linux/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *              Probes initial implementation (includes suggestions from
  23 *              Rusty Russell).
  24 * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *              hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *              interface to access function arguments.
  28 * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *              exceptions notifier to be first on the priority list.
  30 * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *              <prasanna@in.ibm.com> added function-return probes.
  33 */
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/export.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
  51
  52#include <asm/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <linux/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61static int kprobes_initialized;
  62static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  63static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  64
  65/* NOTE: change this value only with kprobe_mutex held */
  66static bool kprobes_all_disarmed;
  67
  68/* This protects kprobe_table and optimizing_list */
  69static DEFINE_MUTEX(kprobe_mutex);
  70static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  71static struct {
  72        raw_spinlock_t lock ____cacheline_aligned_in_smp;
  73} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  74
  75kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  76                                        unsigned int __unused)
  77{
  78        return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  79}
  80
  81static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
  82{
  83        return &(kretprobe_table_locks[hash].lock);
  84}
  85
  86/* Blacklist -- list of struct kprobe_blacklist_entry */
  87static LIST_HEAD(kprobe_blacklist);
  88
  89#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  90/*
  91 * kprobe->ainsn.insn points to the copy of the instruction to be
  92 * single-stepped. x86_64, POWER4 and above have no-exec support and
  93 * stepping on the instruction on a vmalloced/kmalloced/data page
  94 * is a recipe for disaster
  95 */
  96struct kprobe_insn_page {
  97        struct list_head list;
  98        kprobe_opcode_t *insns;         /* Page of instruction slots */
  99        struct kprobe_insn_cache *cache;
 100        int nused;
 101        int ngarbage;
 102        char slot_used[];
 103};
 104
 105#define KPROBE_INSN_PAGE_SIZE(slots)                    \
 106        (offsetof(struct kprobe_insn_page, slot_used) + \
 107         (sizeof(char) * (slots)))
 108
 109static int slots_per_page(struct kprobe_insn_cache *c)
 110{
 111        return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 112}
 113
 114enum kprobe_slot_state {
 115        SLOT_CLEAN = 0,
 116        SLOT_DIRTY = 1,
 117        SLOT_USED = 2,
 118};
 119
 120static void *alloc_insn_page(void)
 121{
 122        return module_alloc(PAGE_SIZE);
 123}
 124
 125void __weak free_insn_page(void *page)
 126{
 127        module_memfree(page);
 128}
 129
 130struct kprobe_insn_cache kprobe_insn_slots = {
 131        .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 132        .alloc = alloc_insn_page,
 133        .free = free_insn_page,
 134        .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 135        .insn_size = MAX_INSN_SIZE,
 136        .nr_garbage = 0,
 137};
 138static int collect_garbage_slots(struct kprobe_insn_cache *c);
 139
 140/**
 141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 142 * We allocate an executable page if there's no room on existing ones.
 143 */
 144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 145{
 146        struct kprobe_insn_page *kip;
 147        kprobe_opcode_t *slot = NULL;
 148
 149        /* Since the slot array is not protected by rcu, we need a mutex */
 150        mutex_lock(&c->mutex);
 151 retry:
 152        rcu_read_lock();
 153        list_for_each_entry_rcu(kip, &c->pages, list) {
 154                if (kip->nused < slots_per_page(c)) {
 155                        int i;
 156                        for (i = 0; i < slots_per_page(c); i++) {
 157                                if (kip->slot_used[i] == SLOT_CLEAN) {
 158                                        kip->slot_used[i] = SLOT_USED;
 159                                        kip->nused++;
 160                                        slot = kip->insns + (i * c->insn_size);
 161                                        rcu_read_unlock();
 162                                        goto out;
 163                                }
 164                        }
 165                        /* kip->nused is broken. Fix it. */
 166                        kip->nused = slots_per_page(c);
 167                        WARN_ON(1);
 168                }
 169        }
 170        rcu_read_unlock();
 171
 172        /* If there are any garbage slots, collect it and try again. */
 173        if (c->nr_garbage && collect_garbage_slots(c) == 0)
 174                goto retry;
 175
 176        /* All out of space.  Need to allocate a new page. */
 177        kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 178        if (!kip)
 179                goto out;
 180
 181        /*
 182         * Use module_alloc so this page is within +/- 2GB of where the
 183         * kernel image and loaded module images reside. This is required
 184         * so x86_64 can correctly handle the %rip-relative fixups.
 185         */
 186        kip->insns = c->alloc();
 187        if (!kip->insns) {
 188                kfree(kip);
 189                goto out;
 190        }
 191        INIT_LIST_HEAD(&kip->list);
 192        memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 193        kip->slot_used[0] = SLOT_USED;
 194        kip->nused = 1;
 195        kip->ngarbage = 0;
 196        kip->cache = c;
 197        list_add_rcu(&kip->list, &c->pages);
 198        slot = kip->insns;
 199out:
 200        mutex_unlock(&c->mutex);
 201        return slot;
 202}
 203
 204/* Return 1 if all garbages are collected, otherwise 0. */
 205static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
 206{
 207        kip->slot_used[idx] = SLOT_CLEAN;
 208        kip->nused--;
 209        if (kip->nused == 0) {
 210                /*
 211                 * Page is no longer in use.  Free it unless
 212                 * it's the last one.  We keep the last one
 213                 * so as not to have to set it up again the
 214                 * next time somebody inserts a probe.
 215                 */
 216                if (!list_is_singular(&kip->list)) {
 217                        list_del_rcu(&kip->list);
 218                        synchronize_rcu();
 219                        kip->cache->free(kip->insns);
 220                        kfree(kip);
 221                }
 222                return 1;
 223        }
 224        return 0;
 225}
 226
 227static int collect_garbage_slots(struct kprobe_insn_cache *c)
 228{
 229        struct kprobe_insn_page *kip, *next;
 230
 231        /* Ensure no-one is interrupted on the garbages */
 232        synchronize_sched();
 233
 234        list_for_each_entry_safe(kip, next, &c->pages, list) {
 235                int i;
 236                if (kip->ngarbage == 0)
 237                        continue;
 238                kip->ngarbage = 0;      /* we will collect all garbages */
 239                for (i = 0; i < slots_per_page(c); i++) {
 240                        if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 241                                break;
 242                }
 243        }
 244        c->nr_garbage = 0;
 245        return 0;
 246}
 247
 248void __free_insn_slot(struct kprobe_insn_cache *c,
 249                      kprobe_opcode_t *slot, int dirty)
 250{
 251        struct kprobe_insn_page *kip;
 252        long idx;
 253
 254        mutex_lock(&c->mutex);
 255        rcu_read_lock();
 256        list_for_each_entry_rcu(kip, &c->pages, list) {
 257                idx = ((long)slot - (long)kip->insns) /
 258                        (c->insn_size * sizeof(kprobe_opcode_t));
 259                if (idx >= 0 && idx < slots_per_page(c))
 260                        goto out;
 261        }
 262        /* Could not find this slot. */
 263        WARN_ON(1);
 264        kip = NULL;
 265out:
 266        rcu_read_unlock();
 267        /* Mark and sweep: this may sleep */
 268        if (kip) {
 269                /* Check double free */
 270                WARN_ON(kip->slot_used[idx] != SLOT_USED);
 271                if (dirty) {
 272                        kip->slot_used[idx] = SLOT_DIRTY;
 273                        kip->ngarbage++;
 274                        if (++c->nr_garbage > slots_per_page(c))
 275                                collect_garbage_slots(c);
 276                } else {
 277                        collect_one_slot(kip, idx);
 278                }
 279        }
 280        mutex_unlock(&c->mutex);
 281}
 282
 283/*
 284 * Check given address is on the page of kprobe instruction slots.
 285 * This will be used for checking whether the address on a stack
 286 * is on a text area or not.
 287 */
 288bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 289{
 290        struct kprobe_insn_page *kip;
 291        bool ret = false;
 292
 293        rcu_read_lock();
 294        list_for_each_entry_rcu(kip, &c->pages, list) {
 295                if (addr >= (unsigned long)kip->insns &&
 296                    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 297                        ret = true;
 298                        break;
 299                }
 300        }
 301        rcu_read_unlock();
 302
 303        return ret;
 304}
 305
 306#ifdef CONFIG_OPTPROBES
 307/* For optimized_kprobe buffer */
 308struct kprobe_insn_cache kprobe_optinsn_slots = {
 309        .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 310        .alloc = alloc_insn_page,
 311        .free = free_insn_page,
 312        .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 313        /* .insn_size is initialized later */
 314        .nr_garbage = 0,
 315};
 316#endif
 317#endif
 318
 319/* We have preemption disabled.. so it is safe to use __ versions */
 320static inline void set_kprobe_instance(struct kprobe *kp)
 321{
 322        __this_cpu_write(kprobe_instance, kp);
 323}
 324
 325static inline void reset_kprobe_instance(void)
 326{
 327        __this_cpu_write(kprobe_instance, NULL);
 328}
 329
 330/*
 331 * This routine is called either:
 332 *      - under the kprobe_mutex - during kprobe_[un]register()
 333 *                              OR
 334 *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
 335 */
 336struct kprobe *get_kprobe(void *addr)
 337{
 338        struct hlist_head *head;
 339        struct kprobe *p;
 340
 341        head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 342        hlist_for_each_entry_rcu(p, head, hlist) {
 343                if (p->addr == addr)
 344                        return p;
 345        }
 346
 347        return NULL;
 348}
 349NOKPROBE_SYMBOL(get_kprobe);
 350
 351static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 352
 353/* Return true if the kprobe is an aggregator */
 354static inline int kprobe_aggrprobe(struct kprobe *p)
 355{
 356        return p->pre_handler == aggr_pre_handler;
 357}
 358
 359/* Return true(!0) if the kprobe is unused */
 360static inline int kprobe_unused(struct kprobe *p)
 361{
 362        return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 363               list_empty(&p->list);
 364}
 365
 366/*
 367 * Keep all fields in the kprobe consistent
 368 */
 369static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 370{
 371        memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 372        memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 373}
 374
 375#ifdef CONFIG_OPTPROBES
 376/* NOTE: change this value only with kprobe_mutex held */
 377static bool kprobes_allow_optimization;
 378
 379/*
 380 * Call all pre_handler on the list, but ignores its return value.
 381 * This must be called from arch-dep optimized caller.
 382 */
 383void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 384{
 385        struct kprobe *kp;
 386
 387        list_for_each_entry_rcu(kp, &p->list, list) {
 388                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 389                        set_kprobe_instance(kp);
 390                        kp->pre_handler(kp, regs);
 391                }
 392                reset_kprobe_instance();
 393        }
 394}
 395NOKPROBE_SYMBOL(opt_pre_handler);
 396
 397/* Free optimized instructions and optimized_kprobe */
 398static void free_aggr_kprobe(struct kprobe *p)
 399{
 400        struct optimized_kprobe *op;
 401
 402        op = container_of(p, struct optimized_kprobe, kp);
 403        arch_remove_optimized_kprobe(op);
 404        arch_remove_kprobe(p);
 405        kfree(op);
 406}
 407
 408/* Return true(!0) if the kprobe is ready for optimization. */
 409static inline int kprobe_optready(struct kprobe *p)
 410{
 411        struct optimized_kprobe *op;
 412
 413        if (kprobe_aggrprobe(p)) {
 414                op = container_of(p, struct optimized_kprobe, kp);
 415                return arch_prepared_optinsn(&op->optinsn);
 416        }
 417
 418        return 0;
 419}
 420
 421/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 422static inline int kprobe_disarmed(struct kprobe *p)
 423{
 424        struct optimized_kprobe *op;
 425
 426        /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 427        if (!kprobe_aggrprobe(p))
 428                return kprobe_disabled(p);
 429
 430        op = container_of(p, struct optimized_kprobe, kp);
 431
 432        return kprobe_disabled(p) && list_empty(&op->list);
 433}
 434
 435/* Return true(!0) if the probe is queued on (un)optimizing lists */
 436static int kprobe_queued(struct kprobe *p)
 437{
 438        struct optimized_kprobe *op;
 439
 440        if (kprobe_aggrprobe(p)) {
 441                op = container_of(p, struct optimized_kprobe, kp);
 442                if (!list_empty(&op->list))
 443                        return 1;
 444        }
 445        return 0;
 446}
 447
 448/*
 449 * Return an optimized kprobe whose optimizing code replaces
 450 * instructions including addr (exclude breakpoint).
 451 */
 452static struct kprobe *get_optimized_kprobe(unsigned long addr)
 453{
 454        int i;
 455        struct kprobe *p = NULL;
 456        struct optimized_kprobe *op;
 457
 458        /* Don't check i == 0, since that is a breakpoint case. */
 459        for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 460                p = get_kprobe((void *)(addr - i));
 461
 462        if (p && kprobe_optready(p)) {
 463                op = container_of(p, struct optimized_kprobe, kp);
 464                if (arch_within_optimized_kprobe(op, addr))
 465                        return p;
 466        }
 467
 468        return NULL;
 469}
 470
 471/* Optimization staging list, protected by kprobe_mutex */
 472static LIST_HEAD(optimizing_list);
 473static LIST_HEAD(unoptimizing_list);
 474static LIST_HEAD(freeing_list);
 475
 476static void kprobe_optimizer(struct work_struct *work);
 477static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 478#define OPTIMIZE_DELAY 5
 479
 480/*
 481 * Optimize (replace a breakpoint with a jump) kprobes listed on
 482 * optimizing_list.
 483 */
 484static void do_optimize_kprobes(void)
 485{
 486        /*
 487         * The optimization/unoptimization refers online_cpus via
 488         * stop_machine() and cpu-hotplug modifies online_cpus.
 489         * And same time, text_mutex will be held in cpu-hotplug and here.
 490         * This combination can cause a deadlock (cpu-hotplug try to lock
 491         * text_mutex but stop_machine can not be done because online_cpus
 492         * has been changed)
 493         * To avoid this deadlock, caller must have locked cpu hotplug
 494         * for preventing cpu-hotplug outside of text_mutex locking.
 495         */
 496        lockdep_assert_cpus_held();
 497
 498        /* Optimization never be done when disarmed */
 499        if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 500            list_empty(&optimizing_list))
 501                return;
 502
 503        mutex_lock(&text_mutex);
 504        arch_optimize_kprobes(&optimizing_list);
 505        mutex_unlock(&text_mutex);
 506}
 507
 508/*
 509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 510 * if need) kprobes listed on unoptimizing_list.
 511 */
 512static void do_unoptimize_kprobes(void)
 513{
 514        struct optimized_kprobe *op, *tmp;
 515
 516        /* See comment in do_optimize_kprobes() */
 517        lockdep_assert_cpus_held();
 518
 519        /* Unoptimization must be done anytime */
 520        if (list_empty(&unoptimizing_list))
 521                return;
 522
 523        mutex_lock(&text_mutex);
 524        arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 525        /* Loop free_list for disarming */
 526        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 527                /* Disarm probes if marked disabled */
 528                if (kprobe_disabled(&op->kp))
 529                        arch_disarm_kprobe(&op->kp);
 530                if (kprobe_unused(&op->kp)) {
 531                        /*
 532                         * Remove unused probes from hash list. After waiting
 533                         * for synchronization, these probes are reclaimed.
 534                         * (reclaiming is done by do_free_cleaned_kprobes.)
 535                         */
 536                        hlist_del_rcu(&op->kp.hlist);
 537                } else
 538                        list_del_init(&op->list);
 539        }
 540        mutex_unlock(&text_mutex);
 541}
 542
 543/* Reclaim all kprobes on the free_list */
 544static void do_free_cleaned_kprobes(void)
 545{
 546        struct optimized_kprobe *op, *tmp;
 547
 548        list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 549                BUG_ON(!kprobe_unused(&op->kp));
 550                list_del_init(&op->list);
 551                free_aggr_kprobe(&op->kp);
 552        }
 553}
 554
 555/* Start optimizer after OPTIMIZE_DELAY passed */
 556static void kick_kprobe_optimizer(void)
 557{
 558        schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 559}
 560
 561/* Kprobe jump optimizer */
 562static void kprobe_optimizer(struct work_struct *work)
 563{
 564        mutex_lock(&kprobe_mutex);
 565        cpus_read_lock();
 566        /* Lock modules while optimizing kprobes */
 567        mutex_lock(&module_mutex);
 568
 569        /*
 570         * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 571         * kprobes before waiting for quiesence period.
 572         */
 573        do_unoptimize_kprobes();
 574
 575        /*
 576         * Step 2: Wait for quiesence period to ensure all running interrupts
 577         * are done. Because optprobe may modify multiple instructions
 578         * there is a chance that Nth instruction is interrupted. In that
 579         * case, running interrupt can return to 2nd-Nth byte of jump
 580         * instruction. This wait is for avoiding it.
 581         */
 582        synchronize_sched();
 583
 584        /* Step 3: Optimize kprobes after quiesence period */
 585        do_optimize_kprobes();
 586
 587        /* Step 4: Free cleaned kprobes after quiesence period */
 588        do_free_cleaned_kprobes();
 589
 590        mutex_unlock(&module_mutex);
 591        cpus_read_unlock();
 592        mutex_unlock(&kprobe_mutex);
 593
 594        /* Step 5: Kick optimizer again if needed */
 595        if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 596                kick_kprobe_optimizer();
 597}
 598
 599/* Wait for completing optimization and unoptimization */
 600void wait_for_kprobe_optimizer(void)
 601{
 602        mutex_lock(&kprobe_mutex);
 603
 604        while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 605                mutex_unlock(&kprobe_mutex);
 606
 607                /* this will also make optimizing_work execute immmediately */
 608                flush_delayed_work(&optimizing_work);
 609                /* @optimizing_work might not have been queued yet, relax */
 610                cpu_relax();
 611
 612                mutex_lock(&kprobe_mutex);
 613        }
 614
 615        mutex_unlock(&kprobe_mutex);
 616}
 617
 618/* Optimize kprobe if p is ready to be optimized */
 619static void optimize_kprobe(struct kprobe *p)
 620{
 621        struct optimized_kprobe *op;
 622
 623        /* Check if the kprobe is disabled or not ready for optimization. */
 624        if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 625            (kprobe_disabled(p) || kprobes_all_disarmed))
 626                return;
 627
 628        /* Both of break_handler and post_handler are not supported. */
 629        if (p->break_handler || p->post_handler)
 630                return;
 631
 632        op = container_of(p, struct optimized_kprobe, kp);
 633
 634        /* Check there is no other kprobes at the optimized instructions */
 635        if (arch_check_optimized_kprobe(op) < 0)
 636                return;
 637
 638        /* Check if it is already optimized. */
 639        if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 640                return;
 641        op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 642
 643        if (!list_empty(&op->list))
 644                /* This is under unoptimizing. Just dequeue the probe */
 645                list_del_init(&op->list);
 646        else {
 647                list_add(&op->list, &optimizing_list);
 648                kick_kprobe_optimizer();
 649        }
 650}
 651
 652/* Short cut to direct unoptimizing */
 653static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 654{
 655        lockdep_assert_cpus_held();
 656        arch_unoptimize_kprobe(op);
 657        if (kprobe_disabled(&op->kp))
 658                arch_disarm_kprobe(&op->kp);
 659}
 660
 661/* Unoptimize a kprobe if p is optimized */
 662static void unoptimize_kprobe(struct kprobe *p, bool force)
 663{
 664        struct optimized_kprobe *op;
 665
 666        if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 667                return; /* This is not an optprobe nor optimized */
 668
 669        op = container_of(p, struct optimized_kprobe, kp);
 670        if (!kprobe_optimized(p)) {
 671                /* Unoptimized or unoptimizing case */
 672                if (force && !list_empty(&op->list)) {
 673                        /*
 674                         * Only if this is unoptimizing kprobe and forced,
 675                         * forcibly unoptimize it. (No need to unoptimize
 676                         * unoptimized kprobe again :)
 677                         */
 678                        list_del_init(&op->list);
 679                        force_unoptimize_kprobe(op);
 680                }
 681                return;
 682        }
 683
 684        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 685        if (!list_empty(&op->list)) {
 686                /* Dequeue from the optimization queue */
 687                list_del_init(&op->list);
 688                return;
 689        }
 690        /* Optimized kprobe case */
 691        if (force)
 692                /* Forcibly update the code: this is a special case */
 693                force_unoptimize_kprobe(op);
 694        else {
 695                list_add(&op->list, &unoptimizing_list);
 696                kick_kprobe_optimizer();
 697        }
 698}
 699
 700/* Cancel unoptimizing for reusing */
 701static void reuse_unused_kprobe(struct kprobe *ap)
 702{
 703        struct optimized_kprobe *op;
 704
 705        BUG_ON(!kprobe_unused(ap));
 706        /*
 707         * Unused kprobe MUST be on the way of delayed unoptimizing (means
 708         * there is still a relative jump) and disabled.
 709         */
 710        op = container_of(ap, struct optimized_kprobe, kp);
 711        if (unlikely(list_empty(&op->list)))
 712                printk(KERN_WARNING "Warning: found a stray unused "
 713                        "aggrprobe@%p\n", ap->addr);
 714        /* Enable the probe again */
 715        ap->flags &= ~KPROBE_FLAG_DISABLED;
 716        /* Optimize it again (remove from op->list) */
 717        BUG_ON(!kprobe_optready(ap));
 718        optimize_kprobe(ap);
 719}
 720
 721/* Remove optimized instructions */
 722static void kill_optimized_kprobe(struct kprobe *p)
 723{
 724        struct optimized_kprobe *op;
 725
 726        op = container_of(p, struct optimized_kprobe, kp);
 727        if (!list_empty(&op->list))
 728                /* Dequeue from the (un)optimization queue */
 729                list_del_init(&op->list);
 730        op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 731
 732        if (kprobe_unused(p)) {
 733                /* Enqueue if it is unused */
 734                list_add(&op->list, &freeing_list);
 735                /*
 736                 * Remove unused probes from the hash list. After waiting
 737                 * for synchronization, this probe is reclaimed.
 738                 * (reclaiming is done by do_free_cleaned_kprobes().)
 739                 */
 740                hlist_del_rcu(&op->kp.hlist);
 741        }
 742
 743        /* Don't touch the code, because it is already freed. */
 744        arch_remove_optimized_kprobe(op);
 745}
 746
 747static inline
 748void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 749{
 750        if (!kprobe_ftrace(p))
 751                arch_prepare_optimized_kprobe(op, p);
 752}
 753
 754/* Try to prepare optimized instructions */
 755static void prepare_optimized_kprobe(struct kprobe *p)
 756{
 757        struct optimized_kprobe *op;
 758
 759        op = container_of(p, struct optimized_kprobe, kp);
 760        __prepare_optimized_kprobe(op, p);
 761}
 762
 763/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 764static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 765{
 766        struct optimized_kprobe *op;
 767
 768        op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 769        if (!op)
 770                return NULL;
 771
 772        INIT_LIST_HEAD(&op->list);
 773        op->kp.addr = p->addr;
 774        __prepare_optimized_kprobe(op, p);
 775
 776        return &op->kp;
 777}
 778
 779static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 780
 781/*
 782 * Prepare an optimized_kprobe and optimize it
 783 * NOTE: p must be a normal registered kprobe
 784 */
 785static void try_to_optimize_kprobe(struct kprobe *p)
 786{
 787        struct kprobe *ap;
 788        struct optimized_kprobe *op;
 789
 790        /* Impossible to optimize ftrace-based kprobe */
 791        if (kprobe_ftrace(p))
 792                return;
 793
 794        /* For preparing optimization, jump_label_text_reserved() is called */
 795        cpus_read_lock();
 796        jump_label_lock();
 797        mutex_lock(&text_mutex);
 798
 799        ap = alloc_aggr_kprobe(p);
 800        if (!ap)
 801                goto out;
 802
 803        op = container_of(ap, struct optimized_kprobe, kp);
 804        if (!arch_prepared_optinsn(&op->optinsn)) {
 805                /* If failed to setup optimizing, fallback to kprobe */
 806                arch_remove_optimized_kprobe(op);
 807                kfree(op);
 808                goto out;
 809        }
 810
 811        init_aggr_kprobe(ap, p);
 812        optimize_kprobe(ap);    /* This just kicks optimizer thread */
 813
 814out:
 815        mutex_unlock(&text_mutex);
 816        jump_label_unlock();
 817        cpus_read_unlock();
 818}
 819
 820#ifdef CONFIG_SYSCTL
 821static void optimize_all_kprobes(void)
 822{
 823        struct hlist_head *head;
 824        struct kprobe *p;
 825        unsigned int i;
 826
 827        mutex_lock(&kprobe_mutex);
 828        /* If optimization is already allowed, just return */
 829        if (kprobes_allow_optimization)
 830                goto out;
 831
 832        cpus_read_lock();
 833        kprobes_allow_optimization = true;
 834        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 835                head = &kprobe_table[i];
 836                hlist_for_each_entry_rcu(p, head, hlist)
 837                        if (!kprobe_disabled(p))
 838                                optimize_kprobe(p);
 839        }
 840        cpus_read_unlock();
 841        printk(KERN_INFO "Kprobes globally optimized\n");
 842out:
 843        mutex_unlock(&kprobe_mutex);
 844}
 845
 846static void unoptimize_all_kprobes(void)
 847{
 848        struct hlist_head *head;
 849        struct kprobe *p;
 850        unsigned int i;
 851
 852        mutex_lock(&kprobe_mutex);
 853        /* If optimization is already prohibited, just return */
 854        if (!kprobes_allow_optimization) {
 855                mutex_unlock(&kprobe_mutex);
 856                return;
 857        }
 858
 859        cpus_read_lock();
 860        kprobes_allow_optimization = false;
 861        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 862                head = &kprobe_table[i];
 863                hlist_for_each_entry_rcu(p, head, hlist) {
 864                        if (!kprobe_disabled(p))
 865                                unoptimize_kprobe(p, false);
 866                }
 867        }
 868        cpus_read_unlock();
 869        mutex_unlock(&kprobe_mutex);
 870
 871        /* Wait for unoptimizing completion */
 872        wait_for_kprobe_optimizer();
 873        printk(KERN_INFO "Kprobes globally unoptimized\n");
 874}
 875
 876static DEFINE_MUTEX(kprobe_sysctl_mutex);
 877int sysctl_kprobes_optimization;
 878int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 879                                      void __user *buffer, size_t *length,
 880                                      loff_t *ppos)
 881{
 882        int ret;
 883
 884        mutex_lock(&kprobe_sysctl_mutex);
 885        sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 886        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 887
 888        if (sysctl_kprobes_optimization)
 889                optimize_all_kprobes();
 890        else
 891                unoptimize_all_kprobes();
 892        mutex_unlock(&kprobe_sysctl_mutex);
 893
 894        return ret;
 895}
 896#endif /* CONFIG_SYSCTL */
 897
 898/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 899static void __arm_kprobe(struct kprobe *p)
 900{
 901        struct kprobe *_p;
 902
 903        /* Check collision with other optimized kprobes */
 904        _p = get_optimized_kprobe((unsigned long)p->addr);
 905        if (unlikely(_p))
 906                /* Fallback to unoptimized kprobe */
 907                unoptimize_kprobe(_p, true);
 908
 909        arch_arm_kprobe(p);
 910        optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
 911}
 912
 913/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 914static void __disarm_kprobe(struct kprobe *p, bool reopt)
 915{
 916        struct kprobe *_p;
 917
 918        /* Try to unoptimize */
 919        unoptimize_kprobe(p, kprobes_all_disarmed);
 920
 921        if (!kprobe_queued(p)) {
 922                arch_disarm_kprobe(p);
 923                /* If another kprobe was blocked, optimize it. */
 924                _p = get_optimized_kprobe((unsigned long)p->addr);
 925                if (unlikely(_p) && reopt)
 926                        optimize_kprobe(_p);
 927        }
 928        /* TODO: reoptimize others after unoptimized this probe */
 929}
 930
 931#else /* !CONFIG_OPTPROBES */
 932
 933#define optimize_kprobe(p)                      do {} while (0)
 934#define unoptimize_kprobe(p, f)                 do {} while (0)
 935#define kill_optimized_kprobe(p)                do {} while (0)
 936#define prepare_optimized_kprobe(p)             do {} while (0)
 937#define try_to_optimize_kprobe(p)               do {} while (0)
 938#define __arm_kprobe(p)                         arch_arm_kprobe(p)
 939#define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
 940#define kprobe_disarmed(p)                      kprobe_disabled(p)
 941#define wait_for_kprobe_optimizer()             do {} while (0)
 942
 943/* There should be no unused kprobes can be reused without optimization */
 944static void reuse_unused_kprobe(struct kprobe *ap)
 945{
 946        printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 947        BUG_ON(kprobe_unused(ap));
 948}
 949
 950static void free_aggr_kprobe(struct kprobe *p)
 951{
 952        arch_remove_kprobe(p);
 953        kfree(p);
 954}
 955
 956static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 957{
 958        return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 959}
 960#endif /* CONFIG_OPTPROBES */
 961
 962#ifdef CONFIG_KPROBES_ON_FTRACE
 963static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
 964        .func = kprobe_ftrace_handler,
 965        .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
 966};
 967static int kprobe_ftrace_enabled;
 968
 969/* Must ensure p->addr is really on ftrace */
 970static int prepare_kprobe(struct kprobe *p)
 971{
 972        if (!kprobe_ftrace(p))
 973                return arch_prepare_kprobe(p);
 974
 975        return arch_prepare_kprobe_ftrace(p);
 976}
 977
 978/* Caller must lock kprobe_mutex */
 979static void arm_kprobe_ftrace(struct kprobe *p)
 980{
 981        int ret;
 982
 983        ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
 984                                   (unsigned long)p->addr, 0, 0);
 985        WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
 986        kprobe_ftrace_enabled++;
 987        if (kprobe_ftrace_enabled == 1) {
 988                ret = register_ftrace_function(&kprobe_ftrace_ops);
 989                WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
 990        }
 991}
 992
 993/* Caller must lock kprobe_mutex */
 994static void disarm_kprobe_ftrace(struct kprobe *p)
 995{
 996        int ret;
 997
 998        kprobe_ftrace_enabled--;
 999        if (kprobe_ftrace_enabled == 0) {
1000                ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1001                WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1002        }
1003        ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1004                           (unsigned long)p->addr, 1, 0);
1005        WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1006}
1007#else   /* !CONFIG_KPROBES_ON_FTRACE */
1008#define prepare_kprobe(p)       arch_prepare_kprobe(p)
1009#define arm_kprobe_ftrace(p)    do {} while (0)
1010#define disarm_kprobe_ftrace(p) do {} while (0)
1011#endif
1012
1013/* Arm a kprobe with text_mutex */
1014static void arm_kprobe(struct kprobe *kp)
1015{
1016        if (unlikely(kprobe_ftrace(kp))) {
1017                arm_kprobe_ftrace(kp);
1018                return;
1019        }
1020        cpus_read_lock();
1021        mutex_lock(&text_mutex);
1022        __arm_kprobe(kp);
1023        mutex_unlock(&text_mutex);
1024        cpus_read_unlock();
1025}
1026
1027/* Disarm a kprobe with text_mutex */
1028static void disarm_kprobe(struct kprobe *kp, bool reopt)
1029{
1030        if (unlikely(kprobe_ftrace(kp))) {
1031                disarm_kprobe_ftrace(kp);
1032                return;
1033        }
1034
1035        cpus_read_lock();
1036        mutex_lock(&text_mutex);
1037        __disarm_kprobe(kp, reopt);
1038        mutex_unlock(&text_mutex);
1039        cpus_read_unlock();
1040}
1041
1042/*
1043 * Aggregate handlers for multiple kprobes support - these handlers
1044 * take care of invoking the individual kprobe handlers on p->list
1045 */
1046static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047{
1048        struct kprobe *kp;
1049
1050        list_for_each_entry_rcu(kp, &p->list, list) {
1051                if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1052                        set_kprobe_instance(kp);
1053                        if (kp->pre_handler(kp, regs))
1054                                return 1;
1055                }
1056                reset_kprobe_instance();
1057        }
1058        return 0;
1059}
1060NOKPROBE_SYMBOL(aggr_pre_handler);
1061
1062static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1063                              unsigned long flags)
1064{
1065        struct kprobe *kp;
1066
1067        list_for_each_entry_rcu(kp, &p->list, list) {
1068                if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1069                        set_kprobe_instance(kp);
1070                        kp->post_handler(kp, regs, flags);
1071                        reset_kprobe_instance();
1072                }
1073        }
1074}
1075NOKPROBE_SYMBOL(aggr_post_handler);
1076
1077static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1078                              int trapnr)
1079{
1080        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1081
1082        /*
1083         * if we faulted "during" the execution of a user specified
1084         * probe handler, invoke just that probe's fault handler
1085         */
1086        if (cur && cur->fault_handler) {
1087                if (cur->fault_handler(cur, regs, trapnr))
1088                        return 1;
1089        }
1090        return 0;
1091}
1092NOKPROBE_SYMBOL(aggr_fault_handler);
1093
1094static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1095{
1096        struct kprobe *cur = __this_cpu_read(kprobe_instance);
1097        int ret = 0;
1098
1099        if (cur && cur->break_handler) {
1100                if (cur->break_handler(cur, regs))
1101                        ret = 1;
1102        }
1103        reset_kprobe_instance();
1104        return ret;
1105}
1106NOKPROBE_SYMBOL(aggr_break_handler);
1107
1108/* Walks the list and increments nmissed count for multiprobe case */
1109void kprobes_inc_nmissed_count(struct kprobe *p)
1110{
1111        struct kprobe *kp;
1112        if (!kprobe_aggrprobe(p)) {
1113                p->nmissed++;
1114        } else {
1115                list_for_each_entry_rcu(kp, &p->list, list)
1116                        kp->nmissed++;
1117        }
1118        return;
1119}
1120NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1121
1122void recycle_rp_inst(struct kretprobe_instance *ri,
1123                     struct hlist_head *head)
1124{
1125        struct kretprobe *rp = ri->rp;
1126
1127        /* remove rp inst off the rprobe_inst_table */
1128        hlist_del(&ri->hlist);
1129        INIT_HLIST_NODE(&ri->hlist);
1130        if (likely(rp)) {
1131                raw_spin_lock(&rp->lock);
1132                hlist_add_head(&ri->hlist, &rp->free_instances);
1133                raw_spin_unlock(&rp->lock);
1134        } else
1135                /* Unregistering */
1136                hlist_add_head(&ri->hlist, head);
1137}
1138NOKPROBE_SYMBOL(recycle_rp_inst);
1139
1140void kretprobe_hash_lock(struct task_struct *tsk,
1141                         struct hlist_head **head, unsigned long *flags)
1142__acquires(hlist_lock)
1143{
1144        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1145        raw_spinlock_t *hlist_lock;
1146
1147        *head = &kretprobe_inst_table[hash];
1148        hlist_lock = kretprobe_table_lock_ptr(hash);
1149        raw_spin_lock_irqsave(hlist_lock, *flags);
1150}
1151NOKPROBE_SYMBOL(kretprobe_hash_lock);
1152
1153static void kretprobe_table_lock(unsigned long hash,
1154                                 unsigned long *flags)
1155__acquires(hlist_lock)
1156{
1157        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1158        raw_spin_lock_irqsave(hlist_lock, *flags);
1159}
1160NOKPROBE_SYMBOL(kretprobe_table_lock);
1161
1162void kretprobe_hash_unlock(struct task_struct *tsk,
1163                           unsigned long *flags)
1164__releases(hlist_lock)
1165{
1166        unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1167        raw_spinlock_t *hlist_lock;
1168
1169        hlist_lock = kretprobe_table_lock_ptr(hash);
1170        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1171}
1172NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1173
1174static void kretprobe_table_unlock(unsigned long hash,
1175                                   unsigned long *flags)
1176__releases(hlist_lock)
1177{
1178        raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1179        raw_spin_unlock_irqrestore(hlist_lock, *flags);
1180}
1181NOKPROBE_SYMBOL(kretprobe_table_unlock);
1182
1183/*
1184 * This function is called from finish_task_switch when task tk becomes dead,
1185 * so that we can recycle any function-return probe instances associated
1186 * with this task. These left over instances represent probed functions
1187 * that have been called but will never return.
1188 */
1189void kprobe_flush_task(struct task_struct *tk)
1190{
1191        struct kretprobe_instance *ri;
1192        struct hlist_head *head, empty_rp;
1193        struct hlist_node *tmp;
1194        unsigned long hash, flags = 0;
1195
1196        if (unlikely(!kprobes_initialized))
1197                /* Early boot.  kretprobe_table_locks not yet initialized. */
1198                return;
1199
1200        INIT_HLIST_HEAD(&empty_rp);
1201        hash = hash_ptr(tk, KPROBE_HASH_BITS);
1202        head = &kretprobe_inst_table[hash];
1203        kretprobe_table_lock(hash, &flags);
1204        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1205                if (ri->task == tk)
1206                        recycle_rp_inst(ri, &empty_rp);
1207        }
1208        kretprobe_table_unlock(hash, &flags);
1209        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1210                hlist_del(&ri->hlist);
1211                kfree(ri);
1212        }
1213}
1214NOKPROBE_SYMBOL(kprobe_flush_task);
1215
1216static inline void free_rp_inst(struct kretprobe *rp)
1217{
1218        struct kretprobe_instance *ri;
1219        struct hlist_node *next;
1220
1221        hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1222                hlist_del(&ri->hlist);
1223                kfree(ri);
1224        }
1225}
1226
1227static void cleanup_rp_inst(struct kretprobe *rp)
1228{
1229        unsigned long flags, hash;
1230        struct kretprobe_instance *ri;
1231        struct hlist_node *next;
1232        struct hlist_head *head;
1233
1234        /* No race here */
1235        for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1236                kretprobe_table_lock(hash, &flags);
1237                head = &kretprobe_inst_table[hash];
1238                hlist_for_each_entry_safe(ri, next, head, hlist) {
1239                        if (ri->rp == rp)
1240                                ri->rp = NULL;
1241                }
1242                kretprobe_table_unlock(hash, &flags);
1243        }
1244        free_rp_inst(rp);
1245}
1246NOKPROBE_SYMBOL(cleanup_rp_inst);
1247
1248/*
1249* Add the new probe to ap->list. Fail if this is the
1250* second jprobe at the address - two jprobes can't coexist
1251*/
1252static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1253{
1254        BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1255
1256        if (p->break_handler || p->post_handler)
1257                unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1258
1259        if (p->break_handler) {
1260                if (ap->break_handler)
1261                        return -EEXIST;
1262                list_add_tail_rcu(&p->list, &ap->list);
1263                ap->break_handler = aggr_break_handler;
1264        } else
1265                list_add_rcu(&p->list, &ap->list);
1266        if (p->post_handler && !ap->post_handler)
1267                ap->post_handler = aggr_post_handler;
1268
1269        return 0;
1270}
1271
1272/*
1273 * Fill in the required fields of the "manager kprobe". Replace the
1274 * earlier kprobe in the hlist with the manager kprobe
1275 */
1276static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277{
1278        /* Copy p's insn slot to ap */
1279        copy_kprobe(p, ap);
1280        flush_insn_slot(ap);
1281        ap->addr = p->addr;
1282        ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283        ap->pre_handler = aggr_pre_handler;
1284        ap->fault_handler = aggr_fault_handler;
1285        /* We don't care the kprobe which has gone. */
1286        if (p->post_handler && !kprobe_gone(p))
1287                ap->post_handler = aggr_post_handler;
1288        if (p->break_handler && !kprobe_gone(p))
1289                ap->break_handler = aggr_break_handler;
1290
1291        INIT_LIST_HEAD(&ap->list);
1292        INIT_HLIST_NODE(&ap->hlist);
1293
1294        list_add_rcu(&p->list, &ap->list);
1295        hlist_replace_rcu(&p->hlist, &ap->hlist);
1296}
1297
1298/*
1299 * This is the second or subsequent kprobe at the address - handle
1300 * the intricacies
1301 */
1302static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1303{
1304        int ret = 0;
1305        struct kprobe *ap = orig_p;
1306
1307        cpus_read_lock();
1308
1309        /* For preparing optimization, jump_label_text_reserved() is called */
1310        jump_label_lock();
1311        mutex_lock(&text_mutex);
1312
1313        if (!kprobe_aggrprobe(orig_p)) {
1314                /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1315                ap = alloc_aggr_kprobe(orig_p);
1316                if (!ap) {
1317                        ret = -ENOMEM;
1318                        goto out;
1319                }
1320                init_aggr_kprobe(ap, orig_p);
1321        } else if (kprobe_unused(ap))
1322                /* This probe is going to die. Rescue it */
1323                reuse_unused_kprobe(ap);
1324
1325        if (kprobe_gone(ap)) {
1326                /*
1327                 * Attempting to insert new probe at the same location that
1328                 * had a probe in the module vaddr area which already
1329                 * freed. So, the instruction slot has already been
1330                 * released. We need a new slot for the new probe.
1331                 */
1332                ret = arch_prepare_kprobe(ap);
1333                if (ret)
1334                        /*
1335                         * Even if fail to allocate new slot, don't need to
1336                         * free aggr_probe. It will be used next time, or
1337                         * freed by unregister_kprobe.
1338                         */
1339                        goto out;
1340
1341                /* Prepare optimized instructions if possible. */
1342                prepare_optimized_kprobe(ap);
1343
1344                /*
1345                 * Clear gone flag to prevent allocating new slot again, and
1346                 * set disabled flag because it is not armed yet.
1347                 */
1348                ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349                            | KPROBE_FLAG_DISABLED;
1350        }
1351
1352        /* Copy ap's insn slot to p */
1353        copy_kprobe(ap, p);
1354        ret = add_new_kprobe(ap, p);
1355
1356out:
1357        mutex_unlock(&text_mutex);
1358        jump_label_unlock();
1359        cpus_read_unlock();
1360
1361        if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362                ap->flags &= ~KPROBE_FLAG_DISABLED;
1363                if (!kprobes_all_disarmed)
1364                        /* Arm the breakpoint again. */
1365                        arm_kprobe(ap);
1366        }
1367        return ret;
1368}
1369
1370bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371{
1372        /* The __kprobes marked functions and entry code must not be probed */
1373        return addr >= (unsigned long)__kprobes_text_start &&
1374               addr < (unsigned long)__kprobes_text_end;
1375}
1376
1377bool within_kprobe_blacklist(unsigned long addr)
1378{
1379        struct kprobe_blacklist_entry *ent;
1380
1381        if (arch_within_kprobe_blacklist(addr))
1382                return true;
1383        /*
1384         * If there exists a kprobe_blacklist, verify and
1385         * fail any probe registration in the prohibited area
1386         */
1387        list_for_each_entry(ent, &kprobe_blacklist, list) {
1388                if (addr >= ent->start_addr && addr < ent->end_addr)
1389                        return true;
1390        }
1391
1392        return false;
1393}
1394
1395/*
1396 * If we have a symbol_name argument, look it up and add the offset field
1397 * to it. This way, we can specify a relative address to a symbol.
1398 * This returns encoded errors if it fails to look up symbol or invalid
1399 * combination of parameters.
1400 */
1401static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1402                        const char *symbol_name, unsigned int offset)
1403{
1404        if ((symbol_name && addr) || (!symbol_name && !addr))
1405                goto invalid;
1406
1407        if (symbol_name) {
1408                addr = kprobe_lookup_name(symbol_name, offset);
1409                if (!addr)
1410                        return ERR_PTR(-ENOENT);
1411        }
1412
1413        addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1414        if (addr)
1415                return addr;
1416
1417invalid:
1418        return ERR_PTR(-EINVAL);
1419}
1420
1421static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1422{
1423        return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1424}
1425
1426/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1427static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1428{
1429        struct kprobe *ap, *list_p;
1430
1431        ap = get_kprobe(p->addr);
1432        if (unlikely(!ap))
1433                return NULL;
1434
1435        if (p != ap) {
1436                list_for_each_entry_rcu(list_p, &ap->list, list)
1437                        if (list_p == p)
1438                        /* kprobe p is a valid probe */
1439                                goto valid;
1440                return NULL;
1441        }
1442valid:
1443        return ap;
1444}
1445
1446/* Return error if the kprobe is being re-registered */
1447static inline int check_kprobe_rereg(struct kprobe *p)
1448{
1449        int ret = 0;
1450
1451        mutex_lock(&kprobe_mutex);
1452        if (__get_valid_kprobe(p))
1453                ret = -EINVAL;
1454        mutex_unlock(&kprobe_mutex);
1455
1456        return ret;
1457}
1458
1459int __weak arch_check_ftrace_location(struct kprobe *p)
1460{
1461        unsigned long ftrace_addr;
1462
1463        ftrace_addr = ftrace_location((unsigned long)p->addr);
1464        if (ftrace_addr) {
1465#ifdef CONFIG_KPROBES_ON_FTRACE
1466                /* Given address is not on the instruction boundary */
1467                if ((unsigned long)p->addr != ftrace_addr)
1468                        return -EILSEQ;
1469                p->flags |= KPROBE_FLAG_FTRACE;
1470#else   /* !CONFIG_KPROBES_ON_FTRACE */
1471                return -EINVAL;
1472#endif
1473        }
1474        return 0;
1475}
1476
1477static int check_kprobe_address_safe(struct kprobe *p,
1478                                     struct module **probed_mod)
1479{
1480        int ret;
1481
1482        ret = arch_check_ftrace_location(p);
1483        if (ret)
1484                return ret;
1485        jump_label_lock();
1486        preempt_disable();
1487
1488        /* Ensure it is not in reserved area nor out of text */
1489        if (!kernel_text_address((unsigned long) p->addr) ||
1490            within_kprobe_blacklist((unsigned long) p->addr) ||
1491            jump_label_text_reserved(p->addr, p->addr)) {
1492                ret = -EINVAL;
1493                goto out;
1494        }
1495
1496        /* Check if are we probing a module */
1497        *probed_mod = __module_text_address((unsigned long) p->addr);
1498        if (*probed_mod) {
1499                /*
1500                 * We must hold a refcount of the probed module while updating
1501                 * its code to prohibit unexpected unloading.
1502                 */
1503                if (unlikely(!try_module_get(*probed_mod))) {
1504                        ret = -ENOENT;
1505                        goto out;
1506                }
1507
1508                /*
1509                 * If the module freed .init.text, we couldn't insert
1510                 * kprobes in there.
1511                 */
1512                if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1513                    (*probed_mod)->state != MODULE_STATE_COMING) {
1514                        module_put(*probed_mod);
1515                        *probed_mod = NULL;
1516                        ret = -ENOENT;
1517                }
1518        }
1519out:
1520        preempt_enable();
1521        jump_label_unlock();
1522
1523        return ret;
1524}
1525
1526int register_kprobe(struct kprobe *p)
1527{
1528        int ret;
1529        struct kprobe *old_p;
1530        struct module *probed_mod;
1531        kprobe_opcode_t *addr;
1532
1533        /* Adjust probe address from symbol */
1534        addr = kprobe_addr(p);
1535        if (IS_ERR(addr))
1536                return PTR_ERR(addr);
1537        p->addr = addr;
1538
1539        ret = check_kprobe_rereg(p);
1540        if (ret)
1541                return ret;
1542
1543        /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1544        p->flags &= KPROBE_FLAG_DISABLED;
1545        p->nmissed = 0;
1546        INIT_LIST_HEAD(&p->list);
1547
1548        ret = check_kprobe_address_safe(p, &probed_mod);
1549        if (ret)
1550                return ret;
1551
1552        mutex_lock(&kprobe_mutex);
1553
1554        old_p = get_kprobe(p->addr);
1555        if (old_p) {
1556                /* Since this may unoptimize old_p, locking text_mutex. */
1557                ret = register_aggr_kprobe(old_p, p);
1558                goto out;
1559        }
1560
1561        cpus_read_lock();
1562        /* Prevent text modification */
1563        mutex_lock(&text_mutex);
1564        ret = prepare_kprobe(p);
1565        mutex_unlock(&text_mutex);
1566        cpus_read_unlock();
1567        if (ret)
1568                goto out;
1569
1570        INIT_HLIST_NODE(&p->hlist);
1571        hlist_add_head_rcu(&p->hlist,
1572                       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1573
1574        if (!kprobes_all_disarmed && !kprobe_disabled(p))
1575                arm_kprobe(p);
1576
1577        /* Try to optimize kprobe */
1578        try_to_optimize_kprobe(p);
1579out:
1580        mutex_unlock(&kprobe_mutex);
1581
1582        if (probed_mod)
1583                module_put(probed_mod);
1584
1585        return ret;
1586}
1587EXPORT_SYMBOL_GPL(register_kprobe);
1588
1589/* Check if all probes on the aggrprobe are disabled */
1590static int aggr_kprobe_disabled(struct kprobe *ap)
1591{
1592        struct kprobe *kp;
1593
1594        list_for_each_entry_rcu(kp, &ap->list, list)
1595                if (!kprobe_disabled(kp))
1596                        /*
1597                         * There is an active probe on the list.
1598                         * We can't disable this ap.
1599                         */
1600                        return 0;
1601
1602        return 1;
1603}
1604
1605/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1606static struct kprobe *__disable_kprobe(struct kprobe *p)
1607{
1608        struct kprobe *orig_p;
1609
1610        /* Get an original kprobe for return */
1611        orig_p = __get_valid_kprobe(p);
1612        if (unlikely(orig_p == NULL))
1613                return NULL;
1614
1615        if (!kprobe_disabled(p)) {
1616                /* Disable probe if it is a child probe */
1617                if (p != orig_p)
1618                        p->flags |= KPROBE_FLAG_DISABLED;
1619
1620                /* Try to disarm and disable this/parent probe */
1621                if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1622                        /*
1623                         * If kprobes_all_disarmed is set, orig_p
1624                         * should have already been disarmed, so
1625                         * skip unneed disarming process.
1626                         */
1627                        if (!kprobes_all_disarmed)
1628                                disarm_kprobe(orig_p, true);
1629                        orig_p->flags |= KPROBE_FLAG_DISABLED;
1630                }
1631        }
1632
1633        return orig_p;
1634}
1635
1636/*
1637 * Unregister a kprobe without a scheduler synchronization.
1638 */
1639static int __unregister_kprobe_top(struct kprobe *p)
1640{
1641        struct kprobe *ap, *list_p;
1642
1643        /* Disable kprobe. This will disarm it if needed. */
1644        ap = __disable_kprobe(p);
1645        if (ap == NULL)
1646                return -EINVAL;
1647
1648        if (ap == p)
1649                /*
1650                 * This probe is an independent(and non-optimized) kprobe
1651                 * (not an aggrprobe). Remove from the hash list.
1652                 */
1653                goto disarmed;
1654
1655        /* Following process expects this probe is an aggrprobe */
1656        WARN_ON(!kprobe_aggrprobe(ap));
1657
1658        if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1659                /*
1660                 * !disarmed could be happen if the probe is under delayed
1661                 * unoptimizing.
1662                 */
1663                goto disarmed;
1664        else {
1665                /* If disabling probe has special handlers, update aggrprobe */
1666                if (p->break_handler && !kprobe_gone(p))
1667                        ap->break_handler = NULL;
1668                if (p->post_handler && !kprobe_gone(p)) {
1669                        list_for_each_entry_rcu(list_p, &ap->list, list) {
1670                                if ((list_p != p) && (list_p->post_handler))
1671                                        goto noclean;
1672                        }
1673                        ap->post_handler = NULL;
1674                }
1675noclean:
1676                /*
1677                 * Remove from the aggrprobe: this path will do nothing in
1678                 * __unregister_kprobe_bottom().
1679                 */
1680                list_del_rcu(&p->list);
1681                if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1682                        /*
1683                         * Try to optimize this probe again, because post
1684                         * handler may have been changed.
1685                         */
1686                        optimize_kprobe(ap);
1687        }
1688        return 0;
1689
1690disarmed:
1691        BUG_ON(!kprobe_disarmed(ap));
1692        hlist_del_rcu(&ap->hlist);
1693        return 0;
1694}
1695
1696static void __unregister_kprobe_bottom(struct kprobe *p)
1697{
1698        struct kprobe *ap;
1699
1700        if (list_empty(&p->list))
1701                /* This is an independent kprobe */
1702                arch_remove_kprobe(p);
1703        else if (list_is_singular(&p->list)) {
1704                /* This is the last child of an aggrprobe */
1705                ap = list_entry(p->list.next, struct kprobe, list);
1706                list_del(&p->list);
1707                free_aggr_kprobe(ap);
1708        }
1709        /* Otherwise, do nothing. */
1710}
1711
1712int register_kprobes(struct kprobe **kps, int num)
1713{
1714        int i, ret = 0;
1715
1716        if (num <= 0)
1717                return -EINVAL;
1718        for (i = 0; i < num; i++) {
1719                ret = register_kprobe(kps[i]);
1720                if (ret < 0) {
1721                        if (i > 0)
1722                                unregister_kprobes(kps, i);
1723                        break;
1724                }
1725        }
1726        return ret;
1727}
1728EXPORT_SYMBOL_GPL(register_kprobes);
1729
1730void unregister_kprobe(struct kprobe *p)
1731{
1732        unregister_kprobes(&p, 1);
1733}
1734EXPORT_SYMBOL_GPL(unregister_kprobe);
1735
1736void unregister_kprobes(struct kprobe **kps, int num)
1737{
1738        int i;
1739
1740        if (num <= 0)
1741                return;
1742        mutex_lock(&kprobe_mutex);
1743        for (i = 0; i < num; i++)
1744                if (__unregister_kprobe_top(kps[i]) < 0)
1745                        kps[i]->addr = NULL;
1746        mutex_unlock(&kprobe_mutex);
1747
1748        synchronize_sched();
1749        for (i = 0; i < num; i++)
1750                if (kps[i]->addr)
1751                        __unregister_kprobe_bottom(kps[i]);
1752}
1753EXPORT_SYMBOL_GPL(unregister_kprobes);
1754
1755int __weak kprobe_exceptions_notify(struct notifier_block *self,
1756                                        unsigned long val, void *data)
1757{
1758        return NOTIFY_DONE;
1759}
1760NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1761
1762static struct notifier_block kprobe_exceptions_nb = {
1763        .notifier_call = kprobe_exceptions_notify,
1764        .priority = 0x7fffffff /* we need to be notified first */
1765};
1766
1767unsigned long __weak arch_deref_entry_point(void *entry)
1768{
1769        return (unsigned long)entry;
1770}
1771
1772int register_jprobes(struct jprobe **jps, int num)
1773{
1774        int ret = 0, i;
1775
1776        if (num <= 0)
1777                return -EINVAL;
1778
1779        for (i = 0; i < num; i++) {
1780                ret = register_jprobe(jps[i]);
1781
1782                if (ret < 0) {
1783                        if (i > 0)
1784                                unregister_jprobes(jps, i);
1785                        break;
1786                }
1787        }
1788
1789        return ret;
1790}
1791EXPORT_SYMBOL_GPL(register_jprobes);
1792
1793int register_jprobe(struct jprobe *jp)
1794{
1795        unsigned long addr, offset;
1796        struct kprobe *kp = &jp->kp;
1797
1798        /*
1799         * Verify probepoint as well as the jprobe handler are
1800         * valid function entry points.
1801         */
1802        addr = arch_deref_entry_point(jp->entry);
1803
1804        if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1805            kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1806                kp->pre_handler = setjmp_pre_handler;
1807                kp->break_handler = longjmp_break_handler;
1808                return register_kprobe(kp);
1809        }
1810
1811        return -EINVAL;
1812}
1813EXPORT_SYMBOL_GPL(register_jprobe);
1814
1815void unregister_jprobe(struct jprobe *jp)
1816{
1817        unregister_jprobes(&jp, 1);
1818}
1819EXPORT_SYMBOL_GPL(unregister_jprobe);
1820
1821void unregister_jprobes(struct jprobe **jps, int num)
1822{
1823        int i;
1824
1825        if (num <= 0)
1826                return;
1827        mutex_lock(&kprobe_mutex);
1828        for (i = 0; i < num; i++)
1829                if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1830                        jps[i]->kp.addr = NULL;
1831        mutex_unlock(&kprobe_mutex);
1832
1833        synchronize_sched();
1834        for (i = 0; i < num; i++) {
1835                if (jps[i]->kp.addr)
1836                        __unregister_kprobe_bottom(&jps[i]->kp);
1837        }
1838}
1839EXPORT_SYMBOL_GPL(unregister_jprobes);
1840
1841#ifdef CONFIG_KRETPROBES
1842/*
1843 * This kprobe pre_handler is registered with every kretprobe. When probe
1844 * hits it will set up the return probe.
1845 */
1846static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1847{
1848        struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1849        unsigned long hash, flags = 0;
1850        struct kretprobe_instance *ri;
1851
1852        /*
1853         * To avoid deadlocks, prohibit return probing in NMI contexts,
1854         * just skip the probe and increase the (inexact) 'nmissed'
1855         * statistical counter, so that the user is informed that
1856         * something happened:
1857         */
1858        if (unlikely(in_nmi())) {
1859                rp->nmissed++;
1860                return 0;
1861        }
1862
1863        /* TODO: consider to only swap the RA after the last pre_handler fired */
1864        hash = hash_ptr(current, KPROBE_HASH_BITS);
1865        raw_spin_lock_irqsave(&rp->lock, flags);
1866        if (!hlist_empty(&rp->free_instances)) {
1867                ri = hlist_entry(rp->free_instances.first,
1868                                struct kretprobe_instance, hlist);
1869                hlist_del(&ri->hlist);
1870                raw_spin_unlock_irqrestore(&rp->lock, flags);
1871
1872                ri->rp = rp;
1873                ri->task = current;
1874
1875                if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1876                        raw_spin_lock_irqsave(&rp->lock, flags);
1877                        hlist_add_head(&ri->hlist, &rp->free_instances);
1878                        raw_spin_unlock_irqrestore(&rp->lock, flags);
1879                        return 0;
1880                }
1881
1882                arch_prepare_kretprobe(ri, regs);
1883
1884                /* XXX(hch): why is there no hlist_move_head? */
1885                INIT_HLIST_NODE(&ri->hlist);
1886                kretprobe_table_lock(hash, &flags);
1887                hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1888                kretprobe_table_unlock(hash, &flags);
1889        } else {
1890                rp->nmissed++;
1891                raw_spin_unlock_irqrestore(&rp->lock, flags);
1892        }
1893        return 0;
1894}
1895NOKPROBE_SYMBOL(pre_handler_kretprobe);
1896
1897bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1898{
1899        return !offset;
1900}
1901
1902bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1903{
1904        kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1905
1906        if (IS_ERR(kp_addr))
1907                return false;
1908
1909        if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1910                                                !arch_kprobe_on_func_entry(offset))
1911                return false;
1912
1913        return true;
1914}
1915
1916int register_kretprobe(struct kretprobe *rp)
1917{
1918        int ret = 0;
1919        struct kretprobe_instance *inst;
1920        int i;
1921        void *addr;
1922
1923        if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1924                return -EINVAL;
1925
1926        if (kretprobe_blacklist_size) {
1927                addr = kprobe_addr(&rp->kp);
1928                if (IS_ERR(addr))
1929                        return PTR_ERR(addr);
1930
1931                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1932                        if (kretprobe_blacklist[i].addr == addr)
1933                                return -EINVAL;
1934                }
1935        }
1936
1937        rp->kp.pre_handler = pre_handler_kretprobe;
1938        rp->kp.post_handler = NULL;
1939        rp->kp.fault_handler = NULL;
1940        rp->kp.break_handler = NULL;
1941
1942        /* Pre-allocate memory for max kretprobe instances */
1943        if (rp->maxactive <= 0) {
1944#ifdef CONFIG_PREEMPT
1945                rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1946#else
1947                rp->maxactive = num_possible_cpus();
1948#endif
1949        }
1950        raw_spin_lock_init(&rp->lock);
1951        INIT_HLIST_HEAD(&rp->free_instances);
1952        for (i = 0; i < rp->maxactive; i++) {
1953                inst = kmalloc(sizeof(struct kretprobe_instance) +
1954                               rp->data_size, GFP_KERNEL);
1955                if (inst == NULL) {
1956                        free_rp_inst(rp);
1957                        return -ENOMEM;
1958                }
1959                INIT_HLIST_NODE(&inst->hlist);
1960                hlist_add_head(&inst->hlist, &rp->free_instances);
1961        }
1962
1963        rp->nmissed = 0;
1964        /* Establish function entry probe point */
1965        ret = register_kprobe(&rp->kp);
1966        if (ret != 0)
1967                free_rp_inst(rp);
1968        return ret;
1969}
1970EXPORT_SYMBOL_GPL(register_kretprobe);
1971
1972int register_kretprobes(struct kretprobe **rps, int num)
1973{
1974        int ret = 0, i;
1975
1976        if (num <= 0)
1977                return -EINVAL;
1978        for (i = 0; i < num; i++) {
1979                ret = register_kretprobe(rps[i]);
1980                if (ret < 0) {
1981                        if (i > 0)
1982                                unregister_kretprobes(rps, i);
1983                        break;
1984                }
1985        }
1986        return ret;
1987}
1988EXPORT_SYMBOL_GPL(register_kretprobes);
1989
1990void unregister_kretprobe(struct kretprobe *rp)
1991{
1992        unregister_kretprobes(&rp, 1);
1993}
1994EXPORT_SYMBOL_GPL(unregister_kretprobe);
1995
1996void unregister_kretprobes(struct kretprobe **rps, int num)
1997{
1998        int i;
1999
2000        if (num <= 0)
2001                return;
2002        mutex_lock(&kprobe_mutex);
2003        for (i = 0; i < num; i++)
2004                if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2005                        rps[i]->kp.addr = NULL;
2006        mutex_unlock(&kprobe_mutex);
2007
2008        synchronize_sched();
2009        for (i = 0; i < num; i++) {
2010                if (rps[i]->kp.addr) {
2011                        __unregister_kprobe_bottom(&rps[i]->kp);
2012                        cleanup_rp_inst(rps[i]);
2013                }
2014        }
2015}
2016EXPORT_SYMBOL_GPL(unregister_kretprobes);
2017
2018#else /* CONFIG_KRETPROBES */
2019int register_kretprobe(struct kretprobe *rp)
2020{
2021        return -ENOSYS;
2022}
2023EXPORT_SYMBOL_GPL(register_kretprobe);
2024
2025int register_kretprobes(struct kretprobe **rps, int num)
2026{
2027        return -ENOSYS;
2028}
2029EXPORT_SYMBOL_GPL(register_kretprobes);
2030
2031void unregister_kretprobe(struct kretprobe *rp)
2032{
2033}
2034EXPORT_SYMBOL_GPL(unregister_kretprobe);
2035
2036void unregister_kretprobes(struct kretprobe **rps, int num)
2037{
2038}
2039EXPORT_SYMBOL_GPL(unregister_kretprobes);
2040
2041static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2042{
2043        return 0;
2044}
2045NOKPROBE_SYMBOL(pre_handler_kretprobe);
2046
2047#endif /* CONFIG_KRETPROBES */
2048
2049/* Set the kprobe gone and remove its instruction buffer. */
2050static void kill_kprobe(struct kprobe *p)
2051{
2052        struct kprobe *kp;
2053
2054        p->flags |= KPROBE_FLAG_GONE;
2055        if (kprobe_aggrprobe(p)) {
2056                /*
2057                 * If this is an aggr_kprobe, we have to list all the
2058                 * chained probes and mark them GONE.
2059                 */
2060                list_for_each_entry_rcu(kp, &p->list, list)
2061                        kp->flags |= KPROBE_FLAG_GONE;
2062                p->post_handler = NULL;
2063                p->break_handler = NULL;
2064                kill_optimized_kprobe(p);
2065        }
2066        /*
2067         * Here, we can remove insn_slot safely, because no thread calls
2068         * the original probed function (which will be freed soon) any more.
2069         */
2070        arch_remove_kprobe(p);
2071}
2072
2073/* Disable one kprobe */
2074int disable_kprobe(struct kprobe *kp)
2075{
2076        int ret = 0;
2077
2078        mutex_lock(&kprobe_mutex);
2079
2080        /* Disable this kprobe */
2081        if (__disable_kprobe(kp) == NULL)
2082                ret = -EINVAL;
2083
2084        mutex_unlock(&kprobe_mutex);
2085        return ret;
2086}
2087EXPORT_SYMBOL_GPL(disable_kprobe);
2088
2089/* Enable one kprobe */
2090int enable_kprobe(struct kprobe *kp)
2091{
2092        int ret = 0;
2093        struct kprobe *p;
2094
2095        mutex_lock(&kprobe_mutex);
2096
2097        /* Check whether specified probe is valid. */
2098        p = __get_valid_kprobe(kp);
2099        if (unlikely(p == NULL)) {
2100                ret = -EINVAL;
2101                goto out;
2102        }
2103
2104        if (kprobe_gone(kp)) {
2105                /* This kprobe has gone, we couldn't enable it. */
2106                ret = -EINVAL;
2107                goto out;
2108        }
2109
2110        if (p != kp)
2111                kp->flags &= ~KPROBE_FLAG_DISABLED;
2112
2113        if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2114                p->flags &= ~KPROBE_FLAG_DISABLED;
2115                arm_kprobe(p);
2116        }
2117out:
2118        mutex_unlock(&kprobe_mutex);
2119        return ret;
2120}
2121EXPORT_SYMBOL_GPL(enable_kprobe);
2122
2123void dump_kprobe(struct kprobe *kp)
2124{
2125        printk(KERN_WARNING "Dumping kprobe:\n");
2126        printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2127               kp->symbol_name, kp->addr, kp->offset);
2128}
2129NOKPROBE_SYMBOL(dump_kprobe);
2130
2131/*
2132 * Lookup and populate the kprobe_blacklist.
2133 *
2134 * Unlike the kretprobe blacklist, we'll need to determine
2135 * the range of addresses that belong to the said functions,
2136 * since a kprobe need not necessarily be at the beginning
2137 * of a function.
2138 */
2139static int __init populate_kprobe_blacklist(unsigned long *start,
2140                                             unsigned long *end)
2141{
2142        unsigned long *iter;
2143        struct kprobe_blacklist_entry *ent;
2144        unsigned long entry, offset = 0, size = 0;
2145
2146        for (iter = start; iter < end; iter++) {
2147                entry = arch_deref_entry_point((void *)*iter);
2148
2149                if (!kernel_text_address(entry) ||
2150                    !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2151                        pr_err("Failed to find blacklist at %p\n",
2152                                (void *)entry);
2153                        continue;
2154                }
2155
2156                ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2157                if (!ent)
2158                        return -ENOMEM;
2159                ent->start_addr = entry;
2160                ent->end_addr = entry + size;
2161                INIT_LIST_HEAD(&ent->list);
2162                list_add_tail(&ent->list, &kprobe_blacklist);
2163        }
2164        return 0;
2165}
2166
2167/* Module notifier call back, checking kprobes on the module */
2168static int kprobes_module_callback(struct notifier_block *nb,
2169                                   unsigned long val, void *data)
2170{
2171        struct module *mod = data;
2172        struct hlist_head *head;
2173        struct kprobe *p;
2174        unsigned int i;
2175        int checkcore = (val == MODULE_STATE_GOING);
2176
2177        if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2178                return NOTIFY_DONE;
2179
2180        /*
2181         * When MODULE_STATE_GOING was notified, both of module .text and
2182         * .init.text sections would be freed. When MODULE_STATE_LIVE was
2183         * notified, only .init.text section would be freed. We need to
2184         * disable kprobes which have been inserted in the sections.
2185         */
2186        mutex_lock(&kprobe_mutex);
2187        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2188                head = &kprobe_table[i];
2189                hlist_for_each_entry_rcu(p, head, hlist)
2190                        if (within_module_init((unsigned long)p->addr, mod) ||
2191                            (checkcore &&
2192                             within_module_core((unsigned long)p->addr, mod))) {
2193                                /*
2194                                 * The vaddr this probe is installed will soon
2195                                 * be vfreed buy not synced to disk. Hence,
2196                                 * disarming the breakpoint isn't needed.
2197                                 *
2198                                 * Note, this will also move any optimized probes
2199                                 * that are pending to be removed from their
2200                                 * corresponding lists to the freeing_list and
2201                                 * will not be touched by the delayed
2202                                 * kprobe_optimizer work handler.
2203                                 */
2204                                kill_kprobe(p);
2205                        }
2206        }
2207        mutex_unlock(&kprobe_mutex);
2208        return NOTIFY_DONE;
2209}
2210
2211static struct notifier_block kprobe_module_nb = {
2212        .notifier_call = kprobes_module_callback,
2213        .priority = 0
2214};
2215
2216/* Markers of _kprobe_blacklist section */
2217extern unsigned long __start_kprobe_blacklist[];
2218extern unsigned long __stop_kprobe_blacklist[];
2219
2220static int __init init_kprobes(void)
2221{
2222        int i, err = 0;
2223
2224        /* FIXME allocate the probe table, currently defined statically */
2225        /* initialize all list heads */
2226        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2227                INIT_HLIST_HEAD(&kprobe_table[i]);
2228                INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2229                raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2230        }
2231
2232        err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2233                                        __stop_kprobe_blacklist);
2234        if (err) {
2235                pr_err("kprobes: failed to populate blacklist: %d\n", err);
2236                pr_err("Please take care of using kprobes.\n");
2237        }
2238
2239        if (kretprobe_blacklist_size) {
2240                /* lookup the function address from its name */
2241                for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2242                        kretprobe_blacklist[i].addr =
2243                                kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2244                        if (!kretprobe_blacklist[i].addr)
2245                                printk("kretprobe: lookup failed: %s\n",
2246                                       kretprobe_blacklist[i].name);
2247                }
2248        }
2249
2250#if defined(CONFIG_OPTPROBES)
2251#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2252        /* Init kprobe_optinsn_slots */
2253        kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2254#endif
2255        /* By default, kprobes can be optimized */
2256        kprobes_allow_optimization = true;
2257#endif
2258
2259        /* By default, kprobes are armed */
2260        kprobes_all_disarmed = false;
2261
2262        err = arch_init_kprobes();
2263        if (!err)
2264                err = register_die_notifier(&kprobe_exceptions_nb);
2265        if (!err)
2266                err = register_module_notifier(&kprobe_module_nb);
2267
2268        kprobes_initialized = (err == 0);
2269
2270        if (!err)
2271                init_test_probes();
2272        return err;
2273}
2274
2275#ifdef CONFIG_DEBUG_FS
2276static void report_probe(struct seq_file *pi, struct kprobe *p,
2277                const char *sym, int offset, char *modname, struct kprobe *pp)
2278{
2279        char *kprobe_type;
2280
2281        if (p->pre_handler == pre_handler_kretprobe)
2282                kprobe_type = "r";
2283        else if (p->pre_handler == setjmp_pre_handler)
2284                kprobe_type = "j";
2285        else
2286                kprobe_type = "k";
2287
2288        if (sym)
2289                seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2290                        p->addr, kprobe_type, sym, offset,
2291                        (modname ? modname : " "));
2292        else
2293                seq_printf(pi, "%p  %s  %p ",
2294                        p->addr, kprobe_type, p->addr);
2295
2296        if (!pp)
2297                pp = p;
2298        seq_printf(pi, "%s%s%s%s\n",
2299                (kprobe_gone(p) ? "[GONE]" : ""),
2300                ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2301                (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2302                (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2303}
2304
2305static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2306{
2307        return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2308}
2309
2310static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2311{
2312        (*pos)++;
2313        if (*pos >= KPROBE_TABLE_SIZE)
2314                return NULL;
2315        return pos;
2316}
2317
2318static void kprobe_seq_stop(struct seq_file *f, void *v)
2319{
2320        /* Nothing to do */
2321}
2322
2323static int show_kprobe_addr(struct seq_file *pi, void *v)
2324{
2325        struct hlist_head *head;
2326        struct kprobe *p, *kp;
2327        const char *sym = NULL;
2328        unsigned int i = *(loff_t *) v;
2329        unsigned long offset = 0;
2330        char *modname, namebuf[KSYM_NAME_LEN];
2331
2332        head = &kprobe_table[i];
2333        preempt_disable();
2334        hlist_for_each_entry_rcu(p, head, hlist) {
2335                sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2336                                        &offset, &modname, namebuf);
2337                if (kprobe_aggrprobe(p)) {
2338                        list_for_each_entry_rcu(kp, &p->list, list)
2339                                report_probe(pi, kp, sym, offset, modname, p);
2340                } else
2341                        report_probe(pi, p, sym, offset, modname, NULL);
2342        }
2343        preempt_enable();
2344        return 0;
2345}
2346
2347static const struct seq_operations kprobes_seq_ops = {
2348        .start = kprobe_seq_start,
2349        .next  = kprobe_seq_next,
2350        .stop  = kprobe_seq_stop,
2351        .show  = show_kprobe_addr
2352};
2353
2354static int kprobes_open(struct inode *inode, struct file *filp)
2355{
2356        return seq_open(filp, &kprobes_seq_ops);
2357}
2358
2359static const struct file_operations debugfs_kprobes_operations = {
2360        .open           = kprobes_open,
2361        .read           = seq_read,
2362        .llseek         = seq_lseek,
2363        .release        = seq_release,
2364};
2365
2366/* kprobes/blacklist -- shows which functions can not be probed */
2367static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2368{
2369        return seq_list_start(&kprobe_blacklist, *pos);
2370}
2371
2372static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2373{
2374        return seq_list_next(v, &kprobe_blacklist, pos);
2375}
2376
2377static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2378{
2379        struct kprobe_blacklist_entry *ent =
2380                list_entry(v, struct kprobe_blacklist_entry, list);
2381
2382        seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2383                   (void *)ent->end_addr, (void *)ent->start_addr);
2384        return 0;
2385}
2386
2387static const struct seq_operations kprobe_blacklist_seq_ops = {
2388        .start = kprobe_blacklist_seq_start,
2389        .next  = kprobe_blacklist_seq_next,
2390        .stop  = kprobe_seq_stop,       /* Reuse void function */
2391        .show  = kprobe_blacklist_seq_show,
2392};
2393
2394static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2395{
2396        return seq_open(filp, &kprobe_blacklist_seq_ops);
2397}
2398
2399static const struct file_operations debugfs_kprobe_blacklist_ops = {
2400        .open           = kprobe_blacklist_open,
2401        .read           = seq_read,
2402        .llseek         = seq_lseek,
2403        .release        = seq_release,
2404};
2405
2406static void arm_all_kprobes(void)
2407{
2408        struct hlist_head *head;
2409        struct kprobe *p;
2410        unsigned int i;
2411
2412        mutex_lock(&kprobe_mutex);
2413
2414        /* If kprobes are armed, just return */
2415        if (!kprobes_all_disarmed)
2416                goto already_enabled;
2417
2418        /*
2419         * optimize_kprobe() called by arm_kprobe() checks
2420         * kprobes_all_disarmed, so set kprobes_all_disarmed before
2421         * arm_kprobe.
2422         */
2423        kprobes_all_disarmed = false;
2424        /* Arming kprobes doesn't optimize kprobe itself */
2425        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2426                head = &kprobe_table[i];
2427                hlist_for_each_entry_rcu(p, head, hlist)
2428                        if (!kprobe_disabled(p))
2429                                arm_kprobe(p);
2430        }
2431
2432        printk(KERN_INFO "Kprobes globally enabled\n");
2433
2434already_enabled:
2435        mutex_unlock(&kprobe_mutex);
2436        return;
2437}
2438
2439static void disarm_all_kprobes(void)
2440{
2441        struct hlist_head *head;
2442        struct kprobe *p;
2443        unsigned int i;
2444
2445        mutex_lock(&kprobe_mutex);
2446
2447        /* If kprobes are already disarmed, just return */
2448        if (kprobes_all_disarmed) {
2449                mutex_unlock(&kprobe_mutex);
2450                return;
2451        }
2452
2453        kprobes_all_disarmed = true;
2454        printk(KERN_INFO "Kprobes globally disabled\n");
2455
2456        for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2457                head = &kprobe_table[i];
2458                hlist_for_each_entry_rcu(p, head, hlist) {
2459                        if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2460                                disarm_kprobe(p, false);
2461                }
2462        }
2463        mutex_unlock(&kprobe_mutex);
2464
2465        /* Wait for disarming all kprobes by optimizer */
2466        wait_for_kprobe_optimizer();
2467}
2468
2469/*
2470 * XXX: The debugfs bool file interface doesn't allow for callbacks
2471 * when the bool state is switched. We can reuse that facility when
2472 * available
2473 */
2474static ssize_t read_enabled_file_bool(struct file *file,
2475               char __user *user_buf, size_t count, loff_t *ppos)
2476{
2477        char buf[3];
2478
2479        if (!kprobes_all_disarmed)
2480                buf[0] = '1';
2481        else
2482                buf[0] = '0';
2483        buf[1] = '\n';
2484        buf[2] = 0x00;
2485        return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2486}
2487
2488static ssize_t write_enabled_file_bool(struct file *file,
2489               const char __user *user_buf, size_t count, loff_t *ppos)
2490{
2491        char buf[32];
2492        size_t buf_size;
2493
2494        buf_size = min(count, (sizeof(buf)-1));
2495        if (copy_from_user(buf, user_buf, buf_size))
2496                return -EFAULT;
2497
2498        buf[buf_size] = '\0';
2499        switch (buf[0]) {
2500        case 'y':
2501        case 'Y':
2502        case '1':
2503                arm_all_kprobes();
2504                break;
2505        case 'n':
2506        case 'N':
2507        case '0':
2508                disarm_all_kprobes();
2509                break;
2510        default:
2511                return -EINVAL;
2512        }
2513
2514        return count;
2515}
2516
2517static const struct file_operations fops_kp = {
2518        .read =         read_enabled_file_bool,
2519        .write =        write_enabled_file_bool,
2520        .llseek =       default_llseek,
2521};
2522
2523static int __init debugfs_kprobe_init(void)
2524{
2525        struct dentry *dir, *file;
2526        unsigned int value = 1;
2527
2528        dir = debugfs_create_dir("kprobes", NULL);
2529        if (!dir)
2530                return -ENOMEM;
2531
2532        file = debugfs_create_file("list", 0444, dir, NULL,
2533                                &debugfs_kprobes_operations);
2534        if (!file)
2535                goto error;
2536
2537        file = debugfs_create_file("enabled", 0600, dir,
2538                                        &value, &fops_kp);
2539        if (!file)
2540                goto error;
2541
2542        file = debugfs_create_file("blacklist", 0444, dir, NULL,
2543                                &debugfs_kprobe_blacklist_ops);
2544        if (!file)
2545                goto error;
2546
2547        return 0;
2548
2549error:
2550        debugfs_remove(dir);
2551        return -ENOMEM;
2552}
2553
2554late_initcall(debugfs_kprobe_init);
2555#endif /* CONFIG_DEBUG_FS */
2556
2557module_init(init_kprobes);
2558
2559/* defined in arch/.../kernel/kprobes.c */
2560EXPORT_SYMBOL_GPL(jprobe_return);
2561