sock *sk)
1223{
1224        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1225}
1226
1227static inline void sk_sockets_allocated_inc(struct sock *sk)
1228{
1229        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1230}
1231
1232static inline int
1233sk_sockets_allocated_read_positive(struct sock *sk)
1234{
1235        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1236}
1237
1238static inline int
1239proto_sockets_allocated_sum_positive(struct proto *prot)
1240{
1241        return percpu_counter_sum_positive(prot->sockets_allocated);
1242}
1243
1244static inline long
1245proto_memory_allocated(struct proto *prot)
1246{
1247        return atomic_long_read(prot->memory_allocated);
1248}
1249
1250static inline bool
1251proto_memory_pressure(struct proto *prot)
1252{
1253        if (!prot->memory_pressure)
1254                return false;
1255        return !!*prot->memory_pressure;
1256}
1257
1258
1259#ifdef CONFIG_PROC_FS
1260/* Called with local bh disabled */
1261void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1262int sock_prot_inuse_get(struct net *net, struct proto *proto);
1263#else
1264static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1265                int inc)
1266{
1267}
1268#endif
1269
1270
1271/* With per-bucket locks this operation is not-atomic, so that
1272 * this version is not worse.
1273 */
1274static inline int __sk_prot_rehash(struct sock *sk)
1275{
1276        sk->sk_prot->unhash(sk);
1277        return sk->sk_prot->hash(sk);
1278}
1279
1280/* About 10 seconds */
1281#define SOCK_DESTROY_TIME (10*HZ)
1282
1283/* Sockets 0-1023 can't be bound to unless you are superuser */
1284#define PROT_SOCK       1024
1285
1286#define SHUTDOWN_MASK   3
1287#define RCV_SHUTDOWN    1
1288#define SEND_SHUTDOWN   2
1289
1290#define SOCK_SNDBUF_LOCK        1
1291#define SOCK_RCVBUF_LOCK        2
1292#define SOCK_BINDADDR_LOCK      4
1293#define SOCK_BINDPORT_LOCK      8
1294
1295struct socket_alloc {
1296        struct socket socket;
1297        struct inode vfs_inode;
1298};
1299
1300static inline struct socket *SOCKET_I(struct inode *inode)
1301{
1302        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1303}
1304
1305static inline struct inode *SOCK_INODE(struct socket *socket)
1306{
1307        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1308}
1309
1310/*
1311 * Functions for memory accounting
1312 */
1313int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1314int __sk_mem_schedule(struct sock *sk, int size, int kind);
1315void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1316void __sk_mem_reclaim(struct sock *sk, int amount);
1317
1318/* We used to have PAGE_SIZE here, but systems with 64KB pages
1319 * do not necessarily have 16x time more memory than 4KB ones.
1320 */
1321#define SK_MEM_QUANTUM 4096
1322#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1323#define SK_MEM_SEND     0
1324#define SK_MEM_RECV     1
1325
1326/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1327static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1328{
1329        long val = sk->sk_prot->sysctl_mem[index];
1330
1331#if PAGE_SIZE > SK_MEM_QUANTUM
1332        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1333#elif PAGE_SIZE < SK_MEM_QUANTUM
1334        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1335#endif
1336        return val;
1337}
1338
1339static inline int sk_mem_pages(int amt)
1340{
1341        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1342}
1343
1344static inline bool sk_has_account(struct sock *sk)
1345{
1346        /* return true if protocol supports memory accounting */
1347        return !!sk->sk_prot->memory_allocated;
1348}
1349
1350static inline bool sk_wmem_schedule(struct sock *sk, int size)
1351{
1352        if (!sk_has_account(sk))
1353                return true;
1354        return size <= sk->sk_forward_alloc ||
1355                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1356}
1357
1358static inline bool
1359sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1360{
1361        if (!sk_has_account(sk))
1362                return true;
1363        return size<= sk->sk_forward_alloc ||
1364                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1365                skb_pfmemalloc(skb);
1366}
1367
1368static inline void sk_mem_reclaim(struct sock *sk)
1369{
1370        if (!sk_has_account(sk))
1371                return;
1372        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1373                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1374}
1375
1376static inline void sk_mem_reclaim_partial(struct sock *sk)
1377{
1378        if (!sk_has_account(sk))
1379                return;
1380        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1381                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1382}
1383
1384static inline void sk_mem_charge(struct sock *sk, int size)
1385{
1386        if (!sk_has_account(sk))
1387                return;
1388        sk->sk_forward_alloc -= size;
1389}
1390
1391static inline void sk_mem_uncharge(struct sock *sk, int size)
1392{
1393        if (!sk_has_account(sk))
1394                return;
1395        sk->sk_forward_alloc += size;
1396
1397        /* Avoid a possible overflow.
1398         * TCP send queues can make this happen, if sk_mem_reclaim()
1399         * is not called and more than 2 GBytes are released at once.
1400         *
1401         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1402         * no need to hold that much forward allocation anyway.
1403         */
1404        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1405                __sk_mem_reclaim(sk, 1 << 20);
1406}
1407
1408static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1409{
1410        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1411        sk->sk_wmem_queued -= skb->truesize;
1412        sk_mem_uncharge(sk, skb->truesize);
1413        __kfree_skb(skb);
1414}
1415
1416static inline void sock_release_ownership(struct sock *sk)
1417{
1418        if (sk->sk_lock.owned) {
1419                sk->sk_lock.owned = 0;
1420
1421                /* The sk_lock has mutex_unlock() semantics: */
1422                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1423        }
1424}
1425
1426/*
1427 * Macro so as to not evaluate some arguments when
1428 * lockdep is not enabled.
1429 *
1430 * Mark both the sk_lock and the sk_lock.slock as a
1431 * per-address-family lock class.
1432 */
1433#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1434do {                                                                    \
1435        sk->sk_lock.owned = 0;                                          \
1436        init_waitqueue_head(&sk->sk_lock.wq);                           \
1437        spin_lock_init(&(sk)->sk_lock.slock);                           \
1438        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1439                        sizeof((sk)->sk_lock));                         \
1440        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1441                                (skey), (sname));                               \
1442        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1443} while (0)
1444
1445#ifdef CONFIG_LOCKDEP
1446static inline bool lockdep_sock_is_held(const struct sock *csk)
1447{
1448        struct sock *sk = (struct sock *)csk;
1449
1450        return lockdep_is_held(&sk->sk_lock) ||
1451               lockdep_is_held(&sk->sk_lock.slock);
1452}
1453#endif
1454
1455void lock_sock_nested(struct sock *sk, int subclass);
1456
1457static inline void lock_sock(struct sock *sk)
1458{
1459        lock_sock_nested(sk, 0);
1460}
1461
1462void release_sock(struct sock *sk);
1463
1464/* BH context may only use the following locking interface. */
1465#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1466#define bh_lock_sock_nested(__sk) \
1467                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1468                                SINGLE_DEPTH_NESTING)
1469#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1470
1471bool lock_sock_fast(struct sock *sk);
1472/**
1473 * unlock_sock_fast - complement of lock_sock_fast
1474 * @sk: socket
1475 * @slow: slow mode
1476 *
1477 * fast unlock socket for user context.
1478 * If slow mode is on, we call regular release_sock()
1479 */
1480static inline void unlock_sock_fast(struct sock *sk, bool slow)
1481{
1482        if (slow)
1483                release_sock(sk);
1484        else
1485                spin_unlock_bh(&sk->sk_lock.slock);
1486}
1487
1488/* Used by processes to "lock" a socket state, so that
1489 * interrupts and bottom half handlers won't change it
1490 * from under us. It essentially blocks any incoming
1491 * packets, so that we won't get any new data or any
1492 * packets that change the state of the socket.
1493 *
1494 * While locked, BH processing will add new packets to
1495 * the backlog queue.  This queue is processed by the
1496 * owner of the socket lock right before it is released.
1497 *
1498 * Since ~2.3.5 it is also exclusive sleep lock serializing
1499 * accesses from user process context.
1500 */
1501
1502static inline void sock_owned_by_me(const struct sock *sk)
1503{
1504#ifdef CONFIG_LOCKDEP
1505        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1506#endif
1507}
1508
1509static inline bool sock_owned_by_user(const struct sock *sk)
1510{
1511        sock_owned_by_me(sk);
1512        return sk->sk_lock.owned;
1513}
1514
1515/* no reclassification while locks are held */
1516static inline bool sock_allow_reclassification(const struct sock *csk)
1517{
1518        struct sock *sk = (struct sock *)csk;
1519
1520        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1521}
1522
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524                      struct proto *prot, int kern);
1525void sk_free(struct sock *sk);
1526void sk_destruct(struct sock *sk);
1527struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1528void sk_free_unlock_clone(struct sock *sk);
1529
1530struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1531                             gfp_t priority);
1532void __sock_wfree(struct sk_buff *skb);
1533void sock_wfree(struct sk_buff *skb);
1534struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1535                             gfp_t priority);
1536void skb_orphan_partial(struct sk_buff *skb);
1537void sock_rfree(struct sk_buff *skb);
1538void sock_efree(struct sk_buff *skb);
1539#ifdef CONFIG_INET
1540void sock_edemux(struct sk_buff *skb);
1541#else
1542#define sock_edemux sock_efree
1543#endif
1544
1545int sock_setsockopt(struct socket *sock, int level, int op,
1546                    char __user *optval, unsigned int optlen);
1547
1548int sock_getsockopt(struct socket *sock, int level, int op,
1549                    char __user *optval, int __user *optlen);
1550struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1551                                    int noblock, int *errcode);
1552struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1553                                     unsigned long data_len, int noblock,
1554                                     int *errcode, int max_page_order);
1555void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1556void sock_kfree_s(struct sock *sk, void *mem, int size);
1557void sock_kzfree_s(struct sock *sk, void *mem, int size);
1558void sk_send_sigurg(struct sock *sk);
1559
1560struct sockcm_cookie {
1561        u32 mark;
1562        u16 tsflags;
1563};
1564
1565int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1566                     struct sockcm_cookie *sockc);
1567int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1568                   struct sockcm_cookie *sockc);
1569
1570/*
1571 * Functions to fill in entries in struct proto_ops when a protocol
1572 * does not implement a particular function.
1573 */
1574int sock_no_bind(struct socket *, struct sockaddr *, int);
1575int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1576int sock_no_socketpair(struct socket *, struct socket *);
1577int sock_no_accept(struct socket *, struct socket *, int, bool);
1578int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1579unsigned int sock_no_poll(struct file *, struct socket *,
1580                          struct poll_table_struct *);
1581int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1582int sock_no_listen(struct socket *, int);
1583int sock_no_shutdown(struct socket *, int);
1584int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1585int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1586int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1587int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1588int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1589int sock_no_mmap(struct file *file, struct socket *sock,
1590                 struct vm_area_struct *vma);
1591ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1592                         size_t size, int flags);
1593ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1594                                int offset, size_t size, int flags);
1595
1596/*
1597 * Functions to fill in entries in struct proto_ops when a protocol
1598 * uses the inet style.
1599 */
1600int sock_common_getsockopt(struct socket *sock, int level, int optname,
1601                                  char __user *optval, int __user *optlen);
1602int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1603                        int flags);
1604int sock_common_setsockopt(struct socket *sock, int level, int optname,
1605                                  char __user *optval, unsigned int optlen);
1606int compat_sock_common_getsockopt(struct socket *sock, int level,
1607                int optname, char __user *optval, int __user *optlen);
1608int compat_sock_common_setsockopt(struct socket *sock, int level,
1609                int optname, char __user *optval, unsigned int optlen);
1610
1611void sk_common_release(struct sock *sk);
1612
1613/*
1614 *      Default socket callbacks and setup code
1615 */
1616
1617/* Initialise core socket variables */
1618void sock_init_data(struct socket *sock, struct sock *sk);
1619
1620/*
1621 * Socket reference counting postulates.
1622 *
1623 * * Each user of socket SHOULD hold a reference count.
1624 * * Each access point to socket (an hash table bucket, reference from a list,
1625 *   running timer, skb in flight MUST hold a reference count.
1626 * * When reference count hits 0, it means it will never increase back.
1627 * * When reference count hits 0, it means that no references from
1628 *   outside exist to this socket and current process on current CPU
1629 *   is last user and may/should destroy this socket.
1630 * * sk_free is called from any context: process, BH, IRQ. When
1631 *   it is called, socket has no references from outside -> sk_free
1632 *   may release descendant resources allocated by the socket, but
1633 *   to the time when it is called, socket is NOT referenced by any
1634 *   hash tables, lists etc.
1635 * * Packets, delivered from outside (from network or from another process)
1636 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1637 *   when they sit in queue. Otherwise, packets will leak to hole, when
1638 *   socket is looked up by one cpu and unhasing is made by another CPU.
1639 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1640 *   (leak to backlog). Packet socket does all the processing inside
1641 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1642 *   use separate SMP lock, so that they are prone too.
1643 */
1644
1645/* Ungrab socket and destroy it, if it was the last reference. */
1646static inline void sock_put(struct sock *sk)
1647{
1648        if (refcount_dec_and_test(&sk->sk_refcnt))
1649                sk_free(sk);
1650}
1651/* Generic version of sock_put(), dealing with all sockets
1652 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1653 */
1654void sock_gen_put(struct sock *sk);
1655
1656int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1657                     unsigned int trim_cap, bool refcounted);
1658static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1659                                 const int nested)
1660{
1661        return __sk_receive_skb(sk, skb, nested, 1, true);
1662}
1663
1664static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1665{
1666        sk->sk_tx_queue_mapping = tx_queue;
1667}
1668
1669static inline void sk_tx_queue_clear(struct sock *sk)
1670{
1671        sk->sk_tx_queue_mapping = -1;
1672}
1673
1674static inline int sk_tx_queue_get(const struct sock *sk)
1675{
1676        return sk ? sk->sk_tx_queue_mapping : -1;
1677}
1678
1679static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1680{
1681        sk_tx_queue_clear(sk);
1682        sk->sk_socket = sock;
1683}
1684
1685static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1686{
1687        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1688        return &rcu_dereference_raw(sk->sk_wq)->wait;
1689}
1690/* Detach socket from process context.
1691 * Announce socket dead, detach it from wait queue and inode.
1692 * Note that parent inode held reference count on this struct sock,
1693 * we do not release it in this function, because protocol
1694 * probably wants some additional cleanups or even continuing
1695 * to work with this socket (TCP).
1696 */
1697static inline void sock_orphan(struct sock *sk)
1698{
1699        write_lock_bh(&sk->sk_callback_lock);
1700        sock_set_flag(sk, SOCK_DEAD);
1701        sk_set_socket(sk, NULL);
1702        sk->sk_wq  = NULL;
1703        write_unlock_bh(&sk->sk_callback_lock);
1704}
1705
1706static inline void sock_graft(struct sock *sk, struct socket *parent)
1707{
1708        WARN_ON(parent->sk);
1709        write_lock_bh(&sk->sk_callback_lock);
1710        sk->sk_wq = parent->wq;
1711        parent->sk = sk;
1712        sk_set_socket(sk, parent);
1713        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1714        security_sock_graft(sk, parent);
1715        write_unlock_bh(&sk->sk_callback_lock);
1716}
1717
1718kuid_t sock_i_uid(struct sock *sk);
1719unsigned long sock_i_ino(struct sock *sk);
1720
1721static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1722{
1723        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1724}
1725
1726static inline u32 net_tx_rndhash(void)
1727{
1728        u32 v = prandom_u32();
1729
1730        return v ?: 1;
1731}
1732
1733static inline void sk_set_txhash(struct sock *sk)
1734{
1735        sk->sk_txhash = net_tx_rndhash();
1736}
1737
1738static inline void sk_rethink_txhash(struct sock *sk)
1739{
1740        if (sk->sk_txhash)
1741                sk_set_txhash(sk);
1742}
1743
1744static inline struct dst_entry *
1745__sk_dst_get(struct sock *sk)
1746{
1747        return rcu_dereference_check(sk->sk_dst_cache,
1748                                     lockdep_sock_is_held(sk));
1749}
1750
1751static inline struct dst_entry *
1752sk_dst_get(struct sock *sk)
1753{
1754        struct dst_entry *dst;
1755
1756        rcu_read_lock();
1757        dst = rcu_dereference(sk->sk_dst_cache);
1758        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1759                dst = NULL;
1760        rcu_read_unlock();
1761        return dst;
1762}
1763
1764static inline void dst_negative_advice(struct sock *sk)
1765{
1766        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1767
1768        sk_rethink_txhash(sk);
1769
1770        if (dst && dst->ops->negative_advice) {
1771                ndst = dst->ops->negative_advice(dst);
1772
1773                if (ndst != dst) {
1774                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1775                        sk_tx_queue_clear(sk);
1776                        sk->sk_dst_pending_confirm = 0;
1777                }
1778        }
1779}
1780
1781static inline void
1782__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1783{
1784        struct dst_entry *old_dst;
1785
1786        sk_tx_queue_clear(sk);
1787        sk->sk_dst_pending_confirm = 0;
1788        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1789                                            lockdep_sock_is_held(sk));
1790        rcu_assign_pointer(sk->sk_dst_cache, dst);
1791        dst_release(old_dst);
1792}
1793
1794static inline void
1795sk_dst_set(struct sock *sk, struct dst_entry *dst)
1796{
1797        struct dst_entry *old_dst;
1798
1799        sk_tx_queue_clear(sk);
1800        sk->sk_dst_pending_confirm = 0;
1801        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1802        dst_release(old_dst);
1803}
1804
1805static inline void
1806__sk_dst_reset(struct sock *sk)
1807{
1808        __sk_dst_set(sk, NULL);
1809}
1810
1811static inline void
1812sk_dst_reset(struct sock *sk)
1813{
1814        sk_dst_set(sk, NULL);
1815}
1816
1817struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1818
1819struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1820
1821static inline void sk_dst_confirm(struct sock *sk)
1822{
1823        if (!sk->sk_dst_pending_confirm)
1824                sk->sk_dst_pending_confirm = 1;
1825}
1826
1827static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1828{
1829        if (skb_get_dst_pending_confirm(skb)) {
1830                struct sock *sk = skb->sk;
1831                unsigned long now = jiffies;
1832
1833                /* avoid dirtying neighbour */
1834                if (n->confirmed != now)
1835                        n->confirmed = now;
1836                if (sk && sk->sk_dst_pending_confirm)
1837                        sk->sk_dst_pending_confirm = 0;
1838        }
1839}
1840
1841bool sk_mc_loop(struct sock *sk);
1842
1843static inline bool sk_can_gso(const struct sock *sk)
1844{
1845        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1846}
1847
1848void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1849
1850static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1851{
1852        sk->sk_route_nocaps |= flags;
1853        sk->sk_route_caps &= ~flags;
1854}
1855
1856static inline bool sk_check_csum_caps(struct sock *sk)
1857{
1858        return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1859               (sk->sk_family == PF_INET &&
1860                (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1861               (sk->sk_family == PF_INET6 &&
1862                (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1863}
1864
1865static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1866                                           struct iov_iter *from, char *to,
1867                                           int copy, int offset)
1868{
1869        if (skb->ip_summed == CHECKSUM_NONE) {
1870                __wsum csum = 0;
1871                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1872                        return -EFAULT;
1873                skb->csum = csum_block_add(skb->csum, csum, offset);
1874        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1875                if (!copy_from_iter_full_nocache(to, copy, from))
1876                        return -EFAULT;
1877        } else if (!copy_from_iter_full(to, copy, from))
1878                return -EFAULT;
1879
1880        return 0;
1881}
1882
1883static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1884                                       struct iov_iter *from, int copy)
1885{
1886        int err, offset = skb->len;
1887
1888        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1889                                       copy, offset);
1890        if (err)
1891                __skb_trim(skb, offset);
1892
1893        return err;
1894}
1895
1896static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1897                                           struct sk_buff *skb,
1898                                           struct page *page,
1899                                           int off, int copy)
1900{
1901        int err;
1902
1903        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1904                                       copy, skb->len);
1905        if (err)
1906                return err;
1907
1908        skb->len             += copy;
1909        skb->data_len        += copy;
1910        skb->truesize        += copy;
1911        sk->sk_wmem_queued   += copy;
1912        sk_mem_charge(sk, copy);
1913        return 0;
1914}
1915
1916/**
1917 * sk_wmem_alloc_get - returns write allocations
1918 * @sk: socket
1919 *
1920 * Returns sk_wmem_alloc minus initial offset of one
1921 */
1922static inline int sk_wmem_alloc_get(const struct sock *sk)
1923{
1924        return refcount_read(&sk->sk_wmem_alloc) - 1;
1925}
1926
1927/**
1928 * sk_rmem_alloc_get - returns read allocations
1929 * @sk: socket
1930 *
1931 * Returns sk_rmem_alloc
1932 */
1933static inline int sk_rmem_alloc_get(const struct sock *sk)
1934{
1935        return atomic_read(&sk->sk_rmem_alloc);
1936}
1937
1938/**
1939 * sk_has_allocations - check if allocations are outstanding
1940 * @sk: socket
1941 *
1942 * Returns true if socket has write or read allocations
1943 */
1944static inline bool sk_has_allocations(const struct sock *sk)
1945{
1946        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1947}
1948
1949/**
1950 * skwq_has_sleeper - check if there are any waiting processes
1951 * @wq: struct socket_wq
1952 *
1953 * Returns true if socket_wq has waiting processes
1954 *
1955 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1956 * barrier call. They were added due to the race found within the tcp code.
1957 *
1958 * Consider following tcp code paths::
1959 *
1960 *   CPU1                CPU2
1961 *   sys_select          receive packet
1962 *   ...                 ...
1963 *   __add_wait_queue    update tp->rcv_nxt
1964 *   ...                 ...
1965 *   tp->rcv_nxt check   sock_def_readable
1966 *   ...                 {
1967 *   schedule               rcu_read_lock();
1968 *                          wq = rcu_dereference(sk->sk_wq);
1969 *                          if (wq && waitqueue_active(&wq->wait))
1970 *                              wake_up_interruptible(&wq->wait)
1971 *                          ...
1972 *                       }
1973 *
1974 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1975 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1976 * could then endup calling schedule and sleep forever if there are no more
1977 * data on the socket.
1978 *
1979 */
1980static inline bool skwq_has_sleeper(struct socket_wq *wq)
1981{
1982        return wq && wq_has_sleeper(&wq->wait);
1983}
1984
1985/**
1986 * sock_poll_wait - place memory barrier behind the poll_wait call.
1987 * @filp:           file
1988 * @wait_address:   socket wait queue
1989 * @p:              poll_table
1990 *
1991 * See the comments in the wq_has_sleeper function.
1992 */
1993static inline void sock_poll_wait(struct file *filp,
1994                wait_queue_head_t *wait_address, poll_table *p)
1995{
1996        if (!poll_does_not_wait(p) && wait_address) {
1997                poll_wait(filp, wait_address, p);
1998                /* We need to be sure we are in sync with the
1999                 * socket flags modification.
2000                 *
2001                 * This memory barrier is paired in the wq_has_sleeper.
2002                 */
2003                smp_mb();
2004        }
2005}
2006
2007static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2008{
2009        if (sk->sk_txhash) {
2010                skb->l4_hash = 1;
2011                skb->hash = sk->sk_txhash;
2012        }
2013}
2014
2015void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2016
2017/*
2018 *      Queue a received datagram if it will fit. Stream and sequenced
2019 *      protocols can't normally use this as they need to fit buffers in
2020 *      and play with them.
2021 *
2022 *      Inlined as it's very short and called for pretty much every
2023 *      packet ever received.
2024 */
2025static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2026{
2027        skb_orphan(skb);
2028        skb->sk = sk;
2029        skb->destructor = sock_rfree;
2030        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2031        sk_mem_charge(sk, skb->truesize);
2032}
2033
2034void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2035                    unsigned long expires);
2036
2037void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2038
2039int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2040                        struct sk_buff *skb, unsigned int flags,
2041                        void (*destructor)(struct sock *sk,
2042                                           struct sk_buff *skb));
2043int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2044int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2045
2046int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2047struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2048
2049/*
2050 *      Recover an error report and clear atomically
2051 */
2052
2053static inline int sock_error(struct sock *sk)
2054{
2055        int err;
2056        if (likely(!sk->sk_err))
2057                return 0;
2058        err = xchg(&sk->sk_err, 0);
2059        return -err;
2060}
2061
2062static inline unsigned long sock_wspace(struct sock *sk)
2063{
2064        int amt = 0;
2065
2066        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2067                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2068                if (amt < 0)
2069                        amt = 0;
2070        }
2071        return amt;
2072}
2073
2074/* Note:
2075 *  We use sk->sk_wq_raw, from contexts knowing this
2076 *  pointer is not NULL and cannot disappear/change.
2077 */
2078static inline void sk_set_bit(int nr, struct sock *sk)
2079{
2080        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2081            !sock_flag(sk, SOCK_FASYNC))
2082                return;
2083
2084        set_bit(nr, &sk->sk_wq_raw->flags);
2085}
2086
2087static inline void sk_clear_bit(int nr, struct sock *sk)
2088{
2089        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2090            !sock_flag(sk, SOCK_FASYNC))
2091                return;
2092
2093        clear_bit(nr, &sk->sk_wq_raw->flags);
2094}
2095
2096static inline void sk_wake_async(const struct sock *sk, int how, int band)
2097{
2098        if (sock_flag(sk, SOCK_FASYNC)) {
2099                rcu_read_lock();
2100                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2101                rcu_read_unlock();
2102        }
2103}
2104
2105/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2106 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2107 * Note: for send buffers, TCP works better if we can build two skbs at
2108 * minimum.
2109 */
2110#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2111
2112#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2113#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2114
2115static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2116{
2117        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2118                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2119                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2120        }
2121}
2122
2123struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2124                                    bool force_schedule);
2125
2126/**
2127 * sk_page_frag - return an appropriate page_frag
2128 * @sk: socket
2129 *
2130 * If socket allocation mode allows current thread to sleep, it means its
2131 * safe to use the per task page_frag instead of the per socket one.
2132 */
2133static inline struct page_frag *sk_page_frag(struct sock *sk)
2134{
2135        if (gfpflags_allow_blocking(sk->sk_allocation))
2136                return &current->task_frag;
2137
2138        return &sk->sk_frag;
2139}
2140
2141bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2142
2143/*
2144 *      Default write policy as shown to user space via poll/select/SIGIO
2145 */
2146static inline bool sock_writeable(const struct sock *sk)
2147{
2148        return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2149}
2150
2151static inline gfp_t gfp_any(void)
2152{
2153        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2154}
2155
2156static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2157{
2158        return noblock ? 0 : sk->sk_rcvtimeo;
2159}
2160
2161static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2162{
2163        return noblock ? 0 : sk->sk_sndtimeo;
2164}
2165
2166static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2167{
2168        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2169}
2170
2171/* Alas, with timeout socket operations are not restartable.
2172 * Compare this to poll().
2173 */
2174static inline int sock_intr_errno(long timeo)
2175{
2176        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2177}
2178
2179struct sock_skb_cb {
2180        u32 dropcount;
2181};
2182
2183/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2184 * using skb->cb[] would keep using it directly and utilize its
2185 * alignement guarantee.
2186 */
2187#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2188                            sizeof(struct sock_skb_cb)))
2189
2190#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2191                            SOCK_SKB_CB_OFFSET))
2192
2193#define sock_skb_cb_check_size(size) \
2194        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2195
2196static inline void
2197sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2198{
2199        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2200                                                atomic_read(&sk->sk_drops) : 0;
2201}
2202
2203static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2204{
2205        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2206
2207        atomic_add(segs, &sk->sk_drops);
2208}
2209
2210void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2211                           struct sk_buff *skb);
2212void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2213                             struct sk_buff *skb);
2214
2215static inline void
2216sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2217{
2218        ktime_t kt = skb->tstamp;
2219        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2220
2221        /*
2222         * generate control messages if
2223         * - receive time stamping in software requested
2224         * - software time stamp available and wanted
2225         * - hardware time stamps available and wanted
2226         */
2227        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2228            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2229            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2230            (hwtstamps->hwtstamp &&
2231             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2232                __sock_recv_timestamp(msg, sk, skb);
2233        else
2234                sk->sk_stamp = kt;
2235
2236        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2237                __sock_recv_wifi_status(msg, sk, skb);
2238}
2239
2240void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2241                              struct sk_buff *skb);
2242
2243#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2244static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2245                                          struct sk_buff *skb)
2246{
2247#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2248                           (1UL << SOCK_RCVTSTAMP))
2249#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2250                           SOF_TIMESTAMPING_RAW_HARDWARE)
2251
2252        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2253                __sock_recv_ts_and_drops(msg, sk, skb);
2254        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2255                sk->sk_stamp = skb->tstamp;
2256        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2257                sk->sk_stamp = 0;
2258}
2259
2260void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2261
2262/**
2263 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2264 * @sk:         socket sending this packet
2265 * @tsflags:    timestamping flags to use
2266 * @tx_flags:   completed with instructions for time stamping
2267 *
2268 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2269 */
2270static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2271                                     __u8 *tx_flags)
2272{
2273        if (unlikely(tsflags))
2274                __sock_tx_timestamp(tsflags, tx_flags);
2275        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2276                *tx_flags |= SKBTX_WIFI_STATUS;
2277}
2278
2279/**
2280 * sk_eat_skb - Release a skb if it is no longer needed
2281 * @sk: socket to eat this skb from
2282 * @skb: socket buffer to eat
2283 *
2284 * This routine must be called with interrupts disabled or with the socket
2285 * locked so that the sk_buff queue operation is ok.
2286*/
2287static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2288{
2289        __skb_unlink(skb, &sk->sk_receive_queue);
2290        __kfree_skb(skb);
2291}
2292
2293static inline
2294struct net *sock_net(const struct sock *sk)
2295{
2296        return read_pnet(&sk->sk_net);
2297}
2298
2299static inline
2300void sock_net_set(struct sock *sk, struct net *net)
2301{
2302        write_pnet(&sk->sk_net, net);
2303}
2304
2305static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2306{
2307        if (skb->sk) {
2308                struct sock *sk = skb->sk;
2309
2310                skb->destructor = NULL;
2311                skb->sk = NULL;
2312                return sk;
2313        }
2314        return NULL;
2315}
2316
2317/* This helper checks if a socket is a full socket,
2318 * ie _not_ a timewait or request socket.
2319 */
2320static inline bool sk_fullsock(const struct sock *sk)
2321{
2322        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2323}
2324
2325/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2326 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2327 */
2328static inline bool sk_listener(const struct sock *sk)
2329{
2330        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2331}
2332
2333/**
2334 * sk_state_load - read sk->sk_state for lockless contexts
2335 * @sk: socket pointer
2336 *
2337 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2338 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2339 */
2340static inline int sk_state_load(const struct sock *sk)
2341{
2342        return smp_load_acquire(&sk->sk_state);
2343}
2344
2345/**
2346 * sk_state_store - update sk->sk_state
2347 * @sk: socket pointer
2348 * @newstate: new state
2349 *
2350 * Paired with sk_state_load(). Should be used in contexts where
2351 * state change might impact lockless readers.
2352 */
2353static inline void sk_state_store(struct sock *sk, int newstate)
2354{
2355        smp_store_release(&sk->sk_state, newstate);
2356}
2357
2358void sock_enable_timestamp(struct sock *sk, int flag);
2359int sock_get_timestamp(struct sock *, struct timeval __user *);
2360int sock_get_timestampns(struct sock *, struct timespec __user *);
2361int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2362                       int type);
2363
2364bool sk_ns_capable(const struct sock *sk,
2365                   struct user_namespace *user_ns, int cap);
2366bool sk_capable(const struct sock *sk, int cap);
2367bool sk_net_capable(const struct sock *sk, int cap);
2368
2369void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2370
2371/* Take into consideration the size of the struct sk_buff overhead in the
2372 * determination of these values, since that is non-constant across
2373 * platforms.  This makes socket queueing behavior and performance
2374 * not depend upon such differences.
2375 */
2376#define _SK_MEM_PACKETS         256
2377#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2378#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2379#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2380
2381extern __u32 sysctl_wmem_max;
2382extern __u32 sysctl_rmem_max;
2383
2384extern int sysctl_tstamp_allow_data;
2385extern int sysctl_optmem_max;
2386
2387extern __u32 sysctl_wmem_default;
2388extern __u32 sysctl_rmem_default;
2389
2390#endif  /* _SOCK_H */
2391