linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/trace_events.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/sched/clock.h>
  10#include <linux/trace_seq.h>
  11#include <linux/spinlock.h>
  12#include <linux/irq_work.h>
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>      /* for self test */
  16#include <linux/kmemcheck.h>
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26
  27#include <asm/local.h>
  28
  29static void update_pages_handler(struct work_struct *work);
  30
  31/*
  32 * The ring buffer header is special. We must manually up keep it.
  33 */
  34int ring_buffer_print_entry_header(struct trace_seq *s)
  35{
  36        trace_seq_puts(s, "# compressed entry header\n");
  37        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  38        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  39        trace_seq_puts(s, "\tarray       :   32 bits\n");
  40        trace_seq_putc(s, '\n');
  41        trace_seq_printf(s, "\tpadding     : type == %d\n",
  42                         RINGBUF_TYPE_PADDING);
  43        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  44                         RINGBUF_TYPE_TIME_EXTEND);
  45        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  46                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  47
  48        return !trace_seq_has_overflowed(s);
  49}
  50
  51/*
  52 * The ring buffer is made up of a list of pages. A separate list of pages is
  53 * allocated for each CPU. A writer may only write to a buffer that is
  54 * associated with the CPU it is currently executing on.  A reader may read
  55 * from any per cpu buffer.
  56 *
  57 * The reader is special. For each per cpu buffer, the reader has its own
  58 * reader page. When a reader has read the entire reader page, this reader
  59 * page is swapped with another page in the ring buffer.
  60 *
  61 * Now, as long as the writer is off the reader page, the reader can do what
  62 * ever it wants with that page. The writer will never write to that page
  63 * again (as long as it is out of the ring buffer).
  64 *
  65 * Here's some silly ASCII art.
  66 *
  67 *   +------+
  68 *   |reader|          RING BUFFER
  69 *   |page  |
  70 *   +------+        +---+   +---+   +---+
  71 *                   |   |-->|   |-->|   |
  72 *                   +---+   +---+   +---+
  73 *                     ^               |
  74 *                     |               |
  75 *                     +---------------+
  76 *
  77 *
  78 *   +------+
  79 *   |reader|          RING BUFFER
  80 *   |page  |------------------v
  81 *   +------+        +---+   +---+   +---+
  82 *                   |   |-->|   |-->|   |
  83 *                   +---+   +---+   +---+
  84 *                     ^               |
  85 *                     |               |
  86 *                     +---------------+
  87 *
  88 *
  89 *   +------+
  90 *   |reader|          RING BUFFER
  91 *   |page  |------------------v
  92 *   +------+        +---+   +---+   +---+
  93 *      ^            |   |-->|   |-->|   |
  94 *      |            +---+   +---+   +---+
  95 *      |                              |
  96 *      |                              |
  97 *      +------------------------------+
  98 *
  99 *
 100 *   +------+
 101 *   |buffer|          RING BUFFER
 102 *   |page  |------------------v
 103 *   +------+        +---+   +---+   +---+
 104 *      ^            |   |   |   |-->|   |
 105 *      |   New      +---+   +---+   +---+
 106 *      |  Reader------^               |
 107 *      |   page                       |
 108 *      +------------------------------+
 109 *
 110 *
 111 * After we make this swap, the reader can hand this page off to the splice
 112 * code and be done with it. It can even allocate a new page if it needs to
 113 * and swap that into the ring buffer.
 114 *
 115 * We will be using cmpxchg soon to make all this lockless.
 116 *
 117 */
 118
 119/* Used for individual buffers (after the counter) */
 120#define RB_BUFFER_OFF           (1 << 20)
 121
 122#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 123
 124#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 125#define RB_ALIGNMENT            4U
 126#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 127#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 128
 129#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 130# define RB_FORCE_8BYTE_ALIGNMENT       0
 131# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 132#else
 133# define RB_FORCE_8BYTE_ALIGNMENT       1
 134# define RB_ARCH_ALIGNMENT              8U
 135#endif
 136
 137#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 138
 139/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 140#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 141
 142enum {
 143        RB_LEN_TIME_EXTEND = 8,
 144        RB_LEN_TIME_STAMP = 16,
 145};
 146
 147#define skip_time_extend(event) \
 148        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 149
 150static inline int rb_null_event(struct ring_buffer_event *event)
 151{
 152        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 153}
 154
 155static void rb_event_set_padding(struct ring_buffer_event *event)
 156{
 157        /* padding has a NULL time_delta */
 158        event->type_len = RINGBUF_TYPE_PADDING;
 159        event->time_delta = 0;
 160}
 161
 162static unsigned
 163rb_event_data_length(struct ring_buffer_event *event)
 164{
 165        unsigned length;
 166
 167        if (event->type_len)
 168                length = event->type_len * RB_ALIGNMENT;
 169        else
 170                length = event->array[0];
 171        return length + RB_EVNT_HDR_SIZE;
 172}
 173
 174/*
 175 * Return the length of the given event. Will return
 176 * the length of the time extend if the event is a
 177 * time extend.
 178 */
 179static inline unsigned
 180rb_event_length(struct ring_buffer_event *event)
 181{
 182        switch (event->type_len) {
 183        case RINGBUF_TYPE_PADDING:
 184                if (rb_null_event(event))
 185                        /* undefined */
 186                        return -1;
 187                return  event->array[0] + RB_EVNT_HDR_SIZE;
 188
 189        case RINGBUF_TYPE_TIME_EXTEND:
 190                return RB_LEN_TIME_EXTEND;
 191
 192        case RINGBUF_TYPE_TIME_STAMP:
 193                return RB_LEN_TIME_STAMP;
 194
 195        case RINGBUF_TYPE_DATA:
 196                return rb_event_data_length(event);
 197        default:
 198                BUG();
 199        }
 200        /* not hit */
 201        return 0;
 202}
 203
 204/*
 205 * Return total length of time extend and data,
 206 *   or just the event length for all other events.
 207 */
 208static inline unsigned
 209rb_event_ts_length(struct ring_buffer_event *event)
 210{
 211        unsigned len = 0;
 212
 213        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 214                /* time extends include the data event after it */
 215                len = RB_LEN_TIME_EXTEND;
 216                event = skip_time_extend(event);
 217        }
 218        return len + rb_event_length(event);
 219}
 220
 221/**
 222 * ring_buffer_event_length - return the length of the event
 223 * @event: the event to get the length of
 224 *
 225 * Returns the size of the data load of a data event.
 226 * If the event is something other than a data event, it
 227 * returns the size of the event itself. With the exception
 228 * of a TIME EXTEND, where it still returns the size of the
 229 * data load of the data event after it.
 230 */
 231unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 232{
 233        unsigned length;
 234
 235        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 236                event = skip_time_extend(event);
 237
 238        length = rb_event_length(event);
 239        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 240                return length;
 241        length -= RB_EVNT_HDR_SIZE;
 242        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 243                length -= sizeof(event->array[0]);
 244        return length;
 245}
 246EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 247
 248/* inline for ring buffer fast paths */
 249static __always_inline void *
 250rb_event_data(struct ring_buffer_event *event)
 251{
 252        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 253                event = skip_time_extend(event);
 254        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 255        /* If length is in len field, then array[0] has the data */
 256        if (event->type_len)
 257                return (void *)&event->array[0];
 258        /* Otherwise length is in array[0] and array[1] has the data */
 259        return (void *)&event->array[1];
 260}
 261
 262/**
 263 * ring_buffer_event_data - return the data of the event
 264 * @event: the event to get the data from
 265 */
 266void *ring_buffer_event_data(struct ring_buffer_event *event)
 267{
 268        return rb_event_data(event);
 269}
 270EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 271
 272#define for_each_buffer_cpu(buffer, cpu)                \
 273        for_each_cpu(cpu, buffer->cpumask)
 274
 275#define TS_SHIFT        27
 276#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 277#define TS_DELTA_TEST   (~TS_MASK)
 278
 279/* Flag when events were overwritten */
 280#define RB_MISSED_EVENTS        (1 << 31)
 281/* Missed count stored at end */
 282#define RB_MISSED_STORED        (1 << 30)
 283
 284struct buffer_data_page {
 285        u64              time_stamp;    /* page time stamp */
 286        local_t          commit;        /* write committed index */
 287        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 288};
 289
 290/*
 291 * Note, the buffer_page list must be first. The buffer pages
 292 * are allocated in cache lines, which means that each buffer
 293 * page will be at the beginning of a cache line, and thus
 294 * the least significant bits will be zero. We use this to
 295 * add flags in the list struct pointers, to make the ring buffer
 296 * lockless.
 297 */
 298struct buffer_page {
 299        struct list_head list;          /* list of buffer pages */
 300        local_t          write;         /* index for next write */
 301        unsigned         read;          /* index for next read */
 302        local_t          entries;       /* entries on this page */
 303        unsigned long    real_end;      /* real end of data */
 304        struct buffer_data_page *page;  /* Actual data page */
 305};
 306
 307/*
 308 * The buffer page counters, write and entries, must be reset
 309 * atomically when crossing page boundaries. To synchronize this
 310 * update, two counters are inserted into the number. One is
 311 * the actual counter for the write position or count on the page.
 312 *
 313 * The other is a counter of updaters. Before an update happens
 314 * the update partition of the counter is incremented. This will
 315 * allow the updater to update the counter atomically.
 316 *
 317 * The counter is 20 bits, and the state data is 12.
 318 */
 319#define RB_WRITE_MASK           0xfffff
 320#define RB_WRITE_INTCNT         (1 << 20)
 321
 322static void rb_init_page(struct buffer_data_page *bpage)
 323{
 324        local_set(&bpage->commit, 0);
 325}
 326
 327/**
 328 * ring_buffer_page_len - the size of data on the page.
 329 * @page: The page to read
 330 *
 331 * Returns the amount of data on the page, including buffer page header.
 332 */
 333size_t ring_buffer_page_len(void *page)
 334{
 335        return local_read(&((struct buffer_data_page *)page)->commit)
 336                + BUF_PAGE_HDR_SIZE;
 337}
 338
 339/*
 340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 341 * this issue out.
 342 */
 343static void free_buffer_page(struct buffer_page *bpage)
 344{
 345        free_page((unsigned long)bpage->page);
 346        kfree(bpage);
 347}
 348
 349/*
 350 * We need to fit the time_stamp delta into 27 bits.
 351 */
 352static inline int test_time_stamp(u64 delta)
 353{
 354        if (delta & TS_DELTA_TEST)
 355                return 1;
 356        return 0;
 357}
 358
 359#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 360
 361/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 362#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 363
 364int ring_buffer_print_page_header(struct trace_seq *s)
 365{
 366        struct buffer_data_page field;
 367
 368        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 369                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 370                         (unsigned int)sizeof(field.time_stamp),
 371                         (unsigned int)is_signed_type(u64));
 372
 373        trace_seq_printf(s, "\tfield: local_t commit;\t"
 374                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 375                         (unsigned int)offsetof(typeof(field), commit),
 376                         (unsigned int)sizeof(field.commit),
 377                         (unsigned int)is_signed_type(long));
 378
 379        trace_seq_printf(s, "\tfield: int overwrite;\t"
 380                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 381                         (unsigned int)offsetof(typeof(field), commit),
 382                         1,
 383                         (unsigned int)is_signed_type(long));
 384
 385        trace_seq_printf(s, "\tfield: char data;\t"
 386                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 387                         (unsigned int)offsetof(typeof(field), data),
 388                         (unsigned int)BUF_PAGE_SIZE,
 389                         (unsigned int)is_signed_type(char));
 390
 391        return !trace_seq_has_overflowed(s);
 392}
 393
 394struct rb_irq_work {
 395        struct irq_work                 work;
 396        wait_queue_head_t               waiters;
 397        wait_queue_head_t               full_waiters;
 398        bool                            waiters_pending;
 399        bool                            full_waiters_pending;
 400        bool                            wakeup_full;
 401};
 402
 403/*
 404 * Structure to hold event state and handle nested events.
 405 */
 406struct rb_event_info {
 407        u64                     ts;
 408        u64                     delta;
 409        unsigned long           length;
 410        struct buffer_page      *tail_page;
 411        int                     add_timestamp;
 412};
 413
 414/*
 415 * Used for which event context the event is in.
 416 *  NMI     = 0
 417 *  IRQ     = 1
 418 *  SOFTIRQ = 2
 419 *  NORMAL  = 3
 420 *
 421 * See trace_recursive_lock() comment below for more details.
 422 */
 423enum {
 424        RB_CTX_NMI,
 425        RB_CTX_IRQ,
 426        RB_CTX_SOFTIRQ,
 427        RB_CTX_NORMAL,
 428        RB_CTX_MAX
 429};
 430
 431/*
 432 * head_page == tail_page && head == tail then buffer is empty.
 433 */
 434struct ring_buffer_per_cpu {
 435        int                             cpu;
 436        atomic_t                        record_disabled;
 437        struct ring_buffer              *buffer;
 438        raw_spinlock_t                  reader_lock;    /* serialize readers */
 439        arch_spinlock_t                 lock;
 440        struct lock_class_key           lock_key;
 441        struct buffer_data_page         *free_page;
 442        unsigned long                   nr_pages;
 443        unsigned int                    current_context;
 444        struct list_head                *pages;
 445        struct buffer_page              *head_page;     /* read from head */
 446        struct buffer_page              *tail_page;     /* write to tail */
 447        struct buffer_page              *commit_page;   /* committed pages */
 448        struct buffer_page              *reader_page;
 449        unsigned long                   lost_events;
 450        unsigned long                   last_overrun;
 451        local_t                         entries_bytes;
 452        local_t                         entries;
 453        local_t                         overrun;
 454        local_t                         commit_overrun;
 455        local_t                         dropped_events;
 456        local_t                         committing;
 457        local_t                         commits;
 458        unsigned long                   read;
 459        unsigned long                   read_bytes;
 460        u64                             write_stamp;
 461        u64                             read_stamp;
 462        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 463        long                            nr_pages_to_update;
 464        struct list_head                new_pages; /* new pages to add */
 465        struct work_struct              update_pages_work;
 466        struct completion               update_done;
 467
 468        struct rb_irq_work              irq_work;
 469};
 470
 471struct ring_buffer {
 472        unsigned                        flags;
 473        int                             cpus;
 474        atomic_t                        record_disabled;
 475        atomic_t                        resize_disabled;
 476        cpumask_var_t                   cpumask;
 477
 478        struct lock_class_key           *reader_lock_key;
 479
 480        struct mutex                    mutex;
 481
 482        struct ring_buffer_per_cpu      **buffers;
 483
 484        struct hlist_node               node;
 485        u64                             (*clock)(void);
 486
 487        struct rb_irq_work              irq_work;
 488};
 489
 490struct ring_buffer_iter {
 491        struct ring_buffer_per_cpu      *cpu_buffer;
 492        unsigned long                   head;
 493        struct buffer_page              *head_page;
 494        struct buffer_page              *cache_reader_page;
 495        unsigned long                   cache_read;
 496        u64                             read_stamp;
 497};
 498
 499/*
 500 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 501 *
 502 * Schedules a delayed work to wake up any task that is blocked on the
 503 * ring buffer waiters queue.
 504 */
 505static void rb_wake_up_waiters(struct irq_work *work)
 506{
 507        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 508
 509        wake_up_all(&rbwork->waiters);
 510        if (rbwork->wakeup_full) {
 511                rbwork->wakeup_full = false;
 512                wake_up_all(&rbwork->full_waiters);
 513        }
 514}
 515
 516/**
 517 * ring_buffer_wait - wait for input to the ring buffer
 518 * @buffer: buffer to wait on
 519 * @cpu: the cpu buffer to wait on
 520 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 521 *
 522 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 523 * as data is added to any of the @buffer's cpu buffers. Otherwise
 524 * it will wait for data to be added to a specific cpu buffer.
 525 */
 526int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 527{
 528        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 529        DEFINE_WAIT(wait);
 530        struct rb_irq_work *work;
 531        int ret = 0;
 532
 533        /*
 534         * Depending on what the caller is waiting for, either any
 535         * data in any cpu buffer, or a specific buffer, put the
 536         * caller on the appropriate wait queue.
 537         */
 538        if (cpu == RING_BUFFER_ALL_CPUS) {
 539                work = &buffer->irq_work;
 540                /* Full only makes sense on per cpu reads */
 541                full = false;
 542        } else {
 543                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 544                        return -ENODEV;
 545                cpu_buffer = buffer->buffers[cpu];
 546                work = &cpu_buffer->irq_work;
 547        }
 548
 549
 550        while (true) {
 551                if (full)
 552                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 553                else
 554                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 555
 556                /*
 557                 * The events can happen in critical sections where
 558                 * checking a work queue can cause deadlocks.
 559                 * After adding a task to the queue, this flag is set
 560                 * only to notify events to try to wake up the queue
 561                 * using irq_work.
 562                 *
 563                 * We don't clear it even if the buffer is no longer
 564                 * empty. The flag only causes the next event to run
 565                 * irq_work to do the work queue wake up. The worse
 566                 * that can happen if we race with !trace_empty() is that
 567                 * an event will cause an irq_work to try to wake up
 568                 * an empty queue.
 569                 *
 570                 * There's no reason to protect this flag either, as
 571                 * the work queue and irq_work logic will do the necessary
 572                 * synchronization for the wake ups. The only thing
 573                 * that is necessary is that the wake up happens after
 574                 * a task has been queued. It's OK for spurious wake ups.
 575                 */
 576                if (full)
 577                        work->full_waiters_pending = true;
 578                else
 579                        work->waiters_pending = true;
 580
 581                if (signal_pending(current)) {
 582                        ret = -EINTR;
 583                        break;
 584                }
 585
 586                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 587                        break;
 588
 589                if (cpu != RING_BUFFER_ALL_CPUS &&
 590                    !ring_buffer_empty_cpu(buffer, cpu)) {
 591                        unsigned long flags;
 592                        bool pagebusy;
 593
 594                        if (!full)
 595                                break;
 596
 597                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 598                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 599                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 600
 601                        if (!pagebusy)
 602                                break;
 603                }
 604
 605                schedule();
 606        }
 607
 608        if (full)
 609                finish_wait(&work->full_waiters, &wait);
 610        else
 611                finish_wait(&work->waiters, &wait);
 612
 613        return ret;
 614}
 615
 616/**
 617 * ring_buffer_poll_wait - poll on buffer input
 618 * @buffer: buffer to wait on
 619 * @cpu: the cpu buffer to wait on
 620 * @filp: the file descriptor
 621 * @poll_table: The poll descriptor
 622 *
 623 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 624 * as data is added to any of the @buffer's cpu buffers. Otherwise
 625 * it will wait for data to be added to a specific cpu buffer.
 626 *
 627 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 628 * zero otherwise.
 629 */
 630int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 631                          struct file *filp, poll_table *poll_table)
 632{
 633        struct ring_buffer_per_cpu *cpu_buffer;
 634        struct rb_irq_work *work;
 635
 636        if (cpu == RING_BUFFER_ALL_CPUS)
 637                work = &buffer->irq_work;
 638        else {
 639                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 640                        return -EINVAL;
 641
 642                cpu_buffer = buffer->buffers[cpu];
 643                work = &cpu_buffer->irq_work;
 644        }
 645
 646        poll_wait(filp, &work->waiters, poll_table);
 647        work->waiters_pending = true;
 648        /*
 649         * There's a tight race between setting the waiters_pending and
 650         * checking if the ring buffer is empty.  Once the waiters_pending bit
 651         * is set, the next event will wake the task up, but we can get stuck
 652         * if there's only a single event in.
 653         *
 654         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 655         * but adding a memory barrier to all events will cause too much of a
 656         * performance hit in the fast path.  We only need a memory barrier when
 657         * the buffer goes from empty to having content.  But as this race is
 658         * extremely small, and it's not a problem if another event comes in, we
 659         * will fix it later.
 660         */
 661        smp_mb();
 662
 663        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 664            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 665                return POLLIN | POLLRDNORM;
 666        return 0;
 667}
 668
 669/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 670#define RB_WARN_ON(b, cond)                                             \
 671        ({                                                              \
 672                int _____ret = unlikely(cond);                          \
 673                if (_____ret) {                                         \
 674                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 675                                struct ring_buffer_per_cpu *__b =       \
 676                                        (void *)b;                      \
 677                                atomic_inc(&__b->buffer->record_disabled); \
 678                        } else                                          \
 679                                atomic_inc(&b->record_disabled);        \
 680                        WARN_ON(1);                                     \
 681                }                                                       \
 682                _____ret;                                               \
 683        })
 684
 685/* Up this if you want to test the TIME_EXTENTS and normalization */
 686#define DEBUG_SHIFT 0
 687
 688static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 689{
 690        /* shift to debug/test normalization and TIME_EXTENTS */
 691        return buffer->clock() << DEBUG_SHIFT;
 692}
 693
 694u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 695{
 696        u64 time;
 697
 698        preempt_disable_notrace();
 699        time = rb_time_stamp(buffer);
 700        preempt_enable_no_resched_notrace();
 701
 702        return time;
 703}
 704EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 705
 706void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 707                                      int cpu, u64 *ts)
 708{
 709        /* Just stupid testing the normalize function and deltas */
 710        *ts >>= DEBUG_SHIFT;
 711}
 712EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 713
 714/*
 715 * Making the ring buffer lockless makes things tricky.
 716 * Although writes only happen on the CPU that they are on,
 717 * and they only need to worry about interrupts. Reads can
 718 * happen on any CPU.
 719 *
 720 * The reader page is always off the ring buffer, but when the
 721 * reader finishes with a page, it needs to swap its page with
 722 * a new one from the buffer. The reader needs to take from
 723 * the head (writes go to the tail). But if a writer is in overwrite
 724 * mode and wraps, it must push the head page forward.
 725 *
 726 * Here lies the problem.
 727 *
 728 * The reader must be careful to replace only the head page, and
 729 * not another one. As described at the top of the file in the
 730 * ASCII art, the reader sets its old page to point to the next
 731 * page after head. It then sets the page after head to point to
 732 * the old reader page. But if the writer moves the head page
 733 * during this operation, the reader could end up with the tail.
 734 *
 735 * We use cmpxchg to help prevent this race. We also do something
 736 * special with the page before head. We set the LSB to 1.
 737 *
 738 * When the writer must push the page forward, it will clear the
 739 * bit that points to the head page, move the head, and then set
 740 * the bit that points to the new head page.
 741 *
 742 * We also don't want an interrupt coming in and moving the head
 743 * page on another writer. Thus we use the second LSB to catch
 744 * that too. Thus:
 745 *
 746 * head->list->prev->next        bit 1          bit 0
 747 *                              -------        -------
 748 * Normal page                     0              0
 749 * Points to head page             0              1
 750 * New head page                   1              0
 751 *
 752 * Note we can not trust the prev pointer of the head page, because:
 753 *
 754 * +----+       +-----+        +-----+
 755 * |    |------>|  T  |---X--->|  N  |
 756 * |    |<------|     |        |     |
 757 * +----+       +-----+        +-----+
 758 *   ^                           ^ |
 759 *   |          +-----+          | |
 760 *   +----------|  R  |----------+ |
 761 *              |     |<-----------+
 762 *              +-----+
 763 *
 764 * Key:  ---X-->  HEAD flag set in pointer
 765 *         T      Tail page
 766 *         R      Reader page
 767 *         N      Next page
 768 *
 769 * (see __rb_reserve_next() to see where this happens)
 770 *
 771 *  What the above shows is that the reader just swapped out
 772 *  the reader page with a page in the buffer, but before it
 773 *  could make the new header point back to the new page added
 774 *  it was preempted by a writer. The writer moved forward onto
 775 *  the new page added by the reader and is about to move forward
 776 *  again.
 777 *
 778 *  You can see, it is legitimate for the previous pointer of
 779 *  the head (or any page) not to point back to itself. But only
 780 *  temporarially.
 781 */
 782
 783#define RB_PAGE_NORMAL          0UL
 784#define RB_PAGE_HEAD            1UL
 785#define RB_PAGE_UPDATE          2UL
 786
 787
 788#define RB_FLAG_MASK            3UL
 789
 790/* PAGE_MOVED is not part of the mask */
 791#define RB_PAGE_MOVED           4UL
 792
 793/*
 794 * rb_list_head - remove any bit
 795 */
 796static struct list_head *rb_list_head(struct list_head *list)
 797{
 798        unsigned long val = (unsigned long)list;
 799
 800        return (struct list_head *)(val & ~RB_FLAG_MASK);
 801}
 802
 803/*
 804 * rb_is_head_page - test if the given page is the head page
 805 *
 806 * Because the reader may move the head_page pointer, we can
 807 * not trust what the head page is (it may be pointing to
 808 * the reader page). But if the next page is a header page,
 809 * its flags will be non zero.
 810 */
 811static inline int
 812rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 813                struct buffer_page *page, struct list_head *list)
 814{
 815        unsigned long val;
 816
 817        val = (unsigned long)list->next;
 818
 819        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 820                return RB_PAGE_MOVED;
 821
 822        return val & RB_FLAG_MASK;
 823}
 824
 825/*
 826 * rb_is_reader_page
 827 *
 828 * The unique thing about the reader page, is that, if the
 829 * writer is ever on it, the previous pointer never points
 830 * back to the reader page.
 831 */
 832static bool rb_is_reader_page(struct buffer_page *page)
 833{
 834        struct list_head *list = page->list.prev;
 835
 836        return rb_list_head(list->next) != &page->list;
 837}
 838
 839/*
 840 * rb_set_list_to_head - set a list_head to be pointing to head.
 841 */
 842static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 843                                struct list_head *list)
 844{
 845        unsigned long *ptr;
 846
 847        ptr = (unsigned long *)&list->next;
 848        *ptr |= RB_PAGE_HEAD;
 849        *ptr &= ~RB_PAGE_UPDATE;
 850}
 851
 852/*
 853 * rb_head_page_activate - sets up head page
 854 */
 855static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 856{
 857        struct buffer_page *head;
 858
 859        head = cpu_buffer->head_page;
 860        if (!head)
 861                return;
 862
 863        /*
 864         * Set the previous list pointer to have the HEAD flag.
 865         */
 866        rb_set_list_to_head(cpu_buffer, head->list.prev);
 867}
 868
 869static void rb_list_head_clear(struct list_head *list)
 870{
 871        unsigned long *ptr = (unsigned long *)&list->next;
 872
 873        *ptr &= ~RB_FLAG_MASK;
 874}
 875
 876/*
 877 * rb_head_page_dactivate - clears head page ptr (for free list)
 878 */
 879static void
 880rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 881{
 882        struct list_head *hd;
 883
 884        /* Go through the whole list and clear any pointers found. */
 885        rb_list_head_clear(cpu_buffer->pages);
 886
 887        list_for_each(hd, cpu_buffer->pages)
 888                rb_list_head_clear(hd);
 889}
 890
 891static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 892                            struct buffer_page *head,
 893                            struct buffer_page *prev,
 894                            int old_flag, int new_flag)
 895{
 896        struct list_head *list;
 897        unsigned long val = (unsigned long)&head->list;
 898        unsigned long ret;
 899
 900        list = &prev->list;
 901
 902        val &= ~RB_FLAG_MASK;
 903
 904        ret = cmpxchg((unsigned long *)&list->next,
 905                      val | old_flag, val | new_flag);
 906
 907        /* check if the reader took the page */
 908        if ((ret & ~RB_FLAG_MASK) != val)
 909                return RB_PAGE_MOVED;
 910
 911        return ret & RB_FLAG_MASK;
 912}
 913
 914static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 915                                   struct buffer_page *head,
 916                                   struct buffer_page *prev,
 917                                   int old_flag)
 918{
 919        return rb_head_page_set(cpu_buffer, head, prev,
 920                                old_flag, RB_PAGE_UPDATE);
 921}
 922
 923static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 924                                 struct buffer_page *head,
 925                                 struct buffer_page *prev,
 926                                 int old_flag)
 927{
 928        return rb_head_page_set(cpu_buffer, head, prev,
 929                                old_flag, RB_PAGE_HEAD);
 930}
 931
 932static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 933                                   struct buffer_page *head,
 934                                   struct buffer_page *prev,
 935                                   int old_flag)
 936{
 937        return rb_head_page_set(cpu_buffer, head, prev,
 938                                old_flag, RB_PAGE_NORMAL);
 939}
 940
 941static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 942                               struct buffer_page **bpage)
 943{
 944        struct list_head *p = rb_list_head((*bpage)->list.next);
 945
 946        *bpage = list_entry(p, struct buffer_page, list);
 947}
 948
 949static struct buffer_page *
 950rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 951{
 952        struct buffer_page *head;
 953        struct buffer_page *page;
 954        struct list_head *list;
 955        int i;
 956
 957        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 958                return NULL;
 959
 960        /* sanity check */
 961        list = cpu_buffer->pages;
 962        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 963                return NULL;
 964
 965        page = head = cpu_buffer->head_page;
 966        /*
 967         * It is possible that the writer moves the header behind
 968         * where we started, and we miss in one loop.
 969         * A second loop should grab the header, but we'll do
 970         * three loops just because I'm paranoid.
 971         */
 972        for (i = 0; i < 3; i++) {
 973                do {
 974                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 975                                cpu_buffer->head_page = page;
 976                                return page;
 977                        }
 978                        rb_inc_page(cpu_buffer, &page);
 979                } while (page != head);
 980        }
 981
 982        RB_WARN_ON(cpu_buffer, 1);
 983
 984        return NULL;
 985}
 986
 987static int rb_head_page_replace(struct buffer_page *old,
 988                                struct buffer_page *new)
 989{
 990        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 991        unsigned long val;
 992        unsigned long ret;
 993
 994        val = *ptr & ~RB_FLAG_MASK;
 995        val |= RB_PAGE_HEAD;
 996
 997        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 998
 999        return ret == val;
1000}
1001
1002/*
1003 * rb_tail_page_update - move the tail page forward
1004 */
1005static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1006                               struct buffer_page *tail_page,
1007                               struct buffer_page *next_page)
1008{
1009        unsigned long old_entries;
1010        unsigned long old_write;
1011
1012        /*
1013         * The tail page now needs to be moved forward.
1014         *
1015         * We need to reset the tail page, but without messing
1016         * with possible erasing of data brought in by interrupts
1017         * that have moved the tail page and are currently on it.
1018         *
1019         * We add a counter to the write field to denote this.
1020         */
1021        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1022        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1023
1024        /*
1025         * Just make sure we have seen our old_write and synchronize
1026         * with any interrupts that come in.
1027         */
1028        barrier();
1029
1030        /*
1031         * If the tail page is still the same as what we think
1032         * it is, then it is up to us to update the tail
1033         * pointer.
1034         */
1035        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1036                /* Zero the write counter */
1037                unsigned long val = old_write & ~RB_WRITE_MASK;
1038                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1039
1040                /*
1041                 * This will only succeed if an interrupt did
1042                 * not come in and change it. In which case, we
1043                 * do not want to modify it.
1044                 *
1045                 * We add (void) to let the compiler know that we do not care
1046                 * about the return value of these functions. We use the
1047                 * cmpxchg to only update if an interrupt did not already
1048                 * do it for us. If the cmpxchg fails, we don't care.
1049                 */
1050                (void)local_cmpxchg(&next_page->write, old_write, val);
1051                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1052
1053                /*
1054                 * No need to worry about races with clearing out the commit.
1055                 * it only can increment when a commit takes place. But that
1056                 * only happens in the outer most nested commit.
1057                 */
1058                local_set(&next_page->page->commit, 0);
1059
1060                /* Again, either we update tail_page or an interrupt does */
1061                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1062        }
1063}
1064
1065static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1066                          struct buffer_page *bpage)
1067{
1068        unsigned long val = (unsigned long)bpage;
1069
1070        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1071                return 1;
1072
1073        return 0;
1074}
1075
1076/**
1077 * rb_check_list - make sure a pointer to a list has the last bits zero
1078 */
1079static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1080                         struct list_head *list)
1081{
1082        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1083                return 1;
1084        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1085                return 1;
1086        return 0;
1087}
1088
1089/**
1090 * rb_check_pages - integrity check of buffer pages
1091 * @cpu_buffer: CPU buffer with pages to test
1092 *
1093 * As a safety measure we check to make sure the data pages have not
1094 * been corrupted.
1095 */
1096static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1097{
1098        struct list_head *head = cpu_buffer->pages;
1099        struct buffer_page *bpage, *tmp;
1100
1101        /* Reset the head page if it exists */
1102        if (cpu_buffer->head_page)
1103                rb_set_head_page(cpu_buffer);
1104
1105        rb_head_page_deactivate(cpu_buffer);
1106
1107        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1108                return -1;
1109        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1110                return -1;
1111
1112        if (rb_check_list(cpu_buffer, head))
1113                return -1;
1114
1115        list_for_each_entry_safe(bpage, tmp, head, list) {
1116                if (RB_WARN_ON(cpu_buffer,
1117                               bpage->list.next->prev != &bpage->list))
1118                        return -1;
1119                if (RB_WARN_ON(cpu_buffer,
1120                               bpage->list.prev->next != &bpage->list))
1121                        return -1;
1122                if (rb_check_list(cpu_buffer, &bpage->list))
1123                        return -1;
1124        }
1125
1126        rb_head_page_activate(cpu_buffer);
1127
1128        return 0;
1129}
1130
1131static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1132{
1133        struct buffer_page *bpage, *tmp;
1134        long i;
1135
1136        for (i = 0; i < nr_pages; i++) {
1137                struct page *page;
1138                /*
1139                 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1140                 * gracefully without invoking oom-killer and the system is not
1141                 * destabilized.
1142                 */
1143                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1144                                    GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1145                                    cpu_to_node(cpu));
1146                if (!bpage)
1147                        goto free_pages;
1148
1149                list_add(&bpage->list, pages);
1150
1151                page = alloc_pages_node(cpu_to_node(cpu),
1152                                        GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1153                if (!page)
1154                        goto free_pages;
1155                bpage->page = page_address(page);
1156                rb_init_page(bpage->page);
1157        }
1158
1159        return 0;
1160
1161free_pages:
1162        list_for_each_entry_safe(bpage, tmp, pages, list) {
1163                list_del_init(&bpage->list);
1164                free_buffer_page(bpage);
1165        }
1166
1167        return -ENOMEM;
1168}
1169
1170static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1171                             unsigned long nr_pages)
1172{
1173        LIST_HEAD(pages);
1174
1175        WARN_ON(!nr_pages);
1176
1177        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1178                return -ENOMEM;
1179
1180        /*
1181         * The ring buffer page list is a circular list that does not
1182         * start and end with a list head. All page list items point to
1183         * other pages.
1184         */
1185        cpu_buffer->pages = pages.next;
1186        list_del(&pages);
1187
1188        cpu_buffer->nr_pages = nr_pages;
1189
1190        rb_check_pages(cpu_buffer);
1191
1192        return 0;
1193}
1194
1195static struct ring_buffer_per_cpu *
1196rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1197{
1198        struct ring_buffer_per_cpu *cpu_buffer;
1199        struct buffer_page *bpage;
1200        struct page *page;
1201        int ret;
1202
1203        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1204                                  GFP_KERNEL, cpu_to_node(cpu));
1205        if (!cpu_buffer)
1206                return NULL;
1207
1208        cpu_buffer->cpu = cpu;
1209        cpu_buffer->buffer = buffer;
1210        raw_spin_lock_init(&cpu_buffer->reader_lock);
1211        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1212        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1213        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1214        init_completion(&cpu_buffer->update_done);
1215        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1216        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1217        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1218
1219        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1220                            GFP_KERNEL, cpu_to_node(cpu));
1221        if (!bpage)
1222                goto fail_free_buffer;
1223
1224        rb_check_bpage(cpu_buffer, bpage);
1225
1226        cpu_buffer->reader_page = bpage;
1227        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1228        if (!page)
1229                goto fail_free_reader;
1230        bpage->page = page_address(page);
1231        rb_init_page(bpage->page);
1232
1233        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1234        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1235
1236        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1237        if (ret < 0)
1238                goto fail_free_reader;
1239
1240        cpu_buffer->head_page
1241                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1242        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1243
1244        rb_head_page_activate(cpu_buffer);
1245
1246        return cpu_buffer;
1247
1248 fail_free_reader:
1249        free_buffer_page(cpu_buffer->reader_page);
1250
1251 fail_free_buffer:
1252        kfree(cpu_buffer);
1253        return NULL;
1254}
1255
1256static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1257{
1258        struct list_head *head = cpu_buffer->pages;
1259        struct buffer_page *bpage, *tmp;
1260
1261        free_buffer_page(cpu_buffer->reader_page);
1262
1263        rb_head_page_deactivate(cpu_buffer);
1264
1265        if (head) {
1266                list_for_each_entry_safe(bpage, tmp, head, list) {
1267                        list_del_init(&bpage->list);
1268                        free_buffer_page(bpage);
1269                }
1270                bpage = list_entry(head, struct buffer_page, list);
1271                free_buffer_page(bpage);
1272        }
1273
1274        kfree(cpu_buffer);
1275}
1276
1277/**
1278 * __ring_buffer_alloc - allocate a new ring_buffer
1279 * @size: the size in bytes per cpu that is needed.
1280 * @flags: attributes to set for the ring buffer.
1281 *
1282 * Currently the only flag that is available is the RB_FL_OVERWRITE
1283 * flag. This flag means that the buffer will overwrite old data
1284 * when the buffer wraps. If this flag is not set, the buffer will
1285 * drop data when the tail hits the head.
1286 */
1287struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1288                                        struct lock_class_key *key)
1289{
1290        struct ring_buffer *buffer;
1291        long nr_pages;
1292        int bsize;
1293        int cpu;
1294        int ret;
1295
1296        /* keep it in its own cache line */
1297        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1298                         GFP_KERNEL);
1299        if (!buffer)
1300                return NULL;
1301
1302        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1303                goto fail_free_buffer;
1304
1305        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1306        buffer->flags = flags;
1307        buffer->clock = trace_clock_local;
1308        buffer->reader_lock_key = key;
1309
1310        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1311        init_waitqueue_head(&buffer->irq_work.waiters);
1312
1313        /* need at least two pages */
1314        if (nr_pages < 2)
1315                nr_pages = 2;
1316
1317        buffer->cpus = nr_cpu_ids;
1318
1319        bsize = sizeof(void *) * nr_cpu_ids;
1320        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1321                                  GFP_KERNEL);
1322        if (!buffer->buffers)
1323                goto fail_free_cpumask;
1324
1325        cpu = raw_smp_processor_id();
1326        cpumask_set_cpu(cpu, buffer->cpumask);
1327        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1328        if (!buffer->buffers[cpu])
1329                goto fail_free_buffers;
1330
1331        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1332        if (ret < 0)
1333                goto fail_free_buffers;
1334
1335        mutex_init(&buffer->mutex);
1336
1337        return buffer;
1338
1339 fail_free_buffers:
1340        for_each_buffer_cpu(buffer, cpu) {
1341                if (buffer->buffers[cpu])
1342                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1343        }
1344        kfree(buffer->buffers);
1345
1346 fail_free_cpumask:
1347        free_cpumask_var(buffer->cpumask);
1348
1349 fail_free_buffer:
1350        kfree(buffer);
1351        return NULL;
1352}
1353EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354
1355/**
1356 * ring_buffer_free - free a ring buffer.
1357 * @buffer: the buffer to free.
1358 */
1359void
1360ring_buffer_free(struct ring_buffer *buffer)
1361{
1362        int cpu;
1363
1364        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1365
1366        for_each_buffer_cpu(buffer, cpu)
1367                rb_free_cpu_buffer(buffer->buffers[cpu]);
1368
1369        kfree(buffer->buffers);
1370        free_cpumask_var(buffer->cpumask);
1371
1372        kfree(buffer);
1373}
1374EXPORT_SYMBOL_GPL(ring_buffer_free);
1375
1376void ring_buffer_set_clock(struct ring_buffer *buffer,
1377                           u64 (*clock)(void))
1378{
1379        buffer->clock = clock;
1380}
1381
1382static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1383
1384static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1385{
1386        return local_read(&bpage->entries) & RB_WRITE_MASK;
1387}
1388
1389static inline unsigned long rb_page_write(struct buffer_page *bpage)
1390{
1391        return local_read(&bpage->write) & RB_WRITE_MASK;
1392}
1393
1394static int
1395rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1396{
1397        struct list_head *tail_page, *to_remove, *next_page;
1398        struct buffer_page *to_remove_page, *tmp_iter_page;
1399        struct buffer_page *last_page, *first_page;
1400        unsigned long nr_removed;
1401        unsigned long head_bit;
1402        int page_entries;
1403
1404        head_bit = 0;
1405
1406        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1407        atomic_inc(&cpu_buffer->record_disabled);
1408        /*
1409         * We don't race with the readers since we have acquired the reader
1410         * lock. We also don't race with writers after disabling recording.
1411         * This makes it easy to figure out the first and the last page to be
1412         * removed from the list. We unlink all the pages in between including
1413         * the first and last pages. This is done in a busy loop so that we
1414         * lose the least number of traces.
1415         * The pages are freed after we restart recording and unlock readers.
1416         */
1417        tail_page = &cpu_buffer->tail_page->list;
1418
1419        /*
1420         * tail page might be on reader page, we remove the next page
1421         * from the ring buffer
1422         */
1423        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1424                tail_page = rb_list_head(tail_page->next);
1425        to_remove = tail_page;
1426
1427        /* start of pages to remove */
1428        first_page = list_entry(rb_list_head(to_remove->next),
1429                                struct buffer_page, list);
1430
1431        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1432                to_remove = rb_list_head(to_remove)->next;
1433                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1434        }
1435
1436        next_page = rb_list_head(to_remove)->next;
1437
1438        /*
1439         * Now we remove all pages between tail_page and next_page.
1440         * Make sure that we have head_bit value preserved for the
1441         * next page
1442         */
1443        tail_page->next = (struct list_head *)((unsigned long)next_page |
1444                                                head_bit);
1445        next_page = rb_list_head(next_page);
1446        next_page->prev = tail_page;
1447
1448        /* make sure pages points to a valid page in the ring buffer */
1449        cpu_buffer->pages = next_page;
1450
1451        /* update head page */
1452        if (head_bit)
1453                cpu_buffer->head_page = list_entry(next_page,
1454                                                struct buffer_page, list);
1455
1456        /*
1457         * change read pointer to make sure any read iterators reset
1458         * themselves
1459         */
1460        cpu_buffer->read = 0;
1461
1462        /* pages are removed, resume tracing and then free the pages */
1463        atomic_dec(&cpu_buffer->record_disabled);
1464        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1465
1466        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1467
1468        /* last buffer page to remove */
1469        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1470                                list);
1471        tmp_iter_page = first_page;
1472
1473        do {
1474                to_remove_page = tmp_iter_page;
1475                rb_inc_page(cpu_buffer, &tmp_iter_page);
1476
1477                /* update the counters */
1478                page_entries = rb_page_entries(to_remove_page);
1479                if (page_entries) {
1480                        /*
1481                         * If something was added to this page, it was full
1482                         * since it is not the tail page. So we deduct the
1483                         * bytes consumed in ring buffer from here.
1484                         * Increment overrun to account for the lost events.
1485                         */
1486                        local_add(page_entries, &cpu_buffer->overrun);
1487                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1488                }
1489
1490                /*
1491                 * We have already removed references to this list item, just
1492                 * free up the buffer_page and its page
1493                 */
1494                free_buffer_page(to_remove_page);
1495                nr_removed--;
1496
1497        } while (to_remove_page != last_page);
1498
1499        RB_WARN_ON(cpu_buffer, nr_removed);
1500
1501        return nr_removed == 0;
1502}
1503
1504static int
1505rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1506{
1507        struct list_head *pages = &cpu_buffer->new_pages;
1508        int retries, success;
1509
1510        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1511        /*
1512         * We are holding the reader lock, so the reader page won't be swapped
1513         * in the ring buffer. Now we are racing with the writer trying to
1514         * move head page and the tail page.
1515         * We are going to adapt the reader page update process where:
1516         * 1. We first splice the start and end of list of new pages between
1517         *    the head page and its previous page.
1518         * 2. We cmpxchg the prev_page->next to point from head page to the
1519         *    start of new pages list.
1520         * 3. Finally, we update the head->prev to the end of new list.
1521         *
1522         * We will try this process 10 times, to make sure that we don't keep
1523         * spinning.
1524         */
1525        retries = 10;
1526        success = 0;
1527        while (retries--) {
1528                struct list_head *head_page, *prev_page, *r;
1529                struct list_head *last_page, *first_page;
1530                struct list_head *head_page_with_bit;
1531
1532                head_page = &rb_set_head_page(cpu_buffer)->list;
1533                if (!head_page)
1534                        break;
1535                prev_page = head_page->prev;
1536
1537                first_page = pages->next;
1538                last_page  = pages->prev;
1539
1540                head_page_with_bit = (struct list_head *)
1541                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1542
1543                last_page->next = head_page_with_bit;
1544                first_page->prev = prev_page;
1545
1546                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1547
1548                if (r == head_page_with_bit) {
1549                        /*
1550                         * yay, we replaced the page pointer to our new list,
1551                         * now, we just have to update to head page's prev
1552                         * pointer to point to end of list
1553                         */
1554                        head_page->prev = last_page;
1555                        success = 1;
1556                        break;
1557                }
1558        }
1559
1560        if (success)
1561                INIT_LIST_HEAD(pages);
1562        /*
1563         * If we weren't successful in adding in new pages, warn and stop
1564         * tracing
1565         */
1566        RB_WARN_ON(cpu_buffer, !success);
1567        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1568
1569        /* free pages if they weren't inserted */
1570        if (!success) {
1571                struct buffer_page *bpage, *tmp;
1572                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1573                                         list) {
1574                        list_del_init(&bpage->list);
1575                        free_buffer_page(bpage);
1576                }
1577        }
1578        return success;
1579}
1580
1581static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582{
1583        int success;
1584
1585        if (cpu_buffer->nr_pages_to_update > 0)
1586                success = rb_insert_pages(cpu_buffer);
1587        else
1588                success = rb_remove_pages(cpu_buffer,
1589                                        -cpu_buffer->nr_pages_to_update);
1590
1591        if (success)
1592                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1593}
1594
1595static void update_pages_handler(struct work_struct *work)
1596{
1597        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1598                        struct ring_buffer_per_cpu, update_pages_work);
1599        rb_update_pages(cpu_buffer);
1600        complete(&cpu_buffer->update_done);
1601}
1602
1603/**
1604 * ring_buffer_resize - resize the ring buffer
1605 * @buffer: the buffer to resize.
1606 * @size: the new size.
1607 * @cpu_id: the cpu buffer to resize
1608 *
1609 * Minimum size is 2 * BUF_PAGE_SIZE.
1610 *
1611 * Returns 0 on success and < 0 on failure.
1612 */
1613int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1614                        int cpu_id)
1615{
1616        struct ring_buffer_per_cpu *cpu_buffer;
1617        unsigned long nr_pages;
1618        int cpu, err = 0;
1619
1620        /*
1621         * Always succeed at resizing a non-existent buffer:
1622         */
1623        if (!buffer)
1624                return size;
1625
1626        /* Make sure the requested buffer exists */
1627        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1628            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1629                return size;
1630
1631        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1632
1633        /* we need a minimum of two pages */
1634        if (nr_pages < 2)
1635                nr_pages = 2;
1636
1637        size = nr_pages * BUF_PAGE_SIZE;
1638
1639        /*
1640         * Don't succeed if resizing is disabled, as a reader might be
1641         * manipulating the ring buffer and is expecting a sane state while
1642         * this is true.
1643         */
1644        if (atomic_read(&buffer->resize_disabled))
1645                return -EBUSY;
1646
1647        /* prevent another thread from changing buffer sizes */
1648        mutex_lock(&buffer->mutex);
1649
1650        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1651                /* calculate the pages to update */
1652                for_each_buffer_cpu(buffer, cpu) {
1653                        cpu_buffer = buffer->buffers[cpu];
1654
1655                        cpu_buffer->nr_pages_to_update = nr_pages -
1656                                                        cpu_buffer->nr_pages;
1657                        /*
1658                         * nothing more to do for removing pages or no update
1659                         */
1660                        if (cpu_buffer->nr_pages_to_update <= 0)
1661                                continue;
1662                        /*
1663                         * to add pages, make sure all new pages can be
1664                         * allocated without receiving ENOMEM
1665                         */
1666                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1667                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1668                                                &cpu_buffer->new_pages, cpu)) {
1669                                /* not enough memory for new pages */
1670                                err = -ENOMEM;
1671                                goto out_err;
1672                        }
1673                }
1674
1675                get_online_cpus();
1676                /*
1677                 * Fire off all the required work handlers
1678                 * We can't schedule on offline CPUs, but it's not necessary
1679                 * since we can change their buffer sizes without any race.
1680                 */
1681                for_each_buffer_cpu(buffer, cpu) {
1682                        cpu_buffer = buffer->buffers[cpu];
1683                        if (!cpu_buffer->nr_pages_to_update)
1684                                continue;
1685
1686                        /* Can't run something on an offline CPU. */
1687                        if (!cpu_online(cpu)) {
1688                                rb_update_pages(cpu_buffer);
1689                                cpu_buffer->nr_pages_to_update = 0;
1690                        } else {
1691                                schedule_work_on(cpu,
1692                                                &cpu_buffer->update_pages_work);
1693                        }
1694                }
1695
1696                /* wait for all the updates to complete */
1697                for_each_buffer_cpu(buffer, cpu) {
1698                        cpu_buffer = buffer->buffers[cpu];
1699                        if (!cpu_buffer->nr_pages_to_update)
1700                                continue;
1701
1702                        if (cpu_online(cpu))
1703                                wait_for_completion(&cpu_buffer->update_done);
1704                        cpu_buffer->nr_pages_to_update = 0;
1705                }
1706
1707                put_online_cpus();
1708        } else {
1709                /* Make sure this CPU has been intitialized */
1710                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1711                        goto out;
1712
1713                cpu_buffer = buffer->buffers[cpu_id];
1714
1715                if (nr_pages == cpu_buffer->nr_pages)
1716                        goto out;
1717
1718                cpu_buffer->nr_pages_to_update = nr_pages -
1719                                                cpu_buffer->nr_pages;
1720
1721                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1722                if (cpu_buffer->nr_pages_to_update > 0 &&
1723                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1724                                            &cpu_buffer->new_pages, cpu_id)) {
1725                        err = -ENOMEM;
1726                        goto out_err;
1727                }
1728
1729                get_online_cpus();
1730
1731                /* Can't run something on an offline CPU. */
1732                if (!cpu_online(cpu_id))
1733                        rb_update_pages(cpu_buffer);
1734                else {
1735                        schedule_work_on(cpu_id,
1736                                         &cpu_buffer->update_pages_work);
1737                        wait_for_completion(&cpu_buffer->update_done);
1738                }
1739
1740                cpu_buffer->nr_pages_to_update = 0;
1741                put_online_cpus();
1742        }
1743
1744 out:
1745        /*
1746         * The ring buffer resize can happen with the ring buffer
1747         * enabled, so that the update disturbs the tracing as little
1748         * as possible. But if the buffer is disabled, we do not need
1749         * to worry about that, and we can take the time to verify
1750         * that the buffer is not corrupt.
1751         */
1752        if (atomic_read(&buffer->record_disabled)) {
1753                atomic_inc(&buffer->record_disabled);
1754                /*
1755                 * Even though the buffer was disabled, we must make sure
1756                 * that it is truly disabled before calling rb_check_pages.
1757                 * There could have been a race between checking
1758                 * record_disable and incrementing it.
1759                 */
1760                synchronize_sched();
1761                for_each_buffer_cpu(buffer, cpu) {
1762                        cpu_buffer = buffer->buffers[cpu];
1763                        rb_check_pages(cpu_buffer);
1764                }
1765                atomic_dec(&buffer->record_disabled);
1766        }
1767
1768        mutex_unlock(&buffer->mutex);
1769        return size;
1770
1771 out_err:
1772        for_each_buffer_cpu(buffer, cpu) {
1773                struct buffer_page *bpage, *tmp;
1774
1775                cpu_buffer = buffer->buffers[cpu];
1776                cpu_buffer->nr_pages_to_update = 0;
1777
1778                if (list_empty(&cpu_buffer->new_pages))
1779                        continue;
1780
1781                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1782                                        list) {
1783                        list_del_init(&bpage->list);
1784                        free_buffer_page(bpage);
1785                }
1786        }
1787        mutex_unlock(&buffer->mutex);
1788        return err;
1789}
1790EXPORT_SYMBOL_GPL(ring_buffer_resize);
1791
1792void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1793{
1794        mutex_lock(&buffer->mutex);
1795        if (val)
1796                buffer->flags |= RB_FL_OVERWRITE;
1797        else
1798                buffer->flags &= ~RB_FL_OVERWRITE;
1799        mutex_unlock(&buffer->mutex);
1800}
1801EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1802
1803static __always_inline void *
1804__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1805{
1806        return bpage->data + index;
1807}
1808
1809static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1810{
1811        return bpage->page->data + index;
1812}
1813
1814static __always_inline struct ring_buffer_event *
1815rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1816{
1817        return __rb_page_index(cpu_buffer->reader_page,
1818                               cpu_buffer->reader_page->read);
1819}
1820
1821static __always_inline struct ring_buffer_event *
1822rb_iter_head_event(struct ring_buffer_iter *iter)
1823{
1824        return __rb_page_index(iter->head_page, iter->head);
1825}
1826
1827static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1828{
1829        return local_read(&bpage->page->commit);
1830}
1831
1832/* Size is determined by what has been committed */
1833static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1834{
1835        return rb_page_commit(bpage);
1836}
1837
1838static __always_inline unsigned
1839rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1840{
1841        return rb_page_commit(cpu_buffer->commit_page);
1842}
1843
1844static __always_inline unsigned
1845rb_event_index(struct ring_buffer_event *event)
1846{
1847        unsigned long addr = (unsigned long)event;
1848
1849        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1850}
1851
1852static void rb_inc_iter(struct ring_buffer_iter *iter)
1853{
1854        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1855
1856        /*
1857         * The iterator could be on the reader page (it starts there).
1858         * But the head could have moved, since the reader was
1859         * found. Check for this case and assign the iterator
1860         * to the head page instead of next.
1861         */
1862        if (iter->head_page == cpu_buffer->reader_page)
1863                iter->head_page = rb_set_head_page(cpu_buffer);
1864        else
1865                rb_inc_page(cpu_buffer, &iter->head_page);
1866
1867        iter->read_stamp = iter->head_page->page->time_stamp;
1868        iter->head = 0;
1869}
1870
1871/*
1872 * rb_handle_head_page - writer hit the head page
1873 *
1874 * Returns: +1 to retry page
1875 *           0 to continue
1876 *          -1 on error
1877 */
1878static int
1879rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1880                    struct buffer_page *tail_page,
1881                    struct buffer_page *next_page)
1882{
1883        struct buffer_page *new_head;
1884        int entries;
1885        int type;
1886        int ret;
1887
1888        entries = rb_page_entries(next_page);
1889
1890        /*
1891         * The hard part is here. We need to move the head
1892         * forward, and protect against both readers on
1893         * other CPUs and writers coming in via interrupts.
1894         */
1895        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1896                                       RB_PAGE_HEAD);
1897
1898        /*
1899         * type can be one of four:
1900         *  NORMAL - an interrupt already moved it for us
1901         *  HEAD   - we are the first to get here.
1902         *  UPDATE - we are the interrupt interrupting
1903         *           a current move.
1904         *  MOVED  - a reader on another CPU moved the next
1905         *           pointer to its reader page. Give up
1906         *           and try again.
1907         */
1908
1909        switch (type) {
1910        case RB_PAGE_HEAD:
1911                /*
1912                 * We changed the head to UPDATE, thus
1913                 * it is our responsibility to update
1914                 * the counters.
1915                 */
1916                local_add(entries, &cpu_buffer->overrun);
1917                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1918
1919                /*
1920                 * The entries will be zeroed out when we move the
1921                 * tail page.
1922                 */
1923
1924                /* still more to do */
1925                break;
1926
1927        case RB_PAGE_UPDATE:
1928                /*
1929                 * This is an interrupt that interrupt the
1930                 * previous update. Still more to do.
1931                 */
1932                break;
1933        case RB_PAGE_NORMAL:
1934                /*
1935                 * An interrupt came in before the update
1936                 * and processed this for us.
1937                 * Nothing left to do.
1938                 */
1939                return 1;
1940        case RB_PAGE_MOVED:
1941                /*
1942                 * The reader is on another CPU and just did
1943                 * a swap with our next_page.
1944                 * Try again.
1945                 */
1946                return 1;
1947        default:
1948                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1949                return -1;
1950        }
1951
1952        /*
1953         * Now that we are here, the old head pointer is
1954         * set to UPDATE. This will keep the reader from
1955         * swapping the head page with the reader page.
1956         * The reader (on another CPU) will spin till
1957         * we are finished.
1958         *
1959         * We just need to protect against interrupts
1960         * doing the job. We will set the next pointer
1961         * to HEAD. After that, we set the old pointer
1962         * to NORMAL, but only if it was HEAD before.
1963         * otherwise we are an interrupt, and only
1964         * want the outer most commit to reset it.
1965         */
1966        new_head = next_page;
1967        rb_inc_page(cpu_buffer, &new_head);
1968
1969        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1970                                    RB_PAGE_NORMAL);
1971
1972        /*
1973         * Valid returns are:
1974         *  HEAD   - an interrupt came in and already set it.
1975         *  NORMAL - One of two things:
1976         *            1) We really set it.
1977         *            2) A bunch of interrupts came in and moved
1978         *               the page forward again.
1979         */
1980        switch (ret) {
1981        case RB_PAGE_HEAD:
1982        case RB_PAGE_NORMAL:
1983                /* OK */
1984                break;
1985        default:
1986                RB_WARN_ON(cpu_buffer, 1);
1987                return -1;
1988        }
1989
1990        /*
1991         * It is possible that an interrupt came in,
1992         * set the head up, then more interrupts came in
1993         * and moved it again. When we get back here,
1994         * the page would have been set to NORMAL but we
1995         * just set it back to HEAD.
1996         *
1997         * How do you detect this? Well, if that happened
1998         * the tail page would have moved.
1999         */
2000        if (ret == RB_PAGE_NORMAL) {
2001                struct buffer_page *buffer_tail_page;
2002
2003                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2004                /*
2005                 * If the tail had moved passed next, then we need
2006                 * to reset the pointer.
2007                 */
2008                if (buffer_tail_page != tail_page &&
2009                    buffer_tail_page != next_page)
2010                        rb_head_page_set_normal(cpu_buffer, new_head,
2011                                                next_page,
2012                                                RB_PAGE_HEAD);
2013        }
2014
2015        /*
2016         * If this was the outer most commit (the one that
2017         * changed the original pointer from HEAD to UPDATE),
2018         * then it is up to us to reset it to NORMAL.
2019         */
2020        if (type == RB_PAGE_HEAD) {
2021                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2022                                              tail_page,
2023                                              RB_PAGE_UPDATE);
2024                if (RB_WARN_ON(cpu_buffer,
2025                               ret != RB_PAGE_UPDATE))
2026                        return -1;
2027        }
2028
2029        return 0;
2030}
2031
2032static inline void
2033rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2034              unsigned long tail, struct rb_event_info *info)
2035{
2036        struct buffer_page *tail_page = info->tail_page;
2037        struct ring_buffer_event *event;
2038        unsigned long length = info->length;
2039
2040        /*
2041         * Only the event that crossed the page boundary
2042         * must fill the old tail_page with padding.
2043         */
2044        if (tail >= BUF_PAGE_SIZE) {
2045                /*
2046                 * If the page was filled, then we still need
2047                 * to update the real_end. Reset it to zero
2048                 * and the reader will ignore it.
2049                 */
2050                if (tail == BUF_PAGE_SIZE)
2051                        tail_page->real_end = 0;
2052
2053                local_sub(length, &tail_page->write);
2054                return;
2055        }
2056
2057        event = __rb_page_index(tail_page, tail);
2058        kmemcheck_annotate_bitfield(event, bitfield);
2059
2060        /* account for padding bytes */
2061        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2062
2063        /*
2064         * Save the original length to the meta data.
2065         * This will be used by the reader to add lost event
2066         * counter.
2067         */
2068        tail_page->real_end = tail;
2069
2070        /*
2071         * If this event is bigger than the minimum size, then
2072         * we need to be careful that we don't subtract the
2073         * write counter enough to allow another writer to slip
2074         * in on this page.
2075         * We put in a discarded commit instead, to make sure
2076         * that this space is not used again.
2077         *
2078         * If we are less than the minimum size, we don't need to
2079         * worry about it.
2080         */
2081        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2082                /* No room for any events */
2083
2084                /* Mark the rest of the page with padding */
2085                rb_event_set_padding(event);
2086
2087                /* Set the write back to the previous setting */
2088                local_sub(length, &tail_page->write);
2089                return;
2090        }
2091
2092        /* Put in a discarded event */
2093        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2094        event->type_len = RINGBUF_TYPE_PADDING;
2095        /* time delta must be non zero */
2096        event->time_delta = 1;
2097
2098        /* Set write to end of buffer */
2099        length = (tail + length) - BUF_PAGE_SIZE;
2100        local_sub(length, &tail_page->write);
2101}
2102
2103static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2104
2105/*
2106 * This is the slow path, force gcc not to inline it.
2107 */
2108static noinline struct ring_buffer_event *
2109rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2110             unsigned long tail, struct rb_event_info *info)
2111{
2112        struct buffer_page *tail_page = info->tail_page;
2113        struct buffer_page *commit_page = cpu_buffer->commit_page;
2114        struct ring_buffer *buffer = cpu_buffer->buffer;
2115        struct buffer_page *next_page;
2116        int ret;
2117
2118        next_page = tail_page;
2119
2120        rb_inc_page(cpu_buffer, &next_page);
2121
2122        /*
2123         * If for some reason, we had an interrupt storm that made
2124         * it all the way around the buffer, bail, and warn
2125         * about it.
2126         */
2127        if (unlikely(next_page == commit_page)) {
2128                local_inc(&cpu_buffer->commit_overrun);
2129                goto out_reset;
2130        }
2131
2132        /*
2133         * This is where the fun begins!
2134         *
2135         * We are fighting against races between a reader that
2136         * could be on another CPU trying to swap its reader
2137         * page with the buffer head.
2138         *
2139         * We are also fighting against interrupts coming in and
2140         * moving the head or tail on us as well.
2141         *
2142         * If the next page is the head page then we have filled
2143         * the buffer, unless the commit page is still on the
2144         * reader page.
2145         */
2146        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2147
2148                /*
2149                 * If the commit is not on the reader page, then
2150                 * move the header page.
2151                 */
2152                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2153                        /*
2154                         * If we are not in overwrite mode,
2155                         * this is easy, just stop here.
2156                         */
2157                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2158                                local_inc(&cpu_buffer->dropped_events);
2159                                goto out_reset;
2160                        }
2161
2162                        ret = rb_handle_head_page(cpu_buffer,
2163                                                  tail_page,
2164                                                  next_page);
2165                        if (ret < 0)
2166                                goto out_reset;
2167                        if (ret)
2168                                goto out_again;
2169                } else {
2170                        /*
2171                         * We need to be careful here too. The
2172                         * commit page could still be on the reader
2173                         * page. We could have a small buffer, and
2174                         * have filled up the buffer with events
2175                         * from interrupts and such, and wrapped.
2176                         *
2177                         * Note, if the tail page is also the on the
2178                         * reader_page, we let it move out.
2179                         */
2180                        if (unlikely((cpu_buffer->commit_page !=
2181                                      cpu_buffer->tail_page) &&
2182                                     (cpu_buffer->commit_page ==
2183                                      cpu_buffer->reader_page))) {
2184                                local_inc(&cpu_buffer->commit_overrun);
2185                                goto out_reset;
2186                        }
2187                }
2188        }
2189
2190        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2191
2192 out_again:
2193
2194        rb_reset_tail(cpu_buffer, tail, info);
2195
2196        /* Commit what we have for now. */
2197        rb_end_commit(cpu_buffer);
2198        /* rb_end_commit() decs committing */
2199        local_inc(&cpu_buffer->committing);
2200
2201        /* fail and let the caller try again */
2202        return ERR_PTR(-EAGAIN);
2203
2204 out_reset:
2205        /* reset write */
2206        rb_reset_tail(cpu_buffer, tail, info);
2207
2208        return NULL;
2209}
2210
2211/* Slow path, do not inline */
2212static noinline struct ring_buffer_event *
2213rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2214{
2215        event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2216
2217        /* Not the first event on the page? */
2218        if (rb_event_index(event)) {
2219                event->time_delta = delta & TS_MASK;
2220                event->array[0] = delta >> TS_SHIFT;
2221        } else {
2222                /* nope, just zero it */
2223                event->time_delta = 0;
2224                event->array[0] = 0;
2225        }
2226
2227        return skip_time_extend(event);
2228}
2229
2230static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2231                                     struct ring_buffer_event *event);
2232
2233/**
2234 * rb_update_event - update event type and data
2235 * @event: the event to update
2236 * @type: the type of event
2237 * @length: the size of the event field in the ring buffer
2238 *
2239 * Update the type and data fields of the event. The length
2240 * is the actual size that is written to the ring buffer,
2241 * and with this, we can determine what to place into the
2242 * data field.
2243 */
2244static void
2245rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2246                struct ring_buffer_event *event,
2247                struct rb_event_info *info)
2248{
2249        unsigned length = info->length;
2250        u64 delta = info->delta;
2251
2252        /* Only a commit updates the timestamp */
2253        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2254                delta = 0;
2255
2256        /*
2257         * If we need to add a timestamp, then we
2258         * add it to the start of the resevered space.
2259         */
2260        if (unlikely(info->add_timestamp)) {
2261                event = rb_add_time_stamp(event, delta);
2262                length -= RB_LEN_TIME_EXTEND;
2263                delta = 0;
2264        }
2265
2266        event->time_delta = delta;
2267        length -= RB_EVNT_HDR_SIZE;
2268        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2269                event->type_len = 0;
2270                event->array[0] = length;
2271        } else
2272                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2273}
2274
2275static unsigned rb_calculate_event_length(unsigned length)
2276{
2277        struct ring_buffer_event event; /* Used only for sizeof array */
2278
2279        /* zero length can cause confusions */
2280        if (!length)
2281                length++;
2282
2283        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2284                length += sizeof(event.array[0]);
2285
2286        length += RB_EVNT_HDR_SIZE;
2287        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2288
2289        /*
2290         * In case the time delta is larger than the 27 bits for it
2291         * in the header, we need to add a timestamp. If another
2292         * event comes in when trying to discard this one to increase
2293         * the length, then the timestamp will be added in the allocated
2294         * space of this event. If length is bigger than the size needed
2295         * for the TIME_EXTEND, then padding has to be used. The events
2296         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2297         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2298         * As length is a multiple of 4, we only need to worry if it
2299         * is 12 (RB_LEN_TIME_EXTEND + 4).
2300         */
2301        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2302                length += RB_ALIGNMENT;
2303
2304        return length;
2305}
2306
2307#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2308static inline bool sched_clock_stable(void)
2309{
2310        return true;
2311}
2312#endif
2313
2314static inline int
2315rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2316                  struct ring_buffer_event *event)
2317{
2318        unsigned long new_index, old_index;
2319        struct buffer_page *bpage;
2320        unsigned long index;
2321        unsigned long addr;
2322
2323        new_index = rb_event_index(event);
2324        old_index = new_index + rb_event_ts_length(event);
2325        addr = (unsigned long)event;
2326        addr &= PAGE_MASK;
2327
2328        bpage = READ_ONCE(cpu_buffer->tail_page);
2329
2330        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2331                unsigned long write_mask =
2332                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2333                unsigned long event_length = rb_event_length(event);
2334                /*
2335                 * This is on the tail page. It is possible that
2336                 * a write could come in and move the tail page
2337                 * and write to the next page. That is fine
2338                 * because we just shorten what is on this page.
2339                 */
2340                old_index += write_mask;
2341                new_index += write_mask;
2342                index = local_cmpxchg(&bpage->write, old_index, new_index);
2343                if (index == old_index) {
2344                        /* update counters */
2345                        local_sub(event_length, &cpu_buffer->entries_bytes);
2346                        return 1;
2347                }
2348        }
2349
2350        /* could not discard */
2351        return 0;
2352}
2353
2354static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2355{
2356        local_inc(&cpu_buffer->committing);
2357        local_inc(&cpu_buffer->commits);
2358}
2359
2360static __always_inline void
2361rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2362{
2363        unsigned long max_count;
2364
2365        /*
2366         * We only race with interrupts and NMIs on this CPU.
2367         * If we own the commit event, then we can commit
2368         * all others that interrupted us, since the interruptions
2369         * are in stack format (they finish before they come
2370         * back to us). This allows us to do a simple loop to
2371         * assign the commit to the tail.
2372         */
2373 again:
2374        max_count = cpu_buffer->nr_pages * 100;
2375
2376        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2377                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2378                        return;
2379                if (RB_WARN_ON(cpu_buffer,
2380                               rb_is_reader_page(cpu_buffer->tail_page)))
2381                        return;
2382                local_set(&cpu_buffer->commit_page->page->commit,
2383                          rb_page_write(cpu_buffer->commit_page));
2384                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2385                /* Only update the write stamp if the page has an event */
2386                if (rb_page_write(cpu_buffer->commit_page))
2387                        cpu_buffer->write_stamp =
2388                                cpu_buffer->commit_page->page->time_stamp;
2389                /* add barrier to keep gcc from optimizing too much */
2390                barrier();
2391        }
2392        while (rb_commit_index(cpu_buffer) !=
2393               rb_page_write(cpu_buffer->commit_page)) {
2394
2395                local_set(&cpu_buffer->commit_page->page->commit,
2396                          rb_page_write(cpu_buffer->commit_page));
2397                RB_WARN_ON(cpu_buffer,
2398                           local_read(&cpu_buffer->commit_page->page->commit) &
2399                           ~RB_WRITE_MASK);
2400                barrier();
2401        }
2402
2403        /* again, keep gcc from optimizing */
2404        barrier();
2405
2406        /*
2407         * If an interrupt came in just after the first while loop
2408         * and pushed the tail page forward, we will be left with
2409         * a dangling commit that will never go forward.
2410         */
2411        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2412                goto again;
2413}
2414
2415static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2416{
2417        unsigned long commits;
2418
2419        if (RB_WARN_ON(cpu_buffer,
2420                       !local_read(&cpu_buffer->committing)))
2421                return;
2422
2423 again:
2424        commits = local_read(&cpu_buffer->commits);
2425        /* synchronize with interrupts */
2426        barrier();
2427        if (local_read(&cpu_buffer->committing) == 1)
2428                rb_set_commit_to_write(cpu_buffer);
2429
2430        local_dec(&cpu_buffer->committing);
2431
2432        /* synchronize with interrupts */
2433        barrier();
2434
2435        /*
2436         * Need to account for interrupts coming in between the
2437         * updating of the commit page and the clearing of the
2438         * committing counter.
2439         */
2440        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2441            !local_read(&cpu_buffer->committing)) {
2442                local_inc(&cpu_buffer->committing);
2443                goto again;
2444        }
2445}
2446
2447static inline void rb_event_discard(struct ring_buffer_event *event)
2448{
2449        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2450                event = skip_time_extend(event);
2451
2452        /* array[0] holds the actual length for the discarded event */
2453        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2454        event->type_len = RINGBUF_TYPE_PADDING;
2455        /* time delta must be non zero */
2456        if (!event->time_delta)
2457                event->time_delta = 1;
2458}
2459
2460static __always_inline bool
2461rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2462                   struct ring_buffer_event *event)
2463{
2464        unsigned long addr = (unsigned long)event;
2465        unsigned long index;
2466
2467        index = rb_event_index(event);
2468        addr &= PAGE_MASK;
2469
2470        return cpu_buffer->commit_page->page == (void *)addr &&
2471                rb_commit_index(cpu_buffer) == index;
2472}
2473
2474static __always_inline void
2475rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2476                      struct ring_buffer_event *event)
2477{
2478        u64 delta;
2479
2480        /*
2481         * The event first in the commit queue updates the
2482         * time stamp.
2483         */
2484        if (rb_event_is_commit(cpu_buffer, event)) {
2485                /*
2486                 * A commit event that is first on a page
2487                 * updates the write timestamp with the page stamp
2488                 */
2489                if (!rb_event_index(event))
2490                        cpu_buffer->write_stamp =
2491                                cpu_buffer->commit_page->page->time_stamp;
2492                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2493                        delta = event->array[0];
2494                        delta <<= TS_SHIFT;
2495                        delta += event->time_delta;
2496                        cpu_buffer->write_stamp += delta;
2497                } else
2498                        cpu_buffer->write_stamp += event->time_delta;
2499        }
2500}
2501
2502static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2503                      struct ring_buffer_event *event)
2504{
2505        local_inc(&cpu_buffer->entries);
2506        rb_update_write_stamp(cpu_buffer, event);
2507        rb_end_commit(cpu_buffer);
2508}
2509
2510static __always_inline void
2511rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2512{
2513        bool pagebusy;
2514
2515        if (buffer->irq_work.waiters_pending) {
2516                buffer->irq_work.waiters_pending = false;
2517                /* irq_work_queue() supplies it's own memory barriers */
2518                irq_work_queue(&buffer->irq_work.work);
2519        }
2520
2521        if (cpu_buffer->irq_work.waiters_pending) {
2522                cpu_buffer->irq_work.waiters_pending = false;
2523                /* irq_work_queue() supplies it's own memory barriers */
2524                irq_work_queue(&cpu_buffer->irq_work.work);
2525        }
2526
2527        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2528
2529        if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2530                cpu_buffer->irq_work.wakeup_full = true;
2531                cpu_buffer->irq_work.full_waiters_pending = false;
2532                /* irq_work_queue() supplies it's own memory barriers */
2533                irq_work_queue(&cpu_buffer->irq_work.work);
2534        }
2535}
2536
2537/*
2538 * The lock and unlock are done within a preempt disable section.
2539 * The current_context per_cpu variable can only be modified
2540 * by the current task between lock and unlock. But it can
2541 * be modified more than once via an interrupt. To pass this
2542 * information from the lock to the unlock without having to
2543 * access the 'in_interrupt()' functions again (which do show
2544 * a bit of overhead in something as critical as function tracing,
2545 * we use a bitmask trick.
2546 *
2547 *  bit 0 =  NMI context
2548 *  bit 1 =  IRQ context
2549 *  bit 2 =  SoftIRQ context
2550 *  bit 3 =  normal context.
2551 *
2552 * This works because this is the order of contexts that can
2553 * preempt other contexts. A SoftIRQ never preempts an IRQ
2554 * context.
2555 *
2556 * When the context is determined, the corresponding bit is
2557 * checked and set (if it was set, then a recursion of that context
2558 * happened).
2559 *
2560 * On unlock, we need to clear this bit. To do so, just subtract
2561 * 1 from the current_context and AND it to itself.
2562 *
2563 * (binary)
2564 *  101 - 1 = 100
2565 *  101 & 100 = 100 (clearing bit zero)
2566 *
2567 *  1010 - 1 = 1001
2568 *  1010 & 1001 = 1000 (clearing bit 1)
2569 *
2570 * The least significant bit can be cleared this way, and it
2571 * just so happens that it is the same bit corresponding to
2572 * the current context.
2573 */
2574
2575static __always_inline int
2576trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2577{
2578        unsigned int val = cpu_buffer->current_context;
2579        int bit;
2580
2581        if (in_interrupt()) {
2582                if (in_nmi())
2583                        bit = RB_CTX_NMI;
2584                else if (in_irq())
2585                        bit = RB_CTX_IRQ;
2586                else
2587                        bit = RB_CTX_SOFTIRQ;
2588        } else
2589                bit = RB_CTX_NORMAL;
2590
2591        if (unlikely(val & (1 << bit)))
2592                return 1;
2593
2594        val |= (1 << bit);
2595        cpu_buffer->current_context = val;
2596
2597        return 0;
2598}
2599
2600static __always_inline void
2601trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2602{
2603        cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2604}
2605
2606/**
2607 * ring_buffer_unlock_commit - commit a reserved
2608 * @buffer: The buffer to commit to
2609 * @event: The event pointer to commit.
2610 *
2611 * This commits the data to the ring buffer, and releases any locks held.
2612 *
2613 * Must be paired with ring_buffer_lock_reserve.
2614 */
2615int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2616                              struct ring_buffer_event *event)
2617{
2618        struct ring_buffer_per_cpu *cpu_buffer;
2619        int cpu = raw_smp_processor_id();
2620
2621        cpu_buffer = buffer->buffers[cpu];
2622
2623        rb_commit(cpu_buffer, event);
2624
2625        rb_wakeups(buffer, cpu_buffer);
2626
2627        trace_recursive_unlock(cpu_buffer);
2628
2629        preempt_enable_notrace();
2630
2631        return 0;
2632}
2633EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2634
2635static noinline void
2636rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2637                    struct rb_event_info *info)
2638{
2639        WARN_ONCE(info->delta > (1ULL << 59),
2640                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2641                  (unsigned long long)info->delta,
2642                  (unsigned long long)info->ts,
2643                  (unsigned long long)cpu_buffer->write_stamp,
2644                  sched_clock_stable() ? "" :
2645                  "If you just came from a suspend/resume,\n"
2646                  "please switch to the trace global clock:\n"
2647                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2648        info->add_timestamp = 1;
2649}
2650
2651static struct ring_buffer_event *
2652__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2653                  struct rb_event_info *info)
2654{
2655        struct ring_buffer_event *event;
2656        struct buffer_page *tail_page;
2657        unsigned long tail, write;
2658
2659        /*
2660         * If the time delta since the last event is too big to
2661         * hold in the time field of the event, then we append a
2662         * TIME EXTEND event ahead of the data event.
2663         */
2664        if (unlikely(info->add_timestamp))
2665                info->length += RB_LEN_TIME_EXTEND;
2666
2667        /* Don't let the compiler play games with cpu_buffer->tail_page */
2668        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2669        write = local_add_return(info->length, &tail_page->write);
2670
2671        /* set write to only the index of the write */
2672        write &= RB_WRITE_MASK;
2673        tail = write - info->length;
2674
2675        /*
2676         * If this is the first commit on the page, then it has the same
2677         * timestamp as the page itself.
2678         */
2679        if (!tail)
2680                info->delta = 0;
2681
2682        /* See if we shot pass the end of this buffer page */
2683        if (unlikely(write > BUF_PAGE_SIZE))
2684                return rb_move_tail(cpu_buffer, tail, info);
2685
2686        /* We reserved something on the buffer */
2687
2688        event = __rb_page_index(tail_page, tail);
2689        kmemcheck_annotate_bitfield(event, bitfield);
2690        rb_update_event(cpu_buffer, event, info);
2691
2692        local_inc(&tail_page->entries);
2693
2694        /*
2695         * If this is the first commit on the page, then update
2696         * its timestamp.
2697         */
2698        if (!tail)
2699                tail_page->page->time_stamp = info->ts;
2700
2701        /* account for these added bytes */
2702        local_add(info->length, &cpu_buffer->entries_bytes);
2703
2704        return event;
2705}
2706
2707static __always_inline struct ring_buffer_event *
2708rb_reserve_next_event(struct ring_buffer *buffer,
2709                      struct ring_buffer_per_cpu *cpu_buffer,
2710                      unsigned long length)
2711{
2712        struct ring_buffer_event *event;
2713        struct rb_event_info info;
2714        int nr_loops = 0;
2715        u64 diff;
2716
2717        rb_start_commit(cpu_buffer);
2718
2719#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2720        /*
2721         * Due to the ability to swap a cpu buffer from a buffer
2722         * it is possible it was swapped before we committed.
2723         * (committing stops a swap). We check for it here and
2724         * if it happened, we have to fail the write.
2725         */
2726        barrier();
2727        if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2728                local_dec(&cpu_buffer->committing);
2729                local_dec(&cpu_buffer->commits);
2730                return NULL;
2731        }
2732#endif
2733
2734        info.length = rb_calculate_event_length(length);
2735 again:
2736        info.add_timestamp = 0;
2737        info.delta = 0;
2738
2739        /*
2740         * We allow for interrupts to reenter here and do a trace.
2741         * If one does, it will cause this original code to loop
2742         * back here. Even with heavy interrupts happening, this
2743         * should only happen a few times in a row. If this happens
2744         * 1000 times in a row, there must be either an interrupt
2745         * storm or we have something buggy.
2746         * Bail!
2747         */
2748        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2749                goto out_fail;
2750
2751        info.ts = rb_time_stamp(cpu_buffer->buffer);
2752        diff = info.ts - cpu_buffer->write_stamp;
2753
2754        /* make sure this diff is calculated here */
2755        barrier();
2756
2757        /* Did the write stamp get updated already? */
2758        if (likely(info.ts >= cpu_buffer->write_stamp)) {
2759                info.delta = diff;
2760                if (unlikely(test_time_stamp(info.delta)))
2761                        rb_handle_timestamp(cpu_buffer, &info);
2762        }
2763
2764        event = __rb_reserve_next(cpu_buffer, &info);
2765
2766        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2767                if (info.add_timestamp)
2768                        info.length -= RB_LEN_TIME_EXTEND;
2769                goto again;
2770        }
2771
2772        if (!event)
2773                goto out_fail;
2774
2775        return event;
2776
2777 out_fail:
2778        rb_end_commit(cpu_buffer);
2779        return NULL;
2780}
2781
2782/**
2783 * ring_buffer_lock_reserve - reserve a part of the buffer
2784 * @buffer: the ring buffer to reserve from
2785 * @length: the length of the data to reserve (excluding event header)
2786 *
2787 * Returns a reseverd event on the ring buffer to copy directly to.
2788 * The user of this interface will need to get the body to write into
2789 * and can use the ring_buffer_event_data() interface.
2790 *
2791 * The length is the length of the data needed, not the event length
2792 * which also includes the event header.
2793 *
2794 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2795 * If NULL is returned, then nothing has been allocated or locked.
2796 */
2797struct ring_buffer_event *
2798ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2799{
2800        struct ring_buffer_per_cpu *cpu_buffer;
2801        struct ring_buffer_event *event;
2802        int cpu;
2803
2804        /* If we are tracing schedule, we don't want to recurse */
2805        preempt_disable_notrace();
2806
2807        if (unlikely(atomic_read(&buffer->record_disabled)))
2808                goto out;
2809
2810        cpu = raw_smp_processor_id();
2811
2812        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2813                goto out;
2814
2815        cpu_buffer = buffer->buffers[cpu];
2816
2817        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2818                goto out;
2819
2820        if (unlikely(length > BUF_MAX_DATA_SIZE))
2821                goto out;
2822
2823        if (unlikely(trace_recursive_lock(cpu_buffer)))
2824                goto out;
2825
2826        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2827        if (!event)
2828                goto out_unlock;
2829
2830        return event;
2831
2832 out_unlock:
2833        trace_recursive_unlock(cpu_buffer);
2834 out:
2835        preempt_enable_notrace();
2836        return NULL;
2837}
2838EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2839
2840/*
2841 * Decrement the entries to the page that an event is on.
2842 * The event does not even need to exist, only the pointer
2843 * to the page it is on. This may only be called before the commit
2844 * takes place.
2845 */
2846static inline void
2847rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2848                   struct ring_buffer_event *event)
2849{
2850        unsigned long addr = (unsigned long)event;
2851        struct buffer_page *bpage = cpu_buffer->commit_page;
2852        struct buffer_page *start;
2853
2854        addr &= PAGE_MASK;
2855
2856        /* Do the likely case first */
2857        if (likely(bpage->page == (void *)addr)) {
2858                local_dec(&bpage->entries);
2859                return;
2860        }
2861
2862        /*
2863         * Because the commit page may be on the reader page we
2864         * start with the next page and check the end loop there.
2865         */
2866        rb_inc_page(cpu_buffer, &bpage);
2867        start = bpage;
2868        do {
2869                if (bpage->page == (void *)addr) {
2870                        local_dec(&bpage->entries);
2871                        return;
2872                }
2873                rb_inc_page(cpu_buffer, &bpage);
2874        } while (bpage != start);
2875
2876        /* commit not part of this buffer?? */
2877        RB_WARN_ON(cpu_buffer, 1);
2878}
2879
2880/**
2881 * ring_buffer_commit_discard - discard an event that has not been committed
2882 * @buffer: the ring buffer
2883 * @event: non committed event to discard
2884 *
2885 * Sometimes an event that is in the ring buffer needs to be ignored.
2886 * This function lets the user discard an event in the ring buffer
2887 * and then that event will not be read later.
2888 *
2889 * This function only works if it is called before the the item has been
2890 * committed. It will try to free the event from the ring buffer
2891 * if another event has not been added behind it.
2892 *
2893 * If another event has been added behind it, it will set the event
2894 * up as discarded, and perform the commit.
2895 *
2896 * If this function is called, do not call ring_buffer_unlock_commit on
2897 * the event.
2898 */
2899void ring_buffer_discard_commit(struct ring_buffer *buffer,
2900                                struct ring_buffer_event *event)
2901{
2902        struct ring_buffer_per_cpu *cpu_buffer;
2903        int cpu;
2904
2905        /* The event is discarded regardless */
2906        rb_event_discard(event);
2907
2908        cpu = smp_processor_id();
2909        cpu_buffer = buffer->buffers[cpu];
2910
2911        /*
2912         * This must only be called if the event has not been
2913         * committed yet. Thus we can assume that preemption
2914         * is still disabled.
2915         */
2916        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2917
2918        rb_decrement_entry(cpu_buffer, event);
2919        if (rb_try_to_discard(cpu_buffer, event))
2920                goto out;
2921
2922        /*
2923         * The commit is still visible by the reader, so we
2924         * must still update the timestamp.
2925         */
2926        rb_update_write_stamp(cpu_buffer, event);
2927 out:
2928        rb_end_commit(cpu_buffer);
2929
2930        trace_recursive_unlock(cpu_buffer);
2931
2932        preempt_enable_notrace();
2933
2934}
2935EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2936
2937/**
2938 * ring_buffer_write - write data to the buffer without reserving
2939 * @buffer: The ring buffer to write to.
2940 * @length: The length of the data being written (excluding the event header)
2941 * @data: The data to write to the buffer.
2942 *
2943 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2944 * one function. If you already have the data to write to the buffer, it
2945 * may be easier to simply call this function.
2946 *
2947 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2948 * and not the length of the event which would hold the header.
2949 */
2950int ring_buffer_write(struct ring_buffer *buffer,
2951                      unsigned long length,
2952                      void *data)
2953{
2954        struct ring_buffer_per_cpu *cpu_buffer;
2955        struct ring_buffer_event *event;
2956        void *body;
2957        int ret = -EBUSY;
2958        int cpu;
2959
2960        preempt_disable_notrace();
2961
2962        if (atomic_read(&buffer->record_disabled))
2963                goto out;
2964
2965        cpu = raw_smp_processor_id();
2966
2967        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968                goto out;
2969
2970        cpu_buffer = buffer->buffers[cpu];
2971
2972        if (atomic_read(&cpu_buffer->record_disabled))
2973                goto out;
2974
2975        if (length > BUF_MAX_DATA_SIZE)
2976                goto out;
2977
2978        if (unlikely(trace_recursive_lock(cpu_buffer)))
2979                goto out;
2980
2981        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2982        if (!event)
2983                goto out_unlock;
2984
2985        body = rb_event_data(event);
2986
2987        memcpy(body, data, length);
2988
2989        rb_commit(cpu_buffer, event);
2990
2991        rb_wakeups(buffer, cpu_buffer);
2992
2993        ret = 0;
2994
2995 out_unlock:
2996        trace_recursive_unlock(cpu_buffer);
2997
2998 out:
2999        preempt_enable_notrace();
3000
3001        return ret;
3002}
3003EXPORT_SYMBOL_GPL(ring_buffer_write);
3004
3005static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3006{
3007        struct buffer_page *reader = cpu_buffer->reader_page;
3008        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3009        struct buffer_page *commit = cpu_buffer->commit_page;
3010
3011        /* In case of error, head will be NULL */
3012        if (unlikely(!head))
3013                return true;
3014
3015        return reader->read == rb_page_commit(reader) &&
3016                (commit == reader ||
3017                 (commit == head &&
3018                  head->read == rb_page_commit(commit)));
3019}
3020
3021/**
3022 * ring_buffer_record_disable - stop all writes into the buffer
3023 * @buffer: The ring buffer to stop writes to.
3024 *
3025 * This prevents all writes to the buffer. Any attempt to write
3026 * to the buffer after this will fail and return NULL.
3027 *
3028 * The caller should call synchronize_sched() after this.
3029 */
3030void ring_buffer_record_disable(struct ring_buffer *buffer)
3031{
3032        atomic_inc(&buffer->record_disabled);
3033}
3034EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3035
3036/**
3037 * ring_buffer_record_enable - enable writes to the buffer
3038 * @buffer: The ring buffer to enable writes
3039 *
3040 * Note, multiple disables will need the same number of enables
3041 * to truly enable the writing (much like preempt_disable).
3042 */
3043void ring_buffer_record_enable(struct ring_buffer *buffer)
3044{
3045        atomic_dec(&buffer->record_disabled);
3046}
3047EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3048
3049/**
3050 * ring_buffer_record_off - stop all writes into the buffer
3051 * @buffer: The ring buffer to stop writes to.
3052 *
3053 * This prevents all writes to the buffer. Any attempt to write
3054 * to the buffer after this will fail and return NULL.
3055 *
3056 * This is different than ring_buffer_record_disable() as
3057 * it works like an on/off switch, where as the disable() version
3058 * must be paired with a enable().
3059 */
3060void ring_buffer_record_off(struct ring_buffer *buffer)
3061{
3062        unsigned int rd;
3063        unsigned int new_rd;
3064
3065        do {
3066                rd = atomic_read(&buffer->record_disabled);
3067                new_rd = rd | RB_BUFFER_OFF;
3068        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3069}
3070EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3071
3072/**
3073 * ring_buffer_record_on - restart writes into the buffer
3074 * @buffer: The ring buffer to start writes to.
3075 *
3076 * This enables all writes to the buffer that was disabled by
3077 * ring_buffer_record_off().
3078 *
3079 * This is different than ring_buffer_record_enable() as
3080 * it works like an on/off switch, where as the enable() version
3081 * must be paired with a disable().
3082 */
3083void ring_buffer_record_on(struct ring_buffer *buffer)
3084{
3085        unsigned int rd;
3086        unsigned int new_rd;
3087
3088        do {
3089                rd = atomic_read(&buffer->record_disabled);
3090                new_rd = rd & ~RB_BUFFER_OFF;
3091        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3092}
3093EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3094
3095/**
3096 * ring_buffer_record_is_on - return true if the ring buffer can write
3097 * @buffer: The ring buffer to see if write is enabled
3098 *
3099 * Returns true if the ring buffer is in a state that it accepts writes.
3100 */
3101int ring_buffer_record_is_on(struct ring_buffer *buffer)
3102{
3103        return !atomic_read(&buffer->record_disabled);
3104}
3105
3106/**
3107 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3108 * @buffer: The ring buffer to stop writes to.
3109 * @cpu: The CPU buffer to stop
3110 *
3111 * This prevents all writes to the buffer. Any attempt to write
3112 * to the buffer after this will fail and return NULL.
3113 *
3114 * The caller should call synchronize_sched() after this.
3115 */
3116void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3117{
3118        struct ring_buffer_per_cpu *cpu_buffer;
3119
3120        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3121                return;
3122
3123        cpu_buffer = buffer->buffers[cpu];
3124        atomic_inc(&cpu_buffer->record_disabled);
3125}
3126EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3127
3128/**
3129 * ring_buffer_record_enable_cpu - enable writes to the buffer
3130 * @buffer: The ring buffer to enable writes
3131 * @cpu: The CPU to enable.
3132 *
3133 * Note, multiple disables will need the same number of enables
3134 * to truly enable the writing (much like preempt_disable).
3135 */
3136void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3137{
3138        struct ring_buffer_per_cpu *cpu_buffer;
3139
3140        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3141                return;
3142
3143        cpu_buffer = buffer->buffers[cpu];
3144        atomic_dec(&cpu_buffer->record_disabled);
3145}
3146EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3147
3148/*
3149 * The total entries in the ring buffer is the running counter
3150 * of entries entered into the ring buffer, minus the sum of
3151 * the entries read from the ring buffer and the number of
3152 * entries that were overwritten.
3153 */
3154static inline unsigned long
3155rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3156{
3157        return local_read(&cpu_buffer->entries) -
3158                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3159}
3160
3161/**
3162 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3163 * @buffer: The ring buffer
3164 * @cpu: The per CPU buffer to read from.
3165 */
3166u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3167{
3168        unsigned long flags;
3169        struct ring_buffer_per_cpu *cpu_buffer;
3170        struct buffer_page *bpage;
3171        u64 ret = 0;
3172
3173        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3174                return 0;
3175
3176        cpu_buffer = buffer->buffers[cpu];
3177        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3178        /*
3179         * if the tail is on reader_page, oldest time stamp is on the reader
3180         * page
3181         */
3182        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3183                bpage = cpu_buffer->reader_page;
3184        else
3185                bpage = rb_set_head_page(cpu_buffer);
3186        if (bpage)
3187                ret = bpage->page->time_stamp;
3188        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3189
3190        return ret;
3191}
3192EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3193
3194/**
3195 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3196 * @buffer: The ring buffer
3197 * @cpu: The per CPU buffer to read from.
3198 */
3199unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3200{
3201        struct ring_buffer_per_cpu *cpu_buffer;
3202        unsigned long ret;
3203
3204        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3205                return 0;
3206
3207        cpu_buffer = buffer->buffers[cpu];
3208        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3209
3210        return ret;
3211}
3212EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3213
3214/**
3215 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3216 * @buffer: The ring buffer
3217 * @cpu: The per CPU buffer to get the entries from.
3218 */
3219unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3220{
3221        struct ring_buffer_per_cpu *cpu_buffer;
3222
3223        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3224                return 0;
3225
3226        cpu_buffer = buffer->buffers[cpu];
3227
3228        return rb_num_of_entries(cpu_buffer);
3229}
3230EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3231
3232/**
3233 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3234 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3235 * @buffer: The ring buffer
3236 * @cpu: The per CPU buffer to get the number of overruns from
3237 */
3238unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3239{
3240        struct ring_buffer_per_cpu *cpu_buffer;
3241        unsigned long ret;
3242
3243        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3244                return 0;
3245
3246        cpu_buffer = buffer->buffers[cpu];
3247        ret = local_read(&cpu_buffer->overrun);
3248
3249        return ret;
3250}
3251EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3252
3253/**
3254 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3255 * commits failing due to the buffer wrapping around while there are uncommitted
3256 * events, such as during an interrupt storm.
3257 * @buffer: The ring buffer
3258 * @cpu: The per CPU buffer to get the number of overruns from
3259 */
3260unsigned long
3261ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3262{
3263        struct ring_buffer_per_cpu *cpu_buffer;
3264        unsigned long ret;
3265
3266        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3267                return 0;
3268
3269        cpu_buffer = buffer->buffers[cpu];
3270        ret = local_read(&cpu_buffer->commit_overrun);
3271
3272        return ret;
3273}
3274EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3275
3276/**
3277 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3278 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3279 * @buffer: The ring buffer
3280 * @cpu: The per CPU buffer to get the number of overruns from
3281 */
3282unsigned long
3283ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3284{
3285        struct ring_buffer_per_cpu *cpu_buffer;
3286        unsigned long ret;
3287
3288        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3289                return 0;
3290
3291        cpu_buffer = buffer->buffers[cpu];
3292        ret = local_read(&cpu_buffer->dropped_events);
3293
3294        return ret;
3295}
3296EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3297
3298/**
3299 * ring_buffer_read_events_cpu - get the number of events successfully read
3300 * @buffer: The ring buffer
3301 * @cpu: The per CPU buffer to get the number of events read
3302 */
3303unsigned long
3304ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3305{
3306        struct ring_buffer_per_cpu *cpu_buffer;
3307
3308        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3309                return 0;
3310
3311        cpu_buffer = buffer->buffers[cpu];
3312        return cpu_buffer->read;
3313}
3314EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3315
3316/**
3317 * ring_buffer_entries - get the number of entries in a buffer
3318 * @buffer: The ring buffer
3319 *
3320 * Returns the total number of entries in the ring buffer
3321 * (all CPU entries)
3322 */
3323unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3324{
3325        struct ring_buffer_per_cpu *cpu_buffer;
3326        unsigned long entries = 0;
3327        int cpu;
3328
3329        /* if you care about this being correct, lock the buffer */
3330        for_each_buffer_cpu(buffer, cpu) {
3331                cpu_buffer = buffer->buffers[cpu];
3332                entries += rb_num_of_entries(cpu_buffer);
3333        }
3334
3335        return entries;
3336}
3337EXPORT_SYMBOL_GPL(ring_buffer_entries);
3338
3339/**
3340 * ring_buffer_overruns - get the number of overruns in buffer
3341 * @buffer: The ring buffer
3342 *
3343 * Returns the total number of overruns in the ring buffer
3344 * (all CPU entries)
3345 */
3346unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3347{
3348        struct ring_buffer_per_cpu *cpu_buffer;
3349        unsigned long overruns = 0;
3350        int cpu;
3351
3352        /* if you care about this being correct, lock the buffer */
3353        for_each_buffer_cpu(buffer, cpu) {
3354                cpu_buffer = buffer->buffers[cpu];
3355                overruns += local_read(&cpu_buffer->overrun);
3356        }
3357
3358        return overruns;
3359}
3360EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3361
3362static void rb_iter_reset(struct ring_buffer_iter *iter)
3363{
3364        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3365
3366        /* Iterator usage is expected to have record disabled */
3367        iter->head_page = cpu_buffer->reader_page;
3368        iter->head = cpu_buffer->reader_page->read;
3369
3370        iter->cache_reader_page = iter->head_page;
3371        iter->cache_read = cpu_buffer->read;
3372
3373        if (iter->head)
3374                iter->read_stamp = cpu_buffer->read_stamp;
3375        else
3376                iter->read_stamp = iter->head_page->page->time_stamp;
3377}
3378
3379/**
3380 * ring_buffer_iter_reset - reset an iterator
3381 * @iter: The iterator to reset
3382 *
3383 * Resets the iterator, so that it will start from the beginning
3384 * again.
3385 */
3386void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3387{
3388        struct ring_buffer_per_cpu *cpu_buffer;
3389        unsigned long flags;
3390
3391        if (!iter)
3392                return;
3393
3394        cpu_buffer = iter->cpu_buffer;
3395
3396        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3397        rb_iter_reset(iter);
3398        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3399}
3400EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3401
3402/**
3403 * ring_buffer_iter_empty - check if an iterator has no more to read
3404 * @iter: The iterator to check
3405 */
3406int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3407{
3408        struct ring_buffer_per_cpu *cpu_buffer;
3409        struct buffer_page *reader;
3410        struct buffer_page *head_page;
3411        struct buffer_page *commit_page;
3412        unsigned commit;
3413
3414        cpu_buffer = iter->cpu_buffer;
3415
3416        /* Remember, trace recording is off when iterator is in use */
3417        reader = cpu_buffer->reader_page;
3418        head_page = cpu_buffer->head_page;
3419        commit_page = cpu_buffer->commit_page;
3420        commit = rb_page_commit(commit_page);
3421
3422        return ((iter->head_page == commit_page && iter->head == commit) ||
3423                (iter->head_page == reader && commit_page == head_page &&
3424                 head_page->read == commit &&
3425                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3426}
3427EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3428
3429static void
3430rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3431                     struct ring_buffer_event *event)
3432{
3433        u64 delta;
3434
3435        switch (event->type_len) {
3436        case RINGBUF_TYPE_PADDING:
3437                return;
3438
3439        case RINGBUF_TYPE_TIME_EXTEND:
3440                delta = event->array[0];
3441                delta <<= TS_SHIFT;
3442                delta += event->time_delta;
3443                cpu_buffer->read_stamp += delta;
3444                return;
3445
3446        case RINGBUF_TYPE_TIME_STAMP:
3447                /* FIXME: not implemented */
3448                return;
3449
3450        case RINGBUF_TYPE_DATA:
3451                cpu_buffer->read_stamp += event->time_delta;
3452                return;
3453
3454        default:
3455                BUG();
3456        }
3457        return;
3458}
3459
3460static void
3461rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3462                          struct ring_buffer_event *event)
3463{
3464        u64 delta;
3465
3466        switch (event->type_len) {
3467        case RINGBUF_TYPE_PADDING:
3468                return;
3469
3470        case RINGBUF_TYPE_TIME_EXTEND:
3471                delta = event->array[0];
3472                delta <<= TS_SHIFT;
3473                delta += event->time_delta;
3474                iter->read_stamp += delta;
3475                return;
3476
3477        case RINGBUF_TYPE_TIME_STAMP:
3478                /* FIXME: not implemented */
3479                return;
3480
3481        case RINGBUF_TYPE_DATA:
3482                iter->read_stamp += event->time_delta;
3483                return;
3484
3485        default:
3486                BUG();
3487        }
3488        return;
3489}
3490
3491static struct buffer_page *
3492rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3493{
3494        struct buffer_page *reader = NULL;
3495        unsigned long overwrite;
3496        unsigned long flags;
3497        int nr_loops = 0;
3498        int ret;
3499
3500        local_irq_save(flags);
3501        arch_spin_lock(&cpu_buffer->lock);
3502
3503 again:
3504        /*
3505         * This should normally only loop twice. But because the
3506         * start of the reader inserts an empty page, it causes
3507         * a case where we will loop three times. There should be no
3508         * reason to loop four times (that I know of).
3509         */
3510        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3511                reader = NULL;
3512                goto out;
3513        }
3514
3515        reader = cpu_buffer->reader_page;
3516
3517        /* If there's more to read, return this page */
3518        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3519                goto out;
3520
3521        /* Never should we have an index greater than the size */
3522        if (RB_WARN_ON(cpu_buffer,
3523                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3524                goto out;
3525
3526        /* check if we caught up to the tail */
3527        reader = NULL;
3528        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3529                goto out;
3530
3531        /* Don't bother swapping if the ring buffer is empty */
3532        if (rb_num_of_entries(cpu_buffer) == 0)
3533                goto out;
3534
3535        /*
3536         * Reset the reader page to size zero.
3537         */
3538        local_set(&cpu_buffer->reader_page->write, 0);
3539        local_set(&cpu_buffer->reader_page->entries, 0);
3540        local_set(&cpu_buffer->reader_page->page->commit, 0);
3541        cpu_buffer->reader_page->real_end = 0;
3542
3543 spin:
3544        /*
3545         * Splice the empty reader page into the list around the head.
3546         */
3547        reader = rb_set_head_page(cpu_buffer);
3548        if (!reader)
3549                goto out;
3550        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3551        cpu_buffer->reader_page->list.prev = reader->list.prev;
3552
3553        /*
3554         * cpu_buffer->pages just needs to point to the buffer, it
3555         *  has no specific buffer page to point to. Lets move it out
3556         *  of our way so we don't accidentally swap it.
3557         */
3558        cpu_buffer->pages = reader->list.prev;
3559
3560        /* The reader page will be pointing to the new head */
3561        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3562
3563        /*
3564         * We want to make sure we read the overruns after we set up our
3565         * pointers to the next object. The writer side does a
3566         * cmpxchg to cross pages which acts as the mb on the writer
3567         * side. Note, the reader will constantly fail the swap
3568         * while the writer is updating the pointers, so this
3569         * guarantees that the overwrite recorded here is the one we
3570         * want to compare with the last_overrun.
3571         */
3572        smp_mb();
3573        overwrite = local_read(&(cpu_buffer->overrun));
3574
3575        /*
3576         * Here's the tricky part.
3577         *
3578         * We need to move the pointer past the header page.
3579         * But we can only do that if a writer is not currently
3580         * moving it. The page before the header page has the
3581         * flag bit '1' set if it is pointing to the page we want.
3582         * but if the writer is in the process of moving it
3583         * than it will be '2' or already moved '0'.
3584         */
3585
3586        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3587
3588        /*
3589         * If we did not convert it, then we must try again.
3590         */
3591        if (!ret)
3592                goto spin;
3593
3594        /*
3595         * Yeah! We succeeded in replacing the page.
3596         *
3597         * Now make the new head point back to the reader page.
3598         */
3599        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3600        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3601
3602        /* Finally update the reader page to the new head */
3603        cpu_buffer->reader_page = reader;
3604        cpu_buffer->reader_page->read = 0;
3605
3606        if (overwrite != cpu_buffer->last_overrun) {
3607                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3608                cpu_buffer->last_overrun = overwrite;
3609        }
3610
3611        goto again;
3612
3613 out:
3614        /* Update the read_stamp on the first event */
3615        if (reader && reader->read == 0)
3616                cpu_buffer->read_stamp = reader->page->time_stamp;
3617
3618        arch_spin_unlock(&cpu_buffer->lock);
3619        local_irq_restore(flags);
3620
3621        return reader;
3622}
3623
3624static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3625{
3626        struct ring_buffer_event *event;
3627        struct buffer_page *reader;
3628        unsigned length;
3629
3630        reader = rb_get_reader_page(cpu_buffer);
3631
3632        /* This function should not be called when buffer is empty */
3633        if (RB_WARN_ON(cpu_buffer, !reader))
3634                return;
3635
3636        event = rb_reader_event(cpu_buffer);
3637
3638        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3639                cpu_buffer->read++;
3640
3641        rb_update_read_stamp(cpu_buffer, event);
3642
3643        length = rb_event_length(event);
3644        cpu_buffer->reader_page->read += length;
3645}
3646
3647static void rb_advance_iter(struct ring_buffer_iter *iter)
3648{
3649        struct ring_buffer_per_cpu *cpu_buffer;
3650        struct ring_buffer_event *event;
3651        unsigned length;
3652
3653        cpu_buffer = iter->cpu_buffer;
3654
3655        /*
3656         * Check if we are at the end of the buffer.
3657         */
3658        if (iter->head >= rb_page_size(iter->head_page)) {
3659                /* discarded commits can make the page empty */
3660                if (iter->head_page == cpu_buffer->commit_page)
3661                        return;
3662                rb_inc_iter(iter);
3663                return;
3664        }
3665
3666        event = rb_iter_head_event(iter);
3667
3668        length = rb_event_length(event);
3669
3670        /*
3671         * This should not be called to advance the header if we are
3672         * at the tail of the buffer.
3673         */
3674        if (RB_WARN_ON(cpu_buffer,
3675                       (iter->head_page == cpu_buffer->commit_page) &&
3676                       (iter->head + length > rb_commit_index(cpu_buffer))))
3677                return;
3678
3679        rb_update_iter_read_stamp(iter, event);
3680
3681        iter->head += length;
3682
3683        /* check for end of page padding */
3684        if ((iter->head >= rb_page_size(iter->head_page)) &&
3685            (iter->head_page != cpu_buffer->commit_page))
3686                rb_inc_iter(iter);
3687}
3688
3689static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3690{
3691        return cpu_buffer->lost_events;
3692}
3693
3694static struct ring_buffer_event *
3695rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3696               unsigned long *lost_events)
3697{
3698        struct ring_buffer_event *event;
3699        struct buffer_page *reader;
3700        int nr_loops = 0;
3701
3702 again:
3703        /*
3704         * We repeat when a time extend is encountered.
3705         * Since the time extend is always attached to a data event,
3706         * we should never loop more than once.
3707         * (We never hit the following condition more than twice).
3708         */
3709        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3710                return NULL;
3711
3712        reader = rb_get_reader_page(cpu_buffer);
3713        if (!reader)
3714                return NULL;
3715
3716        event = rb_reader_event(cpu_buffer);
3717
3718        switch (event->type_len) {
3719        case RINGBUF_TYPE_PADDING:
3720                if (rb_null_event(event))
3721                        RB_WARN_ON(cpu_buffer, 1);
3722                /*
3723                 * Because the writer could be discarding every
3724                 * event it creates (which would probably be bad)
3725                 * if we were to go back to "again" then we may never
3726                 * catch up, and will trigger the warn on, or lock
3727                 * the box. Return the padding, and we will release
3728                 * the current locks, and try again.
3729                 */
3730                return event;
3731
3732        case RINGBUF_TYPE_TIME_EXTEND:
3733                /* Internal data, OK to advance */
3734                rb_advance_reader(cpu_buffer);
3735                goto again;
3736
3737        case RINGBUF_TYPE_TIME_STAMP:
3738                /* FIXME: not implemented */
3739                rb_advance_reader(cpu_buffer);
3740                goto again;
3741
3742        case RINGBUF_TYPE_DATA:
3743                if (ts) {
3744                        *ts = cpu_buffer->read_stamp + event->time_delta;
3745                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3746                                                         cpu_buffer->cpu, ts);
3747                }
3748                if (lost_events)
3749                        *lost_events = rb_lost_events(cpu_buffer);
3750                return event;
3751
3752        default:
3753                BUG();
3754        }
3755
3756        return NULL;
3757}
3758EXPORT_SYMBOL_GPL(ring_buffer_peek);
3759
3760static struct ring_buffer_event *
3761rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3762{
3763        struct ring_buffer *buffer;
3764        struct ring_buffer_per_cpu *cpu_buffer;
3765        struct ring_buffer_event *event;
3766        int nr_loops = 0;
3767
3768        cpu_buffer = iter->cpu_buffer;
3769        buffer = cpu_buffer->buffer;
3770
3771        /*
3772         * Check if someone performed a consuming read to
3773         * the buffer. A consuming read invalidates the iterator
3774         * and we need to reset the iterator in this case.
3775         */
3776        if (unlikely(iter->cache_read != cpu_buffer->read ||
3777                     iter->cache_reader_page != cpu_buffer->reader_page))
3778                rb_iter_reset(iter);
3779
3780 again:
3781        if (ring_buffer_iter_empty(iter))
3782                return NULL;
3783
3784        /*
3785         * We repeat when a time extend is encountered or we hit
3786         * the end of the page. Since the time extend is always attached
3787         * to a data event, we should never loop more than three times.
3788         * Once for going to next page, once on time extend, and
3789         * finally once to get the event.
3790         * (We never hit the following condition more than thrice).
3791         */
3792        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3793                return NULL;
3794
3795        if (rb_per_cpu_empty(cpu_buffer))
3796                return NULL;
3797
3798        if (iter->head >= rb_page_size(iter->head_page)) {
3799                rb_inc_iter(iter);
3800                goto again;
3801        }
3802
3803        event = rb_iter_head_event(iter);
3804
3805        switch (event->type_len) {
3806        case RINGBUF_TYPE_PADDING:
3807                if (rb_null_event(event)) {
3808                        rb_inc_iter(iter);
3809                        goto again;
3810                }
3811                rb_advance_iter(iter);
3812                return event;
3813
3814        case RINGBUF_TYPE_TIME_EXTEND:
3815                /* Internal data, OK to advance */
3816                rb_advance_iter(iter);
3817                goto again;
3818
3819        case RINGBUF_TYPE_TIME_STAMP:
3820                /* FIXME: not implemented */
3821                rb_advance_iter(iter);
3822                goto again;
3823
3824        case RINGBUF_TYPE_DATA:
3825                if (ts) {
3826                        *ts = iter->read_stamp + event->time_delta;
3827                        ring_buffer_normalize_time_stamp(buffer,
3828                                                         cpu_buffer->cpu, ts);
3829                }
3830                return event;
3831
3832        default:
3833                BUG();
3834        }
3835
3836        return NULL;
3837}
3838EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3839
3840static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3841{
3842        if (likely(!in_nmi())) {
3843                raw_spin_lock(&cpu_buffer->reader_lock);
3844                return true;
3845        }
3846
3847        /*
3848         * If an NMI die dumps out the content of the ring buffer
3849         * trylock must be used to prevent a deadlock if the NMI
3850         * preempted a task that holds the ring buffer locks. If
3851         * we get the lock then all is fine, if not, then continue
3852         * to do the read, but this can corrupt the ring buffer,
3853         * so it must be permanently disabled from future writes.
3854         * Reading from NMI is a oneshot deal.
3855         */
3856        if (raw_spin_trylock(&cpu_buffer->reader_lock))
3857                return true;
3858
3859        /* Continue without locking, but disable the ring buffer */
3860        atomic_inc(&cpu_buffer->record_disabled);
3861        return false;
3862}
3863
3864static inline void
3865rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3866{
3867        if (likely(locked))
3868                raw_spin_unlock(&cpu_buffer->reader_lock);
3869        return;
3870}
3871
3872/**
3873 * ring_buffer_peek - peek at the next event to be read
3874 * @buffer: The ring buffer to read
3875 * @cpu: The cpu to peak at
3876 * @ts: The timestamp counter of this event.
3877 * @lost_events: a variable to store if events were lost (may be NULL)
3878 *
3879 * This will return the event that will be read next, but does
3880 * not consume the data.
3881 */
3882struct ring_buffer_event *
3883ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3884                 unsigned long *lost_events)
3885{
3886        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3887        struct ring_buffer_event *event;
3888        unsigned long flags;
3889        bool dolock;
3890
3891        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3892                return NULL;
3893
3894 again:
3895        local_irq_save(flags);
3896        dolock = rb_reader_lock(cpu_buffer);
3897        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3898        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3899                rb_advance_reader(cpu_buffer);
3900        rb_reader_unlock(cpu_buffer, dolock);
3901        local_irq_restore(flags);
3902
3903        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3904                goto again;
3905
3906        return event;
3907}
3908
3909/**
3910 * ring_buffer_iter_peek - peek at the next event to be read
3911 * @iter: The ring buffer iterator
3912 * @ts: The timestamp counter of this event.
3913 *
3914 * This will return the event that will be read next, but does
3915 * not increment the iterator.
3916 */
3917struct ring_buffer_event *
3918ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3919{
3920        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3921        struct ring_buffer_event *event;
3922        unsigned long flags;
3923
3924 again:
3925        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3926        event = rb_iter_peek(iter, ts);
3927        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3928
3929        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3930                goto again;
3931
3932        return event;
3933}
3934
3935/**
3936 * ring_buffer_consume - return an event and consume it
3937 * @buffer: The ring buffer to get the next event from
3938 * @cpu: the cpu to read the buffer from
3939 * @ts: a variable to store the timestamp (may be NULL)
3940 * @lost_events: a variable to store if events were lost (may be NULL)
3941 *
3942 * Returns the next event in the ring buffer, and that event is consumed.
3943 * Meaning, that sequential reads will keep returning a different event,
3944 * and eventually empty the ring buffer if the producer is slower.
3945 */
3946struct ring_buffer_event *
3947ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3948                    unsigned long *lost_events)
3949{
3950        struct ring_buffer_per_cpu *cpu_buffer;
3951        struct ring_buffer_event *event = NULL;
3952        unsigned long flags;
3953        bool dolock;
3954
3955 again:
3956        /* might be called in atomic */
3957        preempt_disable();
3958
3959        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960                goto out;
3961
3962        cpu_buffer = buffer->buffers[cpu];
3963        local_irq_save(flags);
3964        dolock = rb_reader_lock(cpu_buffer);
3965
3966        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3967        if (event) {
3968                cpu_buffer->lost_events = 0;
3969                rb_advance_reader(cpu_buffer);
3970        }
3971
3972        rb_reader_unlock(cpu_buffer, dolock);
3973        local_irq_restore(flags);
3974
3975 out:
3976        preempt_enable();
3977
3978        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3979                goto again;
3980
3981        return event;
3982}
3983EXPORT_SYMBOL_GPL(ring_buffer_consume);
3984
3985/**
3986 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3987 * @buffer: The ring buffer to read from
3988 * @cpu: The cpu buffer to iterate over
3989 *
3990 * This performs the initial preparations necessary to iterate
3991 * through the buffer.  Memory is allocated, buffer recording
3992 * is disabled, and the iterator pointer is returned to the caller.
3993 *
3994 * Disabling buffer recordng prevents the reading from being
3995 * corrupted. This is not a consuming read, so a producer is not
3996 * expected.
3997 *
3998 * After a sequence of ring_buffer_read_prepare calls, the user is
3999 * expected to make at least one call to ring_buffer_read_prepare_sync.
4000 * Afterwards, ring_buffer_read_start is invoked to get things going
4001 * for real.
4002 *
4003 * This overall must be paired with ring_buffer_read_finish.
4004 */
4005struct ring_buffer_iter *
4006ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4007{
4008        struct ring_buffer_per_cpu *cpu_buffer;
4009        struct ring_buffer_iter *iter;
4010
4011        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4012                return NULL;
4013
4014        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4015        if (!iter)
4016                return NULL;
4017
4018        cpu_buffer = buffer->buffers[cpu];
4019
4020        iter->cpu_buffer = cpu_buffer;
4021
4022        atomic_inc(&buffer->resize_disabled);
4023        atomic_inc(&cpu_buffer->record_disabled);
4024
4025        return iter;
4026}
4027EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4028
4029/**
4030 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4031 *
4032 * All previously invoked ring_buffer_read_prepare calls to prepare
4033 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4034 * calls on those iterators are allowed.
4035 */
4036void
4037ring_buffer_read_prepare_sync(void)
4038{
4039        synchronize_sched();
4040}
4041EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4042
4043/**
4044 * ring_buffer_read_start - start a non consuming read of the buffer
4045 * @iter: The iterator returned by ring_buffer_read_prepare
4046 *
4047 * This finalizes the startup of an iteration through the buffer.
4048 * The iterator comes from a call to ring_buffer_read_prepare and
4049 * an intervening ring_buffer_read_prepare_sync must have been
4050 * performed.
4051 *
4052 * Must be paired with ring_buffer_read_finish.
4053 */
4054void
4055ring_buffer_read_start(struct ring_buffer_iter *iter)
4056{
4057        struct ring_buffer_per_cpu *cpu_buffer;
4058        unsigned long flags;
4059
4060        if (!iter)
4061                return;
4062
4063        cpu_buffer = iter->cpu_buffer;
4064
4065        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4066        arch_spin_lock(&cpu_buffer->lock);
4067        rb_iter_reset(iter);
4068        arch_spin_unlock(&cpu_buffer->lock);
4069        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4070}
4071EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4072
4073/**
4074 * ring_buffer_read_finish - finish reading the iterator of the buffer
4075 * @iter: The iterator retrieved by ring_buffer_start
4076 *
4077 * This re-enables the recording to the buffer, and frees the
4078 * iterator.
4079 */
4080void
4081ring_buffer_read_finish(struct ring_buffer_iter *iter)
4082{
4083        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084        unsigned long flags;
4085
4086        /*
4087         * Ring buffer is disabled from recording, here's a good place
4088         * to check the integrity of the ring buffer.
4089         * Must prevent readers from trying to read, as the check
4090         * clears the HEAD page and readers require it.
4091         */
4092        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4093        rb_check_pages(cpu_buffer);
4094        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4095
4096        atomic_dec(&cpu_buffer->record_disabled);
4097        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4098        kfree(iter);
4099}
4100EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4101
4102/**
4103 * ring_buffer_read - read the next item in the ring buffer by the iterator
4104 * @iter: The ring buffer iterator
4105 * @ts: The time stamp of the event read.
4106 *
4107 * This reads the next event in the ring buffer and increments the iterator.
4108 */
4109struct ring_buffer_event *
4110ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4111{
4112        struct ring_buffer_event *event;
4113        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4114        unsigned long flags;
4115
4116        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4117 again:
4118        event = rb_iter_peek(iter, ts);
4119        if (!event)
4120                goto out;
4121
4122        if (event->type_len == RINGBUF_TYPE_PADDING)
4123                goto again;
4124
4125        rb_advance_iter(iter);
4126 out:
4127        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4128
4129        return event;
4130}
4131EXPORT_SYMBOL_GPL(ring_buffer_read);
4132
4133/**
4134 * ring_buffer_size - return the size of the ring buffer (in bytes)
4135 * @buffer: The ring buffer.
4136 */
4137unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4138{
4139        /*
4140         * Earlier, this method returned
4141         *      BUF_PAGE_SIZE * buffer->nr_pages
4142         * Since the nr_pages field is now removed, we have converted this to
4143         * return the per cpu buffer value.
4144         */
4145        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4146                return 0;
4147
4148        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4149}
4150EXPORT_SYMBOL_GPL(ring_buffer_size);
4151
4152static void
4153rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4154{
4155        rb_head_page_deactivate(cpu_buffer);
4156
4157        cpu_buffer->head_page
4158                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4159        local_set(&cpu_buffer->head_page->write, 0);
4160        local_set(&cpu_buffer->head_page->entries, 0);
4161        local_set(&cpu_buffer->head_page->page->commit, 0);
4162
4163        cpu_buffer->head_page->read = 0;
4164
4165        cpu_buffer->tail_page = cpu_buffer->head_page;
4166        cpu_buffer->commit_page = cpu_buffer->head_page;
4167
4168        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4169        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4170        local_set(&cpu_buffer->reader_page->write, 0);
4171        local_set(&cpu_buffer->reader_page->entries, 0);
4172        local_set(&cpu_buffer->reader_page->page->commit, 0);
4173        cpu_buffer->reader_page->read = 0;
4174
4175        local_set(&cpu_buffer->entries_bytes, 0);
4176        local_set(&cpu_buffer->overrun, 0);
4177        local_set(&cpu_buffer->commit_overrun, 0);
4178        local_set(&cpu_buffer->dropped_events, 0);
4179        local_set(&cpu_buffer->entries, 0);
4180        local_set(&cpu_buffer->committing, 0);
4181        local_set(&cpu_buffer->commits, 0);
4182        cpu_buffer->read = 0;
4183        cpu_buffer->read_bytes = 0;
4184
4185        cpu_buffer->write_stamp = 0;
4186        cpu_buffer->read_stamp = 0;
4187
4188        cpu_buffer->lost_events = 0;
4189        cpu_buffer->last_overrun = 0;
4190
4191        rb_head_page_activate(cpu_buffer);
4192}
4193
4194/**
4195 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4196 * @buffer: The ring buffer to reset a per cpu buffer of
4197 * @cpu: The CPU buffer to be reset
4198 */
4199void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4200{
4201        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4202        unsigned long flags;
4203
4204        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4205                return;
4206
4207        atomic_inc(&buffer->resize_disabled);
4208        atomic_inc(&cpu_buffer->record_disabled);
4209
4210        /* Make sure all commits have finished */
4211        synchronize_sched();
4212
4213        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4214
4215        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4216                goto out;
4217
4218        arch_spin_lock(&cpu_buffer->lock);
4219
4220        rb_reset_cpu(cpu_buffer);
4221
4222        arch_spin_unlock(&cpu_buffer->lock);
4223
4224 out:
4225        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4226
4227        atomic_dec(&cpu_buffer->record_disabled);
4228        atomic_dec(&buffer->resize_disabled);
4229}
4230EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4231
4232/**
4233 * ring_buffer_reset - reset a ring buffer
4234 * @buffer: The ring buffer to reset all cpu buffers
4235 */
4236void ring_buffer_reset(struct ring_buffer *buffer)
4237{
4238        int cpu;
4239
4240        for_each_buffer_cpu(buffer, cpu)
4241                ring_buffer_reset_cpu(buffer, cpu);
4242}
4243EXPORT_SYMBOL_GPL(ring_buffer_reset);
4244
4245/**
4246 * rind_buffer_empty - is the ring buffer empty?
4247 * @buffer: The ring buffer to test
4248 */
4249bool ring_buffer_empty(struct ring_buffer *buffer)
4250{
4251        struct ring_buffer_per_cpu *cpu_buffer;
4252        unsigned long flags;
4253        bool dolock;
4254        int cpu;
4255        int ret;
4256
4257        /* yes this is racy, but if you don't like the race, lock the buffer */
4258        for_each_buffer_cpu(buffer, cpu) {
4259                cpu_buffer = buffer->buffers[cpu];
4260                local_irq_save(flags);
4261                dolock = rb_reader_lock(cpu_buffer);
4262                ret = rb_per_cpu_empty(cpu_buffer);
4263                rb_reader_unlock(cpu_buffer, dolock);
4264                local_irq_restore(flags);
4265
4266                if (!ret)
4267                        return false;
4268        }
4269
4270        return true;
4271}
4272EXPORT_SYMBOL_GPL(ring_buffer_empty);
4273
4274/**
4275 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4276 * @buffer: The ring buffer
4277 * @cpu: The CPU buffer to test
4278 */
4279bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4280{
4281        struct ring_buffer_per_cpu *cpu_buffer;
4282        unsigned long flags;
4283        bool dolock;
4284        int ret;
4285
4286        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287                return true;
4288
4289        cpu_buffer = buffer->buffers[cpu];
4290        local_irq_save(flags);
4291        dolock = rb_reader_lock(cpu_buffer);
4292        ret = rb_per_cpu_empty(cpu_buffer);
4293        rb_reader_unlock(cpu_buffer, dolock);
4294        local_irq_restore(flags);
4295
4296        return ret;
4297}
4298EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299
4300#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301/**
4302 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303 * @buffer_a: One buffer to swap with
4304 * @buffer_b: The other buffer to swap with
4305 *
4306 * This function is useful for tracers that want to take a "snapshot"
4307 * of a CPU buffer and has another back up buffer lying around.
4308 * it is expected that the tracer handles the cpu buffer not being
4309 * used at the moment.
4310 */
4311int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312                         struct ring_buffer *buffer_b, int cpu)
4313{
4314        struct ring_buffer_per_cpu *cpu_buffer_a;
4315        struct ring_buffer_per_cpu *cpu_buffer_b;
4316        int ret = -EINVAL;
4317
4318        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320                goto out;
4321
4322        cpu_buffer_a = buffer_a->buffers[cpu];
4323        cpu_buffer_b = buffer_b->buffers[cpu];
4324
4325        /* At least make sure the two buffers are somewhat the same */
4326        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327                goto out;
4328
4329        ret = -EAGAIN;
4330
4331        if (atomic_read(&buffer_a->record_disabled))
4332                goto out;
4333
4334        if (atomic_read(&buffer_b->record_disabled))
4335                goto out;
4336
4337        if (atomic_read(&cpu_buffer_a->record_disabled))
4338                goto out;
4339
4340        if (atomic_read(&cpu_buffer_b->record_disabled))
4341                goto out;
4342
4343        /*
4344         * We can't do a synchronize_sched here because this
4345         * function can be called in atomic context.
4346         * Normally this will be called from the same CPU as cpu.
4347         * If not it's up to the caller to protect this.
4348         */
4349        atomic_inc(&cpu_buffer_a->record_disabled);
4350        atomic_inc(&cpu_buffer_b->record_disabled);
4351
4352        ret = -EBUSY;
4353        if (local_read(&cpu_buffer_a->committing))
4354                goto out_dec;
4355        if (local_read(&cpu_buffer_b->committing))
4356                goto out_dec;
4357
4358        buffer_a->buffers[cpu] = cpu_buffer_b;
4359        buffer_b->buffers[cpu] = cpu_buffer_a;
4360
4361        cpu_buffer_b->buffer = buffer_a;
4362        cpu_buffer_a->buffer = buffer_b;
4363
4364        ret = 0;
4365
4366out_dec:
4367        atomic_dec(&cpu_buffer_a->record_disabled);
4368        atomic_dec(&cpu_buffer_b->record_disabled);
4369out:
4370        return ret;
4371}
4372EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4374
4375/**
4376 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377 * @buffer: the buffer to allocate for.
4378 * @cpu: the cpu buffer to allocate.
4379 *
4380 * This function is used in conjunction with ring_buffer_read_page.
4381 * When reading a full page from the ring buffer, these functions
4382 * can be used to speed up the process. The calling function should
4383 * allocate a few pages first with this function. Then when it
4384 * needs to get pages from the ring buffer, it passes the result
4385 * of this function into ring_buffer_read_page, which will swap
4386 * the page that was allocated, with the read page of the buffer.
4387 *
4388 * Returns:
4389 *  The page allocated, or ERR_PTR
4390 */
4391void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4392{
4393        struct ring_buffer_per_cpu *cpu_buffer;
4394        struct buffer_data_page *bpage = NULL;
4395        unsigned long flags;
4396        struct page *page;
4397
4398        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4399                return ERR_PTR(-ENODEV);
4400
4401        cpu_buffer = buffer->buffers[cpu];
4402        local_irq_save(flags);
4403        arch_spin_lock(&cpu_buffer->lock);
4404
4405        if (cpu_buffer->free_page) {
4406                bpage = cpu_buffer->free_page;
4407                cpu_buffer->free_page = NULL;
4408        }
4409
4410        arch_spin_unlock(&cpu_buffer->lock);
4411        local_irq_restore(flags);
4412
4413        if (bpage)
4414                goto out;
4415
4416        page = alloc_pages_node(cpu_to_node(cpu),
4417                                GFP_KERNEL | __GFP_NORETRY, 0);
4418        if (!page)
4419                return ERR_PTR(-ENOMEM);
4420
4421        bpage = page_address(page);
4422
4423 out:
4424        rb_init_page(bpage);
4425
4426        return bpage;
4427}
4428EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4429
4430/**
4431 * ring_buffer_free_read_page - free an allocated read page
4432 * @buffer: the buffer the page was allocate for
4433 * @cpu: the cpu buffer the page came from
4434 * @data: the page to free
4435 *
4436 * Free a page allocated from ring_buffer_alloc_read_page.
4437 */
4438void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4439{
4440        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441        struct buffer_data_page *bpage = data;
4442        unsigned long flags;
4443
4444        local_irq_save(flags);
4445        arch_spin_lock(&cpu_buffer->lock);
4446
4447        if (!cpu_buffer->free_page) {
4448                cpu_buffer->free_page = bpage;
4449                bpage = NULL;
4450        }
4451
4452        arch_spin_unlock(&cpu_buffer->lock);
4453        local_irq_restore(flags);
4454
4455        free_page((unsigned long)bpage);
4456}
4457EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4458
4459/**
4460 * ring_buffer_read_page - extract a page from the ring buffer
4461 * @buffer: buffer to extract from
4462 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4463 * @len: amount to extract
4464 * @cpu: the cpu of the buffer to extract
4465 * @full: should the extraction only happen when the page is full.
4466 *
4467 * This function will pull out a page from the ring buffer and consume it.
4468 * @data_page must be the address of the variable that was returned
4469 * from ring_buffer_alloc_read_page. This is because the page might be used
4470 * to swap with a page in the ring buffer.
4471 *
4472 * for example:
4473 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4474 *      if (IS_ERR(rpage))
4475 *              return PTR_ERR(rpage);
4476 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4477 *      if (ret >= 0)
4478 *              process_page(rpage, ret);
4479 *
4480 * When @full is set, the function will not return true unless
4481 * the writer is off the reader page.
4482 *
4483 * Note: it is up to the calling functions to handle sleeps and wakeups.
4484 *  The ring buffer can be used anywhere in the kernel and can not
4485 *  blindly call wake_up. The layer that uses the ring buffer must be
4486 *  responsible for that.
4487 *
4488 * Returns:
4489 *  >=0 if data has been transferred, returns the offset of consumed data.
4490 *  <0 if no data has been transferred.
4491 */
4492int ring_buffer_read_page(struct ring_buffer *buffer,
4493                          void **data_page, size_t len, int cpu, int full)
4494{
4495        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4496        struct ring_buffer_event *event;
4497        struct buffer_data_page *bpage;
4498        struct buffer_page *reader;
4499        unsigned long missed_events;
4500        unsigned long flags;
4501        unsigned int commit;
4502        unsigned int read;
4503        u64 save_timestamp;
4504        int ret = -1;
4505
4506        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4507                goto out;
4508
4509        /*
4510         * If len is not big enough to hold the page header, then
4511         * we can not copy anything.
4512         */
4513        if (len <= BUF_PAGE_HDR_SIZE)
4514                goto out;
4515
4516        len -= BUF_PAGE_HDR_SIZE;
4517
4518        if (!data_page)
4519                goto out;
4520
4521        bpage = *data_page;
4522        if (!bpage)
4523                goto out;
4524
4525        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4526
4527        reader = rb_get_reader_page(cpu_buffer);
4528        if (!reader)
4529                goto out_unlock;
4530
4531        event = rb_reader_event(cpu_buffer);
4532
4533        read = reader->read;
4534        commit = rb_page_commit(reader);
4535
4536        /* Check if any events were dropped */
4537        missed_events = cpu_buffer->lost_events;
4538
4539        /*
4540         * If this page has been partially read or
4541         * if len is not big enough to read the rest of the page or
4542         * a writer is still on the page, then
4543         * we must copy the data from the page to the buffer.
4544         * Otherwise, we can simply swap the page with the one passed in.
4545         */
4546        if (read || (len < (commit - read)) ||
4547            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4548                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4549                unsigned int rpos = read;
4550                unsigned int pos = 0;
4551                unsigned int size;
4552
4553                if (full)
4554                        goto out_unlock;
4555
4556                if (len > (commit - read))
4557                        len = (commit - read);
4558
4559                /* Always keep the time extend and data together */
4560                size = rb_event_ts_length(event);
4561
4562                if (len < size)
4563                        goto out_unlock;
4564
4565                /* save the current timestamp, since the user will need it */
4566                save_timestamp = cpu_buffer->read_stamp;
4567
4568                /* Need to copy one event at a time */
4569                do {
4570                        /* We need the size of one event, because
4571                         * rb_advance_reader only advances by one event,
4572                         * whereas rb_event_ts_length may include the size of
4573                         * one or two events.
4574                         * We have already ensured there's enough space if this
4575                         * is a time extend. */
4576                        size = rb_event_length(event);
4577                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4578
4579                        len -= size;
4580
4581                        rb_advance_reader(cpu_buffer);
4582                        rpos = reader->read;
4583                        pos += size;
4584
4585                        if (rpos >= commit)
4586                                break;
4587
4588                        event = rb_reader_event(cpu_buffer);
4589                        /* Always keep the time extend and data together */
4590                        size = rb_event_ts_length(event);
4591                } while (len >= size);
4592
4593                /* update bpage */
4594                local_set(&bpage->commit, pos);
4595                bpage->time_stamp = save_timestamp;
4596
4597                /* we copied everything to the beginning */
4598                read = 0;
4599        } else {
4600                /* update the entry counter */
4601                cpu_buffer->read += rb_page_entries(reader);
4602                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4603
4604                /* swap the pages */
4605                rb_init_page(bpage);
4606                bpage = reader->page;
4607                reader->page = *data_page;
4608                local_set(&reader->write, 0);
4609                local_set(&reader->entries, 0);
4610                reader->read = 0;
4611                *data_page = bpage;
4612
4613                /*
4614                 * Use the real_end for the data size,
4615                 * This gives us a chance to store the lost events
4616                 * on the page.
4617                 */
4618                if (reader->real_end)
4619                        local_set(&bpage->commit, reader->real_end);
4620        }
4621        ret = read;
4622
4623        cpu_buffer->lost_events = 0;
4624
4625        commit = local_read(&bpage->commit);
4626        /*
4627         * Set a flag in the commit field if we lost events
4628         */
4629        if (missed_events) {
4630                /* If there is room at the end of the page to save the
4631                 * missed events, then record it there.
4632                 */
4633                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4634                        memcpy(&bpage->data[commit], &missed_events,
4635                               sizeof(missed_events));
4636                        local_add(RB_MISSED_STORED, &bpage->commit);
4637                        commit += sizeof(missed_events);
4638                }
4639                local_add(RB_MISSED_EVENTS, &bpage->commit);
4640        }
4641
4642        /*
4643         * This page may be off to user land. Zero it out here.
4644         */
4645        if (commit < BUF_PAGE_SIZE)
4646                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4647
4648 out_unlock:
4649        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4650
4651 out:
4652        return ret;
4653}
4654EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4655
4656/*
4657 * We only allocate new buffers, never free them if the CPU goes down.
4658 * If we were to free the buffer, then the user would lose any trace that was in
4659 * the buffer.
4660 */
4661int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4662{
4663        struct ring_buffer *buffer;
4664        long nr_pages_same;
4665        int cpu_i;
4666        unsigned long nr_pages;
4667
4668        buffer = container_of(node, struct ring_buffer, node);
4669        if (cpumask_test_cpu(cpu, buffer->cpumask))
4670                return 0;
4671
4672        nr_pages = 0;
4673        nr_pages_same = 1;
4674        /* check if all cpu sizes are same */
4675        for_each_buffer_cpu(buffer, cpu_i) {
4676                /* fill in the size from first enabled cpu */
4677                if (nr_pages == 0)
4678                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4679                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4680                        nr_pages_same = 0;
4681                        break;
4682                }
4683        }
4684        /* allocate minimum pages, user can later expand it */
4685        if (!nr_pages_same)
4686                nr_pages = 2;
4687        buffer->buffers[cpu] =
4688                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4689        if (!buffer->buffers[cpu]) {
4690                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4691                     cpu);
4692                return -ENOMEM;
4693        }
4694        smp_wmb();
4695        cpumask_set_cpu(cpu, buffer->cpumask);
4696        return 0;
4697}
4698
4699#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700/*
4701 * This is a basic integrity check of the ring buffer.
4702 * Late in the boot cycle this test will run when configured in.
4703 * It will kick off a thread per CPU that will go into a loop
4704 * writing to the per cpu ring buffer various sizes of data.
4705 * Some of the data will be large items, some small.
4706 *
4707 * Another thread is created that goes into a spin, sending out
4708 * IPIs to the other CPUs to also write into the ring buffer.
4709 * this is to test the nesting ability of the buffer.
4710 *
4711 * Basic stats are recorded and reported. If something in the
4712 * ring buffer should happen that's not expected, a big warning
4713 * is displayed and all ring buffers are disabled.
4714 */
4715static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716
4717struct rb_test_data {
4718        struct ring_buffer      *buffer;
4719        unsigned long           events;
4720        unsigned long           bytes_written;
4721        unsigned long           bytes_alloc;
4722        unsigned long           bytes_dropped;
4723        unsigned long           events_nested;
4724        unsigned long           bytes_written_nested;
4725        unsigned long           bytes_alloc_nested;
4726        unsigned long           bytes_dropped_nested;
4727        int                     min_size_nested;
4728        int                     max_size_nested;
4729        int                     max_size;
4730        int                     min_size;
4731        int                     cpu;
4732        int                     cnt;
4733};
4734
4735static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736
4737/* 1 meg per cpu */
4738#define RB_TEST_BUFFER_SIZE     1048576
4739
4740static char rb_string[] __initdata =
4741        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744
4745static bool rb_test_started __initdata;
4746
4747struct rb_item {
4748        int size;
4749        char str[];
4750};
4751
4752static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753{
4754        struct ring_buffer_event *event;
4755        struct rb_item *item;
4756        bool started;
4757        int event_len;
4758        int size;
4759        int len;
4760        int cnt;
4761
4762        /* Have nested writes different that what is written */
4763        cnt = data->cnt + (nested ? 27 : 0);
4764
4765        /* Multiply cnt by ~e, to make some unique increment */
4766        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767
4768        len = size + sizeof(struct rb_item);
4769
4770        started = rb_test_started;
4771        /* read rb_test_started before checking buffer enabled */
4772        smp_rmb();
4773
4774        event = ring_buffer_lock_reserve(data->buffer, len);
4775        if (!event) {
4776                /* Ignore dropped events before test starts. */
4777                if (started) {
4778                        if (nested)
4779                                data->bytes_dropped += len;
4780                        else
4781                                data->bytes_dropped_nested += len;
4782                }
4783                return len;
4784        }
4785
4786        event_len = ring_buffer_event_length(event);
4787
4788        if (RB_WARN_ON(data->buffer, event_len < len))
4789                goto out;
4790
4791        item = ring_buffer_event_data(event);
4792        item->size = size;
4793        memcpy(item->str, rb_string, size);
4794
4795        if (nested) {
4796                data->bytes_alloc_nested += event_len;
4797                data->bytes_written_nested += len;
4798                data->events_nested++;
4799                if (!data->min_size_nested || len < data->min_size_nested)
4800                        data->min_size_nested = len;
4801                if (len > data->max_size_nested)
4802                        data->max_size_nested = len;
4803        } else {
4804                data->bytes_alloc += event_len;
4805                data->bytes_written += len;
4806                data->events++;
4807                if (!data->min_size || len < data->min_size)
4808                        data->max_size = len;
4809                if (len > data->max_size)
4810                        data->max_size = len;
4811        }
4812
4813 out:
4814        ring_buffer_unlock_commit(data->buffer, event);
4815
4816        return 0;
4817}
4818
4819static __init int rb_test(void *arg)
4820{
4821        struct rb_test_data *data = arg;
4822
4823        while (!kthread_should_stop()) {
4824                rb_write_something(data, false);
4825                data->cnt++;
4826
4827                set_current_state(TASK_INTERRUPTIBLE);
4828                /* Now sleep between a min of 100-300us and a max of 1ms */
4829                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830        }
4831
4832        return 0;
4833}
4834
4835static __init void rb_ipi(void *ignore)
4836{
4837        struct rb_test_data *data;
4838        int cpu = smp_processor_id();
4839
4840        data = &rb_data[cpu];
4841        rb_write_something(data, true);
4842}
4843
4844static __init int rb_hammer_test(void *arg)
4845{
4846        while (!kthread_should_stop()) {
4847
4848                /* Send an IPI to all cpus to write data! */
4849                smp_call_function(rb_ipi, NULL, 1);
4850                /* No sleep, but for non preempt, let others run */
4851                schedule();
4852        }
4853
4854        return 0;
4855}
4856
4857static __init int test_ringbuffer(void)
4858{
4859        struct task_struct *rb_hammer;
4860        struct ring_buffer *buffer;
4861        int cpu;
4862        int ret = 0;
4863
4864        pr_info("Running ring buffer tests...\n");
4865
4866        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867        if (WARN_ON(!buffer))
4868                return 0;
4869
4870        /* Disable buffer so that threads can't write to it yet */
4871        ring_buffer_record_off(buffer);
4872
4873        for_each_online_cpu(cpu) {
4874                rb_data[cpu].buffer = buffer;
4875                rb_data[cpu].cpu = cpu;
4876                rb_data[cpu].cnt = cpu;
4877                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878                                                 "rbtester/%d", cpu);
4879                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4880                        pr_cont("FAILED\n");
4881                        ret = PTR_ERR(rb_threads[cpu]);
4882                        goto out_free;
4883                }
4884
4885                kthread_bind(rb_threads[cpu], cpu);
4886                wake_up_process(rb_threads[cpu]);
4887        }
4888
4889        /* Now create the rb hammer! */
4890        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891        if (WARN_ON(IS_ERR(rb_hammer))) {
4892                pr_cont("FAILED\n");
4893                ret = PTR_ERR(rb_hammer);
4894                goto out_free;
4895        }
4896
4897        ring_buffer_record_on(buffer);
4898        /*
4899         * Show buffer is enabled before setting rb_test_started.
4900         * Yes there's a small race window where events could be
4901         * dropped and the thread wont catch it. But when a ring
4902         * buffer gets enabled, there will always be some kind of
4903         * delay before other CPUs see it. Thus, we don't care about
4904         * those dropped events. We care about events dropped after
4905         * the threads see that the buffer is active.
4906         */
4907        smp_wmb();
4908        rb_test_started = true;
4909
4910        set_current_state(TASK_INTERRUPTIBLE);
4911        /* Just run for 10 seconds */;
4912        schedule_timeout(10 * HZ);
4913
4914        kthread_stop(rb_hammer);
4915
4916 out_free:
4917        for_each_online_cpu(cpu) {
4918                if (!rb_threads[cpu])
4919                        break;
4920                kthread_stop(rb_threads[cpu]);
4921        }
4922        if (ret) {
4923                ring_buffer_free(buffer);
4924                return ret;
4925        }
4926
4927        /* Report! */
4928        pr_info("finished\n");
4929        for_each_online_cpu(cpu) {
4930                struct ring_buffer_event *event;
4931                struct rb_test_data *data = &rb_data[cpu];
4932                struct rb_item *item;
4933                unsigned long total_events;
4934                unsigned long total_dropped;
4935                unsigned long total_written;
4936                unsigned long total_alloc;
4937                unsigned long total_read = 0;
4938                unsigned long total_size = 0;
4939                unsigned long total_len = 0;
4940                unsigned long total_lost = 0;
4941                unsigned long lost;
4942                int big_event_size;
4943                int small_event_size;
4944
4945                ret = -1;
4946
4947                total_events = data->events + data->events_nested;
4948                total_written = data->bytes_written + data->bytes_written_nested;
4949                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951
4952                big_event_size = data->max_size + data->max_size_nested;
4953                small_event_size = data->min_size + data->min_size_nested;
4954
4955                pr_info("CPU %d:\n", cpu);
4956                pr_info("              events:    %ld\n", total_events);
4957                pr_info("       dropped bytes:    %ld\n", total_dropped);
4958                pr_info("       alloced bytes:    %ld\n", total_alloc);
4959                pr_info("       written bytes:    %ld\n", total_written);
4960                pr_info("       biggest event:    %d\n", big_event_size);
4961                pr_info("      smallest event:    %d\n", small_event_size);
4962
4963                if (RB_WARN_ON(buffer, total_dropped))
4964                        break;
4965
4966                ret = 0;
4967
4968                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969                        total_lost += lost;
4970                        item = ring_buffer_event_data(event);
4971                        total_len += ring_buffer_event_length(event);
4972                        total_size += item->size + sizeof(struct rb_item);
4973                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974                                pr_info("FAILED!\n");
4975                                pr_info("buffer had: %.*s\n", item->size, item->str);
4976                                pr_info("expected:   %.*s\n", item->size, rb_string);
4977                                RB_WARN_ON(buffer, 1);
4978                                ret = -1;
4979                                break;
4980                        }
4981                        total_read++;
4982                }
4983                if (ret)
4984                        break;
4985
4986                ret = -1;
4987
4988                pr_info("         read events:   %ld\n", total_read);
4989                pr_info("         lost events:   %ld\n", total_lost);
4990                pr_info("        total events:   %ld\n", total_lost + total_read);
4991                pr_info("  recorded len bytes:   %ld\n", total_len);
4992                pr_info(" recorded size bytes:   %ld\n", total_size);
4993                if (total_lost)
4994                        pr_info(" With dropped events, record len and size may not match\n"
4995                                " alloced and written from above\n");
4996                if (!total_lost) {
4997                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998                                       total_size != total_written))
4999                                break;
5000                }
5001                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002                        break;
5003
5004                ret = 0;
5005        }
5006        if (!ret)
5007                pr_info("Ring buffer PASSED!\n");
5008
5009        ring_buffer_free(buffer);
5010        return 0;
5011}
5012
5013late_initcall(test_ringbuffer);
5014#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5015