linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/sched/autogroup.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/coredump.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/numa_balancing.h>
  20#include <linux/sched/stat.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/sched/cputime.h>
  24#include <linux/rtmutex.h>
  25#include <linux/init.h>
  26#include <linux/unistd.h>
  27#include <linux/module.h>
  28#include <linux/vmalloc.h>
  29#include <linux/completion.h>
  30#include <linux/personality.h>
  31#include <linux/mempolicy.h>
  32#include <linux/sem.h>
  33#include <linux/file.h>
  34#include <linux/fdtable.h>
  35#include <linux/iocontext.h>
  36#include <linux/key.h>
  37#include <linux/binfmts.h>
  38#include <linux/mman.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/hmm.h>
  41#include <linux/fs.h>
  42#include <linux/mm.h>
  43#include <linux/vmacache.h>
  44#include <linux/nsproxy.h>
  45#include <linux/capability.h>
  46#include <linux/cpu.h>
  47#include <linux/cgroup.h>
  48#include <linux/security.h>
  49#include <linux/hugetlb.h>
  50#include <linux/seccomp.h>
  51#include <linux/swap.h>
  52#include <linux/syscalls.h>
  53#include <linux/jiffies.h>
  54#include <linux/futex.h>
  55#include <linux/compat.h>
  56#include <linux/kthread.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/rcupdate.h>
  59#include <linux/ptrace.h>
  60#include <linux/mount.h>
  61#include <linux/audit.h>
  62#include <linux/memcontrol.h>
  63#include <linux/ftrace.h>
  64#include <linux/proc_fs.h>
  65#include <linux/profile.h>
  66#include <linux/rmap.h>
  67#include <linux/ksm.h>
  68#include <linux/acct.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/tsacct_kern.h>
  71#include <linux/cn_proc.h>
  72#include <linux/freezer.h>
  73#include <linux/delayacct.h>
  74#include <linux/taskstats_kern.h>
  75#include <linux/random.h>
  76#include <linux/tty.h>
  77#include <linux/blkdev.h>
  78#include <linux/fs_struct.h>
  79#include <linux/magic.h>
  80#include <linux/perf_event.h>
  81#include <linux/posix-timers.h>
  82#include <linux/user-return-notifier.h>
  83#include <linux/oom.h>
  84#include <linux/khugepaged.h>
  85#include <linux/signalfd.h>
  86#include <linux/uprobes.h>
  87#include <linux/aio.h>
  88#include <linux/compiler.h>
  89#include <linux/sysctl.h>
  90#include <linux/kcov.h>
  91#include <linux/livepatch.h>
  92#include <linux/thread_info.h>
  93
  94#include <asm/pgtable.h>
  95#include <asm/pgalloc.h>
  96#include <linux/uaccess.h>
  97#include <asm/mmu_context.h>
  98#include <asm/cacheflush.h>
  99#include <asm/tlbflush.h>
 100
 101#include <trace/events/sched.h>
 102
 103#define CREATE_TRACE_POINTS
 104#include <trace/events/task.h>
 105
 106/*
 107 * Minimum number of threads to boot the kernel
 108 */
 109#define MIN_THREADS 20
 110
 111/*
 112 * Maximum number of threads
 113 */
 114#define MAX_THREADS FUTEX_TID_MASK
 115
 116/*
 117 * Protected counters by write_lock_irq(&tasklist_lock)
 118 */
 119unsigned long total_forks;      /* Handle normal Linux uptimes. */
 120int nr_threads;                 /* The idle threads do not count.. */
 121
 122int max_threads;                /* tunable limit on nr_threads */
 123
 124DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 125
 126__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 127
 128#ifdef CONFIG_PROVE_RCU
 129int lockdep_tasklist_lock_is_held(void)
 130{
 131        return lockdep_is_held(&tasklist_lock);
 132}
 133EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 134#endif /* #ifdef CONFIG_PROVE_RCU */
 135
 136int nr_processes(void)
 137{
 138        int cpu;
 139        int total = 0;
 140
 141        for_each_possible_cpu(cpu)
 142                total += per_cpu(process_counts, cpu);
 143
 144        return total;
 145}
 146
 147void __weak arch_release_task_struct(struct task_struct *tsk)
 148{
 149}
 150
 151#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 152static struct kmem_cache *task_struct_cachep;
 153
 154static inline struct task_struct *alloc_task_struct_node(int node)
 155{
 156        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 157}
 158
 159static inline void free_task_struct(struct task_struct *tsk)
 160{
 161        kmem_cache_free(task_struct_cachep, tsk);
 162}
 163#endif
 164
 165void __weak arch_release_thread_stack(unsigned long *stack)
 166{
 167}
 168
 169#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 170
 171/*
 172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 173 * kmemcache based allocator.
 174 */
 175# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 176
 177#ifdef CONFIG_VMAP_STACK
 178/*
 179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 180 * flush.  Try to minimize the number of calls by caching stacks.
 181 */
 182#define NR_CACHED_STACKS 2
 183static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 184
 185static int free_vm_stack_cache(unsigned int cpu)
 186{
 187        struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 188        int i;
 189
 190        for (i = 0; i < NR_CACHED_STACKS; i++) {
 191                struct vm_struct *vm_stack = cached_vm_stacks[i];
 192
 193                if (!vm_stack)
 194                        continue;
 195
 196                vfree(vm_stack->addr);
 197                cached_vm_stacks[i] = NULL;
 198        }
 199
 200        return 0;
 201}
 202#endif
 203
 204static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 205{
 206#ifdef CONFIG_VMAP_STACK
 207        void *stack;
 208        int i;
 209
 210        for (i = 0; i < NR_CACHED_STACKS; i++) {
 211                struct vm_struct *s;
 212
 213                s = this_cpu_xchg(cached_stacks[i], NULL);
 214
 215                if (!s)
 216                        continue;
 217
 218#ifdef CONFIG_DEBUG_KMEMLEAK
 219                /* Clear stale pointers from reused stack. */
 220                memset(s->addr, 0, THREAD_SIZE);
 221#endif
 222                tsk->stack_vm_area = s;
 223                return s->addr;
 224        }
 225
 226        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 227                                     VMALLOC_START, VMALLOC_END,
 228                                     THREADINFO_GFP,
 229                                     PAGE_KERNEL,
 230                                     0, node, __builtin_return_address(0));
 231
 232        /*
 233         * We can't call find_vm_area() in interrupt context, and
 234         * free_thread_stack() can be called in interrupt context,
 235         * so cache the vm_struct.
 236         */
 237        if (stack)
 238                tsk->stack_vm_area = find_vm_area(stack);
 239        return stack;
 240#else
 241        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 242                                             THREAD_SIZE_ORDER);
 243
 244        return page ? page_address(page) : NULL;
 245#endif
 246}
 247
 248static inline void free_thread_stack(struct task_struct *tsk)
 249{
 250#ifdef CONFIG_VMAP_STACK
 251        if (task_stack_vm_area(tsk)) {
 252                int i;
 253
 254                for (i = 0; i < NR_CACHED_STACKS; i++) {
 255                        if (this_cpu_cmpxchg(cached_stacks[i],
 256                                        NULL, tsk->stack_vm_area) != NULL)
 257                                continue;
 258
 259                        return;
 260                }
 261
 262                vfree_atomic(tsk->stack);
 263                return;
 264        }
 265#endif
 266
 267        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 268}
 269# else
 270static struct kmem_cache *thread_stack_cache;
 271
 272static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 273                                                  int node)
 274{
 275        return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 276}
 277
 278static void free_thread_stack(struct task_struct *tsk)
 279{
 280        kmem_cache_free(thread_stack_cache, tsk->stack);
 281}
 282
 283void thread_stack_cache_init(void)
 284{
 285        thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
 286                                              THREAD_SIZE, 0, NULL);
 287        BUG_ON(thread_stack_cache == NULL);
 288}
 289# endif
 290#endif
 291
 292/* SLAB cache for signal_struct structures (tsk->signal) */
 293static struct kmem_cache *signal_cachep;
 294
 295/* SLAB cache for sighand_struct structures (tsk->sighand) */
 296struct kmem_cache *sighand_cachep;
 297
 298/* SLAB cache for files_struct structures (tsk->files) */
 299struct kmem_cache *files_cachep;
 300
 301/* SLAB cache for fs_struct structures (tsk->fs) */
 302struct kmem_cache *fs_cachep;
 303
 304/* SLAB cache for vm_area_struct structures */
 305struct kmem_cache *vm_area_cachep;
 306
 307/* SLAB cache for mm_struct structures (tsk->mm) */
 308static struct kmem_cache *mm_cachep;
 309
 310static void account_kernel_stack(struct task_struct *tsk, int account)
 311{
 312        void *stack = task_stack_page(tsk);
 313        struct vm_struct *vm = task_stack_vm_area(tsk);
 314
 315        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 316
 317        if (vm) {
 318                int i;
 319
 320                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 321
 322                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 323                        mod_zone_page_state(page_zone(vm->pages[i]),
 324                                            NR_KERNEL_STACK_KB,
 325                                            PAGE_SIZE / 1024 * account);
 326                }
 327
 328                /* All stack pages belong to the same memcg. */
 329                mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 330                                     account * (THREAD_SIZE / 1024));
 331        } else {
 332                /*
 333                 * All stack pages are in the same zone and belong to the
 334                 * same memcg.
 335                 */
 336                struct page *first_page = virt_to_page(stack);
 337
 338                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 339                                    THREAD_SIZE / 1024 * account);
 340
 341                mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 342                                     account * (THREAD_SIZE / 1024));
 343        }
 344}
 345
 346static void release_task_stack(struct task_struct *tsk)
 347{
 348        if (WARN_ON(tsk->state != TASK_DEAD))
 349                return;  /* Better to leak the stack than to free prematurely */
 350
 351        account_kernel_stack(tsk, -1);
 352        arch_release_thread_stack(tsk->stack);
 353        free_thread_stack(tsk);
 354        tsk->stack = NULL;
 355#ifdef CONFIG_VMAP_STACK
 356        tsk->stack_vm_area = NULL;
 357#endif
 358}
 359
 360#ifdef CONFIG_THREAD_INFO_IN_TASK
 361void put_task_stack(struct task_struct *tsk)
 362{
 363        if (atomic_dec_and_test(&tsk->stack_refcount))
 364                release_task_stack(tsk);
 365}
 366#endif
 367
 368void free_task(struct task_struct *tsk)
 369{
 370#ifndef CONFIG_THREAD_INFO_IN_TASK
 371        /*
 372         * The task is finally done with both the stack and thread_info,
 373         * so free both.
 374         */
 375        release_task_stack(tsk);
 376#else
 377        /*
 378         * If the task had a separate stack allocation, it should be gone
 379         * by now.
 380         */
 381        WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 382#endif
 383        rt_mutex_debug_task_free(tsk);
 384        ftrace_graph_exit_task(tsk);
 385        put_seccomp_filter(tsk);
 386        arch_release_task_struct(tsk);
 387        if (tsk->flags & PF_KTHREAD)
 388                free_kthread_struct(tsk);
 389        free_task_struct(tsk);
 390}
 391EXPORT_SYMBOL(free_task);
 392
 393static inline void free_signal_struct(struct signal_struct *sig)
 394{
 395        taskstats_tgid_free(sig);
 396        sched_autogroup_exit(sig);
 397        /*
 398         * __mmdrop is not safe to call from softirq context on x86 due to
 399         * pgd_dtor so postpone it to the async context
 400         */
 401        if (sig->oom_mm)
 402                mmdrop_async(sig->oom_mm);
 403        kmem_cache_free(signal_cachep, sig);
 404}
 405
 406static inline void put_signal_struct(struct signal_struct *sig)
 407{
 408        if (atomic_dec_and_test(&sig->sigcnt))
 409                free_signal_struct(sig);
 410}
 411
 412void __put_task_struct(struct task_struct *tsk)
 413{
 414        WARN_ON(!tsk->exit_state);
 415        WARN_ON(atomic_read(&tsk->usage));
 416        WARN_ON(tsk == current);
 417
 418        cgroup_free(tsk);
 419        task_numa_free(tsk);
 420        security_task_free(tsk);
 421        exit_creds(tsk);
 422        delayacct_tsk_free(tsk);
 423        put_signal_struct(tsk->signal);
 424
 425        if (!profile_handoff_task(tsk))
 426                free_task(tsk);
 427}
 428EXPORT_SYMBOL_GPL(__put_task_struct);
 429
 430void __init __weak arch_task_cache_init(void) { }
 431
 432/*
 433 * set_max_threads
 434 */
 435static void set_max_threads(unsigned int max_threads_suggested)
 436{
 437        u64 threads;
 438
 439        /*
 440         * The number of threads shall be limited such that the thread
 441         * structures may only consume a small part of the available memory.
 442         */
 443        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 444                threads = MAX_THREADS;
 445        else
 446                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 447                                    (u64) THREAD_SIZE * 8UL);
 448
 449        if (threads > max_threads_suggested)
 450                threads = max_threads_suggested;
 451
 452        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 453}
 454
 455#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 456/* Initialized by the architecture: */
 457int arch_task_struct_size __read_mostly;
 458#endif
 459
 460void __init fork_init(void)
 461{
 462        int i;
 463#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 464#ifndef ARCH_MIN_TASKALIGN
 465#define ARCH_MIN_TASKALIGN      0
 466#endif
 467        int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 468
 469        /* create a slab on which task_structs can be allocated */
 470        task_struct_cachep = kmem_cache_create("task_struct",
 471                        arch_task_struct_size, align,
 472                        SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 473#endif
 474
 475        /* do the arch specific task caches init */
 476        arch_task_cache_init();
 477
 478        set_max_threads(MAX_THREADS);
 479
 480        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 481        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 482        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 483                init_task.signal->rlim[RLIMIT_NPROC];
 484
 485        for (i = 0; i < UCOUNT_COUNTS; i++) {
 486                init_user_ns.ucount_max[i] = max_threads/2;
 487        }
 488
 489#ifdef CONFIG_VMAP_STACK
 490        cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 491                          NULL, free_vm_stack_cache);
 492#endif
 493
 494        lockdep_init_task(&init_task);
 495}
 496
 497int __weak arch_dup_task_struct(struct task_struct *dst,
 498                                               struct task_struct *src)
 499{
 500        *dst = *src;
 501        return 0;
 502}
 503
 504void set_task_stack_end_magic(struct task_struct *tsk)
 505{
 506        unsigned long *stackend;
 507
 508        stackend = end_of_stack(tsk);
 509        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 510}
 511
 512static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 513{
 514        struct task_struct *tsk;
 515        unsigned long *stack;
 516        struct vm_struct *stack_vm_area;
 517        int err;
 518
 519        if (node == NUMA_NO_NODE)
 520                node = tsk_fork_get_node(orig);
 521        tsk = alloc_task_struct_node(node);
 522        if (!tsk)
 523                return NULL;
 524
 525        stack = alloc_thread_stack_node(tsk, node);
 526        if (!stack)
 527                goto free_tsk;
 528
 529        stack_vm_area = task_stack_vm_area(tsk);
 530
 531        err = arch_dup_task_struct(tsk, orig);
 532
 533        /*
 534         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 535         * sure they're properly initialized before using any stack-related
 536         * functions again.
 537         */
 538        tsk->stack = stack;
 539#ifdef CONFIG_VMAP_STACK
 540        tsk->stack_vm_area = stack_vm_area;
 541#endif
 542#ifdef CONFIG_THREAD_INFO_IN_TASK
 543        atomic_set(&tsk->stack_refcount, 1);
 544#endif
 545
 546        if (err)
 547                goto free_stack;
 548
 549#ifdef CONFIG_SECCOMP
 550        /*
 551         * We must handle setting up seccomp filters once we're under
 552         * the sighand lock in case orig has changed between now and
 553         * then. Until then, filter must be NULL to avoid messing up
 554         * the usage counts on the error path calling free_task.
 555         */
 556        tsk->seccomp.filter = NULL;
 557#endif
 558
 559        setup_thread_stack(tsk, orig);
 560        clear_user_return_notifier(tsk);
 561        clear_tsk_need_resched(tsk);
 562        set_task_stack_end_magic(tsk);
 563
 564#ifdef CONFIG_CC_STACKPROTECTOR
 565        tsk->stack_canary = get_random_canary();
 566#endif
 567
 568        /*
 569         * One for us, one for whoever does the "release_task()" (usually
 570         * parent)
 571         */
 572        atomic_set(&tsk->usage, 2);
 573#ifdef CONFIG_BLK_DEV_IO_TRACE
 574        tsk->btrace_seq = 0;
 575#endif
 576        tsk->splice_pipe = NULL;
 577        tsk->task_frag.page = NULL;
 578        tsk->wake_q.next = NULL;
 579
 580        account_kernel_stack(tsk, 1);
 581
 582        kcov_task_init(tsk);
 583
 584#ifdef CONFIG_FAULT_INJECTION
 585        tsk->fail_nth = 0;
 586#endif
 587
 588        return tsk;
 589
 590free_stack:
 591        free_thread_stack(tsk);
 592free_tsk:
 593        free_task_struct(tsk);
 594        return NULL;
 595}
 596
 597#ifdef CONFIG_MMU
 598static __latent_entropy int dup_mmap(struct mm_struct *mm,
 599                                        struct mm_struct *oldmm)
 600{
 601        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 602        struct rb_node **rb_link, *rb_parent;
 603        int retval;
 604        unsigned long charge;
 605        LIST_HEAD(uf);
 606
 607        uprobe_start_dup_mmap();
 608        if (down_write_killable(&oldmm->mmap_sem)) {
 609                retval = -EINTR;
 610                goto fail_uprobe_end;
 611        }
 612        flush_cache_dup_mm(oldmm);
 613        uprobe_dup_mmap(oldmm, mm);
 614        /*
 615         * Not linked in yet - no deadlock potential:
 616         */
 617        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 618
 619        /* No ordering required: file already has been exposed. */
 620        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 621
 622        mm->total_vm = oldmm->total_vm;
 623        mm->data_vm = oldmm->data_vm;
 624        mm->exec_vm = oldmm->exec_vm;
 625        mm->stack_vm = oldmm->stack_vm;
 626
 627        rb_link = &mm->mm_rb.rb_node;
 628        rb_parent = NULL;
 629        pprev = &mm->mmap;
 630        retval = ksm_fork(mm, oldmm);
 631        if (retval)
 632                goto out;
 633        retval = khugepaged_fork(mm, oldmm);
 634        if (retval)
 635                goto out;
 636
 637        prev = NULL;
 638        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 639                struct file *file;
 640
 641                if (mpnt->vm_flags & VM_DONTCOPY) {
 642                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 643                        continue;
 644                }
 645                charge = 0;
 646                if (mpnt->vm_flags & VM_ACCOUNT) {
 647                        unsigned long len = vma_pages(mpnt);
 648
 649                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 650                                goto fail_nomem;
 651                        charge = len;
 652                }
 653                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 654                if (!tmp)
 655                        goto fail_nomem;
 656                *tmp = *mpnt;
 657                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 658                retval = vma_dup_policy(mpnt, tmp);
 659                if (retval)
 660                        goto fail_nomem_policy;
 661                tmp->vm_mm = mm;
 662                retval = dup_userfaultfd(tmp, &uf);
 663                if (retval)
 664                        goto fail_nomem_anon_vma_fork;
 665                if (tmp->vm_flags & VM_WIPEONFORK) {
 666                        /* VM_WIPEONFORK gets a clean slate in the child. */
 667                        tmp->anon_vma = NULL;
 668                        if (anon_vma_prepare(tmp))
 669                                goto fail_nomem_anon_vma_fork;
 670                } else if (anon_vma_fork(tmp, mpnt))
 671                        goto fail_nomem_anon_vma_fork;
 672                tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 673                tmp->vm_next = tmp->vm_prev = NULL;
 674                file = tmp->vm_file;
 675                if (file) {
 676                        struct inode *inode = file_inode(file);
 677                        struct address_space *mapping = file->f_mapping;
 678
 679                        get_file(file);
 680                        if (tmp->vm_flags & VM_DENYWRITE)
 681                                atomic_dec(&inode->i_writecount);
 682                        i_mmap_lock_write(mapping);
 683                        if (tmp->vm_flags & VM_SHARED)
 684                                atomic_inc(&mapping->i_mmap_writable);
 685                        flush_dcache_mmap_lock(mapping);
 686                        /* insert tmp into the share list, just after mpnt */
 687                        vma_interval_tree_insert_after(tmp, mpnt,
 688                                        &mapping->i_mmap);
 689                        flush_dcache_mmap_unlock(mapping);
 690                        i_mmap_unlock_write(mapping);
 691                }
 692
 693                /*
 694                 * Clear hugetlb-related page reserves for children. This only
 695                 * affects MAP_PRIVATE mappings. Faults generated by the child
 696                 * are not guaranteed to succeed, even if read-only
 697                 */
 698                if (is_vm_hugetlb_page(tmp))
 699                        reset_vma_resv_huge_pages(tmp);
 700
 701                /*
 702                 * Link in the new vma and copy the page table entries.
 703                 */
 704                *pprev = tmp;
 705                pprev = &tmp->vm_next;
 706                tmp->vm_prev = prev;
 707                prev = tmp;
 708
 709                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 710                rb_link = &tmp->vm_rb.rb_right;
 711                rb_parent = &tmp->vm_rb;
 712
 713                mm->map_count++;
 714                if (!(tmp->vm_flags & VM_WIPEONFORK))
 715                        retval = copy_page_range(mm, oldmm, mpnt);
 716
 717                if (tmp->vm_ops && tmp->vm_ops->open)
 718                        tmp->vm_ops->open(tmp);
 719
 720                if (retval)
 721                        goto out;
 722        }
 723        /* a new mm has just been created */
 724        arch_dup_mmap(oldmm, mm);
 725        retval = 0;
 726out:
 727        up_write(&mm->mmap_sem);
 728        flush_tlb_mm(oldmm);
 729        up_write(&oldmm->mmap_sem);
 730        dup_userfaultfd_complete(&uf);
 731fail_uprobe_end:
 732        uprobe_end_dup_mmap();
 733        return retval;
 734fail_nomem_anon_vma_fork:
 735        mpol_put(vma_policy(tmp));
 736fail_nomem_policy:
 737        kmem_cache_free(vm_area_cachep, tmp);
 738fail_nomem:
 739        retval = -ENOMEM;
 740        vm_unacct_memory(charge);
 741        goto out;
 742}
 743
 744static inline int mm_alloc_pgd(struct mm_struct *mm)
 745{
 746        mm->pgd = pgd_alloc(mm);
 747        if (unlikely(!mm->pgd))
 748                return -ENOMEM;
 749        return 0;
 750}
 751
 752static inline void mm_free_pgd(struct mm_struct *mm)
 753{
 754        pgd_free(mm, mm->pgd);
 755}
 756#else
 757static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 758{
 759        down_write(&oldmm->mmap_sem);
 760        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 761        up_write(&oldmm->mmap_sem);
 762        return 0;
 763}
 764#define mm_alloc_pgd(mm)        (0)
 765#define mm_free_pgd(mm)
 766#endif /* CONFIG_MMU */
 767
 768__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 769
 770#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 771#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 772
 773static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 774
 775static int __init coredump_filter_setup(char *s)
 776{
 777        default_dump_filter =
 778                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 779                MMF_DUMP_FILTER_MASK;
 780        return 1;
 781}
 782
 783__setup("coredump_filter=", coredump_filter_setup);
 784
 785#include <linux/init_task.h>
 786
 787static void mm_init_aio(struct mm_struct *mm)
 788{
 789#ifdef CONFIG_AIO
 790        spin_lock_init(&mm->ioctx_lock);
 791        mm->ioctx_table = NULL;
 792#endif
 793}
 794
 795static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 796{
 797#ifdef CONFIG_MEMCG
 798        mm->owner = p;
 799#endif
 800}
 801
 802static void mm_init_uprobes_state(struct mm_struct *mm)
 803{
 804#ifdef CONFIG_UPROBES
 805        mm->uprobes_state.xol_area = NULL;
 806#endif
 807}
 808
 809static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 810        struct user_namespace *user_ns)
 811{
 812        mm->mmap = NULL;
 813        mm->mm_rb = RB_ROOT;
 814        mm->vmacache_seqnum = 0;
 815        atomic_set(&mm->mm_users, 1);
 816        atomic_set(&mm->mm_count, 1);
 817        init_rwsem(&mm->mmap_sem);
 818        INIT_LIST_HEAD(&mm->mmlist);
 819        mm->core_state = NULL;
 820        atomic_long_set(&mm->nr_ptes, 0);
 821        mm_nr_pmds_init(mm);
 822        mm->map_count = 0;
 823        mm->locked_vm = 0;
 824        mm->pinned_vm = 0;
 825        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 826        spin_lock_init(&mm->page_table_lock);
 827        mm_init_cpumask(mm);
 828        mm_init_aio(mm);
 829        mm_init_owner(mm, p);
 830        RCU_INIT_POINTER(mm->exe_file, NULL);
 831        mmu_notifier_mm_init(mm);
 832        hmm_mm_init(mm);
 833        init_tlb_flush_pending(mm);
 834#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 835        mm->pmd_huge_pte = NULL;
 836#endif
 837        mm_init_uprobes_state(mm);
 838
 839        if (current->mm) {
 840                mm->flags = current->mm->flags & MMF_INIT_MASK;
 841                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 842        } else {
 843                mm->flags = default_dump_filter;
 844                mm->def_flags = 0;
 845        }
 846
 847        if (mm_alloc_pgd(mm))
 848                goto fail_nopgd;
 849
 850        if (init_new_context(p, mm))
 851                goto fail_nocontext;
 852
 853        mm->user_ns = get_user_ns(user_ns);
 854        return mm;
 855
 856fail_nocontext:
 857        mm_free_pgd(mm);
 858fail_nopgd:
 859        free_mm(mm);
 860        return NULL;
 861}
 862
 863static void check_mm(struct mm_struct *mm)
 864{
 865        int i;
 866
 867        for (i = 0; i < NR_MM_COUNTERS; i++) {
 868                long x = atomic_long_read(&mm->rss_stat.count[i]);
 869
 870                if (unlikely(x))
 871                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 872                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 873        }
 874
 875        if (atomic_long_read(&mm->nr_ptes))
 876                pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 877                                atomic_long_read(&mm->nr_ptes));
 878        if (mm_nr_pmds(mm))
 879                pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 880                                mm_nr_pmds(mm));
 881
 882#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 883        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 884#endif
 885}
 886
 887/*
 888 * Allocate and initialize an mm_struct.
 889 */
 890struct mm_struct *mm_alloc(void)
 891{
 892        struct mm_struct *mm;
 893
 894        mm = allocate_mm();
 895        if (!mm)
 896                return NULL;
 897
 898        memset(mm, 0, sizeof(*mm));
 899        return mm_init(mm, current, current_user_ns());
 900}
 901
 902/*
 903 * Called when the last reference to the mm
 904 * is dropped: either by a lazy thread or by
 905 * mmput. Free the page directory and the mm.
 906 */
 907void __mmdrop(struct mm_struct *mm)
 908{
 909        BUG_ON(mm == &init_mm);
 910        mm_free_pgd(mm);
 911        destroy_context(mm);
 912        hmm_mm_destroy(mm);
 913        mmu_notifier_mm_destroy(mm);
 914        check_mm(mm);
 915        put_user_ns(mm->user_ns);
 916        free_mm(mm);
 917}
 918EXPORT_SYMBOL_GPL(__mmdrop);
 919
 920static inline void __mmput(struct mm_struct *mm)
 921{
 922        VM_BUG_ON(atomic_read(&mm->mm_users));
 923
 924        uprobe_clear_state(mm);
 925        exit_aio(mm);
 926        ksm_exit(mm);
 927        khugepaged_exit(mm); /* must run before exit_mmap */
 928        exit_mmap(mm);
 929        mm_put_huge_zero_page(mm);
 930        set_mm_exe_file(mm, NULL);
 931        if (!list_empty(&mm->mmlist)) {
 932                spin_lock(&mmlist_lock);
 933                list_del(&mm->mmlist);
 934                spin_unlock(&mmlist_lock);
 935        }
 936        if (mm->binfmt)
 937                module_put(mm->binfmt->module);
 938        mmdrop(mm);
 939}
 940
 941/*
 942 * Decrement the use count and release all resources for an mm.
 943 */
 944void mmput(struct mm_struct *mm)
 945{
 946        might_sleep();
 947
 948        if (atomic_dec_and_test(&mm->mm_users))
 949                __mmput(mm);
 950}
 951EXPORT_SYMBOL_GPL(mmput);
 952
 953#ifdef CONFIG_MMU
 954static void mmput_async_fn(struct work_struct *work)
 955{
 956        struct mm_struct *mm = container_of(work, struct mm_struct,
 957                                            async_put_work);
 958
 959        __mmput(mm);
 960}
 961
 962void mmput_async(struct mm_struct *mm)
 963{
 964        if (atomic_dec_and_test(&mm->mm_users)) {
 965                INIT_WORK(&mm->async_put_work, mmput_async_fn);
 966                schedule_work(&mm->async_put_work);
 967        }
 968}
 969#endif
 970
 971/**
 972 * set_mm_exe_file - change a reference to the mm's executable file
 973 *
 974 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 975 *
 976 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 977 * invocations: in mmput() nobody alive left, in execve task is single
 978 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 979 * mm->exe_file, but does so without using set_mm_exe_file() in order
 980 * to do avoid the need for any locks.
 981 */
 982void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 983{
 984        struct file *old_exe_file;
 985
 986        /*
 987         * It is safe to dereference the exe_file without RCU as
 988         * this function is only called if nobody else can access
 989         * this mm -- see comment above for justification.
 990         */
 991        old_exe_file = rcu_dereference_raw(mm->exe_file);
 992
 993        if (new_exe_file)
 994                get_file(new_exe_file);
 995        rcu_assign_pointer(mm->exe_file, new_exe_file);
 996        if (old_exe_file)
 997                fput(old_exe_file);
 998}
 999
1000/**
1001 * get_mm_exe_file - acquire a reference to the mm's executable file
1002 *
1003 * Returns %NULL if mm has no associated executable file.
1004 * User must release file via fput().
1005 */
1006struct file *get_mm_exe_file(struct mm_struct *mm)
1007{
1008        struct file *exe_file;
1009
1010        rcu_read_lock();
1011        exe_file = rcu_dereference(mm->exe_file);
1012        if (exe_file && !get_file_rcu(exe_file))
1013                exe_file = NULL;
1014        rcu_read_unlock();
1015        return exe_file;
1016}
1017EXPORT_SYMBOL(get_mm_exe_file);
1018
1019/**
1020 * get_task_exe_file - acquire a reference to the task's executable file
1021 *
1022 * Returns %NULL if task's mm (if any) has no associated executable file or
1023 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1024 * User must release file via fput().
1025 */
1026struct file *get_task_exe_file(struct task_struct *task)
1027{
1028        struct file *exe_file = NULL;
1029        struct mm_struct *mm;
1030
1031        task_lock(task);
1032        mm = task->mm;
1033        if (mm) {
1034                if (!(task->flags & PF_KTHREAD))
1035                        exe_file = get_mm_exe_file(mm);
1036        }
1037        task_unlock(task);
1038        return exe_file;
1039}
1040EXPORT_SYMBOL(get_task_exe_file);
1041
1042/**
1043 * get_task_mm - acquire a reference to the task's mm
1044 *
1045 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1046 * this kernel workthread has transiently adopted a user mm with use_mm,
1047 * to do its AIO) is not set and if so returns a reference to it, after
1048 * bumping up the use count.  User must release the mm via mmput()
1049 * after use.  Typically used by /proc and ptrace.
1050 */
1051struct mm_struct *get_task_mm(struct task_struct *task)
1052{
1053        struct mm_struct *mm;
1054
1055        task_lock(task);
1056        mm = task->mm;
1057        if (mm) {
1058                if (task->flags & PF_KTHREAD)
1059                        mm = NULL;
1060                else
1061                        mmget(mm);
1062        }
1063        task_unlock(task);
1064        return mm;
1065}
1066EXPORT_SYMBOL_GPL(get_task_mm);
1067
1068struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1069{
1070        struct mm_struct *mm;
1071        int err;
1072
1073        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1074        if (err)
1075                return ERR_PTR(err);
1076
1077        mm = get_task_mm(task);
1078        if (mm && mm != current->mm &&
1079                        !ptrace_may_access(task, mode)) {
1080                mmput(mm);
1081                mm = ERR_PTR(-EACCES);
1082        }
1083        mutex_unlock(&task->signal->cred_guard_mutex);
1084
1085        return mm;
1086}
1087
1088static void complete_vfork_done(struct task_struct *tsk)
1089{
1090        struct completion *vfork;
1091
1092        task_lock(tsk);
1093        vfork = tsk->vfork_done;
1094        if (likely(vfork)) {
1095                tsk->vfork_done = NULL;
1096                complete(vfork);
1097        }
1098        task_unlock(tsk);
1099}
1100
1101static int wait_for_vfork_done(struct task_struct *child,
1102                                struct completion *vfork)
1103{
1104        int killed;
1105
1106        freezer_do_not_count();
1107        killed = wait_for_completion_killable(vfork);
1108        freezer_count();
1109
1110        if (killed) {
1111                task_lock(child);
1112                child->vfork_done = NULL;
1113                task_unlock(child);
1114        }
1115
1116        put_task_struct(child);
1117        return killed;
1118}
1119
1120/* Please note the differences between mmput and mm_release.
1121 * mmput is called whenever we stop holding onto a mm_struct,
1122 * error success whatever.
1123 *
1124 * mm_release is called after a mm_struct has been removed
1125 * from the current process.
1126 *
1127 * This difference is important for error handling, when we
1128 * only half set up a mm_struct for a new process and need to restore
1129 * the old one.  Because we mmput the new mm_struct before
1130 * restoring the old one. . .
1131 * Eric Biederman 10 January 1998
1132 */
1133void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1134{
1135        /* Get rid of any futexes when releasing the mm */
1136#ifdef CONFIG_FUTEX
1137        if (unlikely(tsk->robust_list)) {
1138                exit_robust_list(tsk);
1139                tsk->robust_list = NULL;
1140        }
1141#ifdef CONFIG_COMPAT
1142        if (unlikely(tsk->compat_robust_list)) {
1143                compat_exit_robust_list(tsk);
1144                tsk->compat_robust_list = NULL;
1145        }
1146#endif
1147        if (unlikely(!list_empty(&tsk->pi_state_list)))
1148                exit_pi_state_list(tsk);
1149#endif
1150
1151        uprobe_free_utask(tsk);
1152
1153        /* Get rid of any cached register state */
1154        deactivate_mm(tsk, mm);
1155
1156        /*
1157         * Signal userspace if we're not exiting with a core dump
1158         * because we want to leave the value intact for debugging
1159         * purposes.
1160         */
1161        if (tsk->clear_child_tid) {
1162                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1163                    atomic_read(&mm->mm_users) > 1) {
1164                        /*
1165                         * We don't check the error code - if userspace has
1166                         * not set up a proper pointer then tough luck.
1167                         */
1168                        put_user(0, tsk->clear_child_tid);
1169                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1170                                        1, NULL, NULL, 0);
1171                }
1172                tsk->clear_child_tid = NULL;
1173        }
1174
1175        /*
1176         * All done, finally we can wake up parent and return this mm to him.
1177         * Also kthread_stop() uses this completion for synchronization.
1178         */
1179        if (tsk->vfork_done)
1180                complete_vfork_done(tsk);
1181}
1182
1183/*
1184 * Allocate a new mm structure and copy contents from the
1185 * mm structure of the passed in task structure.
1186 */
1187static struct mm_struct *dup_mm(struct task_struct *tsk)
1188{
1189        struct mm_struct *mm, *oldmm = current->mm;
1190        int err;
1191
1192        mm = allocate_mm();
1193        if (!mm)
1194                goto fail_nomem;
1195
1196        memcpy(mm, oldmm, sizeof(*mm));
1197
1198        if (!mm_init(mm, tsk, mm->user_ns))
1199                goto fail_nomem;
1200
1201        err = dup_mmap(mm, oldmm);
1202        if (err)
1203                goto free_pt;
1204
1205        mm->hiwater_rss = get_mm_rss(mm);
1206        mm->hiwater_vm = mm->total_vm;
1207
1208        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1209                goto free_pt;
1210
1211        return mm;
1212
1213free_pt:
1214        /* don't put binfmt in mmput, we haven't got module yet */
1215        mm->binfmt = NULL;
1216        mmput(mm);
1217
1218fail_nomem:
1219        return NULL;
1220}
1221
1222static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1223{
1224        struct mm_struct *mm, *oldmm;
1225        int retval;
1226
1227        tsk->min_flt = tsk->maj_flt = 0;
1228        tsk->nvcsw = tsk->nivcsw = 0;
1229#ifdef CONFIG_DETECT_HUNG_TASK
1230        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1231#endif
1232
1233        tsk->mm = NULL;
1234        tsk->active_mm = NULL;
1235
1236        /*
1237         * Are we cloning a kernel thread?
1238         *
1239         * We need to steal a active VM for that..
1240         */
1241        oldmm = current->mm;
1242        if (!oldmm)
1243                return 0;
1244
1245        /* initialize the new vmacache entries */
1246        vmacache_flush(tsk);
1247
1248        if (clone_flags & CLONE_VM) {
1249                mmget(oldmm);
1250                mm = oldmm;
1251                goto good_mm;
1252        }
1253
1254        retval = -ENOMEM;
1255        mm = dup_mm(tsk);
1256        if (!mm)
1257                goto fail_nomem;
1258
1259good_mm:
1260        tsk->mm = mm;
1261        tsk->active_mm = mm;
1262        return 0;
1263
1264fail_nomem:
1265        return retval;
1266}
1267
1268static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1269{
1270        struct fs_struct *fs = current->fs;
1271        if (clone_flags & CLONE_FS) {
1272                /* tsk->fs is already what we want */
1273                spin_lock(&fs->lock);
1274                if (fs->in_exec) {
1275                        spin_unlock(&fs->lock);
1276                        return -EAGAIN;
1277                }
1278                fs->users++;
1279                spin_unlock(&fs->lock);
1280                return 0;
1281        }
1282        tsk->fs = copy_fs_struct(fs);
1283        if (!tsk->fs)
1284                return -ENOMEM;
1285        return 0;
1286}
1287
1288static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1289{
1290        struct files_struct *oldf, *newf;
1291        int error = 0;
1292
1293        /*
1294         * A background process may not have any files ...
1295         */
1296        oldf = current->files;
1297        if (!oldf)
1298                goto out;
1299
1300        if (clone_flags & CLONE_FILES) {
1301                atomic_inc(&oldf->count);
1302                goto out;
1303        }
1304
1305        newf = dup_fd(oldf, &error);
1306        if (!newf)
1307                goto out;
1308
1309        tsk->files = newf;
1310        error = 0;
1311out:
1312        return error;
1313}
1314
1315static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1316{
1317#ifdef CONFIG_BLOCK
1318        struct io_context *ioc = current->io_context;
1319        struct io_context *new_ioc;
1320
1321        if (!ioc)
1322                return 0;
1323        /*
1324         * Share io context with parent, if CLONE_IO is set
1325         */
1326        if (clone_flags & CLONE_IO) {
1327                ioc_task_link(ioc);
1328                tsk->io_context = ioc;
1329        } else if (ioprio_valid(ioc->ioprio)) {
1330                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1331                if (unlikely(!new_ioc))
1332                        return -ENOMEM;
1333
1334                new_ioc->ioprio = ioc->ioprio;
1335                put_io_context(new_ioc);
1336        }
1337#endif
1338        return 0;
1339}
1340
1341static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1342{
1343        struct sighand_struct *sig;
1344
1345        if (clone_flags & CLONE_SIGHAND) {
1346                atomic_inc(&current->sighand->count);
1347                return 0;
1348        }
1349        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1350        rcu_assign_pointer(tsk->sighand, sig);
1351        if (!sig)
1352                return -ENOMEM;
1353
1354        atomic_set(&sig->count, 1);
1355        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1356        return 0;
1357}
1358
1359void __cleanup_sighand(struct sighand_struct *sighand)
1360{
1361        if (atomic_dec_and_test(&sighand->count)) {
1362                signalfd_cleanup(sighand);
1363                /*
1364                 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1365                 * without an RCU grace period, see __lock_task_sighand().
1366                 */
1367                kmem_cache_free(sighand_cachep, sighand);
1368        }
1369}
1370
1371#ifdef CONFIG_POSIX_TIMERS
1372/*
1373 * Initialize POSIX timer handling for a thread group.
1374 */
1375static void posix_cpu_timers_init_group(struct signal_struct *sig)
1376{
1377        unsigned long cpu_limit;
1378
1379        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1380        if (cpu_limit != RLIM_INFINITY) {
1381                sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1382                sig->cputimer.running = true;
1383        }
1384
1385        /* The timer lists. */
1386        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1387        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1388        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1389}
1390#else
1391static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1392#endif
1393
1394static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1395{
1396        struct signal_struct *sig;
1397
1398        if (clone_flags & CLONE_THREAD)
1399                return 0;
1400
1401        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1402        tsk->signal = sig;
1403        if (!sig)
1404                return -ENOMEM;
1405
1406        sig->nr_threads = 1;
1407        atomic_set(&sig->live, 1);
1408        atomic_set(&sig->sigcnt, 1);
1409
1410        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1411        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1412        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1413
1414        init_waitqueue_head(&sig->wait_chldexit);
1415        sig->curr_target = tsk;
1416        init_sigpending(&sig->shared_pending);
1417        seqlock_init(&sig->stats_lock);
1418        prev_cputime_init(&sig->prev_cputime);
1419
1420#ifdef CONFIG_POSIX_TIMERS
1421        INIT_LIST_HEAD(&sig->posix_timers);
1422        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1423        sig->real_timer.function = it_real_fn;
1424#endif
1425
1426        task_lock(current->group_leader);
1427        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1428        task_unlock(current->group_leader);
1429
1430        posix_cpu_timers_init_group(sig);
1431
1432        tty_audit_fork(sig);
1433        sched_autogroup_fork(sig);
1434
1435        sig->oom_score_adj = current->signal->oom_score_adj;
1436        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1437
1438        mutex_init(&sig->cred_guard_mutex);
1439
1440        return 0;
1441}
1442
1443static void copy_seccomp(struct task_struct *p)
1444{
1445#ifdef CONFIG_SECCOMP
1446        /*
1447         * Must be called with sighand->lock held, which is common to
1448         * all threads in the group. Holding cred_guard_mutex is not
1449         * needed because this new task is not yet running and cannot
1450         * be racing exec.
1451         */
1452        assert_spin_locked(&current->sighand->siglock);
1453
1454        /* Ref-count the new filter user, and assign it. */
1455        get_seccomp_filter(current);
1456        p->seccomp = current->seccomp;
1457
1458        /*
1459         * Explicitly enable no_new_privs here in case it got set
1460         * between the task_struct being duplicated and holding the
1461         * sighand lock. The seccomp state and nnp must be in sync.
1462         */
1463        if (task_no_new_privs(current))
1464                task_set_no_new_privs(p);
1465
1466        /*
1467         * If the parent gained a seccomp mode after copying thread
1468         * flags and between before we held the sighand lock, we have
1469         * to manually enable the seccomp thread flag here.
1470         */
1471        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1472                set_tsk_thread_flag(p, TIF_SECCOMP);
1473#endif
1474}
1475
1476SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1477{
1478        current->clear_child_tid = tidptr;
1479
1480        return task_pid_vnr(current);
1481}
1482
1483static void rt_mutex_init_task(struct task_struct *p)
1484{
1485        raw_spin_lock_init(&p->pi_lock);
1486#ifdef CONFIG_RT_MUTEXES
1487        p->pi_waiters = RB_ROOT_CACHED;
1488        p->pi_top_task = NULL;
1489        p->pi_blocked_on = NULL;
1490#endif
1491}
1492
1493#ifdef CONFIG_POSIX_TIMERS
1494/*
1495 * Initialize POSIX timer handling for a single task.
1496 */
1497static void posix_cpu_timers_init(struct task_struct *tsk)
1498{
1499        tsk->cputime_expires.prof_exp = 0;
1500        tsk->cputime_expires.virt_exp = 0;
1501        tsk->cputime_expires.sched_exp = 0;
1502        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1503        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1504        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1505}
1506#else
1507static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1508#endif
1509
1510static inline void
1511init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1512{
1513         task->pids[type].pid = pid;
1514}
1515
1516static inline void rcu_copy_process(struct task_struct *p)
1517{
1518#ifdef CONFIG_PREEMPT_RCU
1519        p->rcu_read_lock_nesting = 0;
1520        p->rcu_read_unlock_special.s = 0;
1521        p->rcu_blocked_node = NULL;
1522        INIT_LIST_HEAD(&p->rcu_node_entry);
1523#endif /* #ifdef CONFIG_PREEMPT_RCU */
1524#ifdef CONFIG_TASKS_RCU
1525        p->rcu_tasks_holdout = false;
1526        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1527        p->rcu_tasks_idle_cpu = -1;
1528#endif /* #ifdef CONFIG_TASKS_RCU */
1529}
1530
1531/*
1532 * This creates a new process as a copy of the old one,
1533 * but does not actually start it yet.
1534 *
1535 * It copies the registers, and all the appropriate
1536 * parts of the process environment (as per the clone
1537 * flags). The actual kick-off is left to the caller.
1538 */
1539static __latent_entropy struct task_struct *copy_process(
1540                                        unsigned long clone_flags,
1541                                        unsigned long stack_start,
1542                                        unsigned long stack_size,
1543                                        int __user *child_tidptr,
1544                                        struct pid *pid,
1545                                        int trace,
1546                                        unsigned long tls,
1547                                        int node)
1548{
1549        int retval;
1550        struct task_struct *p;
1551
1552        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1553                return ERR_PTR(-EINVAL);
1554
1555        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1556                return ERR_PTR(-EINVAL);
1557
1558        /*
1559         * Thread groups must share signals as well, and detached threads
1560         * can only be started up within the thread group.
1561         */
1562        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1563                return ERR_PTR(-EINVAL);
1564
1565        /*
1566         * Shared signal handlers imply shared VM. By way of the above,
1567         * thread groups also imply shared VM. Blocking this case allows
1568         * for various simplifications in other code.
1569         */
1570        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1571                return ERR_PTR(-EINVAL);
1572
1573        /*
1574         * Siblings of global init remain as zombies on exit since they are
1575         * not reaped by their parent (swapper). To solve this and to avoid
1576         * multi-rooted process trees, prevent global and container-inits
1577         * from creating siblings.
1578         */
1579        if ((clone_flags & CLONE_PARENT) &&
1580                                current->signal->flags & SIGNAL_UNKILLABLE)
1581                return ERR_PTR(-EINVAL);
1582
1583        /*
1584         * If the new process will be in a different pid or user namespace
1585         * do not allow it to share a thread group with the forking task.
1586         */
1587        if (clone_flags & CLONE_THREAD) {
1588                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1589                    (task_active_pid_ns(current) !=
1590                                current->nsproxy->pid_ns_for_children))
1591                        return ERR_PTR(-EINVAL);
1592        }
1593
1594        retval = -ENOMEM;
1595        p = dup_task_struct(current, node);
1596        if (!p)
1597                goto fork_out;
1598
1599        /*
1600         * This _must_ happen before we call free_task(), i.e. before we jump
1601         * to any of the bad_fork_* labels. This is to avoid freeing
1602         * p->set_child_tid which is (ab)used as a kthread's data pointer for
1603         * kernel threads (PF_KTHREAD).
1604         */
1605        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1606        /*
1607         * Clear TID on mm_release()?
1608         */
1609        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1610
1611        ftrace_graph_init_task(p);
1612
1613        rt_mutex_init_task(p);
1614
1615#ifdef CONFIG_PROVE_LOCKING
1616        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1617        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1618#endif
1619        retval = -EAGAIN;
1620        if (atomic_read(&p->real_cred->user->processes) >=
1621                        task_rlimit(p, RLIMIT_NPROC)) {
1622                if (p->real_cred->user != INIT_USER &&
1623                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1624                        goto bad_fork_free;
1625        }
1626        current->flags &= ~PF_NPROC_EXCEEDED;
1627
1628        retval = copy_creds(p, clone_flags);
1629        if (retval < 0)
1630                goto bad_fork_free;
1631
1632        /*
1633         * If multiple threads are within copy_process(), then this check
1634         * triggers too late. This doesn't hurt, the check is only there
1635         * to stop root fork bombs.
1636         */
1637        retval = -EAGAIN;
1638        if (nr_threads >= max_threads)
1639                goto bad_fork_cleanup_count;
1640
1641        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1642        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1643        p->flags |= PF_FORKNOEXEC;
1644        INIT_LIST_HEAD(&p->children);
1645        INIT_LIST_HEAD(&p->sibling);
1646        rcu_copy_process(p);
1647        p->vfork_done = NULL;
1648        spin_lock_init(&p->alloc_lock);
1649
1650        init_sigpending(&p->pending);
1651
1652        p->utime = p->stime = p->gtime = 0;
1653#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1654        p->utimescaled = p->stimescaled = 0;
1655#endif
1656        prev_cputime_init(&p->prev_cputime);
1657
1658#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1659        seqcount_init(&p->vtime.seqcount);
1660        p->vtime.starttime = 0;
1661        p->vtime.state = VTIME_INACTIVE;
1662#endif
1663
1664#if defined(SPLIT_RSS_COUNTING)
1665        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1666#endif
1667
1668        p->default_timer_slack_ns = current->timer_slack_ns;
1669
1670        task_io_accounting_init(&p->ioac);
1671        acct_clear_integrals(p);
1672
1673        posix_cpu_timers_init(p);
1674
1675        p->start_time = ktime_get_ns();
1676        p->real_start_time = ktime_get_boot_ns();
1677        p->io_context = NULL;
1678        p->audit_context = NULL;
1679        cgroup_fork(p);
1680#ifdef CONFIG_NUMA
1681        p->mempolicy = mpol_dup(p->mempolicy);
1682        if (IS_ERR(p->mempolicy)) {
1683                retval = PTR_ERR(p->mempolicy);
1684                p->mempolicy = NULL;
1685                goto bad_fork_cleanup_threadgroup_lock;
1686        }
1687#endif
1688#ifdef CONFIG_CPUSETS
1689        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1690        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1691        seqcount_init(&p->mems_allowed_seq);
1692#endif
1693#ifdef CONFIG_TRACE_IRQFLAGS
1694        p->irq_events = 0;
1695        p->hardirqs_enabled = 0;
1696        p->hardirq_enable_ip = 0;
1697        p->hardirq_enable_event = 0;
1698        p->hardirq_disable_ip = _THIS_IP_;
1699        p->hardirq_disable_event = 0;
1700        p->softirqs_enabled = 1;
1701        p->softirq_enable_ip = _THIS_IP_;
1702        p->softirq_enable_event = 0;
1703        p->softirq_disable_ip = 0;
1704        p->softirq_disable_event = 0;
1705        p->hardirq_context = 0;
1706        p->softirq_context = 0;
1707#endif
1708
1709        p->pagefault_disabled = 0;
1710
1711#ifdef CONFIG_LOCKDEP
1712        p->lockdep_depth = 0; /* no locks held yet */
1713        p->curr_chain_key = 0;
1714        p->lockdep_recursion = 0;
1715        lockdep_init_task(p);
1716#endif
1717
1718#ifdef CONFIG_DEBUG_MUTEXES
1719        p->blocked_on = NULL; /* not blocked yet */
1720#endif
1721#ifdef CONFIG_BCACHE
1722        p->sequential_io        = 0;
1723        p->sequential_io_avg    = 0;
1724#endif
1725
1726        /* Perform scheduler related setup. Assign this task to a CPU. */
1727        retval = sched_fork(clone_flags, p);
1728        if (retval)
1729                goto bad_fork_cleanup_policy;
1730
1731        retval = perf_event_init_task(p);
1732        if (retval)
1733                goto bad_fork_cleanup_policy;
1734        retval = audit_alloc(p);
1735        if (retval)
1736                goto bad_fork_cleanup_perf;
1737        /* copy all the process information */
1738        shm_init_task(p);
1739        retval = security_task_alloc(p, clone_flags);
1740        if (retval)
1741                goto bad_fork_cleanup_audit;
1742        retval = copy_semundo(clone_flags, p);
1743        if (retval)
1744                goto bad_fork_cleanup_security;
1745        retval = copy_files(clone_flags, p);
1746        if (retval)
1747                goto bad_fork_cleanup_semundo;
1748        retval = copy_fs(clone_flags, p);
1749        if (retval)
1750                goto bad_fork_cleanup_files;
1751        retval = copy_sighand(clone_flags, p);
1752        if (retval)
1753                goto bad_fork_cleanup_fs;
1754        retval = copy_signal(clone_flags, p);
1755        if (retval)
1756                goto bad_fork_cleanup_sighand;
1757        retval = copy_mm(clone_flags, p);
1758        if (retval)
1759                goto bad_fork_cleanup_signal;
1760        retval = copy_namespaces(clone_flags, p);
1761        if (retval)
1762                goto bad_fork_cleanup_mm;
1763        retval = copy_io(clone_flags, p);
1764        if (retval)
1765                goto bad_fork_cleanup_namespaces;
1766        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1767        if (retval)
1768                goto bad_fork_cleanup_io;
1769
1770        if (pid != &init_struct_pid) {
1771                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1772                if (IS_ERR(pid)) {
1773                        retval = PTR_ERR(pid);
1774                        goto bad_fork_cleanup_thread;
1775                }
1776        }
1777
1778#ifdef CONFIG_BLOCK
1779        p->plug = NULL;
1780#endif
1781#ifdef CONFIG_FUTEX
1782        p->robust_list = NULL;
1783#ifdef CONFIG_COMPAT
1784        p->compat_robust_list = NULL;
1785#endif
1786        INIT_LIST_HEAD(&p->pi_state_list);
1787        p->pi_state_cache = NULL;
1788#endif
1789        /*
1790         * sigaltstack should be cleared when sharing the same VM
1791         */
1792        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1793                sas_ss_reset(p);
1794
1795        /*
1796         * Syscall tracing and stepping should be turned off in the
1797         * child regardless of CLONE_PTRACE.
1798         */
1799        user_disable_single_step(p);
1800        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1801#ifdef TIF_SYSCALL_EMU
1802        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1803#endif
1804        clear_all_latency_tracing(p);
1805
1806        /* ok, now we should be set up.. */
1807        p->pid = pid_nr(pid);
1808        if (clone_flags & CLONE_THREAD) {
1809                p->exit_signal = -1;
1810                p->group_leader = current->group_leader;
1811                p->tgid = current->tgid;
1812        } else {
1813                if (clone_flags & CLONE_PARENT)
1814                        p->exit_signal = current->group_leader->exit_signal;
1815                else
1816                        p->exit_signal = (clone_flags & CSIGNAL);
1817                p->group_leader = p;
1818                p->tgid = p->pid;
1819        }
1820
1821        p->nr_dirtied = 0;
1822        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1823        p->dirty_paused_when = 0;
1824
1825        p->pdeath_signal = 0;
1826        INIT_LIST_HEAD(&p->thread_group);
1827        p->task_works = NULL;
1828
1829        cgroup_threadgroup_change_begin(current);
1830        /*
1831         * Ensure that the cgroup subsystem policies allow the new process to be
1832         * forked. It should be noted the the new process's css_set can be changed
1833         * between here and cgroup_post_fork() if an organisation operation is in
1834         * progress.
1835         */
1836        retval = cgroup_can_fork(p);
1837        if (retval)
1838                goto bad_fork_free_pid;
1839
1840        /*
1841         * Make it visible to the rest of the system, but dont wake it up yet.
1842         * Need tasklist lock for parent etc handling!
1843         */
1844        write_lock_irq(&tasklist_lock);
1845
1846        /* CLONE_PARENT re-uses the old parent */
1847        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1848                p->real_parent = current->real_parent;
1849                p->parent_exec_id = current->parent_exec_id;
1850        } else {
1851                p->real_parent = current;
1852                p->parent_exec_id = current->self_exec_id;
1853        }
1854
1855        klp_copy_process(p);
1856
1857        spin_lock(&current->sighand->siglock);
1858
1859        /*
1860         * Copy seccomp details explicitly here, in case they were changed
1861         * before holding sighand lock.
1862         */
1863        copy_seccomp(p);
1864
1865        /*
1866         * Process group and session signals need to be delivered to just the
1867         * parent before the fork or both the parent and the child after the
1868         * fork. Restart if a signal comes in before we add the new process to
1869         * it's process group.
1870         * A fatal signal pending means that current will exit, so the new
1871         * thread can't slip out of an OOM kill (or normal SIGKILL).
1872        */
1873        recalc_sigpending();
1874        if (signal_pending(current)) {
1875                retval = -ERESTARTNOINTR;
1876                goto bad_fork_cancel_cgroup;
1877        }
1878        if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1879                retval = -ENOMEM;
1880                goto bad_fork_cancel_cgroup;
1881        }
1882
1883        if (likely(p->pid)) {
1884                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1885
1886                init_task_pid(p, PIDTYPE_PID, pid);
1887                if (thread_group_leader(p)) {
1888                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1889                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1890
1891                        if (is_child_reaper(pid)) {
1892                                ns_of_pid(pid)->child_reaper = p;
1893                                p->signal->flags |= SIGNAL_UNKILLABLE;
1894                        }
1895
1896                        p->signal->leader_pid = pid;
1897                        p->signal->tty = tty_kref_get(current->signal->tty);
1898                        /*
1899                         * Inherit has_child_subreaper flag under the same
1900                         * tasklist_lock with adding child to the process tree
1901                         * for propagate_has_child_subreaper optimization.
1902                         */
1903                        p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1904                                                         p->real_parent->signal->is_child_subreaper;
1905                        list_add_tail(&p->sibling, &p->real_parent->children);
1906                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1907                        attach_pid(p, PIDTYPE_PGID);
1908                        attach_pid(p, PIDTYPE_SID);
1909                        __this_cpu_inc(process_counts);
1910                } else {
1911                        current->signal->nr_threads++;
1912                        atomic_inc(&current->signal->live);
1913                        atomic_inc(&current->signal->sigcnt);
1914                        list_add_tail_rcu(&p->thread_group,
1915                                          &p->group_leader->thread_group);
1916                        list_add_tail_rcu(&p->thread_node,
1917                                          &p->signal->thread_head);
1918                }
1919                attach_pid(p, PIDTYPE_PID);
1920                nr_threads++;
1921        }
1922
1923        total_forks++;
1924        spin_unlock(&current->sighand->siglock);
1925        syscall_tracepoint_update(p);
1926        write_unlock_irq(&tasklist_lock);
1927
1928        proc_fork_connector(p);
1929        cgroup_post_fork(p);
1930        cgroup_threadgroup_change_end(current);
1931        perf_event_fork(p);
1932
1933        trace_task_newtask(p, clone_flags);
1934        uprobe_copy_process(p, clone_flags);
1935
1936        return p;
1937
1938bad_fork_cancel_cgroup:
1939        spin_unlock(&current->sighand->siglock);
1940        write_unlock_irq(&tasklist_lock);
1941        cgroup_cancel_fork(p);
1942bad_fork_free_pid:
1943        cgroup_threadgroup_change_end(current);
1944        if (pid != &init_struct_pid)
1945                free_pid(pid);
1946bad_fork_cleanup_thread:
1947        exit_thread(p);
1948bad_fork_cleanup_io:
1949        if (p->io_context)
1950                exit_io_context(p);
1951bad_fork_cleanup_namespaces:
1952        exit_task_namespaces(p);
1953bad_fork_cleanup_mm:
1954        if (p->mm)
1955                mmput(p->mm);
1956bad_fork_cleanup_signal:
1957        if (!(clone_flags & CLONE_THREAD))
1958                free_signal_struct(p->signal);
1959bad_fork_cleanup_sighand:
1960        __cleanup_sighand(p->sighand);
1961bad_fork_cleanup_fs:
1962        exit_fs(p); /* blocking */
1963bad_fork_cleanup_files:
1964        exit_files(p); /* blocking */
1965bad_fork_cleanup_semundo:
1966        exit_sem(p);
1967bad_fork_cleanup_security:
1968        security_task_free(p);
1969bad_fork_cleanup_audit:
1970        audit_free(p);
1971bad_fork_cleanup_perf:
1972        perf_event_free_task(p);
1973bad_fork_cleanup_policy:
1974        lockdep_free_task(p);
1975#ifdef CONFIG_NUMA
1976        mpol_put(p->mempolicy);
1977bad_fork_cleanup_threadgroup_lock:
1978#endif
1979        delayacct_tsk_free(p);
1980bad_fork_cleanup_count:
1981        atomic_dec(&p->cred->user->processes);
1982        exit_creds(p);
1983bad_fork_free:
1984        p->state = TASK_DEAD;
1985        put_task_stack(p);
1986        free_task(p);
1987fork_out:
1988        return ERR_PTR(retval);
1989}
1990
1991static inline void init_idle_pids(struct pid_link *links)
1992{
1993        enum pid_type type;
1994
1995        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1996                INIT_HLIST_NODE(&links[type].node); /* not really needed */
1997                links[type].pid = &init_struct_pid;
1998        }
1999}
2000
2001struct task_struct *fork_idle(int cpu)
2002{
2003        struct task_struct *task;
2004        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2005                            cpu_to_node(cpu));
2006        if (!IS_ERR(task)) {
2007                init_idle_pids(task->pids);
2008                init_idle(task, cpu);
2009        }
2010
2011        return task;
2012}
2013
2014/*
2015 *  Ok, this is the main fork-routine.
2016 *
2017 * It copies the process, and if successful kick-starts
2018 * it and waits for it to finish using the VM if required.
2019 */
2020long _do_fork(unsigned long clone_flags,
2021              unsigned long stack_start,
2022              unsigned long stack_size,
2023              int __user *parent_tidptr,
2024              int __user *child_tidptr,
2025              unsigned long tls)
2026{
2027        struct task_struct *p;
2028        int trace = 0;
2029        long nr;
2030
2031        /*
2032         * Determine whether and which event to report to ptracer.  When
2033         * called from kernel_thread or CLONE_UNTRACED is explicitly
2034         * requested, no event is reported; otherwise, report if the event
2035         * for the type of forking is enabled.
2036         */
2037        if (!(clone_flags & CLONE_UNTRACED)) {
2038                if (clone_flags & CLONE_VFORK)
2039                        trace = PTRACE_EVENT_VFORK;
2040                else if ((clone_flags & CSIGNAL) != SIGCHLD)
2041                        trace = PTRACE_EVENT_CLONE;
2042                else
2043                        trace = PTRACE_EVENT_FORK;
2044
2045                if (likely(!ptrace_event_enabled(current, trace)))
2046                        trace = 0;
2047        }
2048
2049        p = copy_process(clone_flags, stack_start, stack_size,
2050                         child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2051        add_latent_entropy();
2052        /*
2053         * Do this prior waking up the new thread - the thread pointer
2054         * might get invalid after that point, if the thread exits quickly.
2055         */
2056        if (!IS_ERR(p)) {
2057                struct completion vfork;
2058                struct pid *pid;
2059
2060                trace_sched_process_fork(current, p);
2061
2062                pid = get_task_pid(p, PIDTYPE_PID);
2063                nr = pid_vnr(pid);
2064
2065                if (clone_flags & CLONE_PARENT_SETTID)
2066                        put_user(nr, parent_tidptr);
2067
2068                if (clone_flags & CLONE_VFORK) {
2069                        p->vfork_done = &vfork;
2070                        init_completion(&vfork);
2071                        get_task_struct(p);
2072                }
2073
2074                wake_up_new_task(p);
2075
2076                /* forking complete and child started to run, tell ptracer */
2077                if (unlikely(trace))
2078                        ptrace_event_pid(trace, pid);
2079
2080                if (clone_flags & CLONE_VFORK) {
2081                        if (!wait_for_vfork_done(p, &vfork))
2082                                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2083                }
2084
2085                put_pid(pid);
2086        } else {
2087                nr = PTR_ERR(p);
2088        }
2089        return nr;
2090}
2091
2092#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2093/* For compatibility with architectures that call do_fork directly rather than
2094 * using the syscall entry points below. */
2095long do_fork(unsigned long clone_flags,
2096              unsigned long stack_start,
2097              unsigned long stack_size,
2098              int __user *parent_tidptr,
2099              int __user *child_tidptr)
2100{
2101        return _do_fork(clone_flags, stack_start, stack_size,
2102                        parent_tidptr, child_tidptr, 0);
2103}
2104#endif
2105
2106/*
2107 * Create a kernel thread.
2108 */
2109pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2110{
2111        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2112                (unsigned long)arg, NULL, NULL, 0);
2113}
2114
2115#ifdef __ARCH_WANT_SYS_FORK
2116SYSCALL_DEFINE0(fork)
2117{
2118#ifdef CONFIG_MMU
2119        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2120#else
2121        /* can not support in nommu mode */
2122        return -EINVAL;
2123#endif
2124}
2125#endif
2126
2127#ifdef __ARCH_WANT_SYS_VFORK
2128SYSCALL_DEFINE0(vfork)
2129{
2130        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2131                        0, NULL, NULL, 0);
2132}
2133#endif
2134
2135#ifdef __ARCH_WANT_SYS_CLONE
2136#ifdef CONFIG_CLONE_BACKWARDS
2137SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2138                 int __user *, parent_tidptr,
2139                 unsigned long, tls,
2140                 int __user *, child_tidptr)
2141#elif defined(CONFIG_CLONE_BACKWARDS2)
2142SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2143                 int __user *, parent_tidptr,
2144                 int __user *, child_tidptr,
2145                 unsigned long, tls)
2146#elif defined(CONFIG_CLONE_BACKWARDS3)
2147SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2148                int, stack_size,
2149                int __user *, parent_tidptr,
2150                int __user *, child_tidptr,
2151                unsigned long, tls)
2152#else
2153SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2154                 int __user *, parent_tidptr,
2155                 int __user *, child_tidptr,
2156                 unsigned long, tls)
2157#endif
2158{
2159        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2160}
2161#endif
2162
2163void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2164{
2165        struct task_struct *leader, *parent, *child;
2166        int res;
2167
2168        read_lock(&tasklist_lock);
2169        leader = top = top->group_leader;
2170down:
2171        for_each_thread(leader, parent) {
2172                list_for_each_entry(child, &parent->children, sibling) {
2173                        res = visitor(child, data);
2174                        if (res) {
2175                                if (res < 0)
2176                                        goto out;
2177                                leader = child;
2178                                goto down;
2179                        }
2180up:
2181                        ;
2182                }
2183        }
2184
2185        if (leader != top) {
2186                child = leader;
2187                parent = child->real_parent;
2188                leader = parent->group_leader;
2189                goto up;
2190        }
2191out:
2192        read_unlock(&tasklist_lock);
2193}
2194
2195#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2196#define ARCH_MIN_MMSTRUCT_ALIGN 0
2197#endif
2198
2199static void sighand_ctor(void *data)
2200{
2201        struct sighand_struct *sighand = data;
2202
2203        spin_lock_init(&sighand->siglock);
2204        init_waitqueue_head(&sighand->signalfd_wqh);
2205}
2206
2207void __init proc_caches_init(void)
2208{
2209        sighand_cachep = kmem_cache_create("sighand_cache",
2210                        sizeof(struct sighand_struct), 0,
2211                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2212                        SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2213        signal_cachep = kmem_cache_create("signal_cache",
2214                        sizeof(struct signal_struct), 0,
2215                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2216                        NULL);
2217        files_cachep = kmem_cache_create("files_cache",
2218                        sizeof(struct files_struct), 0,
2219                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2220                        NULL);
2221        fs_cachep = kmem_cache_create("fs_cache",
2222                        sizeof(struct fs_struct), 0,
2223                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2224                        NULL);
2225        /*
2226         * FIXME! The "sizeof(struct mm_struct)" currently includes the
2227         * whole struct cpumask for the OFFSTACK case. We could change
2228         * this to *only* allocate as much of it as required by the
2229         * maximum number of CPU's we can ever have.  The cpumask_allocation
2230         * is at the end of the structure, exactly for that reason.
2231         */
2232        mm_cachep = kmem_cache_create("mm_struct",
2233                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2234                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2235                        NULL);
2236        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2237        mmap_init();
2238        nsproxy_cache_init();
2239}
2240
2241/*
2242 * Check constraints on flags passed to the unshare system call.
2243 */
2244static int check_unshare_flags(unsigned long unshare_flags)
2245{
2246        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2247                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2248                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2249                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2250                return -EINVAL;
2251        /*
2252         * Not implemented, but pretend it works if there is nothing
2253         * to unshare.  Note that unsharing the address space or the
2254         * signal handlers also need to unshare the signal queues (aka
2255         * CLONE_THREAD).
2256         */
2257        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2258                if (!thread_group_empty(current))
2259                        return -EINVAL;
2260        }
2261        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2262                if (atomic_read(&current->sighand->count) > 1)
2263                        return -EINVAL;
2264        }
2265        if (unshare_flags & CLONE_VM) {
2266                if (!current_is_single_threaded())
2267                        return -EINVAL;
2268        }
2269
2270        return 0;
2271}
2272
2273/*
2274 * Unshare the filesystem structure if it is being shared
2275 */
2276static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2277{
2278        struct fs_struct *fs = current->fs;
2279
2280        if (!(unshare_flags & CLONE_FS) || !fs)
2281                return 0;
2282
2283        /* don't need lock here; in the worst case we'll do useless copy */
2284        if (fs->users == 1)
2285                return 0;
2286
2287        *new_fsp = copy_fs_struct(fs);
2288        if (!*new_fsp)
2289                return -ENOMEM;
2290
2291        return 0;
2292}
2293
2294/*
2295 * Unshare file descriptor table if it is being shared
2296 */
2297static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2298{
2299        struct files_struct *fd = current->files;
2300        int error = 0;
2301
2302        if ((unshare_flags & CLONE_FILES) &&
2303            (fd && atomic_read(&fd->count) > 1)) {
2304                *new_fdp = dup_fd(fd, &error);
2305                if (!*new_fdp)
2306                        return error;
2307        }
2308
2309        return 0;
2310}
2311
2312/*
2313 * unshare allows a process to 'unshare' part of the process
2314 * context which was originally shared using clone.  copy_*
2315 * functions used by do_fork() cannot be used here directly
2316 * because they modify an inactive task_struct that is being
2317 * constructed. Here we are modifying the current, active,
2318 * task_struct.
2319 */
2320SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2321{
2322        struct fs_struct *fs, *new_fs = NULL;
2323        struct files_struct *fd, *new_fd = NULL;
2324        struct cred *new_cred = NULL;
2325        struct nsproxy *new_nsproxy = NULL;
2326        int do_sysvsem = 0;
2327        int err;
2328
2329        /*
2330         * If unsharing a user namespace must also unshare the thread group
2331         * and unshare the filesystem root and working directories.
2332         */
2333        if (unshare_flags & CLONE_NEWUSER)
2334                unshare_flags |= CLONE_THREAD | CLONE_FS;
2335        /*
2336         * If unsharing vm, must also unshare signal handlers.
2337         */
2338        if (unshare_flags & CLONE_VM)
2339                unshare_flags |= CLONE_SIGHAND;
2340        /*
2341         * If unsharing a signal handlers, must also unshare the signal queues.
2342         */
2343        if (unshare_flags & CLONE_SIGHAND)
2344                unshare_flags |= CLONE_THREAD;
2345        /*
2346         * If unsharing namespace, must also unshare filesystem information.
2347         */
2348        if (unshare_flags & CLONE_NEWNS)
2349                unshare_flags |= CLONE_FS;
2350
2351        err = check_unshare_flags(unshare_flags);
2352        if (err)
2353                goto bad_unshare_out;
2354        /*
2355         * CLONE_NEWIPC must also detach from the undolist: after switching
2356         * to a new ipc namespace, the semaphore arrays from the old
2357         * namespace are unreachable.
2358         */
2359        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2360                do_sysvsem = 1;
2361        err = unshare_fs(unshare_flags, &new_fs);
2362        if (err)
2363                goto bad_unshare_out;
2364        err = unshare_fd(unshare_flags, &new_fd);
2365        if (err)
2366                goto bad_unshare_cleanup_fs;
2367        err = unshare_userns(unshare_flags, &new_cred);
2368        if (err)
2369                goto bad_unshare_cleanup_fd;
2370        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2371                                         new_cred, new_fs);
2372        if (err)
2373                goto bad_unshare_cleanup_cred;
2374
2375        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2376                if (do_sysvsem) {
2377                        /*
2378                         * CLONE_SYSVSEM is equivalent to sys_exit().
2379                         */
2380                        exit_sem(current);
2381                }
2382                if (unshare_flags & CLONE_NEWIPC) {
2383                        /* Orphan segments in old ns (see sem above). */
2384                        exit_shm(current);
2385                        shm_init_task(current);
2386                }
2387
2388                if (new_nsproxy)
2389                        switch_task_namespaces(current, new_nsproxy);
2390
2391                task_lock(current);
2392
2393                if (new_fs) {
2394                        fs = current->fs;
2395                        spin_lock(&fs->lock);
2396                        current->fs = new_fs;
2397                        if (--fs->users)
2398                                new_fs = NULL;
2399                        else
2400                                new_fs = fs;
2401                        spin_unlock(&fs->lock);
2402                }
2403
2404                if (new_fd) {
2405                        fd = current->files;
2406                        current->files = new_fd;
2407                        new_fd = fd;
2408                }
2409
2410                task_unlock(current);
2411
2412                if (new_cred) {
2413                        /* Install the new user namespace */
2414                        commit_creds(new_cred);
2415                        new_cred = NULL;
2416                }
2417        }
2418
2419        perf_event_namespaces(current);
2420
2421bad_unshare_cleanup_cred:
2422        if (new_cred)
2423                put_cred(new_cred);
2424bad_unshare_cleanup_fd:
2425        if (new_fd)
2426                put_files_struct(new_fd);
2427
2428bad_unshare_cleanup_fs:
2429        if (new_fs)
2430                free_fs_struct(new_fs);
2431
2432bad_unshare_out:
2433        return err;
2434}
2435
2436/*
2437 *      Helper to unshare the files of the current task.
2438 *      We don't want to expose copy_files internals to
2439 *      the exec layer of the kernel.
2440 */
2441
2442int unshare_files(struct files_struct **displaced)
2443{
2444        struct task_struct *task = current;
2445        struct files_struct *copy = NULL;
2446        int error;
2447
2448        error = unshare_fd(CLONE_FILES, &copy);
2449        if (error || !copy) {
2450                *displaced = NULL;
2451                return error;
2452        }
2453        *displaced = task->files;
2454        task_lock(task);
2455        task->files = copy;
2456        task_unlock(task);
2457        return 0;
2458}
2459
2460int sysctl_max_threads(struct ctl_table *table, int write,
2461                       void __user *buffer, size_t *lenp, loff_t *ppos)
2462{
2463        struct ctl_table t;
2464        int ret;
2465        int threads = max_threads;
2466        int min = MIN_THREADS;
2467        int max = MAX_THREADS;
2468
2469        t = *table;
2470        t.data = &threads;
2471        t.extra1 = &min;
2472        t.extra2 = &max;
2473
2474        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2475        if (ret || !write)
2476                return ret;
2477
2478        set_max_threads(threads);
2479
2480        return 0;
2481}
2482