linux/kernel/rcu/tree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/sched/debug.h>
  39#include <linux/nmi.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/export.h>
  43#include <linux/completion.h>
  44#include <linux/moduleparam.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <uapi/linux/sched/types.h>
  54#include <linux/prefetch.h>
  55#include <linux/delay.h>
  56#include <linux/stop_machine.h>
  57#include <linux/random.h>
  58#include <linux/trace_events.h>
  59#include <linux/suspend.h>
  60#include <linux/ftrace.h>
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * In order to export the rcu_state name to the tracing tools, it
  74 * needs to be added in the __tracepoint_string section.
  75 * This requires defining a separate variable tp_<sname>_varname
  76 * that points to the string being used, and this will allow
  77 * the tracing userspace tools to be able to decipher the string
  78 * address to the matching string.
  79 */
  80#ifdef CONFIG_TRACING
  81# define DEFINE_RCU_TPS(sname) \
  82static char sname##_varname[] = #sname; \
  83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  84# define RCU_STATE_NAME(sname) sname##_varname
  85#else
  86# define DEFINE_RCU_TPS(sname)
  87# define RCU_STATE_NAME(sname) __stringify(sname)
  88#endif
  89
  90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  91DEFINE_RCU_TPS(sname) \
  92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  93struct rcu_state sname##_state = { \
  94        .level = { &sname##_state.node[0] }, \
  95        .rda = &sname##_data, \
  96        .call = cr, \
  97        .gp_state = RCU_GP_IDLE, \
  98        .gpnum = 0UL - 300UL, \
  99        .completed = 0UL - 300UL, \
 100        .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101        .name = RCU_STATE_NAME(sname), \
 102        .abbr = sabbr, \
 103        .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104        .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164                               struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 166
 167/* rcuc/rcub kthread realtime priority */
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0644);
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179
 180/*
 181 * Number of grace periods between delays, normalized by the duration of
 182 * the delay.  The longer the delay, the more the grace periods between
 183 * each delay.  The reason for this normalization is that it means that,
 184 * for non-zero delays, the overall slowdown of grace periods is constant
 185 * regardless of the duration of the delay.  This arrangement balances
 186 * the need for long delays to increase some race probabilities with the
 187 * need for fast grace periods to increase other race probabilities.
 188 */
 189#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 190
 191/*
 192 * Track the rcutorture test sequence number and the update version
 193 * number within a given test.  The rcutorture_testseq is incremented
 194 * on every rcutorture module load and unload, so has an odd value
 195 * when a test is running.  The rcutorture_vernum is set to zero
 196 * when rcutorture starts and is incremented on each rcutorture update.
 197 * These variables enable correlating rcutorture output with the
 198 * RCU tracing information.
 199 */
 200unsigned long rcutorture_testseq;
 201unsigned long rcutorture_vernum;
 202
 203/*
 204 * Compute the mask of online CPUs for the specified rcu_node structure.
 205 * This will not be stable unless the rcu_node structure's ->lock is
 206 * held, but the bit corresponding to the current CPU will be stable
 207 * in most contexts.
 208 */
 209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 210{
 211        return READ_ONCE(rnp->qsmaskinitnext);
 212}
 213
 214/*
 215 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 216 * permit this function to be invoked without holding the root rcu_node
 217 * structure's ->lock, but of course results can be subject to change.
 218 */
 219static int rcu_gp_in_progress(struct rcu_state *rsp)
 220{
 221        return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 222}
 223
 224/*
 225 * Note a quiescent state.  Because we do not need to know
 226 * how many quiescent states passed, just if there was at least
 227 * one since the start of the grace period, this just sets a flag.
 228 * The caller must have disabled preemption.
 229 */
 230void rcu_sched_qs(void)
 231{
 232        RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
 233        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 234                return;
 235        trace_rcu_grace_period(TPS("rcu_sched"),
 236                               __this_cpu_read(rcu_sched_data.gpnum),
 237                               TPS("cpuqs"));
 238        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 239        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 240                return;
 241        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 242        rcu_report_exp_rdp(&rcu_sched_state,
 243                           this_cpu_ptr(&rcu_sched_data), true);
 244}
 245
 246void rcu_bh_qs(void)
 247{
 248        RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
 249        if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 250                trace_rcu_grace_period(TPS("rcu_bh"),
 251                                       __this_cpu_read(rcu_bh_data.gpnum),
 252                                       TPS("cpuqs"));
 253                __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 254        }
 255}
 256
 257/*
 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 259 * control.  Initially this is for TLB flushing.
 260 */
 261#define RCU_DYNTICK_CTRL_MASK 0x1
 262#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 263#ifndef rcu_eqs_special_exit
 264#define rcu_eqs_special_exit() do { } while (0)
 265#endif
 266
 267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 268        .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 269        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 270};
 271
 272/*
 273 * There's a few places, currently just in the tracing infrastructure,
 274 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
 275 * a small location where that will not even work. In those cases
 276 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
 277 * can be called.
 278 */
 279static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
 280
 281bool rcu_irq_enter_disabled(void)
 282{
 283        return this_cpu_read(disable_rcu_irq_enter);
 284}
 285
 286/*
 287 * Record entry into an extended quiescent state.  This is only to be
 288 * called when not already in an extended quiescent state.
 289 */
 290static void rcu_dynticks_eqs_enter(void)
 291{
 292        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 293        int seq;
 294
 295        /*
 296         * CPUs seeing atomic_add_return() must see prior RCU read-side
 297         * critical sections, and we also must force ordering with the
 298         * next idle sojourn.
 299         */
 300        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 301        /* Better be in an extended quiescent state! */
 302        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 303                     (seq & RCU_DYNTICK_CTRL_CTR));
 304        /* Better not have special action (TLB flush) pending! */
 305        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 306                     (seq & RCU_DYNTICK_CTRL_MASK));
 307}
 308
 309/*
 310 * Record exit from an extended quiescent state.  This is only to be
 311 * called from an extended quiescent state.
 312 */
 313static void rcu_dynticks_eqs_exit(void)
 314{
 315        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 316        int seq;
 317
 318        /*
 319         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 320         * and we also must force ordering with the next RCU read-side
 321         * critical section.
 322         */
 323        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 324        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 325                     !(seq & RCU_DYNTICK_CTRL_CTR));
 326        if (seq & RCU_DYNTICK_CTRL_MASK) {
 327                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 328                smp_mb__after_atomic(); /* _exit after clearing mask. */
 329                /* Prefer duplicate flushes to losing a flush. */
 330                rcu_eqs_special_exit();
 331        }
 332}
 333
 334/*
 335 * Reset the current CPU's ->dynticks counter to indicate that the
 336 * newly onlined CPU is no longer in an extended quiescent state.
 337 * This will either leave the counter unchanged, or increment it
 338 * to the next non-quiescent value.
 339 *
 340 * The non-atomic test/increment sequence works because the upper bits
 341 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 342 * or when the corresponding CPU is offline.
 343 */
 344static void rcu_dynticks_eqs_online(void)
 345{
 346        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 347
 348        if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 349                return;
 350        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 351}
 352
 353/*
 354 * Is the current CPU in an extended quiescent state?
 355 *
 356 * No ordering, as we are sampling CPU-local information.
 357 */
 358bool rcu_dynticks_curr_cpu_in_eqs(void)
 359{
 360        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 361
 362        return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 363}
 364
 365/*
 366 * Snapshot the ->dynticks counter with full ordering so as to allow
 367 * stable comparison of this counter with past and future snapshots.
 368 */
 369int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 370{
 371        int snap = atomic_add_return(0, &rdtp->dynticks);
 372
 373        return snap & ~RCU_DYNTICK_CTRL_MASK;
 374}
 375
 376/*
 377 * Return true if the snapshot returned from rcu_dynticks_snap()
 378 * indicates that RCU is in an extended quiescent state.
 379 */
 380static bool rcu_dynticks_in_eqs(int snap)
 381{
 382        return !(snap & RCU_DYNTICK_CTRL_CTR);
 383}
 384
 385/*
 386 * Return true if the CPU corresponding to the specified rcu_dynticks
 387 * structure has spent some time in an extended quiescent state since
 388 * rcu_dynticks_snap() returned the specified snapshot.
 389 */
 390static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 391{
 392        return snap != rcu_dynticks_snap(rdtp);
 393}
 394
 395/*
 396 * Do a double-increment of the ->dynticks counter to emulate a
 397 * momentary idle-CPU quiescent state.
 398 */
 399static void rcu_dynticks_momentary_idle(void)
 400{
 401        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 402        int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 403                                        &rdtp->dynticks);
 404
 405        /* It is illegal to call this from idle state. */
 406        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 407}
 408
 409/*
 410 * Set the special (bottom) bit of the specified CPU so that it
 411 * will take special action (such as flushing its TLB) on the
 412 * next exit from an extended quiescent state.  Returns true if
 413 * the bit was successfully set, or false if the CPU was not in
 414 * an extended quiescent state.
 415 */
 416bool rcu_eqs_special_set(int cpu)
 417{
 418        int old;
 419        int new;
 420        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 421
 422        do {
 423                old = atomic_read(&rdtp->dynticks);
 424                if (old & RCU_DYNTICK_CTRL_CTR)
 425                        return false;
 426                new = old | RCU_DYNTICK_CTRL_MASK;
 427        } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 428        return true;
 429}
 430
 431/*
 432 * Let the RCU core know that this CPU has gone through the scheduler,
 433 * which is a quiescent state.  This is called when the need for a
 434 * quiescent state is urgent, so we burn an atomic operation and full
 435 * memory barriers to let the RCU core know about it, regardless of what
 436 * this CPU might (or might not) do in the near future.
 437 *
 438 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 439 *
 440 * The caller must have disabled interrupts.
 441 */
 442static void rcu_momentary_dyntick_idle(void)
 443{
 444        raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 445        rcu_dynticks_momentary_idle();
 446}
 447
 448/*
 449 * Note a context switch.  This is a quiescent state for RCU-sched,
 450 * and requires special handling for preemptible RCU.
 451 * The caller must have disabled interrupts.
 452 */
 453void rcu_note_context_switch(bool preempt)
 454{
 455        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 456        trace_rcu_utilization(TPS("Start context switch"));
 457        rcu_sched_qs();
 458        rcu_preempt_note_context_switch(preempt);
 459        /* Load rcu_urgent_qs before other flags. */
 460        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 461                goto out;
 462        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 463        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 464                rcu_momentary_dyntick_idle();
 465        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 466        if (!preempt)
 467                rcu_note_voluntary_context_switch_lite(current);
 468out:
 469        trace_rcu_utilization(TPS("End context switch"));
 470        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 471}
 472EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 473
 474/*
 475 * Register a quiescent state for all RCU flavors.  If there is an
 476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 477 * dyntick-idle quiescent state visible to other CPUs (but only for those
 478 * RCU flavors in desperate need of a quiescent state, which will normally
 479 * be none of them).  Either way, do a lightweight quiescent state for
 480 * all RCU flavors.
 481 *
 482 * The barrier() calls are redundant in the common case when this is
 483 * called externally, but just in case this is called from within this
 484 * file.
 485 *
 486 */
 487void rcu_all_qs(void)
 488{
 489        unsigned long flags;
 490
 491        if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 492                return;
 493        preempt_disable();
 494        /* Load rcu_urgent_qs before other flags. */
 495        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 496                preempt_enable();
 497                return;
 498        }
 499        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 500        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 501        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 502                local_irq_save(flags);
 503                rcu_momentary_dyntick_idle();
 504                local_irq_restore(flags);
 505        }
 506        if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 507                rcu_sched_qs();
 508        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 509        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 510        preempt_enable();
 511}
 512EXPORT_SYMBOL_GPL(rcu_all_qs);
 513
 514#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 515static long blimit = DEFAULT_RCU_BLIMIT;
 516#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 517static long qhimark = DEFAULT_RCU_QHIMARK;
 518#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 519static long qlowmark = DEFAULT_RCU_QLOMARK;
 520
 521module_param(blimit, long, 0444);
 522module_param(qhimark, long, 0444);
 523module_param(qlowmark, long, 0444);
 524
 525static ulong jiffies_till_first_fqs = ULONG_MAX;
 526static ulong jiffies_till_next_fqs = ULONG_MAX;
 527static bool rcu_kick_kthreads;
 528
 529module_param(jiffies_till_first_fqs, ulong, 0644);
 530module_param(jiffies_till_next_fqs, ulong, 0644);
 531module_param(rcu_kick_kthreads, bool, 0644);
 532
 533/*
 534 * How long the grace period must be before we start recruiting
 535 * quiescent-state help from rcu_note_context_switch().
 536 */
 537static ulong jiffies_till_sched_qs = HZ / 20;
 538module_param(jiffies_till_sched_qs, ulong, 0644);
 539
 540static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 541                                  struct rcu_data *rdp);
 542static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
 543static void force_quiescent_state(struct rcu_state *rsp);
 544static int rcu_pending(void);
 545
 546/*
 547 * Return the number of RCU batches started thus far for debug & stats.
 548 */
 549unsigned long rcu_batches_started(void)
 550{
 551        return rcu_state_p->gpnum;
 552}
 553EXPORT_SYMBOL_GPL(rcu_batches_started);
 554
 555/*
 556 * Return the number of RCU-sched batches started thus far for debug & stats.
 557 */
 558unsigned long rcu_batches_started_sched(void)
 559{
 560        return rcu_sched_state.gpnum;
 561}
 562EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 563
 564/*
 565 * Return the number of RCU BH batches started thus far for debug & stats.
 566 */
 567unsigned long rcu_batches_started_bh(void)
 568{
 569        return rcu_bh_state.gpnum;
 570}
 571EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 572
 573/*
 574 * Return the number of RCU batches completed thus far for debug & stats.
 575 */
 576unsigned long rcu_batches_completed(void)
 577{
 578        return rcu_state_p->completed;
 579}
 580EXPORT_SYMBOL_GPL(rcu_batches_completed);
 581
 582/*
 583 * Return the number of RCU-sched batches completed thus far for debug & stats.
 584 */
 585unsigned long rcu_batches_completed_sched(void)
 586{
 587        return rcu_sched_state.completed;
 588}
 589EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 590
 591/*
 592 * Return the number of RCU BH batches completed thus far for debug & stats.
 593 */
 594unsigned long rcu_batches_completed_bh(void)
 595{
 596        return rcu_bh_state.completed;
 597}
 598EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 599
 600/*
 601 * Return the number of RCU expedited batches completed thus far for
 602 * debug & stats.  Odd numbers mean that a batch is in progress, even
 603 * numbers mean idle.  The value returned will thus be roughly double
 604 * the cumulative batches since boot.
 605 */
 606unsigned long rcu_exp_batches_completed(void)
 607{
 608        return rcu_state_p->expedited_sequence;
 609}
 610EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 611
 612/*
 613 * Return the number of RCU-sched expedited batches completed thus far
 614 * for debug & stats.  Similar to rcu_exp_batches_completed().
 615 */
 616unsigned long rcu_exp_batches_completed_sched(void)
 617{
 618        return rcu_sched_state.expedited_sequence;
 619}
 620EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 621
 622/*
 623 * Force a quiescent state.
 624 */
 625void rcu_force_quiescent_state(void)
 626{
 627        force_quiescent_state(rcu_state_p);
 628}
 629EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 630
 631/*
 632 * Force a quiescent state for RCU BH.
 633 */
 634void rcu_bh_force_quiescent_state(void)
 635{
 636        force_quiescent_state(&rcu_bh_state);
 637}
 638EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 639
 640/*
 641 * Force a quiescent state for RCU-sched.
 642 */
 643void rcu_sched_force_quiescent_state(void)
 644{
 645        force_quiescent_state(&rcu_sched_state);
 646}
 647EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 648
 649/*
 650 * Show the state of the grace-period kthreads.
 651 */
 652void show_rcu_gp_kthreads(void)
 653{
 654        struct rcu_state *rsp;
 655
 656        for_each_rcu_flavor(rsp) {
 657                pr_info("%s: wait state: %d ->state: %#lx\n",
 658                        rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 659                /* sched_show_task(rsp->gp_kthread); */
 660        }
 661}
 662EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 663
 664/*
 665 * Record the number of times rcutorture tests have been initiated and
 666 * terminated.  This information allows the debugfs tracing stats to be
 667 * correlated to the rcutorture messages, even when the rcutorture module
 668 * is being repeatedly loaded and unloaded.  In other words, we cannot
 669 * store this state in rcutorture itself.
 670 */
 671void rcutorture_record_test_transition(void)
 672{
 673        rcutorture_testseq++;
 674        rcutorture_vernum = 0;
 675}
 676EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 677
 678/*
 679 * Send along grace-period-related data for rcutorture diagnostics.
 680 */
 681void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 682                            unsigned long *gpnum, unsigned long *completed)
 683{
 684        struct rcu_state *rsp = NULL;
 685
 686        switch (test_type) {
 687        case RCU_FLAVOR:
 688                rsp = rcu_state_p;
 689                break;
 690        case RCU_BH_FLAVOR:
 691                rsp = &rcu_bh_state;
 692                break;
 693        case RCU_SCHED_FLAVOR:
 694                rsp = &rcu_sched_state;
 695                break;
 696        default:
 697                break;
 698        }
 699        if (rsp == NULL)
 700                return;
 701        *flags = READ_ONCE(rsp->gp_flags);
 702        *gpnum = READ_ONCE(rsp->gpnum);
 703        *completed = READ_ONCE(rsp->completed);
 704}
 705EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 706
 707/*
 708 * Record the number of writer passes through the current rcutorture test.
 709 * This is also used to correlate debugfs tracing stats with the rcutorture
 710 * messages.
 711 */
 712void rcutorture_record_progress(unsigned long vernum)
 713{
 714        rcutorture_vernum++;
 715}
 716EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 717
 718/*
 719 * Return the root node of the specified rcu_state structure.
 720 */
 721static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 722{
 723        return &rsp->node[0];
 724}
 725
 726/*
 727 * Is there any need for future grace periods?
 728 * Interrupts must be disabled.  If the caller does not hold the root
 729 * rnp_node structure's ->lock, the results are advisory only.
 730 */
 731static int rcu_future_needs_gp(struct rcu_state *rsp)
 732{
 733        struct rcu_node *rnp = rcu_get_root(rsp);
 734        int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 735        int *fp = &rnp->need_future_gp[idx];
 736
 737        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
 738        return READ_ONCE(*fp);
 739}
 740
 741/*
 742 * Does the current CPU require a not-yet-started grace period?
 743 * The caller must have disabled interrupts to prevent races with
 744 * normal callback registry.
 745 */
 746static bool
 747cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 748{
 749        RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
 750        if (rcu_gp_in_progress(rsp))
 751                return false;  /* No, a grace period is already in progress. */
 752        if (rcu_future_needs_gp(rsp))
 753                return true;  /* Yes, a no-CBs CPU needs one. */
 754        if (!rcu_segcblist_is_enabled(&rdp->cblist))
 755                return false;  /* No, this is a no-CBs (or offline) CPU. */
 756        if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 757                return true;  /* Yes, CPU has newly registered callbacks. */
 758        if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 759                                           READ_ONCE(rsp->completed)))
 760                return true;  /* Yes, CBs for future grace period. */
 761        return false; /* No grace period needed. */
 762}
 763
 764/*
 765 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
 766 *
 767 * Enter idle, doing appropriate accounting.  The caller must have
 768 * disabled interrupts.
 769 */
 770static void rcu_eqs_enter_common(bool user)
 771{
 772        struct rcu_state *rsp;
 773        struct rcu_data *rdp;
 774        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 775
 776        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
 777        trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
 778        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 779            !user && !is_idle_task(current)) {
 780                struct task_struct *idle __maybe_unused =
 781                        idle_task(smp_processor_id());
 782
 783                trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
 784                rcu_ftrace_dump(DUMP_ORIG);
 785                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 786                          current->pid, current->comm,
 787                          idle->pid, idle->comm); /* must be idle task! */
 788        }
 789        for_each_rcu_flavor(rsp) {
 790                rdp = this_cpu_ptr(rsp->rda);
 791                do_nocb_deferred_wakeup(rdp);
 792        }
 793        rcu_prepare_for_idle();
 794        __this_cpu_inc(disable_rcu_irq_enter);
 795        rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
 796        rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
 797        __this_cpu_dec(disable_rcu_irq_enter);
 798        rcu_dynticks_task_enter();
 799
 800        /*
 801         * It is illegal to enter an extended quiescent state while
 802         * in an RCU read-side critical section.
 803         */
 804        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 805                         "Illegal idle entry in RCU read-side critical section.");
 806        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 807                         "Illegal idle entry in RCU-bh read-side critical section.");
 808        RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 809                         "Illegal idle entry in RCU-sched read-side critical section.");
 810}
 811
 812/*
 813 * Enter an RCU extended quiescent state, which can be either the
 814 * idle loop or adaptive-tickless usermode execution.
 815 */
 816static void rcu_eqs_enter(bool user)
 817{
 818        struct rcu_dynticks *rdtp;
 819
 820        rdtp = this_cpu_ptr(&rcu_dynticks);
 821        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 822                     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
 823        if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
 824                rcu_eqs_enter_common(user);
 825        else
 826                rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 827}
 828
 829/**
 830 * rcu_idle_enter - inform RCU that current CPU is entering idle
 831 *
 832 * Enter idle mode, in other words, -leave- the mode in which RCU
 833 * read-side critical sections can occur.  (Though RCU read-side
 834 * critical sections can occur in irq handlers in idle, a possibility
 835 * handled by irq_enter() and irq_exit().)
 836 *
 837 * We crowbar the ->dynticks_nesting field to zero to allow for
 838 * the possibility of usermode upcalls having messed up our count
 839 * of interrupt nesting level during the prior busy period.
 840 */
 841void rcu_idle_enter(void)
 842{
 843        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
 844        rcu_eqs_enter(false);
 845}
 846
 847#ifdef CONFIG_NO_HZ_FULL
 848/**
 849 * rcu_user_enter - inform RCU that we are resuming userspace.
 850 *
 851 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 852 * is permitted between this call and rcu_user_exit(). This way the
 853 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 854 * when the CPU runs in userspace.
 855 */
 856void rcu_user_enter(void)
 857{
 858        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
 859        rcu_eqs_enter(true);
 860}
 861#endif /* CONFIG_NO_HZ_FULL */
 862
 863/**
 864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 865 *
 866 * Exit from an interrupt handler, which might possibly result in entering
 867 * idle mode, in other words, leaving the mode in which read-side critical
 868 * sections can occur.  The caller must have disabled interrupts.
 869 *
 870 * This code assumes that the idle loop never does anything that might
 871 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 872 * architecture violates this assumption, RCU will give you what you
 873 * deserve, good and hard.  But very infrequently and irreproducibly.
 874 *
 875 * Use things like work queues to work around this limitation.
 876 *
 877 * You have been warned.
 878 */
 879void rcu_irq_exit(void)
 880{
 881        struct rcu_dynticks *rdtp;
 882
 883        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 884        rdtp = this_cpu_ptr(&rcu_dynticks);
 885
 886        /* Page faults can happen in NMI handlers, so check... */
 887        if (rdtp->dynticks_nmi_nesting)
 888                return;
 889
 890        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 891                     rdtp->dynticks_nesting < 1);
 892        if (rdtp->dynticks_nesting <= 1) {
 893                rcu_eqs_enter_common(true);
 894        } else {
 895                trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
 896                rdtp->dynticks_nesting--;
 897        }
 898}
 899
 900/*
 901 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 902 */
 903void rcu_irq_exit_irqson(void)
 904{
 905        unsigned long flags;
 906
 907        local_irq_save(flags);
 908        rcu_irq_exit();
 909        local_irq_restore(flags);
 910}
 911
 912/*
 913 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 914 *
 915 * If the new value of the ->dynticks_nesting counter was previously zero,
 916 * we really have exited idle, and must do the appropriate accounting.
 917 * The caller must have disabled interrupts.
 918 */
 919static void rcu_eqs_exit_common(long long oldval, int user)
 920{
 921        RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
 922
 923        rcu_dynticks_task_exit();
 924        rcu_dynticks_eqs_exit();
 925        rcu_cleanup_after_idle();
 926        trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 927        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 928            !user && !is_idle_task(current)) {
 929                struct task_struct *idle __maybe_unused =
 930                        idle_task(smp_processor_id());
 931
 932                trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 933                                  oldval, rdtp->dynticks_nesting);
 934                rcu_ftrace_dump(DUMP_ORIG);
 935                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 936                          current->pid, current->comm,
 937                          idle->pid, idle->comm); /* must be idle task! */
 938        }
 939}
 940
 941/*
 942 * Exit an RCU extended quiescent state, which can be either the
 943 * idle loop or adaptive-tickless usermode execution.
 944 */
 945static void rcu_eqs_exit(bool user)
 946{
 947        struct rcu_dynticks *rdtp;
 948        long long oldval;
 949
 950        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
 951        rdtp = this_cpu_ptr(&rcu_dynticks);
 952        oldval = rdtp->dynticks_nesting;
 953        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 954        if (oldval & DYNTICK_TASK_NEST_MASK) {
 955                rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 956        } else {
 957                __this_cpu_inc(disable_rcu_irq_enter);
 958                rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 959                rcu_eqs_exit_common(oldval, user);
 960                __this_cpu_dec(disable_rcu_irq_enter);
 961        }
 962}
 963
 964/**
 965 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 966 *
 967 * Exit idle mode, in other words, -enter- the mode in which RCU
 968 * read-side critical sections can occur.
 969 *
 970 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 971 * allow for the possibility of usermode upcalls messing up our count
 972 * of interrupt nesting level during the busy period that is just
 973 * now starting.
 974 */
 975void rcu_idle_exit(void)
 976{
 977        unsigned long flags;
 978
 979        local_irq_save(flags);
 980        rcu_eqs_exit(false);
 981        local_irq_restore(flags);
 982}
 983
 984#ifdef CONFIG_NO_HZ_FULL
 985/**
 986 * rcu_user_exit - inform RCU that we are exiting userspace.
 987 *
 988 * Exit RCU idle mode while entering the kernel because it can
 989 * run a RCU read side critical section anytime.
 990 */
 991void rcu_user_exit(void)
 992{
 993        rcu_eqs_exit(1);
 994}
 995#endif /* CONFIG_NO_HZ_FULL */
 996
 997/**
 998 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 999 *
1000 * Enter an interrupt handler, which might possibly result in exiting
1001 * idle mode, in other words, entering the mode in which read-side critical
1002 * sections can occur.  The caller must have disabled interrupts.
1003 *
1004 * Note that the Linux kernel is fully capable of entering an interrupt
1005 * handler that it never exits, for example when doing upcalls to
1006 * user mode!  This code assumes that the idle loop never does upcalls to
1007 * user mode.  If your architecture does do upcalls from the idle loop (or
1008 * does anything else that results in unbalanced calls to the irq_enter()
1009 * and irq_exit() functions), RCU will give you what you deserve, good
1010 * and hard.  But very infrequently and irreproducibly.
1011 *
1012 * Use things like work queues to work around this limitation.
1013 *
1014 * You have been warned.
1015 */
1016void rcu_irq_enter(void)
1017{
1018        struct rcu_dynticks *rdtp;
1019        long long oldval;
1020
1021        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1022        rdtp = this_cpu_ptr(&rcu_dynticks);
1023
1024        /* Page faults can happen in NMI handlers, so check... */
1025        if (rdtp->dynticks_nmi_nesting)
1026                return;
1027
1028        oldval = rdtp->dynticks_nesting;
1029        rdtp->dynticks_nesting++;
1030        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1031                     rdtp->dynticks_nesting == 0);
1032        if (oldval)
1033                trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1034        else
1035                rcu_eqs_exit_common(oldval, true);
1036}
1037
1038/*
1039 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1040 */
1041void rcu_irq_enter_irqson(void)
1042{
1043        unsigned long flags;
1044
1045        local_irq_save(flags);
1046        rcu_irq_enter();
1047        local_irq_restore(flags);
1048}
1049
1050/**
1051 * rcu_nmi_enter - inform RCU of entry to NMI context
1052 *
1053 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1054 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1055 * that the CPU is active.  This implementation permits nested NMIs, as
1056 * long as the nesting level does not overflow an int.  (You will probably
1057 * run out of stack space first.)
1058 */
1059void rcu_nmi_enter(void)
1060{
1061        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1062        int incby = 2;
1063
1064        /* Complain about underflow. */
1065        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1066
1067        /*
1068         * If idle from RCU viewpoint, atomically increment ->dynticks
1069         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1070         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1071         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1072         * to be in the outermost NMI handler that interrupted an RCU-idle
1073         * period (observation due to Andy Lutomirski).
1074         */
1075        if (rcu_dynticks_curr_cpu_in_eqs()) {
1076                rcu_dynticks_eqs_exit();
1077                incby = 1;
1078        }
1079        rdtp->dynticks_nmi_nesting += incby;
1080        barrier();
1081}
1082
1083/**
1084 * rcu_nmi_exit - inform RCU of exit from NMI context
1085 *
1086 * If we are returning from the outermost NMI handler that interrupted an
1087 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1088 * to let the RCU grace-period handling know that the CPU is back to
1089 * being RCU-idle.
1090 */
1091void rcu_nmi_exit(void)
1092{
1093        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1094
1095        /*
1096         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1097         * (We are exiting an NMI handler, so RCU better be paying attention
1098         * to us!)
1099         */
1100        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1101        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1102
1103        /*
1104         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1105         * leave it in non-RCU-idle state.
1106         */
1107        if (rdtp->dynticks_nmi_nesting != 1) {
1108                rdtp->dynticks_nmi_nesting -= 2;
1109                return;
1110        }
1111
1112        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1113        rdtp->dynticks_nmi_nesting = 0;
1114        rcu_dynticks_eqs_enter();
1115}
1116
1117/**
1118 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1119 *
1120 * Return true if RCU is watching the running CPU, which means that this
1121 * CPU can safely enter RCU read-side critical sections.  In other words,
1122 * if the current CPU is in its idle loop and is neither in an interrupt
1123 * or NMI handler, return true.
1124 */
1125bool notrace rcu_is_watching(void)
1126{
1127        bool ret;
1128
1129        preempt_disable_notrace();
1130        ret = !rcu_dynticks_curr_cpu_in_eqs();
1131        preempt_enable_notrace();
1132        return ret;
1133}
1134EXPORT_SYMBOL_GPL(rcu_is_watching);
1135
1136/*
1137 * If a holdout task is actually running, request an urgent quiescent
1138 * state from its CPU.  This is unsynchronized, so migrations can cause
1139 * the request to go to the wrong CPU.  Which is OK, all that will happen
1140 * is that the CPU's next context switch will be a bit slower and next
1141 * time around this task will generate another request.
1142 */
1143void rcu_request_urgent_qs_task(struct task_struct *t)
1144{
1145        int cpu;
1146
1147        barrier();
1148        cpu = task_cpu(t);
1149        if (!task_curr(t))
1150                return; /* This task is not running on that CPU. */
1151        smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1152}
1153
1154#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1155
1156/*
1157 * Is the current CPU online?  Disable preemption to avoid false positives
1158 * that could otherwise happen due to the current CPU number being sampled,
1159 * this task being preempted, its old CPU being taken offline, resuming
1160 * on some other CPU, then determining that its old CPU is now offline.
1161 * It is OK to use RCU on an offline processor during initial boot, hence
1162 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1163 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1164 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1165 * offline to continue to use RCU for one jiffy after marking itself
1166 * offline in the cpu_online_mask.  This leniency is necessary given the
1167 * non-atomic nature of the online and offline processing, for example,
1168 * the fact that a CPU enters the scheduler after completing the teardown
1169 * of the CPU.
1170 *
1171 * This is also why RCU internally marks CPUs online during in the
1172 * preparation phase and offline after the CPU has been taken down.
1173 *
1174 * Disable checking if in an NMI handler because we cannot safely report
1175 * errors from NMI handlers anyway.
1176 */
1177bool rcu_lockdep_current_cpu_online(void)
1178{
1179        struct rcu_data *rdp;
1180        struct rcu_node *rnp;
1181        bool ret;
1182
1183        if (in_nmi())
1184                return true;
1185        preempt_disable();
1186        rdp = this_cpu_ptr(&rcu_sched_data);
1187        rnp = rdp->mynode;
1188        ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1189              !rcu_scheduler_fully_active;
1190        preempt_enable();
1191        return ret;
1192}
1193EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1194
1195#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1196
1197/**
1198 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1199 *
1200 * If the current CPU is idle or running at a first-level (not nested)
1201 * interrupt from idle, return true.  The caller must have at least
1202 * disabled preemption.
1203 */
1204static int rcu_is_cpu_rrupt_from_idle(void)
1205{
1206        return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1207}
1208
1209/*
1210 * Snapshot the specified CPU's dynticks counter so that we can later
1211 * credit them with an implicit quiescent state.  Return 1 if this CPU
1212 * is in dynticks idle mode, which is an extended quiescent state.
1213 */
1214static int dyntick_save_progress_counter(struct rcu_data *rdp)
1215{
1216        rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1217        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1218                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1219                if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1220                                 rdp->mynode->gpnum))
1221                        WRITE_ONCE(rdp->gpwrap, true);
1222                return 1;
1223        }
1224        return 0;
1225}
1226
1227/*
1228 * Return true if the specified CPU has passed through a quiescent
1229 * state by virtue of being in or having passed through an dynticks
1230 * idle state since the last call to dyntick_save_progress_counter()
1231 * for this same CPU, or by virtue of having been offline.
1232 */
1233static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1234{
1235        unsigned long jtsq;
1236        bool *rnhqp;
1237        bool *ruqp;
1238        unsigned long rjtsc;
1239        struct rcu_node *rnp;
1240
1241        /*
1242         * If the CPU passed through or entered a dynticks idle phase with
1243         * no active irq/NMI handlers, then we can safely pretend that the CPU
1244         * already acknowledged the request to pass through a quiescent
1245         * state.  Either way, that CPU cannot possibly be in an RCU
1246         * read-side critical section that started before the beginning
1247         * of the current RCU grace period.
1248         */
1249        if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1250                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1251                rdp->dynticks_fqs++;
1252                return 1;
1253        }
1254
1255        /* Compute and saturate jiffies_till_sched_qs. */
1256        jtsq = jiffies_till_sched_qs;
1257        rjtsc = rcu_jiffies_till_stall_check();
1258        if (jtsq > rjtsc / 2) {
1259                WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1260                jtsq = rjtsc / 2;
1261        } else if (jtsq < 1) {
1262                WRITE_ONCE(jiffies_till_sched_qs, 1);
1263                jtsq = 1;
1264        }
1265
1266        /*
1267         * Has this CPU encountered a cond_resched_rcu_qs() since the
1268         * beginning of the grace period?  For this to be the case,
1269         * the CPU has to have noticed the current grace period.  This
1270         * might not be the case for nohz_full CPUs looping in the kernel.
1271         */
1272        rnp = rdp->mynode;
1273        ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1274        if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1275            READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1276            READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1277                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1278                return 1;
1279        } else {
1280                /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1281                smp_store_release(ruqp, true);
1282        }
1283
1284        /* Check for the CPU being offline. */
1285        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1286                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1287                rdp->offline_fqs++;
1288                return 1;
1289        }
1290
1291        /*
1292         * A CPU running for an extended time within the kernel can
1293         * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1294         * even context-switching back and forth between a pair of
1295         * in-kernel CPU-bound tasks cannot advance grace periods.
1296         * So if the grace period is old enough, make the CPU pay attention.
1297         * Note that the unsynchronized assignments to the per-CPU
1298         * rcu_need_heavy_qs variable are safe.  Yes, setting of
1299         * bits can be lost, but they will be set again on the next
1300         * force-quiescent-state pass.  So lost bit sets do not result
1301         * in incorrect behavior, merely in a grace period lasting
1302         * a few jiffies longer than it might otherwise.  Because
1303         * there are at most four threads involved, and because the
1304         * updates are only once every few jiffies, the probability of
1305         * lossage (and thus of slight grace-period extension) is
1306         * quite low.
1307         *
1308         * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1309         * is set too high, we override with half of the RCU CPU stall
1310         * warning delay.
1311         */
1312        rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1313        if (!READ_ONCE(*rnhqp) &&
1314            (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1315             time_after(jiffies, rdp->rsp->jiffies_resched))) {
1316                WRITE_ONCE(*rnhqp, true);
1317                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1318                smp_store_release(ruqp, true);
1319                rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1320        }
1321
1322        /*
1323         * If more than halfway to RCU CPU stall-warning time, do
1324         * a resched_cpu() to try to loosen things up a bit.
1325         */
1326        if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1327                resched_cpu(rdp->cpu);
1328
1329        return 0;
1330}
1331
1332static void record_gp_stall_check_time(struct rcu_state *rsp)
1333{
1334        unsigned long j = jiffies;
1335        unsigned long j1;
1336
1337        rsp->gp_start = j;
1338        smp_wmb(); /* Record start time before stall time. */
1339        j1 = rcu_jiffies_till_stall_check();
1340        WRITE_ONCE(rsp->jiffies_stall, j + j1);
1341        rsp->jiffies_resched = j + j1 / 2;
1342        rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1343}
1344
1345/*
1346 * Convert a ->gp_state value to a character string.
1347 */
1348static const char *gp_state_getname(short gs)
1349{
1350        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1351                return "???";
1352        return gp_state_names[gs];
1353}
1354
1355/*
1356 * Complain about starvation of grace-period kthread.
1357 */
1358static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1359{
1360        unsigned long gpa;
1361        unsigned long j;
1362
1363        j = jiffies;
1364        gpa = READ_ONCE(rsp->gp_activity);
1365        if (j - gpa > 2 * HZ) {
1366                pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1367                       rsp->name, j - gpa,
1368                       rsp->gpnum, rsp->completed,
1369                       rsp->gp_flags,
1370                       gp_state_getname(rsp->gp_state), rsp->gp_state,
1371                       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1372                       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1373                if (rsp->gp_kthread) {
1374                        sched_show_task(rsp->gp_kthread);
1375                        wake_up_process(rsp->gp_kthread);
1376                }
1377        }
1378}
1379
1380/*
1381 * Dump stacks of all tasks running on stalled CPUs.  First try using
1382 * NMIs, but fall back to manual remote stack tracing on architectures
1383 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1384 * traces are more accurate because they are printed by the target CPU.
1385 */
1386static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1387{
1388        int cpu;
1389        unsigned long flags;
1390        struct rcu_node *rnp;
1391
1392        rcu_for_each_leaf_node(rsp, rnp) {
1393                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1394                for_each_leaf_node_possible_cpu(rnp, cpu)
1395                        if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1396                                if (!trigger_single_cpu_backtrace(cpu))
1397                                        dump_cpu_task(cpu);
1398                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1399        }
1400}
1401
1402/*
1403 * If too much time has passed in the current grace period, and if
1404 * so configured, go kick the relevant kthreads.
1405 */
1406static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1407{
1408        unsigned long j;
1409
1410        if (!rcu_kick_kthreads)
1411                return;
1412        j = READ_ONCE(rsp->jiffies_kick_kthreads);
1413        if (time_after(jiffies, j) && rsp->gp_kthread &&
1414            (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1415                WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1416                rcu_ftrace_dump(DUMP_ALL);
1417                wake_up_process(rsp->gp_kthread);
1418                WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1419        }
1420}
1421
1422static inline void panic_on_rcu_stall(void)
1423{
1424        if (sysctl_panic_on_rcu_stall)
1425                panic("RCU Stall\n");
1426}
1427
1428static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1429{
1430        int cpu;
1431        long delta;
1432        unsigned long flags;
1433        unsigned long gpa;
1434        unsigned long j;
1435        int ndetected = 0;
1436        struct rcu_node *rnp = rcu_get_root(rsp);
1437        long totqlen = 0;
1438
1439        /* Kick and suppress, if so configured. */
1440        rcu_stall_kick_kthreads(rsp);
1441        if (rcu_cpu_stall_suppress)
1442                return;
1443
1444        /* Only let one CPU complain about others per time interval. */
1445
1446        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1447        delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1448        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1449                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450                return;
1451        }
1452        WRITE_ONCE(rsp->jiffies_stall,
1453                   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1454        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455
1456        /*
1457         * OK, time to rat on our buddy...
1458         * See Documentation/RCU/stallwarn.txt for info on how to debug
1459         * RCU CPU stall warnings.
1460         */
1461        pr_err("INFO: %s detected stalls on CPUs/tasks:",
1462               rsp->name);
1463        print_cpu_stall_info_begin();
1464        rcu_for_each_leaf_node(rsp, rnp) {
1465                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1466                ndetected += rcu_print_task_stall(rnp);
1467                if (rnp->qsmask != 0) {
1468                        for_each_leaf_node_possible_cpu(rnp, cpu)
1469                                if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1470                                        print_cpu_stall_info(rsp, cpu);
1471                                        ndetected++;
1472                                }
1473                }
1474                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1475        }
1476
1477        print_cpu_stall_info_end();
1478        for_each_possible_cpu(cpu)
1479                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1480                                                            cpu)->cblist);
1481        pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1482               smp_processor_id(), (long)(jiffies - rsp->gp_start),
1483               (long)rsp->gpnum, (long)rsp->completed, totqlen);
1484        if (ndetected) {
1485                rcu_dump_cpu_stacks(rsp);
1486
1487                /* Complain about tasks blocking the grace period. */
1488                rcu_print_detail_task_stall(rsp);
1489        } else {
1490                if (READ_ONCE(rsp->gpnum) != gpnum ||
1491                    READ_ONCE(rsp->completed) == gpnum) {
1492                        pr_err("INFO: Stall ended before state dump start\n");
1493                } else {
1494                        j = jiffies;
1495                        gpa = READ_ONCE(rsp->gp_activity);
1496                        pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1497                               rsp->name, j - gpa, j, gpa,
1498                               jiffies_till_next_fqs,
1499                               rcu_get_root(rsp)->qsmask);
1500                        /* In this case, the current CPU might be at fault. */
1501                        sched_show_task(current);
1502                }
1503        }
1504
1505        rcu_check_gp_kthread_starvation(rsp);
1506
1507        panic_on_rcu_stall();
1508
1509        force_quiescent_state(rsp);  /* Kick them all. */
1510}
1511
1512static void print_cpu_stall(struct rcu_state *rsp)
1513{
1514        int cpu;
1515        unsigned long flags;
1516        struct rcu_node *rnp = rcu_get_root(rsp);
1517        long totqlen = 0;
1518
1519        /* Kick and suppress, if so configured. */
1520        rcu_stall_kick_kthreads(rsp);
1521        if (rcu_cpu_stall_suppress)
1522                return;
1523
1524        /*
1525         * OK, time to rat on ourselves...
1526         * See Documentation/RCU/stallwarn.txt for info on how to debug
1527         * RCU CPU stall warnings.
1528         */
1529        pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1530        print_cpu_stall_info_begin();
1531        print_cpu_stall_info(rsp, smp_processor_id());
1532        print_cpu_stall_info_end();
1533        for_each_possible_cpu(cpu)
1534                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1535                                                            cpu)->cblist);
1536        pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1537                jiffies - rsp->gp_start,
1538                (long)rsp->gpnum, (long)rsp->completed, totqlen);
1539
1540        rcu_check_gp_kthread_starvation(rsp);
1541
1542        rcu_dump_cpu_stacks(rsp);
1543
1544        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545        if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1546                WRITE_ONCE(rsp->jiffies_stall,
1547                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1548        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1549
1550        panic_on_rcu_stall();
1551
1552        /*
1553         * Attempt to revive the RCU machinery by forcing a context switch.
1554         *
1555         * A context switch would normally allow the RCU state machine to make
1556         * progress and it could be we're stuck in kernel space without context
1557         * switches for an entirely unreasonable amount of time.
1558         */
1559        resched_cpu(smp_processor_id());
1560}
1561
1562static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1563{
1564        unsigned long completed;
1565        unsigned long gpnum;
1566        unsigned long gps;
1567        unsigned long j;
1568        unsigned long js;
1569        struct rcu_node *rnp;
1570
1571        if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1572            !rcu_gp_in_progress(rsp))
1573                return;
1574        rcu_stall_kick_kthreads(rsp);
1575        j = jiffies;
1576
1577        /*
1578         * Lots of memory barriers to reject false positives.
1579         *
1580         * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1581         * then rsp->gp_start, and finally rsp->completed.  These values
1582         * are updated in the opposite order with memory barriers (or
1583         * equivalent) during grace-period initialization and cleanup.
1584         * Now, a false positive can occur if we get an new value of
1585         * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1586         * the memory barriers, the only way that this can happen is if one
1587         * grace period ends and another starts between these two fetches.
1588         * Detect this by comparing rsp->completed with the previous fetch
1589         * from rsp->gpnum.
1590         *
1591         * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1592         * and rsp->gp_start suffice to forestall false positives.
1593         */
1594        gpnum = READ_ONCE(rsp->gpnum);
1595        smp_rmb(); /* Pick up ->gpnum first... */
1596        js = READ_ONCE(rsp->jiffies_stall);
1597        smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1598        gps = READ_ONCE(rsp->gp_start);
1599        smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1600        completed = READ_ONCE(rsp->completed);
1601        if (ULONG_CMP_GE(completed, gpnum) ||
1602            ULONG_CMP_LT(j, js) ||
1603            ULONG_CMP_GE(gps, js))
1604                return; /* No stall or GP completed since entering function. */
1605        rnp = rdp->mynode;
1606        if (rcu_gp_in_progress(rsp) &&
1607            (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1608
1609                /* We haven't checked in, so go dump stack. */
1610                print_cpu_stall(rsp);
1611
1612        } else if (rcu_gp_in_progress(rsp) &&
1613                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1614
1615                /* They had a few time units to dump stack, so complain. */
1616                print_other_cpu_stall(rsp, gpnum);
1617        }
1618}
1619
1620/**
1621 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1622 *
1623 * Set the stall-warning timeout way off into the future, thus preventing
1624 * any RCU CPU stall-warning messages from appearing in the current set of
1625 * RCU grace periods.
1626 *
1627 * The caller must disable hard irqs.
1628 */
1629void rcu_cpu_stall_reset(void)
1630{
1631        struct rcu_state *rsp;
1632
1633        for_each_rcu_flavor(rsp)
1634                WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1635}
1636
1637/*
1638 * Determine the value that ->completed will have at the end of the
1639 * next subsequent grace period.  This is used to tag callbacks so that
1640 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1641 * been dyntick-idle for an extended period with callbacks under the
1642 * influence of RCU_FAST_NO_HZ.
1643 *
1644 * The caller must hold rnp->lock with interrupts disabled.
1645 */
1646static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1647                                       struct rcu_node *rnp)
1648{
1649        lockdep_assert_held(&rnp->lock);
1650
1651        /*
1652         * If RCU is idle, we just wait for the next grace period.
1653         * But we can only be sure that RCU is idle if we are looking
1654         * at the root rcu_node structure -- otherwise, a new grace
1655         * period might have started, but just not yet gotten around
1656         * to initializing the current non-root rcu_node structure.
1657         */
1658        if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1659                return rnp->completed + 1;
1660
1661        /*
1662         * Otherwise, wait for a possible partial grace period and
1663         * then the subsequent full grace period.
1664         */
1665        return rnp->completed + 2;
1666}
1667
1668/*
1669 * Trace-event helper function for rcu_start_future_gp() and
1670 * rcu_nocb_wait_gp().
1671 */
1672static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673                                unsigned long c, const char *s)
1674{
1675        trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1676                                      rnp->completed, c, rnp->level,
1677                                      rnp->grplo, rnp->grphi, s);
1678}
1679
1680/*
1681 * Start some future grace period, as needed to handle newly arrived
1682 * callbacks.  The required future grace periods are recorded in each
1683 * rcu_node structure's ->need_future_gp field.  Returns true if there
1684 * is reason to awaken the grace-period kthread.
1685 *
1686 * The caller must hold the specified rcu_node structure's ->lock.
1687 */
1688static bool __maybe_unused
1689rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1690                    unsigned long *c_out)
1691{
1692        unsigned long c;
1693        bool ret = false;
1694        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1695
1696        lockdep_assert_held(&rnp->lock);
1697
1698        /*
1699         * Pick up grace-period number for new callbacks.  If this
1700         * grace period is already marked as needed, return to the caller.
1701         */
1702        c = rcu_cbs_completed(rdp->rsp, rnp);
1703        trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1704        if (rnp->need_future_gp[c & 0x1]) {
1705                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1706                goto out;
1707        }
1708
1709        /*
1710         * If either this rcu_node structure or the root rcu_node structure
1711         * believe that a grace period is in progress, then we must wait
1712         * for the one following, which is in "c".  Because our request
1713         * will be noticed at the end of the current grace period, we don't
1714         * need to explicitly start one.  We only do the lockless check
1715         * of rnp_root's fields if the current rcu_node structure thinks
1716         * there is no grace period in flight, and because we hold rnp->lock,
1717         * the only possible change is when rnp_root's two fields are
1718         * equal, in which case rnp_root->gpnum might be concurrently
1719         * incremented.  But that is OK, as it will just result in our
1720         * doing some extra useless work.
1721         */
1722        if (rnp->gpnum != rnp->completed ||
1723            READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1724                rnp->need_future_gp[c & 0x1]++;
1725                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1726                goto out;
1727        }
1728
1729        /*
1730         * There might be no grace period in progress.  If we don't already
1731         * hold it, acquire the root rcu_node structure's lock in order to
1732         * start one (if needed).
1733         */
1734        if (rnp != rnp_root)
1735                raw_spin_lock_rcu_node(rnp_root);
1736
1737        /*
1738         * Get a new grace-period number.  If there really is no grace
1739         * period in progress, it will be smaller than the one we obtained
1740         * earlier.  Adjust callbacks as needed.
1741         */
1742        c = rcu_cbs_completed(rdp->rsp, rnp_root);
1743        if (!rcu_is_nocb_cpu(rdp->cpu))
1744                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1745
1746        /*
1747         * If the needed for the required grace period is already
1748         * recorded, trace and leave.
1749         */
1750        if (rnp_root->need_future_gp[c & 0x1]) {
1751                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1752                goto unlock_out;
1753        }
1754
1755        /* Record the need for the future grace period. */
1756        rnp_root->need_future_gp[c & 0x1]++;
1757
1758        /* If a grace period is not already in progress, start one. */
1759        if (rnp_root->gpnum != rnp_root->completed) {
1760                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1761        } else {
1762                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1763                ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1764        }
1765unlock_out:
1766        if (rnp != rnp_root)
1767                raw_spin_unlock_rcu_node(rnp_root);
1768out:
1769        if (c_out != NULL)
1770                *c_out = c;
1771        return ret;
1772}
1773
1774/*
1775 * Clean up any old requests for the just-ended grace period.  Also return
1776 * whether any additional grace periods have been requested.
1777 */
1778static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1779{
1780        int c = rnp->completed;
1781        int needmore;
1782        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1783
1784        rnp->need_future_gp[c & 0x1] = 0;
1785        needmore = rnp->need_future_gp[(c + 1) & 0x1];
1786        trace_rcu_future_gp(rnp, rdp, c,
1787                            needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1788        return needmore;
1789}
1790
1791/*
1792 * Awaken the grace-period kthread for the specified flavor of RCU.
1793 * Don't do a self-awaken, and don't bother awakening when there is
1794 * nothing for the grace-period kthread to do (as in several CPUs
1795 * raced to awaken, and we lost), and finally don't try to awaken
1796 * a kthread that has not yet been created.
1797 */
1798static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1799{
1800        if (current == rsp->gp_kthread ||
1801            !READ_ONCE(rsp->gp_flags) ||
1802            !rsp->gp_kthread)
1803                return;
1804        swake_up(&rsp->gp_wq);
1805}
1806
1807/*
1808 * If there is room, assign a ->completed number to any callbacks on
1809 * this CPU that have not already been assigned.  Also accelerate any
1810 * callbacks that were previously assigned a ->completed number that has
1811 * since proven to be too conservative, which can happen if callbacks get
1812 * assigned a ->completed number while RCU is idle, but with reference to
1813 * a non-root rcu_node structure.  This function is idempotent, so it does
1814 * not hurt to call it repeatedly.  Returns an flag saying that we should
1815 * awaken the RCU grace-period kthread.
1816 *
1817 * The caller must hold rnp->lock with interrupts disabled.
1818 */
1819static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1820                               struct rcu_data *rdp)
1821{
1822        bool ret = false;
1823
1824        lockdep_assert_held(&rnp->lock);
1825
1826        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1827        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1828                return false;
1829
1830        /*
1831         * Callbacks are often registered with incomplete grace-period
1832         * information.  Something about the fact that getting exact
1833         * information requires acquiring a global lock...  RCU therefore
1834         * makes a conservative estimate of the grace period number at which
1835         * a given callback will become ready to invoke.        The following
1836         * code checks this estimate and improves it when possible, thus
1837         * accelerating callback invocation to an earlier grace-period
1838         * number.
1839         */
1840        if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1841                ret = rcu_start_future_gp(rnp, rdp, NULL);
1842
1843        /* Trace depending on how much we were able to accelerate. */
1844        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1845                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1846        else
1847                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1848        return ret;
1849}
1850
1851/*
1852 * Move any callbacks whose grace period has completed to the
1853 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1854 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1855 * sublist.  This function is idempotent, so it does not hurt to
1856 * invoke it repeatedly.  As long as it is not invoked -too- often...
1857 * Returns true if the RCU grace-period kthread needs to be awakened.
1858 *
1859 * The caller must hold rnp->lock with interrupts disabled.
1860 */
1861static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1862                            struct rcu_data *rdp)
1863{
1864        lockdep_assert_held(&rnp->lock);
1865
1866        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1867        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1868                return false;
1869
1870        /*
1871         * Find all callbacks whose ->completed numbers indicate that they
1872         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1873         */
1874        rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1875
1876        /* Classify any remaining callbacks. */
1877        return rcu_accelerate_cbs(rsp, rnp, rdp);
1878}
1879
1880/*
1881 * Update CPU-local rcu_data state to record the beginnings and ends of
1882 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1883 * structure corresponding to the current CPU, and must have irqs disabled.
1884 * Returns true if the grace-period kthread needs to be awakened.
1885 */
1886static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1887                              struct rcu_data *rdp)
1888{
1889        bool ret;
1890        bool need_gp;
1891
1892        lockdep_assert_held(&rnp->lock);
1893
1894        /* Handle the ends of any preceding grace periods first. */
1895        if (rdp->completed == rnp->completed &&
1896            !unlikely(READ_ONCE(rdp->gpwrap))) {
1897
1898                /* No grace period end, so just accelerate recent callbacks. */
1899                ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1900
1901        } else {
1902
1903                /* Advance callbacks. */
1904                ret = rcu_advance_cbs(rsp, rnp, rdp);
1905
1906                /* Remember that we saw this grace-period completion. */
1907                rdp->completed = rnp->completed;
1908                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1909        }
1910
1911        if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1912                /*
1913                 * If the current grace period is waiting for this CPU,
1914                 * set up to detect a quiescent state, otherwise don't
1915                 * go looking for one.
1916                 */
1917                rdp->gpnum = rnp->gpnum;
1918                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1919                need_gp = !!(rnp->qsmask & rdp->grpmask);
1920                rdp->cpu_no_qs.b.norm = need_gp;
1921                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1922                rdp->core_needs_qs = need_gp;
1923                zero_cpu_stall_ticks(rdp);
1924                WRITE_ONCE(rdp->gpwrap, false);
1925        }
1926        return ret;
1927}
1928
1929static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1930{
1931        unsigned long flags;
1932        bool needwake;
1933        struct rcu_node *rnp;
1934
1935        local_irq_save(flags);
1936        rnp = rdp->mynode;
1937        if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1938             rdp->completed == READ_ONCE(rnp->completed) &&
1939             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1940            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1941                local_irq_restore(flags);
1942                return;
1943        }
1944        needwake = __note_gp_changes(rsp, rnp, rdp);
1945        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1946        if (needwake)
1947                rcu_gp_kthread_wake(rsp);
1948}
1949
1950static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1951{
1952        if (delay > 0 &&
1953            !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1954                schedule_timeout_uninterruptible(delay);
1955}
1956
1957/*
1958 * Initialize a new grace period.  Return false if no grace period required.
1959 */
1960static bool rcu_gp_init(struct rcu_state *rsp)
1961{
1962        unsigned long oldmask;
1963        struct rcu_data *rdp;
1964        struct rcu_node *rnp = rcu_get_root(rsp);
1965
1966        WRITE_ONCE(rsp->gp_activity, jiffies);
1967        raw_spin_lock_irq_rcu_node(rnp);
1968        if (!READ_ONCE(rsp->gp_flags)) {
1969                /* Spurious wakeup, tell caller to go back to sleep.  */
1970                raw_spin_unlock_irq_rcu_node(rnp);
1971                return false;
1972        }
1973        WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1974
1975        if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1976                /*
1977                 * Grace period already in progress, don't start another.
1978                 * Not supposed to be able to happen.
1979                 */
1980                raw_spin_unlock_irq_rcu_node(rnp);
1981                return false;
1982        }
1983
1984        /* Advance to a new grace period and initialize state. */
1985        record_gp_stall_check_time(rsp);
1986        /* Record GP times before starting GP, hence smp_store_release(). */
1987        smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1988        trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1989        raw_spin_unlock_irq_rcu_node(rnp);
1990
1991        /*
1992         * Apply per-leaf buffered online and offline operations to the
1993         * rcu_node tree.  Note that this new grace period need not wait
1994         * for subsequent online CPUs, and that quiescent-state forcing
1995         * will handle subsequent offline CPUs.
1996         */
1997        rcu_for_each_leaf_node(rsp, rnp) {
1998                rcu_gp_slow(rsp, gp_preinit_delay);
1999                raw_spin_lock_irq_rcu_node(rnp);
2000                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2001                    !rnp->wait_blkd_tasks) {
2002                        /* Nothing to do on this leaf rcu_node structure. */
2003                        raw_spin_unlock_irq_rcu_node(rnp);
2004                        continue;
2005                }
2006
2007                /* Record old state, apply changes to ->qsmaskinit field. */
2008                oldmask = rnp->qsmaskinit;
2009                rnp->qsmaskinit = rnp->qsmaskinitnext;
2010
2011                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2012                if (!oldmask != !rnp->qsmaskinit) {
2013                        if (!oldmask) /* First online CPU for this rcu_node. */
2014                                rcu_init_new_rnp(rnp);
2015                        else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2016                                rnp->wait_blkd_tasks = true;
2017                        else /* Last offline CPU and can propagate. */
2018                                rcu_cleanup_dead_rnp(rnp);
2019                }
2020
2021                /*
2022                 * If all waited-on tasks from prior grace period are
2023                 * done, and if all this rcu_node structure's CPUs are
2024                 * still offline, propagate up the rcu_node tree and
2025                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2026                 * rcu_node structure's CPUs has since come back online,
2027                 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2028                 * checks for this, so just call it unconditionally).
2029                 */
2030                if (rnp->wait_blkd_tasks &&
2031                    (!rcu_preempt_has_tasks(rnp) ||
2032                     rnp->qsmaskinit)) {
2033                        rnp->wait_blkd_tasks = false;
2034                        rcu_cleanup_dead_rnp(rnp);
2035                }
2036
2037                raw_spin_unlock_irq_rcu_node(rnp);
2038        }
2039
2040        /*
2041         * Set the quiescent-state-needed bits in all the rcu_node
2042         * structures for all currently online CPUs in breadth-first order,
2043         * starting from the root rcu_node structure, relying on the layout
2044         * of the tree within the rsp->node[] array.  Note that other CPUs
2045         * will access only the leaves of the hierarchy, thus seeing that no
2046         * grace period is in progress, at least until the corresponding
2047         * leaf node has been initialized.
2048         *
2049         * The grace period cannot complete until the initialization
2050         * process finishes, because this kthread handles both.
2051         */
2052        rcu_for_each_node_breadth_first(rsp, rnp) {
2053                rcu_gp_slow(rsp, gp_init_delay);
2054                raw_spin_lock_irq_rcu_node(rnp);
2055                rdp = this_cpu_ptr(rsp->rda);
2056                rcu_preempt_check_blocked_tasks(rnp);
2057                rnp->qsmask = rnp->qsmaskinit;
2058                WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2059                if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2060                        WRITE_ONCE(rnp->completed, rsp->completed);
2061                if (rnp == rdp->mynode)
2062                        (void)__note_gp_changes(rsp, rnp, rdp);
2063                rcu_preempt_boost_start_gp(rnp);
2064                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2065                                            rnp->level, rnp->grplo,
2066                                            rnp->grphi, rnp->qsmask);
2067                raw_spin_unlock_irq_rcu_node(rnp);
2068                cond_resched_rcu_qs();
2069                WRITE_ONCE(rsp->gp_activity, jiffies);
2070        }
2071
2072        return true;
2073}
2074
2075/*
2076 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2077 * time.
2078 */
2079static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2080{
2081        struct rcu_node *rnp = rcu_get_root(rsp);
2082
2083        /* Someone like call_rcu() requested a force-quiescent-state scan. */
2084        *gfp = READ_ONCE(rsp->gp_flags);
2085        if (*gfp & RCU_GP_FLAG_FQS)
2086                return true;
2087
2088        /* The current grace period has completed. */
2089        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2090                return true;
2091
2092        return false;
2093}
2094
2095/*
2096 * Do one round of quiescent-state forcing.
2097 */
2098static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2099{
2100        struct rcu_node *rnp = rcu_get_root(rsp);
2101
2102        WRITE_ONCE(rsp->gp_activity, jiffies);
2103        rsp->n_force_qs++;
2104        if (first_time) {
2105                /* Collect dyntick-idle snapshots. */
2106                force_qs_rnp(rsp, dyntick_save_progress_counter);
2107        } else {
2108                /* Handle dyntick-idle and offline CPUs. */
2109                force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2110        }
2111        /* Clear flag to prevent immediate re-entry. */
2112        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2113                raw_spin_lock_irq_rcu_node(rnp);
2114                WRITE_ONCE(rsp->gp_flags,
2115                           READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2116                raw_spin_unlock_irq_rcu_node(rnp);
2117        }
2118}
2119
2120/*
2121 * Clean up after the old grace period.
2122 */
2123static void rcu_gp_cleanup(struct rcu_state *rsp)
2124{
2125        unsigned long gp_duration;
2126        bool needgp = false;
2127        int nocb = 0;
2128        struct rcu_data *rdp;
2129        struct rcu_node *rnp = rcu_get_root(rsp);
2130        struct swait_queue_head *sq;
2131
2132        WRITE_ONCE(rsp->gp_activity, jiffies);
2133        raw_spin_lock_irq_rcu_node(rnp);
2134        gp_duration = jiffies - rsp->gp_start;
2135        if (gp_duration > rsp->gp_max)
2136                rsp->gp_max = gp_duration;
2137
2138        /*
2139         * We know the grace period is complete, but to everyone else
2140         * it appears to still be ongoing.  But it is also the case
2141         * that to everyone else it looks like there is nothing that
2142         * they can do to advance the grace period.  It is therefore
2143         * safe for us to drop the lock in order to mark the grace
2144         * period as completed in all of the rcu_node structures.
2145         */
2146        raw_spin_unlock_irq_rcu_node(rnp);
2147
2148        /*
2149         * Propagate new ->completed value to rcu_node structures so
2150         * that other CPUs don't have to wait until the start of the next
2151         * grace period to process their callbacks.  This also avoids
2152         * some nasty RCU grace-period initialization races by forcing
2153         * the end of the current grace period to be completely recorded in
2154         * all of the rcu_node structures before the beginning of the next
2155         * grace period is recorded in any of the rcu_node structures.
2156         */
2157        rcu_for_each_node_breadth_first(rsp, rnp) {
2158                raw_spin_lock_irq_rcu_node(rnp);
2159                WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2160                WARN_ON_ONCE(rnp->qsmask);
2161                WRITE_ONCE(rnp->completed, rsp->gpnum);
2162                rdp = this_cpu_ptr(rsp->rda);
2163                if (rnp == rdp->mynode)
2164                        needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2165                /* smp_mb() provided by prior unlock-lock pair. */
2166                nocb += rcu_future_gp_cleanup(rsp, rnp);
2167                sq = rcu_nocb_gp_get(rnp);
2168                raw_spin_unlock_irq_rcu_node(rnp);
2169                rcu_nocb_gp_cleanup(sq);
2170                cond_resched_rcu_qs();
2171                WRITE_ONCE(rsp->gp_activity, jiffies);
2172                rcu_gp_slow(rsp, gp_cleanup_delay);
2173        }
2174        rnp = rcu_get_root(rsp);
2175        raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2176        rcu_nocb_gp_set(rnp, nocb);
2177
2178        /* Declare grace period done. */
2179        WRITE_ONCE(rsp->completed, rsp->gpnum);
2180        trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2181        rsp->gp_state = RCU_GP_IDLE;
2182        rdp = this_cpu_ptr(rsp->rda);
2183        /* Advance CBs to reduce false positives below. */
2184        needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2185        if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2186                WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2187                trace_rcu_grace_period(rsp->name,
2188                                       READ_ONCE(rsp->gpnum),
2189                                       TPS("newreq"));
2190        }
2191        raw_spin_unlock_irq_rcu_node(rnp);
2192}
2193
2194/*
2195 * Body of kthread that handles grace periods.
2196 */
2197static int __noreturn rcu_gp_kthread(void *arg)
2198{
2199        bool first_gp_fqs;
2200        int gf;
2201        unsigned long j;
2202        int ret;
2203        struct rcu_state *rsp = arg;
2204        struct rcu_node *rnp = rcu_get_root(rsp);
2205
2206        rcu_bind_gp_kthread();
2207        for (;;) {
2208
2209                /* Handle grace-period start. */
2210                for (;;) {
2211                        trace_rcu_grace_period(rsp->name,
2212                                               READ_ONCE(rsp->gpnum),
2213                                               TPS("reqwait"));
2214                        rsp->gp_state = RCU_GP_WAIT_GPS;
2215                        swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2216                                                     RCU_GP_FLAG_INIT);
2217                        rsp->gp_state = RCU_GP_DONE_GPS;
2218                        /* Locking provides needed memory barrier. */
2219                        if (rcu_gp_init(rsp))
2220                                break;
2221                        cond_resched_rcu_qs();
2222                        WRITE_ONCE(rsp->gp_activity, jiffies);
2223                        WARN_ON(signal_pending(current));
2224                        trace_rcu_grace_period(rsp->name,
2225                                               READ_ONCE(rsp->gpnum),
2226                                               TPS("reqwaitsig"));
2227                }
2228
2229                /* Handle quiescent-state forcing. */
2230                first_gp_fqs = true;
2231                j = jiffies_till_first_fqs;
2232                if (j > HZ) {
2233                        j = HZ;
2234                        jiffies_till_first_fqs = HZ;
2235                }
2236                ret = 0;
2237                for (;;) {
2238                        if (!ret) {
2239                                rsp->jiffies_force_qs = jiffies + j;
2240                                WRITE_ONCE(rsp->jiffies_kick_kthreads,
2241                                           jiffies + 3 * j);
2242                        }
2243                        trace_rcu_grace_period(rsp->name,
2244                                               READ_ONCE(rsp->gpnum),
2245                                               TPS("fqswait"));
2246                        rsp->gp_state = RCU_GP_WAIT_FQS;
2247                        ret = swait_event_idle_timeout(rsp->gp_wq,
2248                                        rcu_gp_fqs_check_wake(rsp, &gf), j);
2249                        rsp->gp_state = RCU_GP_DOING_FQS;
2250                        /* Locking provides needed memory barriers. */
2251                        /* If grace period done, leave loop. */
2252                        if (!READ_ONCE(rnp->qsmask) &&
2253                            !rcu_preempt_blocked_readers_cgp(rnp))
2254                                break;
2255                        /* If time for quiescent-state forcing, do it. */
2256                        if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2257                            (gf & RCU_GP_FLAG_FQS)) {
2258                                trace_rcu_grace_period(rsp->name,
2259                                                       READ_ONCE(rsp->gpnum),
2260                                                       TPS("fqsstart"));
2261                                rcu_gp_fqs(rsp, first_gp_fqs);
2262                                first_gp_fqs = false;
2263                                trace_rcu_grace_period(rsp->name,
2264                                                       READ_ONCE(rsp->gpnum),
2265                                                       TPS("fqsend"));
2266                                cond_resched_rcu_qs();
2267                                WRITE_ONCE(rsp->gp_activity, jiffies);
2268                                ret = 0; /* Force full wait till next FQS. */
2269                                j = jiffies_till_next_fqs;
2270                                if (j > HZ) {
2271                                        j = HZ;
2272                                        jiffies_till_next_fqs = HZ;
2273                                } else if (j < 1) {
2274                                        j = 1;
2275                                        jiffies_till_next_fqs = 1;
2276                                }
2277                        } else {
2278                                /* Deal with stray signal. */
2279                                cond_resched_rcu_qs();
2280                                WRITE_ONCE(rsp->gp_activity, jiffies);
2281                                WARN_ON(signal_pending(current));
2282                                trace_rcu_grace_period(rsp->name,
2283                                                       READ_ONCE(rsp->gpnum),
2284                                                       TPS("fqswaitsig"));
2285                                ret = 1; /* Keep old FQS timing. */
2286                                j = jiffies;
2287                                if (time_after(jiffies, rsp->jiffies_force_qs))
2288                                        j = 1;
2289                                else
2290                                        j = rsp->jiffies_force_qs - j;
2291                        }
2292                }
2293
2294                /* Handle grace-period end. */
2295                rsp->gp_state = RCU_GP_CLEANUP;
2296                rcu_gp_cleanup(rsp);
2297                rsp->gp_state = RCU_GP_CLEANED;
2298        }
2299}
2300
2301/*
2302 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2303 * in preparation for detecting the next grace period.  The caller must hold
2304 * the root node's ->lock and hard irqs must be disabled.
2305 *
2306 * Note that it is legal for a dying CPU (which is marked as offline) to
2307 * invoke this function.  This can happen when the dying CPU reports its
2308 * quiescent state.
2309 *
2310 * Returns true if the grace-period kthread must be awakened.
2311 */
2312static bool
2313rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2314                      struct rcu_data *rdp)
2315{
2316        lockdep_assert_held(&rnp->lock);
2317        if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2318                /*
2319                 * Either we have not yet spawned the grace-period
2320                 * task, this CPU does not need another grace period,
2321                 * or a grace period is already in progress.
2322                 * Either way, don't start a new grace period.
2323                 */
2324                return false;
2325        }
2326        WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2327        trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2328                               TPS("newreq"));
2329
2330        /*
2331         * We can't do wakeups while holding the rnp->lock, as that
2332         * could cause possible deadlocks with the rq->lock. Defer
2333         * the wakeup to our caller.
2334         */
2335        return true;
2336}
2337
2338/*
2339 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2340 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2341 * is invoked indirectly from rcu_advance_cbs(), which would result in
2342 * endless recursion -- or would do so if it wasn't for the self-deadlock
2343 * that is encountered beforehand.
2344 *
2345 * Returns true if the grace-period kthread needs to be awakened.
2346 */
2347static bool rcu_start_gp(struct rcu_state *rsp)
2348{
2349        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2350        struct rcu_node *rnp = rcu_get_root(rsp);
2351        bool ret = false;
2352
2353        /*
2354         * If there is no grace period in progress right now, any
2355         * callbacks we have up to this point will be satisfied by the
2356         * next grace period.  Also, advancing the callbacks reduces the
2357         * probability of false positives from cpu_needs_another_gp()
2358         * resulting in pointless grace periods.  So, advance callbacks
2359         * then start the grace period!
2360         */
2361        ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2362        ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2363        return ret;
2364}
2365
2366/*
2367 * Report a full set of quiescent states to the specified rcu_state data
2368 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2369 * kthread if another grace period is required.  Whether we wake
2370 * the grace-period kthread or it awakens itself for the next round
2371 * of quiescent-state forcing, that kthread will clean up after the
2372 * just-completed grace period.  Note that the caller must hold rnp->lock,
2373 * which is released before return.
2374 */
2375static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2376        __releases(rcu_get_root(rsp)->lock)
2377{
2378        lockdep_assert_held(&rcu_get_root(rsp)->lock);
2379        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2380        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2381        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2382        rcu_gp_kthread_wake(rsp);
2383}
2384
2385/*
2386 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2387 * Allows quiescent states for a group of CPUs to be reported at one go
2388 * to the specified rcu_node structure, though all the CPUs in the group
2389 * must be represented by the same rcu_node structure (which need not be a
2390 * leaf rcu_node structure, though it often will be).  The gps parameter
2391 * is the grace-period snapshot, which means that the quiescent states
2392 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2393 * must be held upon entry, and it is released before return.
2394 */
2395static void
2396rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2397                  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2398        __releases(rnp->lock)
2399{
2400        unsigned long oldmask = 0;
2401        struct rcu_node *rnp_c;
2402
2403        lockdep_assert_held(&rnp->lock);
2404
2405        /* Walk up the rcu_node hierarchy. */
2406        for (;;) {
2407                if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2408
2409                        /*
2410                         * Our bit has already been cleared, or the
2411                         * relevant grace period is already over, so done.
2412                         */
2413                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2414                        return;
2415                }
2416                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2417                WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2418                             rcu_preempt_blocked_readers_cgp(rnp));
2419                rnp->qsmask &= ~mask;
2420                trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2421                                                 mask, rnp->qsmask, rnp->level,
2422                                                 rnp->grplo, rnp->grphi,
2423                                                 !!rnp->gp_tasks);
2424                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2425
2426                        /* Other bits still set at this level, so done. */
2427                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2428                        return;
2429                }
2430                mask = rnp->grpmask;
2431                if (rnp->parent == NULL) {
2432
2433                        /* No more levels.  Exit loop holding root lock. */
2434
2435                        break;
2436                }
2437                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438                rnp_c = rnp;
2439                rnp = rnp->parent;
2440                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2441                oldmask = rnp_c->qsmask;
2442        }
2443
2444        /*
2445         * Get here if we are the last CPU to pass through a quiescent
2446         * state for this grace period.  Invoke rcu_report_qs_rsp()
2447         * to clean up and start the next grace period if one is needed.
2448         */
2449        rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2450}
2451
2452/*
2453 * Record a quiescent state for all tasks that were previously queued
2454 * on the specified rcu_node structure and that were blocking the current
2455 * RCU grace period.  The caller must hold the specified rnp->lock with
2456 * irqs disabled, and this lock is released upon return, but irqs remain
2457 * disabled.
2458 */
2459static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2460                                      struct rcu_node *rnp, unsigned long flags)
2461        __releases(rnp->lock)
2462{
2463        unsigned long gps;
2464        unsigned long mask;
2465        struct rcu_node *rnp_p;
2466
2467        lockdep_assert_held(&rnp->lock);
2468        if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2469            rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2470                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2471                return;  /* Still need more quiescent states! */
2472        }
2473
2474        rnp_p = rnp->parent;
2475        if (rnp_p == NULL) {
2476                /*
2477                 * Only one rcu_node structure in the tree, so don't
2478                 * try to report up to its nonexistent parent!
2479                 */
2480                rcu_report_qs_rsp(rsp, flags);
2481                return;
2482        }
2483
2484        /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2485        gps = rnp->gpnum;
2486        mask = rnp->grpmask;
2487        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
2488        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
2489        rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2490}
2491
2492/*
2493 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2494 * structure.  This must be called from the specified CPU.
2495 */
2496static void
2497rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2498{
2499        unsigned long flags;
2500        unsigned long mask;
2501        bool needwake;
2502        struct rcu_node *rnp;
2503
2504        rnp = rdp->mynode;
2505        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2506        if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2507            rnp->completed == rnp->gpnum || rdp->gpwrap) {
2508
2509                /*
2510                 * The grace period in which this quiescent state was
2511                 * recorded has ended, so don't report it upwards.
2512                 * We will instead need a new quiescent state that lies
2513                 * within the current grace period.
2514                 */
2515                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
2516                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2517                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2518                return;
2519        }
2520        mask = rdp->grpmask;
2521        if ((rnp->qsmask & mask) == 0) {
2522                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2523        } else {
2524                rdp->core_needs_qs = false;
2525
2526                /*
2527                 * This GP can't end until cpu checks in, so all of our
2528                 * callbacks can be processed during the next GP.
2529                 */
2530                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2531
2532                rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2533                /* ^^^ Released rnp->lock */
2534                if (needwake)
2535                        rcu_gp_kthread_wake(rsp);
2536        }
2537}
2538
2539/*
2540 * Check to see if there is a new grace period of which this CPU
2541 * is not yet aware, and if so, set up local rcu_data state for it.
2542 * Otherwise, see if this CPU has just passed through its first
2543 * quiescent state for this grace period, and record that fact if so.
2544 */
2545static void
2546rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2547{
2548        /* Check for grace-period ends and beginnings. */
2549        note_gp_changes(rsp, rdp);
2550
2551        /*
2552         * Does this CPU still need to do its part for current grace period?
2553         * If no, return and let the other CPUs do their part as well.
2554         */
2555        if (!rdp->core_needs_qs)
2556                return;
2557
2558        /*
2559         * Was there a quiescent state since the beginning of the grace
2560         * period? If no, then exit and wait for the next call.
2561         */
2562        if (rdp->cpu_no_qs.b.norm)
2563                return;
2564
2565        /*
2566         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2567         * judge of that).
2568         */
2569        rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2570}
2571
2572/*
2573 * Trace the fact that this CPU is going offline.
2574 */
2575static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2576{
2577        RCU_TRACE(unsigned long mask;)
2578        RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2579        RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2580
2581        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2582                return;
2583
2584        RCU_TRACE(mask = rdp->grpmask;)
2585        trace_rcu_grace_period(rsp->name,
2586                               rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2587                               TPS("cpuofl"));
2588}
2589
2590/*
2591 * All CPUs for the specified rcu_node structure have gone offline,
2592 * and all tasks that were preempted within an RCU read-side critical
2593 * section while running on one of those CPUs have since exited their RCU
2594 * read-side critical section.  Some other CPU is reporting this fact with
2595 * the specified rcu_node structure's ->lock held and interrupts disabled.
2596 * This function therefore goes up the tree of rcu_node structures,
2597 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2598 * the leaf rcu_node structure's ->qsmaskinit field has already been
2599 * updated
2600 *
2601 * This function does check that the specified rcu_node structure has
2602 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2603 * prematurely.  That said, invoking it after the fact will cost you
2604 * a needless lock acquisition.  So once it has done its work, don't
2605 * invoke it again.
2606 */
2607static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2608{
2609        long mask;
2610        struct rcu_node *rnp = rnp_leaf;
2611
2612        lockdep_assert_held(&rnp->lock);
2613        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2614            rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2615                return;
2616        for (;;) {
2617                mask = rnp->grpmask;
2618                rnp = rnp->parent;
2619                if (!rnp)
2620                        break;
2621                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2622                rnp->qsmaskinit &= ~mask;
2623                rnp->qsmask &= ~mask;
2624                if (rnp->qsmaskinit) {
2625                        raw_spin_unlock_rcu_node(rnp);
2626                        /* irqs remain disabled. */
2627                        return;
2628                }
2629                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2630        }
2631}
2632
2633/*
2634 * The CPU has been completely removed, and some other CPU is reporting
2635 * this fact from process context.  Do the remainder of the cleanup.
2636 * There can only be one CPU hotplug operation at a time, so no need for
2637 * explicit locking.
2638 */
2639static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2640{
2641        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2642        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2643
2644        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2645                return;
2646
2647        /* Adjust any no-longer-needed kthreads. */
2648        rcu_boost_kthread_setaffinity(rnp, -1);
2649}
2650
2651/*
2652 * Invoke any RCU callbacks that have made it to the end of their grace
2653 * period.  Thottle as specified by rdp->blimit.
2654 */
2655static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2656{
2657        unsigned long flags;
2658        struct rcu_head *rhp;
2659        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2660        long bl, count;
2661
2662        /* If no callbacks are ready, just return. */
2663        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2664                trace_rcu_batch_start(rsp->name,
2665                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2666                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2667                trace_rcu_batch_end(rsp->name, 0,
2668                                    !rcu_segcblist_empty(&rdp->cblist),
2669                                    need_resched(), is_idle_task(current),
2670                                    rcu_is_callbacks_kthread());
2671                return;
2672        }
2673
2674        /*
2675         * Extract the list of ready callbacks, disabling to prevent
2676         * races with call_rcu() from interrupt handlers.  Leave the
2677         * callback counts, as rcu_barrier() needs to be conservative.
2678         */
2679        local_irq_save(flags);
2680        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2681        bl = rdp->blimit;
2682        trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2683                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2684        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2685        local_irq_restore(flags);
2686
2687        /* Invoke callbacks. */
2688        rhp = rcu_cblist_dequeue(&rcl);
2689        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2690                debug_rcu_head_unqueue(rhp);
2691                if (__rcu_reclaim(rsp->name, rhp))
2692                        rcu_cblist_dequeued_lazy(&rcl);
2693                /*
2694                 * Stop only if limit reached and CPU has something to do.
2695                 * Note: The rcl structure counts down from zero.
2696                 */
2697                if (-rcl.len >= bl &&
2698                    (need_resched() ||
2699                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2700                        break;
2701        }
2702
2703        local_irq_save(flags);
2704        count = -rcl.len;
2705        trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2706                            is_idle_task(current), rcu_is_callbacks_kthread());
2707
2708        /* Update counts and requeue any remaining callbacks. */
2709        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2710        smp_mb(); /* List handling before counting for rcu_barrier(). */
2711        rdp->n_cbs_invoked += count;
2712        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2713
2714        /* Reinstate batch limit if we have worked down the excess. */
2715        count = rcu_segcblist_n_cbs(&rdp->cblist);
2716        if (rdp->blimit == LONG_MAX && count <= qlowmark)
2717                rdp->blimit = blimit;
2718
2719        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2720        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2721                rdp->qlen_last_fqs_check = 0;
2722                rdp->n_force_qs_snap = rsp->n_force_qs;
2723        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2724                rdp->qlen_last_fqs_check = count;
2725        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2726
2727        local_irq_restore(flags);
2728
2729        /* Re-invoke RCU core processing if there are callbacks remaining. */
2730        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2731                invoke_rcu_core();
2732}
2733
2734/*
2735 * Check to see if this CPU is in a non-context-switch quiescent state
2736 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2737 * Also schedule RCU core processing.
2738 *
2739 * This function must be called from hardirq context.  It is normally
2740 * invoked from the scheduling-clock interrupt.
2741 */
2742void rcu_check_callbacks(int user)
2743{
2744        trace_rcu_utilization(TPS("Start scheduler-tick"));
2745        increment_cpu_stall_ticks();
2746        if (user || rcu_is_cpu_rrupt_from_idle()) {
2747
2748                /*
2749                 * Get here if this CPU took its interrupt from user
2750                 * mode or from the idle loop, and if this is not a
2751                 * nested interrupt.  In this case, the CPU is in
2752                 * a quiescent state, so note it.
2753                 *
2754                 * No memory barrier is required here because both
2755                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2756                 * variables that other CPUs neither access nor modify,
2757                 * at least not while the corresponding CPU is online.
2758                 */
2759
2760                rcu_sched_qs();
2761                rcu_bh_qs();
2762
2763        } else if (!in_softirq()) {
2764
2765                /*
2766                 * Get here if this CPU did not take its interrupt from
2767                 * softirq, in other words, if it is not interrupting
2768                 * a rcu_bh read-side critical section.  This is an _bh
2769                 * critical section, so note it.
2770                 */
2771
2772                rcu_bh_qs();
2773        }
2774        rcu_preempt_check_callbacks();
2775        if (rcu_pending())
2776                invoke_rcu_core();
2777        if (user)
2778                rcu_note_voluntary_context_switch(current);
2779        trace_rcu_utilization(TPS("End scheduler-tick"));
2780}
2781
2782/*
2783 * Scan the leaf rcu_node structures, processing dyntick state for any that
2784 * have not yet encountered a quiescent state, using the function specified.
2785 * Also initiate boosting for any threads blocked on the root rcu_node.
2786 *
2787 * The caller must have suppressed start of new grace periods.
2788 */
2789static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2790{
2791        int cpu;
2792        unsigned long flags;
2793        unsigned long mask;
2794        struct rcu_node *rnp;
2795
2796        rcu_for_each_leaf_node(rsp, rnp) {
2797                cond_resched_rcu_qs();
2798                mask = 0;
2799                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2800                if (rnp->qsmask == 0) {
2801                        if (rcu_state_p == &rcu_sched_state ||
2802                            rsp != rcu_state_p ||
2803                            rcu_preempt_blocked_readers_cgp(rnp)) {
2804                                /*
2805                                 * No point in scanning bits because they
2806                                 * are all zero.  But we might need to
2807                                 * priority-boost blocked readers.
2808                                 */
2809                                rcu_initiate_boost(rnp, flags);
2810                                /* rcu_initiate_boost() releases rnp->lock */
2811                                continue;
2812                        }
2813                        if (rnp->parent &&
2814                            (rnp->parent->qsmask & rnp->grpmask)) {
2815                                /*
2816                                 * Race between grace-period
2817                                 * initialization and task exiting RCU
2818                                 * read-side critical section: Report.
2819                                 */
2820                                rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2821                                /* rcu_report_unblock_qs_rnp() rlses ->lock */
2822                                continue;
2823                        }
2824                }
2825                for_each_leaf_node_possible_cpu(rnp, cpu) {
2826                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2827                        if ((rnp->qsmask & bit) != 0) {
2828                                if (f(per_cpu_ptr(rsp->rda, cpu)))
2829                                        mask |= bit;
2830                        }
2831                }
2832                if (mask != 0) {
2833                        /* Idle/offline CPUs, report (releases rnp->lock. */
2834                        rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2835                } else {
2836                        /* Nothing to do here, so just drop the lock. */
2837                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2838                }
2839        }
2840}
2841
2842/*
2843 * Force quiescent states on reluctant CPUs, and also detect which
2844 * CPUs are in dyntick-idle mode.
2845 */
2846static void force_quiescent_state(struct rcu_state *rsp)
2847{
2848        unsigned long flags;
2849        bool ret;
2850        struct rcu_node *rnp;
2851        struct rcu_node *rnp_old = NULL;
2852
2853        /* Funnel through hierarchy to reduce memory contention. */
2854        rnp = __this_cpu_read(rsp->rda->mynode);
2855        for (; rnp != NULL; rnp = rnp->parent) {
2856                ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2857                      !raw_spin_trylock(&rnp->fqslock);
2858                if (rnp_old != NULL)
2859                        raw_spin_unlock(&rnp_old->fqslock);
2860                if (ret) {
2861                        rsp->n_force_qs_lh++;
2862                        return;
2863                }
2864                rnp_old = rnp;
2865        }
2866        /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2867
2868        /* Reached the root of the rcu_node tree, acquire lock. */
2869        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2870        raw_spin_unlock(&rnp_old->fqslock);
2871        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2872                rsp->n_force_qs_lh++;
2873                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2874                return;  /* Someone beat us to it. */
2875        }
2876        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2877        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2878        rcu_gp_kthread_wake(rsp);
2879}
2880
2881/*
2882 * This does the RCU core processing work for the specified rcu_state
2883 * and rcu_data structures.  This may be called only from the CPU to
2884 * whom the rdp belongs.
2885 */
2886static void
2887__rcu_process_callbacks(struct rcu_state *rsp)
2888{
2889        unsigned long flags;
2890        bool needwake;
2891        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2892
2893        WARN_ON_ONCE(!rdp->beenonline);
2894
2895        /* Update RCU state based on any recent quiescent states. */
2896        rcu_check_quiescent_state(rsp, rdp);
2897
2898        /* Does this CPU require a not-yet-started grace period? */
2899        local_irq_save(flags);
2900        if (cpu_needs_another_gp(rsp, rdp)) {
2901                raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2902                needwake = rcu_start_gp(rsp);
2903                raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2904                if (needwake)
2905                        rcu_gp_kthread_wake(rsp);
2906        } else {
2907                local_irq_restore(flags);
2908        }
2909
2910        /* If there are callbacks ready, invoke them. */
2911        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2912                invoke_rcu_callbacks(rsp, rdp);
2913
2914        /* Do any needed deferred wakeups of rcuo kthreads. */
2915        do_nocb_deferred_wakeup(rdp);
2916}
2917
2918/*
2919 * Do RCU core processing for the current CPU.
2920 */
2921static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2922{
2923        struct rcu_state *rsp;
2924
2925        if (cpu_is_offline(smp_processor_id()))
2926                return;
2927        trace_rcu_utilization(TPS("Start RCU core"));
2928        for_each_rcu_flavor(rsp)
2929                __rcu_process_callbacks(rsp);
2930        trace_rcu_utilization(TPS("End RCU core"));
2931}
2932
2933/*
2934 * Schedule RCU callback invocation.  If the specified type of RCU
2935 * does not support RCU priority boosting, just do a direct call,
2936 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2937 * are running on the current CPU with softirqs disabled, the
2938 * rcu_cpu_kthread_task cannot disappear out from under us.
2939 */
2940static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2941{
2942        if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2943                return;
2944        if (likely(!rsp->boost)) {
2945                rcu_do_batch(rsp, rdp);
2946                return;
2947        }
2948        invoke_rcu_callbacks_kthread();
2949}
2950
2951static void invoke_rcu_core(void)
2952{
2953        if (cpu_online(smp_processor_id()))
2954                raise_softirq(RCU_SOFTIRQ);
2955}
2956
2957/*
2958 * Handle any core-RCU processing required by a call_rcu() invocation.
2959 */
2960static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2961                            struct rcu_head *head, unsigned long flags)
2962{
2963        bool needwake;
2964
2965        /*
2966         * If called from an extended quiescent state, invoke the RCU
2967         * core in order to force a re-evaluation of RCU's idleness.
2968         */
2969        if (!rcu_is_watching())
2970                invoke_rcu_core();
2971
2972        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2973        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2974                return;
2975
2976        /*
2977         * Force the grace period if too many callbacks or too long waiting.
2978         * Enforce hysteresis, and don't invoke force_quiescent_state()
2979         * if some other CPU has recently done so.  Also, don't bother
2980         * invoking force_quiescent_state() if the newly enqueued callback
2981         * is the only one waiting for a grace period to complete.
2982         */
2983        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2984                     rdp->qlen_last_fqs_check + qhimark)) {
2985
2986                /* Are we ignoring a completed grace period? */
2987                note_gp_changes(rsp, rdp);
2988
2989                /* Start a new grace period if one not already started. */
2990                if (!rcu_gp_in_progress(rsp)) {
2991                        struct rcu_node *rnp_root = rcu_get_root(rsp);
2992
2993                        raw_spin_lock_rcu_node(rnp_root);
2994                        needwake = rcu_start_gp(rsp);
2995                        raw_spin_unlock_rcu_node(rnp_root);
2996                        if (needwake)
2997                                rcu_gp_kthread_wake(rsp);
2998                } else {
2999                        /* Give the grace period a kick. */
3000                        rdp->blimit = LONG_MAX;
3001                        if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3002                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3003                                force_quiescent_state(rsp);
3004                        rdp->n_force_qs_snap = rsp->n_force_qs;
3005                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3006                }
3007        }
3008}
3009
3010/*
3011 * RCU callback function to leak a callback.
3012 */
3013static void rcu_leak_callback(struct rcu_head *rhp)
3014{
3015}
3016
3017/*
3018 * Helper function for call_rcu() and friends.  The cpu argument will
3019 * normally be -1, indicating "currently running CPU".  It may specify
3020 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3021 * is expected to specify a CPU.
3022 */
3023static void
3024__call_rcu(struct rcu_head *head, rcu_callback_t func,
3025           struct rcu_state *rsp, int cpu, bool lazy)
3026{
3027        unsigned long flags;
3028        struct rcu_data *rdp;
3029
3030        /* Misaligned rcu_head! */
3031        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3032
3033        if (debug_rcu_head_queue(head)) {
3034                /*
3035                 * Probable double call_rcu(), so leak the callback.
3036                 * Use rcu:rcu_callback trace event to find the previous
3037                 * time callback was passed to __call_rcu().
3038                 */
3039                WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3040                          head, head->func);
3041                WRITE_ONCE(head->func, rcu_leak_callback);
3042                return;
3043        }
3044        head->func = func;
3045        head->next = NULL;
3046        local_irq_save(flags);
3047        rdp = this_cpu_ptr(rsp->rda);
3048
3049        /* Add the callback to our list. */
3050        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3051                int offline;
3052
3053                if (cpu != -1)
3054                        rdp = per_cpu_ptr(rsp->rda, cpu);
3055                if (likely(rdp->mynode)) {
3056                        /* Post-boot, so this should be for a no-CBs CPU. */
3057                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3058                        WARN_ON_ONCE(offline);
3059                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
3060                        local_irq_restore(flags);
3061                        return;
3062                }
3063                /*
3064                 * Very early boot, before rcu_init().  Initialize if needed
3065                 * and then drop through to queue the callback.
3066                 */
3067                BUG_ON(cpu != -1);
3068                WARN_ON_ONCE(!rcu_is_watching());
3069                if (rcu_segcblist_empty(&rdp->cblist))
3070                        rcu_segcblist_init(&rdp->cblist);
3071        }
3072        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3073        if (!lazy)
3074                rcu_idle_count_callbacks_posted();
3075
3076        if (__is_kfree_rcu_offset((unsigned long)func))
3077                trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3078                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3079                                         rcu_segcblist_n_cbs(&rdp->cblist));
3080        else
3081                trace_rcu_callback(rsp->name, head,
3082                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3083                                   rcu_segcblist_n_cbs(&rdp->cblist));
3084
3085        /* Go handle any RCU core processing required. */
3086        __call_rcu_core(rsp, rdp, head, flags);
3087        local_irq_restore(flags);
3088}
3089
3090/**
3091 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3092 * @head: structure to be used for queueing the RCU updates.
3093 * @func: actual callback function to be invoked after the grace period
3094 *
3095 * The callback function will be invoked some time after a full grace
3096 * period elapses, in other words after all currently executing RCU
3097 * read-side critical sections have completed. call_rcu_sched() assumes
3098 * that the read-side critical sections end on enabling of preemption
3099 * or on voluntary preemption.
3100 * RCU read-side critical sections are delimited by:
3101 *
3102 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3103 * - anything that disables preemption.
3104 *
3105 *  These may be nested.
3106 *
3107 * See the description of call_rcu() for more detailed information on
3108 * memory ordering guarantees.
3109 */
3110void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3111{
3112        __call_rcu(head, func, &rcu_sched_state, -1, 0);
3113}
3114EXPORT_SYMBOL_GPL(call_rcu_sched);
3115
3116/**
3117 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3118 * @head: structure to be used for queueing the RCU updates.
3119 * @func: actual callback function to be invoked after the grace period
3120 *
3121 * The callback function will be invoked some time after a full grace
3122 * period elapses, in other words after all currently executing RCU
3123 * read-side critical sections have completed. call_rcu_bh() assumes
3124 * that the read-side critical sections end on completion of a softirq
3125 * handler. This means that read-side critical sections in process
3126 * context must not be interrupted by softirqs. This interface is to be
3127 * used when most of the read-side critical sections are in softirq context.
3128 * RCU read-side critical sections are delimited by:
3129 *
3130 * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3131 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3132 *
3133 * These may be nested.
3134 *
3135 * See the description of call_rcu() for more detailed information on
3136 * memory ordering guarantees.
3137 */
3138void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3139{
3140        __call_rcu(head, func, &rcu_bh_state, -1, 0);
3141}
3142EXPORT_SYMBOL_GPL(call_rcu_bh);
3143
3144/*
3145 * Queue an RCU callback for lazy invocation after a grace period.
3146 * This will likely be later named something like "call_rcu_lazy()",
3147 * but this change will require some way of tagging the lazy RCU
3148 * callbacks in the list of pending callbacks. Until then, this
3149 * function may only be called from __kfree_rcu().
3150 */
3151void kfree_call_rcu(struct rcu_head *head,
3152                    rcu_callback_t func)
3153{
3154        __call_rcu(head, func, rcu_state_p, -1, 1);
3155}
3156EXPORT_SYMBOL_GPL(kfree_call_rcu);
3157
3158/*
3159 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3160 * any blocking grace-period wait automatically implies a grace period
3161 * if there is only one CPU online at any point time during execution
3162 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3163 * occasionally incorrectly indicate that there are multiple CPUs online
3164 * when there was in fact only one the whole time, as this just adds
3165 * some overhead: RCU still operates correctly.
3166 */
3167static inline int rcu_blocking_is_gp(void)
3168{
3169        int ret;
3170
3171        might_sleep();  /* Check for RCU read-side critical section. */
3172        preempt_disable();
3173        ret = num_online_cpus() <= 1;
3174        preempt_enable();
3175        return ret;
3176}
3177
3178/**
3179 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3180 *
3181 * Control will return to the caller some time after a full rcu-sched
3182 * grace period has elapsed, in other words after all currently executing
3183 * rcu-sched read-side critical sections have completed.   These read-side
3184 * critical sections are delimited by rcu_read_lock_sched() and
3185 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3186 * local_irq_disable(), and so on may be used in place of
3187 * rcu_read_lock_sched().
3188 *
3189 * This means that all preempt_disable code sequences, including NMI and
3190 * non-threaded hardware-interrupt handlers, in progress on entry will
3191 * have completed before this primitive returns.  However, this does not
3192 * guarantee that softirq handlers will have completed, since in some
3193 * kernels, these handlers can run in process context, and can block.
3194 *
3195 * Note that this guarantee implies further memory-ordering guarantees.
3196 * On systems with more than one CPU, when synchronize_sched() returns,
3197 * each CPU is guaranteed to have executed a full memory barrier since the
3198 * end of its last RCU-sched read-side critical section whose beginning
3199 * preceded the call to synchronize_sched().  In addition, each CPU having
3200 * an RCU read-side critical section that extends beyond the return from
3201 * synchronize_sched() is guaranteed to have executed a full memory barrier
3202 * after the beginning of synchronize_sched() and before the beginning of
3203 * that RCU read-side critical section.  Note that these guarantees include
3204 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3205 * that are executing in the kernel.
3206 *
3207 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3208 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3209 * to have executed a full memory barrier during the execution of
3210 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3211 * again only if the system has more than one CPU).
3212 */
3213void synchronize_sched(void)
3214{
3215        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216                         lock_is_held(&rcu_lock_map) ||
3217                         lock_is_held(&rcu_sched_lock_map),
3218                         "Illegal synchronize_sched() in RCU-sched read-side critical section");
3219        if (rcu_blocking_is_gp())
3220                return;
3221        if (rcu_gp_is_expedited())
3222                synchronize_sched_expedited();
3223        else
3224                wait_rcu_gp(call_rcu_sched);
3225}
3226EXPORT_SYMBOL_GPL(synchronize_sched);
3227
3228/**
3229 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3230 *
3231 * Control will return to the caller some time after a full rcu_bh grace
3232 * period has elapsed, in other words after all currently executing rcu_bh
3233 * read-side critical sections have completed.  RCU read-side critical
3234 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3235 * and may be nested.
3236 *
3237 * See the description of synchronize_sched() for more detailed information
3238 * on memory ordering guarantees.
3239 */
3240void synchronize_rcu_bh(void)
3241{
3242        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3243                         lock_is_held(&rcu_lock_map) ||
3244                         lock_is_held(&rcu_sched_lock_map),
3245                         "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3246        if (rcu_blocking_is_gp())
3247                return;
3248        if (rcu_gp_is_expedited())
3249                synchronize_rcu_bh_expedited();
3250        else
3251                wait_rcu_gp(call_rcu_bh);
3252}
3253EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3254
3255/**
3256 * get_state_synchronize_rcu - Snapshot current RCU state
3257 *
3258 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3259 * to determine whether or not a full grace period has elapsed in the
3260 * meantime.
3261 */
3262unsigned long get_state_synchronize_rcu(void)
3263{
3264        /*
3265         * Any prior manipulation of RCU-protected data must happen
3266         * before the load from ->gpnum.
3267         */
3268        smp_mb();  /* ^^^ */
3269
3270        /*
3271         * Make sure this load happens before the purportedly
3272         * time-consuming work between get_state_synchronize_rcu()
3273         * and cond_synchronize_rcu().
3274         */
3275        return smp_load_acquire(&rcu_state_p->gpnum);
3276}
3277EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3278
3279/**
3280 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3281 *
3282 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3283 *
3284 * If a full RCU grace period has elapsed since the earlier call to
3285 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3286 * synchronize_rcu() to wait for a full grace period.
3287 *
3288 * Yes, this function does not take counter wrap into account.  But
3289 * counter wrap is harmless.  If the counter wraps, we have waited for
3290 * more than 2 billion grace periods (and way more on a 64-bit system!),
3291 * so waiting for one additional grace period should be just fine.
3292 */
3293void cond_synchronize_rcu(unsigned long oldstate)
3294{
3295        unsigned long newstate;
3296
3297        /*
3298         * Ensure that this load happens before any RCU-destructive
3299         * actions the caller might carry out after we return.
3300         */
3301        newstate = smp_load_acquire(&rcu_state_p->completed);
3302        if (ULONG_CMP_GE(oldstate, newstate))
3303                synchronize_rcu();
3304}
3305EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3306
3307/**
3308 * get_state_synchronize_sched - Snapshot current RCU-sched state
3309 *
3310 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3311 * to determine whether or not a full grace period has elapsed in the
3312 * meantime.
3313 */
3314unsigned long get_state_synchronize_sched(void)
3315{
3316        /*
3317         * Any prior manipulation of RCU-protected data must happen
3318         * before the load from ->gpnum.
3319         */
3320        smp_mb();  /* ^^^ */
3321
3322        /*
3323         * Make sure this load happens before the purportedly
3324         * time-consuming work between get_state_synchronize_sched()
3325         * and cond_synchronize_sched().
3326         */
3327        return smp_load_acquire(&rcu_sched_state.gpnum);
3328}
3329EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3330
3331/**
3332 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3333 *
3334 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3335 *
3336 * If a full RCU-sched grace period has elapsed since the earlier call to
3337 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3338 * synchronize_sched() to wait for a full grace period.
3339 *
3340 * Yes, this function does not take counter wrap into account.  But
3341 * counter wrap is harmless.  If the counter wraps, we have waited for
3342 * more than 2 billion grace periods (and way more on a 64-bit system!),
3343 * so waiting for one additional grace period should be just fine.
3344 */
3345void cond_synchronize_sched(unsigned long oldstate)
3346{
3347        unsigned long newstate;
3348
3349        /*
3350         * Ensure that this load happens before any RCU-destructive
3351         * actions the caller might carry out after we return.
3352         */
3353        newstate = smp_load_acquire(&rcu_sched_state.completed);
3354        if (ULONG_CMP_GE(oldstate, newstate))
3355                synchronize_sched();
3356}
3357EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3358
3359/*
3360 * Check to see if there is any immediate RCU-related work to be done
3361 * by the current CPU, for the specified type of RCU, returning 1 if so.
3362 * The checks are in order of increasing expense: checks that can be
3363 * carried out against CPU-local state are performed first.  However,
3364 * we must check for CPU stalls first, else we might not get a chance.
3365 */
3366static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3367{
3368        struct rcu_node *rnp = rdp->mynode;
3369
3370        rdp->n_rcu_pending++;
3371
3372        /* Check for CPU stalls, if enabled. */
3373        check_cpu_stall(rsp, rdp);
3374
3375        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3376        if (rcu_nohz_full_cpu(rsp))
3377                return 0;
3378
3379        /* Is the RCU core waiting for a quiescent state from this CPU? */
3380        if (rcu_scheduler_fully_active &&
3381            rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3382            rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3383                rdp->n_rp_core_needs_qs++;
3384        } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3385                rdp->n_rp_report_qs++;
3386                return 1;
3387        }
3388
3389        /* Does this CPU have callbacks ready to invoke? */
3390        if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3391                rdp->n_rp_cb_ready++;
3392                return 1;
3393        }
3394
3395        /* Has RCU gone idle with this CPU needing another grace period? */
3396        if (cpu_needs_another_gp(rsp, rdp)) {
3397                rdp->n_rp_cpu_needs_gp++;
3398                return 1;
3399        }
3400
3401        /* Has another RCU grace period completed?  */
3402        if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3403                rdp->n_rp_gp_completed++;
3404                return 1;
3405        }
3406
3407        /* Has a new RCU grace period started? */
3408        if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3409            unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3410                rdp->n_rp_gp_started++;
3411                return 1;
3412        }
3413
3414        /* Does this CPU need a deferred NOCB wakeup? */
3415        if (rcu_nocb_need_deferred_wakeup(rdp)) {
3416                rdp->n_rp_nocb_defer_wakeup++;
3417                return 1;
3418        }
3419
3420        /* nothing to do */
3421        rdp->n_rp_need_nothing++;
3422        return 0;
3423}
3424
3425/*
3426 * Check to see if there is any immediate RCU-related work to be done
3427 * by the current CPU, returning 1 if so.  This function is part of the
3428 * RCU implementation; it is -not- an exported member of the RCU API.
3429 */
3430static int rcu_pending(void)
3431{
3432        struct rcu_state *rsp;
3433
3434        for_each_rcu_flavor(rsp)
3435                if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3436                        return 1;
3437        return 0;
3438}
3439
3440/*
3441 * Return true if the specified CPU has any callback.  If all_lazy is
3442 * non-NULL, store an indication of whether all callbacks are lazy.
3443 * (If there are no callbacks, all of them are deemed to be lazy.)
3444 */
3445static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3446{
3447        bool al = true;
3448        bool hc = false;
3449        struct rcu_data *rdp;
3450        struct rcu_state *rsp;
3451
3452        for_each_rcu_flavor(rsp) {
3453                rdp = this_cpu_ptr(rsp->rda);
3454                if (rcu_segcblist_empty(&rdp->cblist))
3455                        continue;
3456                hc = true;
3457                if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3458                        al = false;
3459                        break;
3460                }
3461        }
3462        if (all_lazy)
3463                *all_lazy = al;
3464        return hc;
3465}
3466
3467/*
3468 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3469 * the compiler is expected to optimize this away.
3470 */
3471static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3472                               int cpu, unsigned long done)
3473{
3474        trace_rcu_barrier(rsp->name, s, cpu,
3475                          atomic_read(&rsp->barrier_cpu_count), done);
3476}
3477
3478/*
3479 * RCU callback function for _rcu_barrier().  If we are last, wake
3480 * up the task executing _rcu_barrier().
3481 */
3482static void rcu_barrier_callback(struct rcu_head *rhp)
3483{
3484        struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3485        struct rcu_state *rsp = rdp->rsp;
3486
3487        if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3488                _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3489                                   rsp->barrier_sequence);
3490                complete(&rsp->barrier_completion);
3491        } else {
3492                _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3493        }
3494}
3495
3496/*
3497 * Called with preemption disabled, and from cross-cpu IRQ context.
3498 */
3499static void rcu_barrier_func(void *type)
3500{
3501        struct rcu_state *rsp = type;
3502        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3503
3504        _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3505        rdp->barrier_head.func = rcu_barrier_callback;
3506        debug_rcu_head_queue(&rdp->barrier_head);
3507        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3508                atomic_inc(&rsp->barrier_cpu_count);
3509        } else {
3510                debug_rcu_head_unqueue(&rdp->barrier_head);
3511                _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3512                                   rsp->barrier_sequence);
3513        }
3514}
3515
3516/*
3517 * Orchestrate the specified type of RCU barrier, waiting for all
3518 * RCU callbacks of the specified type to complete.
3519 */
3520static void _rcu_barrier(struct rcu_state *rsp)
3521{
3522        int cpu;
3523        struct rcu_data *rdp;
3524        unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3525
3526        _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3527
3528        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3529        mutex_lock(&rsp->barrier_mutex);
3530
3531        /* Did someone else do our work for us? */
3532        if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3533                _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3534                                   rsp->barrier_sequence);
3535                smp_mb(); /* caller's subsequent code after above check. */
3536                mutex_unlock(&rsp->barrier_mutex);
3537                return;
3538        }
3539
3540        /* Mark the start of the barrier operation. */
3541        rcu_seq_start(&rsp->barrier_sequence);
3542        _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3543
3544        /*
3545         * Initialize the count to one rather than to zero in order to
3546         * avoid a too-soon return to zero in case of a short grace period
3547         * (or preemption of this task).  Exclude CPU-hotplug operations
3548         * to ensure that no offline CPU has callbacks queued.
3549         */
3550        init_completion(&rsp->barrier_completion);
3551        atomic_set(&rsp->barrier_cpu_count, 1);
3552        get_online_cpus();
3553
3554        /*
3555         * Force each CPU with callbacks to register a new callback.
3556         * When that callback is invoked, we will know that all of the
3557         * corresponding CPU's preceding callbacks have been invoked.
3558         */
3559        for_each_possible_cpu(cpu) {
3560                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3561                        continue;
3562                rdp = per_cpu_ptr(rsp->rda, cpu);
3563                if (rcu_is_nocb_cpu(cpu)) {
3564                        if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3565                                _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3566                                                   rsp->barrier_sequence);
3567                        } else {
3568                                _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3569                                                   rsp->barrier_sequence);
3570                                smp_mb__before_atomic();
3571                                atomic_inc(&rsp->barrier_cpu_count);
3572                                __call_rcu(&rdp->barrier_head,
3573                                           rcu_barrier_callback, rsp, cpu, 0);
3574                        }
3575                } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3576                        _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3577                                           rsp->barrier_sequence);
3578                        smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3579                } else {
3580                        _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3581                                           rsp->barrier_sequence);
3582                }
3583        }
3584        put_online_cpus();
3585
3586        /*
3587         * Now that we have an rcu_barrier_callback() callback on each
3588         * CPU, and thus each counted, remove the initial count.
3589         */
3590        if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3591                complete(&rsp->barrier_completion);
3592
3593        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3594        wait_for_completion(&rsp->barrier_completion);
3595
3596        /* Mark the end of the barrier operation. */
3597        _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3598        rcu_seq_end(&rsp->barrier_sequence);
3599
3600        /* Other rcu_barrier() invocations can now safely proceed. */
3601        mutex_unlock(&rsp->barrier_mutex);
3602}
3603
3604/**
3605 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3606 */
3607void rcu_barrier_bh(void)
3608{
3609        _rcu_barrier(&rcu_bh_state);
3610}
3611EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3612
3613/**
3614 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3615 */
3616void rcu_barrier_sched(void)
3617{
3618        _rcu_barrier(&rcu_sched_state);
3619}
3620EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3621
3622/*
3623 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3624 * first CPU in a given leaf rcu_node structure coming online.  The caller
3625 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3626 * disabled.
3627 */
3628static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3629{
3630        long mask;
3631        struct rcu_node *rnp = rnp_leaf;
3632
3633        lockdep_assert_held(&rnp->lock);
3634        for (;;) {
3635                mask = rnp->grpmask;
3636                rnp = rnp->parent;
3637                if (rnp == NULL)
3638                        return;
3639                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3640                rnp->qsmaskinit |= mask;
3641                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3642        }
3643}
3644
3645/*
3646 * Do boot-time initialization of a CPU's per-CPU RCU data.
3647 */
3648static void __init
3649rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3650{
3651        unsigned long flags;
3652        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3653        struct rcu_node *rnp = rcu_get_root(rsp);
3654
3655        /* Set up local state, ensuring consistent view of global state. */
3656        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3657        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3658        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3659        WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3660        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3661        rdp->cpu = cpu;
3662        rdp->rsp = rsp;
3663        rcu_boot_init_nocb_percpu_data(rdp);
3664        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3665}
3666
3667/*
3668 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3669 * offline event can be happening at a given time.  Note also that we
3670 * can accept some slop in the rsp->completed access due to the fact
3671 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3672 */
3673static void
3674rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3675{
3676        unsigned long flags;
3677        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3678        struct rcu_node *rnp = rcu_get_root(rsp);
3679
3680        /* Set up local state, ensuring consistent view of global state. */
3681        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3682        rdp->qlen_last_fqs_check = 0;
3683        rdp->n_force_qs_snap = rsp->n_force_qs;
3684        rdp->blimit = blimit;
3685        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3686            !init_nocb_callback_list(rdp))
3687                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3688        rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3689        rcu_dynticks_eqs_online();
3690        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
3691
3692        /*
3693         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3694         * propagation up the rcu_node tree will happen at the beginning
3695         * of the next grace period.
3696         */
3697        rnp = rdp->mynode;
3698        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
3699        rdp->beenonline = true;  /* We have now been online. */
3700        rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3701        rdp->completed = rnp->completed;
3702        rdp->cpu_no_qs.b.norm = true;
3703        rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3704        rdp->core_needs_qs = false;
3705        trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3706        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3707}
3708
3709/*
3710 * Invoked early in the CPU-online process, when pretty much all
3711 * services are available.  The incoming CPU is not present.
3712 */
3713int rcutree_prepare_cpu(unsigned int cpu)
3714{
3715        struct rcu_state *rsp;
3716
3717        for_each_rcu_flavor(rsp)
3718                rcu_init_percpu_data(cpu, rsp);
3719
3720        rcu_prepare_kthreads(cpu);
3721        rcu_spawn_all_nocb_kthreads(cpu);
3722
3723        return 0;
3724}
3725
3726/*
3727 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3728 */
3729static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3730{
3731        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3732
3733        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3734}
3735
3736/*
3737 * Near the end of the CPU-online process.  Pretty much all services
3738 * enabled, and the CPU is now very much alive.
3739 */
3740int rcutree_online_cpu(unsigned int cpu)
3741{
3742        sync_sched_exp_online_cleanup(cpu);
3743        rcutree_affinity_setting(cpu, -1);
3744        if (IS_ENABLED(CONFIG_TREE_SRCU))
3745                srcu_online_cpu(cpu);
3746        return 0;
3747}
3748
3749/*
3750 * Near the beginning of the process.  The CPU is still very much alive
3751 * with pretty much all services enabled.
3752 */
3753int rcutree_offline_cpu(unsigned int cpu)
3754{
3755        rcutree_affinity_setting(cpu, cpu);
3756        if (IS_ENABLED(CONFIG_TREE_SRCU))
3757                srcu_offline_cpu(cpu);
3758        return 0;
3759}
3760
3761/*
3762 * Near the end of the offline process.  We do only tracing here.
3763 */
3764int rcutree_dying_cpu(unsigned int cpu)
3765{
3766        struct rcu_state *rsp;
3767
3768        for_each_rcu_flavor(rsp)
3769                rcu_cleanup_dying_cpu(rsp);
3770        return 0;
3771}
3772
3773/*
3774 * The outgoing CPU is gone and we are running elsewhere.
3775 */
3776int rcutree_dead_cpu(unsigned int cpu)
3777{
3778        struct rcu_state *rsp;
3779
3780        for_each_rcu_flavor(rsp) {
3781                rcu_cleanup_dead_cpu(cpu, rsp);
3782                do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3783        }
3784        return 0;
3785}
3786
3787/*
3788 * Mark the specified CPU as being online so that subsequent grace periods
3789 * (both expedited and normal) will wait on it.  Note that this means that
3790 * incoming CPUs are not allowed to use RCU read-side critical sections
3791 * until this function is called.  Failing to observe this restriction
3792 * will result in lockdep splats.
3793 *
3794 * Note that this function is special in that it is invoked directly
3795 * from the incoming CPU rather than from the cpuhp_step mechanism.
3796 * This is because this function must be invoked at a precise location.
3797 */
3798void rcu_cpu_starting(unsigned int cpu)
3799{
3800        unsigned long flags;
3801        unsigned long mask;
3802        int nbits;
3803        unsigned long oldmask;
3804        struct rcu_data *rdp;
3805        struct rcu_node *rnp;
3806        struct rcu_state *rsp;
3807
3808        for_each_rcu_flavor(rsp) {
3809                rdp = per_cpu_ptr(rsp->rda, cpu);
3810                rnp = rdp->mynode;
3811                mask = rdp->grpmask;
3812                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3813                rnp->qsmaskinitnext |= mask;
3814                oldmask = rnp->expmaskinitnext;
3815                rnp->expmaskinitnext |= mask;
3816                oldmask ^= rnp->expmaskinitnext;
3817                nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3818                /* Allow lockless access for expedited grace periods. */
3819                smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3820                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3821        }
3822        smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3823}
3824
3825#ifdef CONFIG_HOTPLUG_CPU
3826/*
3827 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3828 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3829 * bit masks.
3830 */
3831static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3832{
3833        unsigned long flags;
3834        unsigned long mask;
3835        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3836        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3837
3838        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3839        mask = rdp->grpmask;
3840        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3841        rnp->qsmaskinitnext &= ~mask;
3842        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3843}
3844
3845/*
3846 * The outgoing function has no further need of RCU, so remove it from
3847 * the list of CPUs that RCU must track.
3848 *
3849 * Note that this function is special in that it is invoked directly
3850 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3851 * This is because this function must be invoked at a precise location.
3852 */
3853void rcu_report_dead(unsigned int cpu)
3854{
3855        struct rcu_state *rsp;
3856
3857        /* QS for any half-done expedited RCU-sched GP. */
3858        preempt_disable();
3859        rcu_report_exp_rdp(&rcu_sched_state,
3860                           this_cpu_ptr(rcu_sched_state.rda), true);
3861        preempt_enable();
3862        for_each_rcu_flavor(rsp)
3863                rcu_cleanup_dying_idle_cpu(cpu, rsp);
3864}
3865
3866/* Migrate the dead CPU's callbacks to the current CPU. */
3867static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3868{
3869        unsigned long flags;
3870        struct rcu_data *my_rdp;
3871        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3872        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3873
3874        if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3875                return;  /* No callbacks to migrate. */
3876
3877        local_irq_save(flags);
3878        my_rdp = this_cpu_ptr(rsp->rda);
3879        if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3880                local_irq_restore(flags);
3881                return;
3882        }
3883        raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3884        rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3885        rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3886        rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3887        WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3888                     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3889        raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3890        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3891                  !rcu_segcblist_empty(&rdp->cblist),
3892                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3893                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3894                  rcu_segcblist_first_cb(&rdp->cblist));
3895}
3896
3897/*
3898 * The outgoing CPU has just passed through the dying-idle state,
3899 * and we are being invoked from the CPU that was IPIed to continue the
3900 * offline operation.  We need to migrate the outgoing CPU's callbacks.
3901 */
3902void rcutree_migrate_callbacks(int cpu)
3903{
3904        struct rcu_state *rsp;
3905
3906        for_each_rcu_flavor(rsp)
3907                rcu_migrate_callbacks(cpu, rsp);
3908}
3909#endif
3910
3911/*
3912 * On non-huge systems, use expedited RCU grace periods to make suspend
3913 * and hibernation run faster.
3914 */
3915static int rcu_pm_notify(struct notifier_block *self,
3916                         unsigned long action, void *hcpu)
3917{
3918        switch (action) {
3919        case PM_HIBERNATION_PREPARE:
3920        case PM_SUSPEND_PREPARE:
3921                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3922                        rcu_expedite_gp();
3923                break;
3924        case PM_POST_HIBERNATION:
3925        case PM_POST_SUSPEND:
3926                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3927                        rcu_unexpedite_gp();
3928                break;
3929        default:
3930                break;
3931        }
3932        return NOTIFY_OK;
3933}
3934
3935/*
3936 * Spawn the kthreads that handle each RCU flavor's grace periods.
3937 */
3938static int __init rcu_spawn_gp_kthread(void)
3939{
3940        unsigned long flags;
3941        int kthread_prio_in = kthread_prio;
3942        struct rcu_node *rnp;
3943        struct rcu_state *rsp;
3944        struct sched_param sp;
3945        struct task_struct *t;
3946
3947        /* Force priority into range. */
3948        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3949                kthread_prio = 1;
3950        else if (kthread_prio < 0)
3951                kthread_prio = 0;
3952        else if (kthread_prio > 99)
3953                kthread_prio = 99;
3954        if (kthread_prio != kthread_prio_in)
3955                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3956                         kthread_prio, kthread_prio_in);
3957
3958        rcu_scheduler_fully_active = 1;
3959        for_each_rcu_flavor(rsp) {
3960                t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3961                BUG_ON(IS_ERR(t));
3962                rnp = rcu_get_root(rsp);
3963                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3964                rsp->gp_kthread = t;
3965                if (kthread_prio) {
3966                        sp.sched_priority = kthread_prio;
3967                        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3968                }
3969                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3970                wake_up_process(t);
3971        }
3972        rcu_spawn_nocb_kthreads();
3973        rcu_spawn_boost_kthreads();
3974        return 0;
3975}
3976early_initcall(rcu_spawn_gp_kthread);
3977
3978/*
3979 * This function is invoked towards the end of the scheduler's
3980 * initialization process.  Before this is called, the idle task might
3981 * contain synchronous grace-period primitives (during which time, this idle
3982 * task is booting the system, and such primitives are no-ops).  After this
3983 * function is called, any synchronous grace-period primitives are run as
3984 * expedited, with the requesting task driving the grace period forward.
3985 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3986 * runtime RCU functionality.
3987 */
3988void rcu_scheduler_starting(void)
3989{
3990        WARN_ON(num_online_cpus() != 1);
3991        WARN_ON(nr_context_switches() > 0);
3992        rcu_test_sync_prims();
3993        rcu_scheduler_active = RCU_SCHEDULER_INIT;
3994        rcu_test_sync_prims();
3995}
3996
3997/*
3998 * Helper function for rcu_init() that initializes one rcu_state structure.
3999 */
4000static void __init rcu_init_one(struct rcu_state *rsp)
4001{
4002        static const char * const buf[] = RCU_NODE_NAME_INIT;
4003        static const char * const fqs[] = RCU_FQS_NAME_INIT;
4004        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4005        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4006
4007        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
4008        int cpustride = 1;
4009        int i;
4010        int j;
4011        struct rcu_node *rnp;
4012
4013        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4014
4015        /* Silence gcc 4.8 false positive about array index out of range. */
4016        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4017                panic("rcu_init_one: rcu_num_lvls out of range");
4018
4019        /* Initialize the level-tracking arrays. */
4020
4021        for (i = 1; i < rcu_num_lvls; i++)
4022                rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4023        rcu_init_levelspread(levelspread, num_rcu_lvl);
4024
4025        /* Initialize the elements themselves, starting from the leaves. */
4026
4027        for (i = rcu_num_lvls - 1; i >= 0; i--) {
4028                cpustride *= levelspread[i];
4029                rnp = rsp->level[i];
4030                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4031                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4032                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4033                                                   &rcu_node_class[i], buf[i]);
4034                        raw_spin_lock_init(&rnp->fqslock);
4035                        lockdep_set_class_and_name(&rnp->fqslock,
4036                                                   &rcu_fqs_class[i], fqs[i]);
4037                        rnp->gpnum = rsp->gpnum;
4038                        rnp->completed = rsp->completed;
4039                        rnp->qsmask = 0;
4040                        rnp->qsmaskinit = 0;
4041                        rnp->grplo = j * cpustride;
4042                        rnp->grphi = (j + 1) * cpustride - 1;
4043                        if (rnp->grphi >= nr_cpu_ids)
4044                                rnp->grphi = nr_cpu_ids - 1;
4045                        if (i == 0) {
4046                                rnp->grpnum = 0;
4047                                rnp->grpmask = 0;
4048                                rnp->parent = NULL;
4049                        } else {
4050                                rnp->grpnum = j % levelspread[i - 1];
4051                                rnp->grpmask = 1UL << rnp->grpnum;
4052                                rnp->parent = rsp->level[i - 1] +
4053                                              j / levelspread[i - 1];
4054                        }
4055                        rnp->level = i;
4056                        INIT_LIST_HEAD(&rnp->blkd_tasks);
4057                        rcu_init_one_nocb(rnp);
4058                        init_waitqueue_head(&rnp->exp_wq[0]);
4059                        init_waitqueue_head(&rnp->exp_wq[1]);
4060                        init_waitqueue_head(&rnp->exp_wq[2]);
4061                        init_waitqueue_head(&rnp->exp_wq[3]);
4062                        spin_lock_init(&rnp->exp_lock);
4063                }
4064        }
4065
4066        init_swait_queue_head(&rsp->gp_wq);
4067        init_swait_queue_head(&rsp->expedited_wq);
4068        rnp = rsp->level[rcu_num_lvls - 1];
4069        for_each_possible_cpu(i) {
4070                while (i > rnp->grphi)
4071                        rnp++;
4072                per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4073                rcu_boot_init_percpu_data(i, rsp);
4074        }
4075        list_add(&rsp->flavors, &rcu_struct_flavors);
4076}
4077
4078/*
4079 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4080 * replace the definitions in tree.h because those are needed to size
4081 * the ->node array in the rcu_state structure.
4082 */
4083static void __init rcu_init_geometry(void)
4084{
4085        ulong d;
4086        int i;
4087        int rcu_capacity[RCU_NUM_LVLS];
4088
4089        /*
4090         * Initialize any unspecified boot parameters.
4091         * The default values of jiffies_till_first_fqs and
4092         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4093         * value, which is a function of HZ, then adding one for each
4094         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4095         */
4096        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4097        if (jiffies_till_first_fqs == ULONG_MAX)
4098                jiffies_till_first_fqs = d;
4099        if (jiffies_till_next_fqs == ULONG_MAX)
4100                jiffies_till_next_fqs = d;
4101
4102        /* If the compile-time values are accurate, just leave. */
4103        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4104            nr_cpu_ids == NR_CPUS)
4105                return;
4106        pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4107                rcu_fanout_leaf, nr_cpu_ids);
4108
4109        /*
4110         * The boot-time rcu_fanout_leaf parameter must be at least two
4111         * and cannot exceed the number of bits in the rcu_node masks.
4112         * Complain and fall back to the compile-time values if this
4113         * limit is exceeded.
4114         */
4115        if (rcu_fanout_leaf < 2 ||
4116            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4117                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4118                WARN_ON(1);
4119                return;
4120        }
4121
4122        /*
4123         * Compute number of nodes that can be handled an rcu_node tree
4124         * with the given number of levels.
4125         */
4126        rcu_capacity[0] = rcu_fanout_leaf;
4127        for (i = 1; i < RCU_NUM_LVLS; i++)
4128                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4129
4130        /*
4131         * The tree must be able to accommodate the configured number of CPUs.
4132         * If this limit is exceeded, fall back to the compile-time values.
4133         */
4134        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4135                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4136                WARN_ON(1);
4137                return;
4138        }
4139
4140        /* Calculate the number of levels in the tree. */
4141        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4142        }
4143        rcu_num_lvls = i + 1;
4144
4145        /* Calculate the number of rcu_nodes at each level of the tree. */
4146        for (i = 0; i < rcu_num_lvls; i++) {
4147                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4148                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4149        }
4150
4151        /* Calculate the total number of rcu_node structures. */
4152        rcu_num_nodes = 0;
4153        for (i = 0; i < rcu_num_lvls; i++)
4154                rcu_num_nodes += num_rcu_lvl[i];
4155}
4156
4157/*
4158 * Dump out the structure of the rcu_node combining tree associated
4159 * with the rcu_state structure referenced by rsp.
4160 */
4161static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4162{
4163        int level = 0;
4164        struct rcu_node *rnp;
4165
4166        pr_info("rcu_node tree layout dump\n");
4167        pr_info(" ");
4168        rcu_for_each_node_breadth_first(rsp, rnp) {
4169                if (rnp->level != level) {
4170                        pr_cont("\n");
4171                        pr_info(" ");
4172                        level = rnp->level;
4173                }
4174                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4175        }
4176        pr_cont("\n");
4177}
4178
4179void __init rcu_init(void)
4180{
4181        int cpu;
4182
4183        rcu_early_boot_tests();
4184
4185        rcu_bootup_announce();
4186        rcu_init_geometry();
4187        rcu_init_one(&rcu_bh_state);
4188        rcu_init_one(&rcu_sched_state);
4189        if (dump_tree)
4190                rcu_dump_rcu_node_tree(&rcu_sched_state);
4191        __rcu_init_preempt();
4192        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4193
4194        /*
4195         * We don't need protection against CPU-hotplug here because
4196         * this is called early in boot, before either interrupts
4197         * or the scheduler are operational.
4198         */
4199        pm_notifier(rcu_pm_notify, 0);
4200        for_each_online_cpu(cpu) {
4201                rcutree_prepare_cpu(cpu);
4202                rcu_cpu_starting(cpu);
4203                if (IS_ENABLED(CONFIG_TREE_SRCU))
4204                        srcu_online_cpu(cpu);
4205        }
4206}
4207
4208#include "tree_exp.h"
4209#include "tree_plugin.h"
4210