linux/mm/kmemleak.c
<<
>>
Prefs
   1/*
   2 * mm/kmemleak.c
   3 *
   4 * Copyright (C) 2008 ARM Limited
   5 * Written by Catalin Marinas <catalin.marinas@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 *
  20 *
  21 * For more information on the algorithm and kmemleak usage, please see
  22 * Documentation/dev-tools/kmemleak.rst.
  23 *
  24 * Notes on locking
  25 * ----------------
  26 *
  27 * The following locks and mutexes are used by kmemleak:
  28 *
  29 * - kmemleak_lock (rwlock): protects the object_list modifications and
  30 *   accesses to the object_tree_root. The object_list is the main list
  31 *   holding the metadata (struct kmemleak_object) for the allocated memory
  32 *   blocks. The object_tree_root is a red black tree used to look-up
  33 *   metadata based on a pointer to the corresponding memory block.  The
  34 *   kmemleak_object structures are added to the object_list and
  35 *   object_tree_root in the create_object() function called from the
  36 *   kmemleak_alloc() callback and removed in delete_object() called from the
  37 *   kmemleak_free() callback
  38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39 *   the metadata (e.g. count) are protected by this lock. Note that some
  40 *   members of this structure may be protected by other means (atomic or
  41 *   kmemleak_lock). This lock is also held when scanning the corresponding
  42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
  43 *   callback. This is less heavyweight than holding a global lock like
  44 *   kmemleak_lock during scanning
  45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46 *   unreferenced objects at a time. The gray_list contains the objects which
  47 *   are already referenced or marked as false positives and need to be
  48 *   scanned. This list is only modified during a scanning episode when the
  49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50 *   Note that the kmemleak_object.use_count is incremented when an object is
  51 *   added to the gray_list and therefore cannot be freed. This mutex also
  52 *   prevents multiple users of the "kmemleak" debugfs file together with
  53 *   modifications to the memory scanning parameters including the scan_thread
  54 *   pointer
  55 *
  56 * Locks and mutexes are acquired/nested in the following order:
  57 *
  58 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  59 *
  60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  61 * regions.
  62 *
  63 * The kmemleak_object structures have a use_count incremented or decremented
  64 * using the get_object()/put_object() functions. When the use_count becomes
  65 * 0, this count can no longer be incremented and put_object() schedules the
  66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  67 * function must be protected by rcu_read_lock() to avoid accessing a freed
  68 * structure.
  69 */
  70
  71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  72
  73#include <linux/init.h>
  74#include <linux/kernel.h>
  75#include <linux/list.h>
  76#include <linux/sched/signal.h>
  77#include <linux/sched/task.h>
  78#include <linux/sched/task_stack.h>
  79#include <linux/jiffies.h>
  80#include <linux/delay.h>
  81#include <linux/export.h>
  82#include <linux/kthread.h>
  83#include <linux/rbtree.h>
  84#include <linux/fs.h>
  85#include <linux/debugfs.h>
  86#include <linux/seq_file.h>
  87#include <linux/cpumask.h>
  88#include <linux/spinlock.h>
  89#include <linux/mutex.h>
  90#include <linux/rcupdate.h>
  91#include <linux/stacktrace.h>
  92#include <linux/cache.h>
  93#include <linux/percpu.h>
  94#include <linux/hardirq.h>
  95#include <linux/bootmem.h>
  96#include <linux/pfn.h>
  97#include <linux/mmzone.h>
  98#include <linux/slab.h>
  99#include <linux/thread_info.h>
 100#include <linux/err.h>
 101#include <linux/uaccess.h>
 102#include <linux/string.h>
 103#include <linux/nodemask.h>
 104#include <linux/mm.h>
 105#include <linux/workqueue.h>
 106#include <linux/crc32.h>
 107
 108#include <asm/sections.h>
 109#include <asm/processor.h>
 110#include <linux/atomic.h>
 111
 112#include <linux/kasan.h>
 113#include <linux/kmemcheck.h>
 114#include <linux/kmemleak.h>
 115#include <linux/memory_hotplug.h>
 116
 117/*
 118 * Kmemleak configuration and common defines.
 119 */
 120#define MAX_TRACE               16      /* stack trace length */
 121#define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
 122#define SECS_FIRST_SCAN         60      /* delay before the first scan */
 123#define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
 124#define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
 125
 126#define BYTES_PER_POINTER       sizeof(void *)
 127
 128/* GFP bitmask for kmemleak internal allocations */
 129#define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 130                                 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 131                                 __GFP_NOWARN)
 132
 133/* scanning area inside a memory block */
 134struct kmemleak_scan_area {
 135        struct hlist_node node;
 136        unsigned long start;
 137        size_t size;
 138};
 139
 140#define KMEMLEAK_GREY   0
 141#define KMEMLEAK_BLACK  -1
 142
 143/*
 144 * Structure holding the metadata for each allocated memory block.
 145 * Modifications to such objects should be made while holding the
 146 * object->lock. Insertions or deletions from object_list, gray_list or
 147 * rb_node are already protected by the corresponding locks or mutex (see
 148 * the notes on locking above). These objects are reference-counted
 149 * (use_count) and freed using the RCU mechanism.
 150 */
 151struct kmemleak_object {
 152        spinlock_t lock;
 153        unsigned int flags;             /* object status flags */
 154        struct list_head object_list;
 155        struct list_head gray_list;
 156        struct rb_node rb_node;
 157        struct rcu_head rcu;            /* object_list lockless traversal */
 158        /* object usage count; object freed when use_count == 0 */
 159        atomic_t use_count;
 160        unsigned long pointer;
 161        size_t size;
 162        /* pass surplus references to this pointer */
 163        unsigned long excess_ref;
 164        /* minimum number of a pointers found before it is considered leak */
 165        int min_count;
 166        /* the total number of pointers found pointing to this object */
 167        int count;
 168        /* checksum for detecting modified objects */
 169        u32 checksum;
 170        /* memory ranges to be scanned inside an object (empty for all) */
 171        struct hlist_head area_list;
 172        unsigned long trace[MAX_TRACE];
 173        unsigned int trace_len;
 174        unsigned long jiffies;          /* creation timestamp */
 175        pid_t pid;                      /* pid of the current task */
 176        char comm[TASK_COMM_LEN];       /* executable name */
 177};
 178
 179/* flag representing the memory block allocation status */
 180#define OBJECT_ALLOCATED        (1 << 0)
 181/* flag set after the first reporting of an unreference object */
 182#define OBJECT_REPORTED         (1 << 1)
 183/* flag set to not scan the object */
 184#define OBJECT_NO_SCAN          (1 << 2)
 185
 186/* number of bytes to print per line; must be 16 or 32 */
 187#define HEX_ROW_SIZE            16
 188/* number of bytes to print at a time (1, 2, 4, 8) */
 189#define HEX_GROUP_SIZE          1
 190/* include ASCII after the hex output */
 191#define HEX_ASCII               1
 192/* max number of lines to be printed */
 193#define HEX_MAX_LINES           2
 194
 195/* the list of all allocated objects */
 196static LIST_HEAD(object_list);
 197/* the list of gray-colored objects (see color_gray comment below) */
 198static LIST_HEAD(gray_list);
 199/* search tree for object boundaries */
 200static struct rb_root object_tree_root = RB_ROOT;
 201/* rw_lock protecting the access to object_list and object_tree_root */
 202static DEFINE_RWLOCK(kmemleak_lock);
 203
 204/* allocation caches for kmemleak internal data */
 205static struct kmem_cache *object_cache;
 206static struct kmem_cache *scan_area_cache;
 207
 208/* set if tracing memory operations is enabled */
 209static int kmemleak_enabled;
 210/* same as above but only for the kmemleak_free() callback */
 211static int kmemleak_free_enabled;
 212/* set in the late_initcall if there were no errors */
 213static int kmemleak_initialized;
 214/* enables or disables early logging of the memory operations */
 215static int kmemleak_early_log = 1;
 216/* set if a kmemleak warning was issued */
 217static int kmemleak_warning;
 218/* set if a fatal kmemleak error has occurred */
 219static int kmemleak_error;
 220
 221/* minimum and maximum address that may be valid pointers */
 222static unsigned long min_addr = ULONG_MAX;
 223static unsigned long max_addr;
 224
 225static struct task_struct *scan_thread;
 226/* used to avoid reporting of recently allocated objects */
 227static unsigned long jiffies_min_age;
 228static unsigned long jiffies_last_scan;
 229/* delay between automatic memory scannings */
 230static signed long jiffies_scan_wait;
 231/* enables or disables the task stacks scanning */
 232static int kmemleak_stack_scan = 1;
 233/* protects the memory scanning, parameters and debug/kmemleak file access */
 234static DEFINE_MUTEX(scan_mutex);
 235/* setting kmemleak=on, will set this var, skipping the disable */
 236static int kmemleak_skip_disable;
 237/* If there are leaks that can be reported */
 238static bool kmemleak_found_leaks;
 239
 240/*
 241 * Early object allocation/freeing logging. Kmemleak is initialized after the
 242 * kernel allocator. However, both the kernel allocator and kmemleak may
 243 * allocate memory blocks which need to be tracked. Kmemleak defines an
 244 * arbitrary buffer to hold the allocation/freeing information before it is
 245 * fully initialized.
 246 */
 247
 248/* kmemleak operation type for early logging */
 249enum {
 250        KMEMLEAK_ALLOC,
 251        KMEMLEAK_ALLOC_PERCPU,
 252        KMEMLEAK_FREE,
 253        KMEMLEAK_FREE_PART,
 254        KMEMLEAK_FREE_PERCPU,
 255        KMEMLEAK_NOT_LEAK,
 256        KMEMLEAK_IGNORE,
 257        KMEMLEAK_SCAN_AREA,
 258        KMEMLEAK_NO_SCAN,
 259        KMEMLEAK_SET_EXCESS_REF
 260};
 261
 262/*
 263 * Structure holding the information passed to kmemleak callbacks during the
 264 * early logging.
 265 */
 266struct early_log {
 267        int op_type;                    /* kmemleak operation type */
 268        int min_count;                  /* minimum reference count */
 269        const void *ptr;                /* allocated/freed memory block */
 270        union {
 271                size_t size;            /* memory block size */
 272                unsigned long excess_ref; /* surplus reference passing */
 273        };
 274        unsigned long trace[MAX_TRACE]; /* stack trace */
 275        unsigned int trace_len;         /* stack trace length */
 276};
 277
 278/* early logging buffer and current position */
 279static struct early_log
 280        early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 281static int crt_early_log __initdata;
 282
 283static void kmemleak_disable(void);
 284
 285/*
 286 * Print a warning and dump the stack trace.
 287 */
 288#define kmemleak_warn(x...)     do {            \
 289        pr_warn(x);                             \
 290        dump_stack();                           \
 291        kmemleak_warning = 1;                   \
 292} while (0)
 293
 294/*
 295 * Macro invoked when a serious kmemleak condition occurred and cannot be
 296 * recovered from. Kmemleak will be disabled and further allocation/freeing
 297 * tracing no longer available.
 298 */
 299#define kmemleak_stop(x...)     do {    \
 300        kmemleak_warn(x);               \
 301        kmemleak_disable();             \
 302} while (0)
 303
 304/*
 305 * Printing of the objects hex dump to the seq file. The number of lines to be
 306 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 307 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 308 * with the object->lock held.
 309 */
 310static void hex_dump_object(struct seq_file *seq,
 311                            struct kmemleak_object *object)
 312{
 313        const u8 *ptr = (const u8 *)object->pointer;
 314        size_t len;
 315
 316        /* limit the number of lines to HEX_MAX_LINES */
 317        len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 318
 319        seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 320        kasan_disable_current();
 321        seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 322                     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
 323        kasan_enable_current();
 324}
 325
 326/*
 327 * Object colors, encoded with count and min_count:
 328 * - white - orphan object, not enough references to it (count < min_count)
 329 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 330 *              sufficient references to it (count >= min_count)
 331 * - black - ignore, it doesn't contain references (e.g. text section)
 332 *              (min_count == -1). No function defined for this color.
 333 * Newly created objects don't have any color assigned (object->count == -1)
 334 * before the next memory scan when they become white.
 335 */
 336static bool color_white(const struct kmemleak_object *object)
 337{
 338        return object->count != KMEMLEAK_BLACK &&
 339                object->count < object->min_count;
 340}
 341
 342static bool color_gray(const struct kmemleak_object *object)
 343{
 344        return object->min_count != KMEMLEAK_BLACK &&
 345                object->count >= object->min_count;
 346}
 347
 348/*
 349 * Objects are considered unreferenced only if their color is white, they have
 350 * not be deleted and have a minimum age to avoid false positives caused by
 351 * pointers temporarily stored in CPU registers.
 352 */
 353static bool unreferenced_object(struct kmemleak_object *object)
 354{
 355        return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 356                time_before_eq(object->jiffies + jiffies_min_age,
 357                               jiffies_last_scan);
 358}
 359
 360/*
 361 * Printing of the unreferenced objects information to the seq file. The
 362 * print_unreferenced function must be called with the object->lock held.
 363 */
 364static void print_unreferenced(struct seq_file *seq,
 365                               struct kmemleak_object *object)
 366{
 367        int i;
 368        unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 369
 370        seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 371                   object->pointer, object->size);
 372        seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 373                   object->comm, object->pid, object->jiffies,
 374                   msecs_age / 1000, msecs_age % 1000);
 375        hex_dump_object(seq, object);
 376        seq_printf(seq, "  backtrace:\n");
 377
 378        for (i = 0; i < object->trace_len; i++) {
 379                void *ptr = (void *)object->trace[i];
 380                seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 381        }
 382}
 383
 384/*
 385 * Print the kmemleak_object information. This function is used mainly for
 386 * debugging special cases when kmemleak operations. It must be called with
 387 * the object->lock held.
 388 */
 389static void dump_object_info(struct kmemleak_object *object)
 390{
 391        struct stack_trace trace;
 392
 393        trace.nr_entries = object->trace_len;
 394        trace.entries = object->trace;
 395
 396        pr_notice("Object 0x%08lx (size %zu):\n",
 397                  object->pointer, object->size);
 398        pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 399                  object->comm, object->pid, object->jiffies);
 400        pr_notice("  min_count = %d\n", object->min_count);
 401        pr_notice("  count = %d\n", object->count);
 402        pr_notice("  flags = 0x%x\n", object->flags);
 403        pr_notice("  checksum = %u\n", object->checksum);
 404        pr_notice("  backtrace:\n");
 405        print_stack_trace(&trace, 4);
 406}
 407
 408/*
 409 * Look-up a memory block metadata (kmemleak_object) in the object search
 410 * tree based on a pointer value. If alias is 0, only values pointing to the
 411 * beginning of the memory block are allowed. The kmemleak_lock must be held
 412 * when calling this function.
 413 */
 414static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 415{
 416        struct rb_node *rb = object_tree_root.rb_node;
 417
 418        while (rb) {
 419                struct kmemleak_object *object =
 420                        rb_entry(rb, struct kmemleak_object, rb_node);
 421                if (ptr < object->pointer)
 422                        rb = object->rb_node.rb_left;
 423                else if (object->pointer + object->size <= ptr)
 424                        rb = object->rb_node.rb_right;
 425                else if (object->pointer == ptr || alias)
 426                        return object;
 427                else {
 428                        kmemleak_warn("Found object by alias at 0x%08lx\n",
 429                                      ptr);
 430                        dump_object_info(object);
 431                        break;
 432                }
 433        }
 434        return NULL;
 435}
 436
 437/*
 438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 439 * that once an object's use_count reached 0, the RCU freeing was already
 440 * registered and the object should no longer be used. This function must be
 441 * called under the protection of rcu_read_lock().
 442 */
 443static int get_object(struct kmemleak_object *object)
 444{
 445        return atomic_inc_not_zero(&object->use_count);
 446}
 447
 448/*
 449 * RCU callback to free a kmemleak_object.
 450 */
 451static void free_object_rcu(struct rcu_head *rcu)
 452{
 453        struct hlist_node *tmp;
 454        struct kmemleak_scan_area *area;
 455        struct kmemleak_object *object =
 456                container_of(rcu, struct kmemleak_object, rcu);
 457
 458        /*
 459         * Once use_count is 0 (guaranteed by put_object), there is no other
 460         * code accessing this object, hence no need for locking.
 461         */
 462        hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 463                hlist_del(&area->node);
 464                kmem_cache_free(scan_area_cache, area);
 465        }
 466        kmem_cache_free(object_cache, object);
 467}
 468
 469/*
 470 * Decrement the object use_count. Once the count is 0, free the object using
 471 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 472 * delete_object() path, the delayed RCU freeing ensures that there is no
 473 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 474 * is also possible.
 475 */
 476static void put_object(struct kmemleak_object *object)
 477{
 478        if (!atomic_dec_and_test(&object->use_count))
 479                return;
 480
 481        /* should only get here after delete_object was called */
 482        WARN_ON(object->flags & OBJECT_ALLOCATED);
 483
 484        call_rcu(&object->rcu, free_object_rcu);
 485}
 486
 487/*
 488 * Look up an object in the object search tree and increase its use_count.
 489 */
 490static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 491{
 492        unsigned long flags;
 493        struct kmemleak_object *object;
 494
 495        rcu_read_lock();
 496        read_lock_irqsave(&kmemleak_lock, flags);
 497        object = lookup_object(ptr, alias);
 498        read_unlock_irqrestore(&kmemleak_lock, flags);
 499
 500        /* check whether the object is still available */
 501        if (object && !get_object(object))
 502                object = NULL;
 503        rcu_read_unlock();
 504
 505        return object;
 506}
 507
 508/*
 509 * Look up an object in the object search tree and remove it from both
 510 * object_tree_root and object_list. The returned object's use_count should be
 511 * at least 1, as initially set by create_object().
 512 */
 513static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
 514{
 515        unsigned long flags;
 516        struct kmemleak_object *object;
 517
 518        write_lock_irqsave(&kmemleak_lock, flags);
 519        object = lookup_object(ptr, alias);
 520        if (object) {
 521                rb_erase(&object->rb_node, &object_tree_root);
 522                list_del_rcu(&object->object_list);
 523        }
 524        write_unlock_irqrestore(&kmemleak_lock, flags);
 525
 526        return object;
 527}
 528
 529/*
 530 * Save stack trace to the given array of MAX_TRACE size.
 531 */
 532static int __save_stack_trace(unsigned long *trace)
 533{
 534        struct stack_trace stack_trace;
 535
 536        stack_trace.max_entries = MAX_TRACE;
 537        stack_trace.nr_entries = 0;
 538        stack_trace.entries = trace;
 539        stack_trace.skip = 2;
 540        save_stack_trace(&stack_trace);
 541
 542        return stack_trace.nr_entries;
 543}
 544
 545/*
 546 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 547 * memory block and add it to the object_list and object_tree_root.
 548 */
 549static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 550                                             int min_count, gfp_t gfp)
 551{
 552        unsigned long flags;
 553        struct kmemleak_object *object, *parent;
 554        struct rb_node **link, *rb_parent;
 555
 556        object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 557        if (!object) {
 558                pr_warn("Cannot allocate a kmemleak_object structure\n");
 559                kmemleak_disable();
 560                return NULL;
 561        }
 562
 563        INIT_LIST_HEAD(&object->object_list);
 564        INIT_LIST_HEAD(&object->gray_list);
 565        INIT_HLIST_HEAD(&object->area_list);
 566        spin_lock_init(&object->lock);
 567        atomic_set(&object->use_count, 1);
 568        object->flags = OBJECT_ALLOCATED;
 569        object->pointer = ptr;
 570        object->size = size;
 571        object->excess_ref = 0;
 572        object->min_count = min_count;
 573        object->count = 0;                      /* white color initially */
 574        object->jiffies = jiffies;
 575        object->checksum = 0;
 576
 577        /* task information */
 578        if (in_irq()) {
 579                object->pid = 0;
 580                strncpy(object->comm, "hardirq", sizeof(object->comm));
 581        } else if (in_softirq()) {
 582                object->pid = 0;
 583                strncpy(object->comm, "softirq", sizeof(object->comm));
 584        } else {
 585                object->pid = current->pid;
 586                /*
 587                 * There is a small chance of a race with set_task_comm(),
 588                 * however using get_task_comm() here may cause locking
 589                 * dependency issues with current->alloc_lock. In the worst
 590                 * case, the command line is not correct.
 591                 */
 592                strncpy(object->comm, current->comm, sizeof(object->comm));
 593        }
 594
 595        /* kernel backtrace */
 596        object->trace_len = __save_stack_trace(object->trace);
 597
 598        write_lock_irqsave(&kmemleak_lock, flags);
 599
 600        min_addr = min(min_addr, ptr);
 601        max_addr = max(max_addr, ptr + size);
 602        link = &object_tree_root.rb_node;
 603        rb_parent = NULL;
 604        while (*link) {
 605                rb_parent = *link;
 606                parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 607                if (ptr + size <= parent->pointer)
 608                        link = &parent->rb_node.rb_left;
 609                else if (parent->pointer + parent->size <= ptr)
 610                        link = &parent->rb_node.rb_right;
 611                else {
 612                        kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 613                                      ptr);
 614                        /*
 615                         * No need for parent->lock here since "parent" cannot
 616                         * be freed while the kmemleak_lock is held.
 617                         */
 618                        dump_object_info(parent);
 619                        kmem_cache_free(object_cache, object);
 620                        object = NULL;
 621                        goto out;
 622                }
 623        }
 624        rb_link_node(&object->rb_node, rb_parent, link);
 625        rb_insert_color(&object->rb_node, &object_tree_root);
 626
 627        list_add_tail_rcu(&object->object_list, &object_list);
 628out:
 629        write_unlock_irqrestore(&kmemleak_lock, flags);
 630        return object;
 631}
 632
 633/*
 634 * Mark the object as not allocated and schedule RCU freeing via put_object().
 635 */
 636static void __delete_object(struct kmemleak_object *object)
 637{
 638        unsigned long flags;
 639
 640        WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 641        WARN_ON(atomic_read(&object->use_count) < 1);
 642
 643        /*
 644         * Locking here also ensures that the corresponding memory block
 645         * cannot be freed when it is being scanned.
 646         */
 647        spin_lock_irqsave(&object->lock, flags);
 648        object->flags &= ~OBJECT_ALLOCATED;
 649        spin_unlock_irqrestore(&object->lock, flags);
 650        put_object(object);
 651}
 652
 653/*
 654 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 655 * delete it.
 656 */
 657static void delete_object_full(unsigned long ptr)
 658{
 659        struct kmemleak_object *object;
 660
 661        object = find_and_remove_object(ptr, 0);
 662        if (!object) {
 663#ifdef DEBUG
 664                kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 665                              ptr);
 666#endif
 667                return;
 668        }
 669        __delete_object(object);
 670}
 671
 672/*
 673 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 674 * delete it. If the memory block is partially freed, the function may create
 675 * additional metadata for the remaining parts of the block.
 676 */
 677static void delete_object_part(unsigned long ptr, size_t size)
 678{
 679        struct kmemleak_object *object;
 680        unsigned long start, end;
 681
 682        object = find_and_remove_object(ptr, 1);
 683        if (!object) {
 684#ifdef DEBUG
 685                kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 686                              ptr, size);
 687#endif
 688                return;
 689        }
 690
 691        /*
 692         * Create one or two objects that may result from the memory block
 693         * split. Note that partial freeing is only done by free_bootmem() and
 694         * this happens before kmemleak_init() is called. The path below is
 695         * only executed during early log recording in kmemleak_init(), so
 696         * GFP_KERNEL is enough.
 697         */
 698        start = object->pointer;
 699        end = object->pointer + object->size;
 700        if (ptr > start)
 701                create_object(start, ptr - start, object->min_count,
 702                              GFP_KERNEL);
 703        if (ptr + size < end)
 704                create_object(ptr + size, end - ptr - size, object->min_count,
 705                              GFP_KERNEL);
 706
 707        __delete_object(object);
 708}
 709
 710static void __paint_it(struct kmemleak_object *object, int color)
 711{
 712        object->min_count = color;
 713        if (color == KMEMLEAK_BLACK)
 714                object->flags |= OBJECT_NO_SCAN;
 715}
 716
 717static void paint_it(struct kmemleak_object *object, int color)
 718{
 719        unsigned long flags;
 720
 721        spin_lock_irqsave(&object->lock, flags);
 722        __paint_it(object, color);
 723        spin_unlock_irqrestore(&object->lock, flags);
 724}
 725
 726static void paint_ptr(unsigned long ptr, int color)
 727{
 728        struct kmemleak_object *object;
 729
 730        object = find_and_get_object(ptr, 0);
 731        if (!object) {
 732                kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 733                              ptr,
 734                              (color == KMEMLEAK_GREY) ? "Grey" :
 735                              (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 736                return;
 737        }
 738        paint_it(object, color);
 739        put_object(object);
 740}
 741
 742/*
 743 * Mark an object permanently as gray-colored so that it can no longer be
 744 * reported as a leak. This is used in general to mark a false positive.
 745 */
 746static void make_gray_object(unsigned long ptr)
 747{
 748        paint_ptr(ptr, KMEMLEAK_GREY);
 749}
 750
 751/*
 752 * Mark the object as black-colored so that it is ignored from scans and
 753 * reporting.
 754 */
 755static void make_black_object(unsigned long ptr)
 756{
 757        paint_ptr(ptr, KMEMLEAK_BLACK);
 758}
 759
 760/*
 761 * Add a scanning area to the object. If at least one such area is added,
 762 * kmemleak will only scan these ranges rather than the whole memory block.
 763 */
 764static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 765{
 766        unsigned long flags;
 767        struct kmemleak_object *object;
 768        struct kmemleak_scan_area *area;
 769
 770        object = find_and_get_object(ptr, 1);
 771        if (!object) {
 772                kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 773                              ptr);
 774                return;
 775        }
 776
 777        area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 778        if (!area) {
 779                pr_warn("Cannot allocate a scan area\n");
 780                goto out;
 781        }
 782
 783        spin_lock_irqsave(&object->lock, flags);
 784        if (size == SIZE_MAX) {
 785                size = object->pointer + object->size - ptr;
 786        } else if (ptr + size > object->pointer + object->size) {
 787                kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 788                dump_object_info(object);
 789                kmem_cache_free(scan_area_cache, area);
 790                goto out_unlock;
 791        }
 792
 793        INIT_HLIST_NODE(&area->node);
 794        area->start = ptr;
 795        area->size = size;
 796
 797        hlist_add_head(&area->node, &object->area_list);
 798out_unlock:
 799        spin_unlock_irqrestore(&object->lock, flags);
 800out:
 801        put_object(object);
 802}
 803
 804/*
 805 * Any surplus references (object already gray) to 'ptr' are passed to
 806 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 807 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 808 * (see free_thread_stack()).
 809 */
 810static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 811{
 812        unsigned long flags;
 813        struct kmemleak_object *object;
 814
 815        object = find_and_get_object(ptr, 0);
 816        if (!object) {
 817                kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 818                              ptr);
 819                return;
 820        }
 821
 822        spin_lock_irqsave(&object->lock, flags);
 823        object->excess_ref = excess_ref;
 824        spin_unlock_irqrestore(&object->lock, flags);
 825        put_object(object);
 826}
 827
 828/*
 829 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 830 * pointer. Such object will not be scanned by kmemleak but references to it
 831 * are searched.
 832 */
 833static void object_no_scan(unsigned long ptr)
 834{
 835        unsigned long flags;
 836        struct kmemleak_object *object;
 837
 838        object = find_and_get_object(ptr, 0);
 839        if (!object) {
 840                kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 841                return;
 842        }
 843
 844        spin_lock_irqsave(&object->lock, flags);
 845        object->flags |= OBJECT_NO_SCAN;
 846        spin_unlock_irqrestore(&object->lock, flags);
 847        put_object(object);
 848}
 849
 850/*
 851 * Log an early kmemleak_* call to the early_log buffer. These calls will be
 852 * processed later once kmemleak is fully initialized.
 853 */
 854static void __init log_early(int op_type, const void *ptr, size_t size,
 855                             int min_count)
 856{
 857        unsigned long flags;
 858        struct early_log *log;
 859
 860        if (kmemleak_error) {
 861                /* kmemleak stopped recording, just count the requests */
 862                crt_early_log++;
 863                return;
 864        }
 865
 866        if (crt_early_log >= ARRAY_SIZE(early_log)) {
 867                crt_early_log++;
 868                kmemleak_disable();
 869                return;
 870        }
 871
 872        /*
 873         * There is no need for locking since the kernel is still in UP mode
 874         * at this stage. Disabling the IRQs is enough.
 875         */
 876        local_irq_save(flags);
 877        log = &early_log[crt_early_log];
 878        log->op_type = op_type;
 879        log->ptr = ptr;
 880        log->size = size;
 881        log->min_count = min_count;
 882        log->trace_len = __save_stack_trace(log->trace);
 883        crt_early_log++;
 884        local_irq_restore(flags);
 885}
 886
 887/*
 888 * Log an early allocated block and populate the stack trace.
 889 */
 890static void early_alloc(struct early_log *log)
 891{
 892        struct kmemleak_object *object;
 893        unsigned long flags;
 894        int i;
 895
 896        if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
 897                return;
 898
 899        /*
 900         * RCU locking needed to ensure object is not freed via put_object().
 901         */
 902        rcu_read_lock();
 903        object = create_object((unsigned long)log->ptr, log->size,
 904                               log->min_count, GFP_ATOMIC);
 905        if (!object)
 906                goto out;
 907        spin_lock_irqsave(&object->lock, flags);
 908        for (i = 0; i < log->trace_len; i++)
 909                object->trace[i] = log->trace[i];
 910        object->trace_len = log->trace_len;
 911        spin_unlock_irqrestore(&object->lock, flags);
 912out:
 913        rcu_read_unlock();
 914}
 915
 916/*
 917 * Log an early allocated block and populate the stack trace.
 918 */
 919static void early_alloc_percpu(struct early_log *log)
 920{
 921        unsigned int cpu;
 922        const void __percpu *ptr = log->ptr;
 923
 924        for_each_possible_cpu(cpu) {
 925                log->ptr = per_cpu_ptr(ptr, cpu);
 926                early_alloc(log);
 927        }
 928}
 929
 930/**
 931 * kmemleak_alloc - register a newly allocated object
 932 * @ptr:        pointer to beginning of the object
 933 * @size:       size of the object
 934 * @min_count:  minimum number of references to this object. If during memory
 935 *              scanning a number of references less than @min_count is found,
 936 *              the object is reported as a memory leak. If @min_count is 0,
 937 *              the object is never reported as a leak. If @min_count is -1,
 938 *              the object is ignored (not scanned and not reported as a leak)
 939 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
 940 *
 941 * This function is called from the kernel allocators when a new object
 942 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 943 */
 944void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 945                          gfp_t gfp)
 946{
 947        pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 948
 949        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 950                create_object((unsigned long)ptr, size, min_count, gfp);
 951        else if (kmemleak_early_log)
 952                log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 953}
 954EXPORT_SYMBOL_GPL(kmemleak_alloc);
 955
 956/**
 957 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 958 * @ptr:        __percpu pointer to beginning of the object
 959 * @size:       size of the object
 960 * @gfp:        flags used for kmemleak internal memory allocations
 961 *
 962 * This function is called from the kernel percpu allocator when a new object
 963 * (memory block) is allocated (alloc_percpu).
 964 */
 965void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 966                                 gfp_t gfp)
 967{
 968        unsigned int cpu;
 969
 970        pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 971
 972        /*
 973         * Percpu allocations are only scanned and not reported as leaks
 974         * (min_count is set to 0).
 975         */
 976        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 977                for_each_possible_cpu(cpu)
 978                        create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 979                                      size, 0, gfp);
 980        else if (kmemleak_early_log)
 981                log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
 982}
 983EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 984
 985/**
 986 * kmemleak_vmalloc - register a newly vmalloc'ed object
 987 * @area:       pointer to vm_struct
 988 * @size:       size of the object
 989 * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
 990 *
 991 * This function is called from the vmalloc() kernel allocator when a new
 992 * object (memory block) is allocated.
 993 */
 994void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
 995{
 996        pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
 997
 998        /*
 999         * A min_count = 2 is needed because vm_struct contains a reference to
1000         * the virtual address of the vmalloc'ed block.
1001         */
1002        if (kmemleak_enabled) {
1003                create_object((unsigned long)area->addr, size, 2, gfp);
1004                object_set_excess_ref((unsigned long)area,
1005                                      (unsigned long)area->addr);
1006        } else if (kmemleak_early_log) {
1007                log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1008                /* reusing early_log.size for storing area->addr */
1009                log_early(KMEMLEAK_SET_EXCESS_REF,
1010                          area, (unsigned long)area->addr, 0);
1011        }
1012}
1013EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1014
1015/**
1016 * kmemleak_free - unregister a previously registered object
1017 * @ptr:        pointer to beginning of the object
1018 *
1019 * This function is called from the kernel allocators when an object (memory
1020 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1021 */
1022void __ref kmemleak_free(const void *ptr)
1023{
1024        pr_debug("%s(0x%p)\n", __func__, ptr);
1025
1026        if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1027                delete_object_full((unsigned long)ptr);
1028        else if (kmemleak_early_log)
1029                log_early(KMEMLEAK_FREE, ptr, 0, 0);
1030}
1031EXPORT_SYMBOL_GPL(kmemleak_free);
1032
1033/**
1034 * kmemleak_free_part - partially unregister a previously registered object
1035 * @ptr:        pointer to the beginning or inside the object. This also
1036 *              represents the start of the range to be freed
1037 * @size:       size to be unregistered
1038 *
1039 * This function is called when only a part of a memory block is freed
1040 * (usually from the bootmem allocator).
1041 */
1042void __ref kmemleak_free_part(const void *ptr, size_t size)
1043{
1044        pr_debug("%s(0x%p)\n", __func__, ptr);
1045
1046        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1047                delete_object_part((unsigned long)ptr, size);
1048        else if (kmemleak_early_log)
1049                log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1050}
1051EXPORT_SYMBOL_GPL(kmemleak_free_part);
1052
1053/**
1054 * kmemleak_free_percpu - unregister a previously registered __percpu object
1055 * @ptr:        __percpu pointer to beginning of the object
1056 *
1057 * This function is called from the kernel percpu allocator when an object
1058 * (memory block) is freed (free_percpu).
1059 */
1060void __ref kmemleak_free_percpu(const void __percpu *ptr)
1061{
1062        unsigned int cpu;
1063
1064        pr_debug("%s(0x%p)\n", __func__, ptr);
1065
1066        if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1067                for_each_possible_cpu(cpu)
1068                        delete_object_full((unsigned long)per_cpu_ptr(ptr,
1069                                                                      cpu));
1070        else if (kmemleak_early_log)
1071                log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1072}
1073EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1074
1075/**
1076 * kmemleak_update_trace - update object allocation stack trace
1077 * @ptr:        pointer to beginning of the object
1078 *
1079 * Override the object allocation stack trace for cases where the actual
1080 * allocation place is not always useful.
1081 */
1082void __ref kmemleak_update_trace(const void *ptr)
1083{
1084        struct kmemleak_object *object;
1085        unsigned long flags;
1086
1087        pr_debug("%s(0x%p)\n", __func__, ptr);
1088
1089        if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1090                return;
1091
1092        object = find_and_get_object((unsigned long)ptr, 1);
1093        if (!object) {
1094#ifdef DEBUG
1095                kmemleak_warn("Updating stack trace for unknown object at %p\n",
1096                              ptr);
1097#endif
1098                return;
1099        }
1100
1101        spin_lock_irqsave(&object->lock, flags);
1102        object->trace_len = __save_stack_trace(object->trace);
1103        spin_unlock_irqrestore(&object->lock, flags);
1104
1105        put_object(object);
1106}
1107EXPORT_SYMBOL(kmemleak_update_trace);
1108
1109/**
1110 * kmemleak_not_leak - mark an allocated object as false positive
1111 * @ptr:        pointer to beginning of the object
1112 *
1113 * Calling this function on an object will cause the memory block to no longer
1114 * be reported as leak and always be scanned.
1115 */
1116void __ref kmemleak_not_leak(const void *ptr)
1117{
1118        pr_debug("%s(0x%p)\n", __func__, ptr);
1119
1120        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1121                make_gray_object((unsigned long)ptr);
1122        else if (kmemleak_early_log)
1123                log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1124}
1125EXPORT_SYMBOL(kmemleak_not_leak);
1126
1127/**
1128 * kmemleak_ignore - ignore an allocated object
1129 * @ptr:        pointer to beginning of the object
1130 *
1131 * Calling this function on an object will cause the memory block to be
1132 * ignored (not scanned and not reported as a leak). This is usually done when
1133 * it is known that the corresponding block is not a leak and does not contain
1134 * any references to other allocated memory blocks.
1135 */
1136void __ref kmemleak_ignore(const void *ptr)
1137{
1138        pr_debug("%s(0x%p)\n", __func__, ptr);
1139
1140        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1141                make_black_object((unsigned long)ptr);
1142        else if (kmemleak_early_log)
1143                log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1144}
1145EXPORT_SYMBOL(kmemleak_ignore);
1146
1147/**
1148 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1149 * @ptr:        pointer to beginning or inside the object. This also
1150 *              represents the start of the scan area
1151 * @size:       size of the scan area
1152 * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1153 *
1154 * This function is used when it is known that only certain parts of an object
1155 * contain references to other objects. Kmemleak will only scan these areas
1156 * reducing the number false negatives.
1157 */
1158void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1159{
1160        pr_debug("%s(0x%p)\n", __func__, ptr);
1161
1162        if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1163                add_scan_area((unsigned long)ptr, size, gfp);
1164        else if (kmemleak_early_log)
1165                log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1166}
1167EXPORT_SYMBOL(kmemleak_scan_area);
1168
1169/**
1170 * kmemleak_no_scan - do not scan an allocated object
1171 * @ptr:        pointer to beginning of the object
1172 *
1173 * This function notifies kmemleak not to scan the given memory block. Useful
1174 * in situations where it is known that the given object does not contain any
1175 * references to other objects. Kmemleak will not scan such objects reducing
1176 * the number of false negatives.
1177 */
1178void __ref kmemleak_no_scan(const void *ptr)
1179{
1180        pr_debug("%s(0x%p)\n", __func__, ptr);
1181
1182        if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1183                object_no_scan((unsigned long)ptr);
1184        else if (kmemleak_early_log)
1185                log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1186}
1187EXPORT_SYMBOL(kmemleak_no_scan);
1188
1189/**
1190 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1191 *                       address argument
1192 */
1193void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1194                               gfp_t gfp)
1195{
1196        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1197                kmemleak_alloc(__va(phys), size, min_count, gfp);
1198}
1199EXPORT_SYMBOL(kmemleak_alloc_phys);
1200
1201/**
1202 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1203 *                           physical address argument
1204 */
1205void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1206{
1207        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1208                kmemleak_free_part(__va(phys), size);
1209}
1210EXPORT_SYMBOL(kmemleak_free_part_phys);
1211
1212/**
1213 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1214 *                          address argument
1215 */
1216void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1217{
1218        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1219                kmemleak_not_leak(__va(phys));
1220}
1221EXPORT_SYMBOL(kmemleak_not_leak_phys);
1222
1223/**
1224 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1225 *                        address argument
1226 */
1227void __ref kmemleak_ignore_phys(phys_addr_t phys)
1228{
1229        if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1230                kmemleak_ignore(__va(phys));
1231}
1232EXPORT_SYMBOL(kmemleak_ignore_phys);
1233
1234/*
1235 * Update an object's checksum and return true if it was modified.
1236 */
1237static bool update_checksum(struct kmemleak_object *object)
1238{
1239        u32 old_csum = object->checksum;
1240
1241        if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1242                return false;
1243
1244        kasan_disable_current();
1245        object->checksum = crc32(0, (void *)object->pointer, object->size);
1246        kasan_enable_current();
1247
1248        return object->checksum != old_csum;
1249}
1250
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256        if (!color_white(object)) {
1257                /* non-orphan, ignored or new */
1258                return;
1259        }
1260
1261        /*
1262         * Increase the object's reference count (number of pointers to the
1263         * memory block). If this count reaches the required minimum, the
1264         * object's color will become gray and it will be added to the
1265         * gray_list.
1266         */
1267        object->count++;
1268        if (color_gray(object)) {
1269                /* put_object() called when removing from gray_list */
1270                WARN_ON(!get_object(object));
1271                list_add_tail(&object->gray_list, &gray_list);
1272        }
1273}
1274
1275/*
1276 * Memory scanning is a long process and it needs to be interruptable. This
1277 * function checks whether such interrupt condition occurred.
1278 */
1279static int scan_should_stop(void)
1280{
1281        if (!kmemleak_enabled)
1282                return 1;
1283
1284        /*
1285         * This function may be called from either process or kthread context,
1286         * hence the need to check for both stop conditions.
1287         */
1288        if (current->mm)
1289                return signal_pending(current);
1290        else
1291                return kthread_should_stop();
1292
1293        return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
1301                       struct kmemleak_object *scanned)
1302{
1303        unsigned long *ptr;
1304        unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305        unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306        unsigned long flags;
1307
1308        read_lock_irqsave(&kmemleak_lock, flags);
1309        for (ptr = start; ptr < end; ptr++) {
1310                struct kmemleak_object *object;
1311                unsigned long pointer;
1312                unsigned long excess_ref;
1313
1314                if (scan_should_stop())
1315                        break;
1316
1317                /* don't scan uninitialized memory */
1318                if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1319                                                  BYTES_PER_POINTER))
1320                        continue;
1321
1322                kasan_disable_current();
1323                pointer = *ptr;
1324                kasan_enable_current();
1325
1326                if (pointer < min_addr || pointer >= max_addr)
1327                        continue;
1328
1329                /*
1330                 * No need for get_object() here since we hold kmemleak_lock.
1331                 * object->use_count cannot be dropped to 0 while the object
1332                 * is still present in object_tree_root and object_list
1333                 * (with updates protected by kmemleak_lock).
1334                 */
1335                object = lookup_object(pointer, 1);
1336                if (!object)
1337                        continue;
1338                if (object == scanned)
1339                        /* self referenced, ignore */
1340                        continue;
1341
1342                /*
1343                 * Avoid the lockdep recursive warning on object->lock being
1344                 * previously acquired in scan_object(). These locks are
1345                 * enclosed by scan_mutex.
1346                 */
1347                spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1348                /* only pass surplus references (object already gray) */
1349                if (color_gray(object)) {
1350                        excess_ref = object->excess_ref;
1351                        /* no need for update_refs() if object already gray */
1352                } else {
1353                        excess_ref = 0;
1354                        update_refs(object);
1355                }
1356                spin_unlock(&object->lock);
1357
1358                if (excess_ref) {
1359                        object = lookup_object(excess_ref, 0);
1360                        if (!object)
1361                                continue;
1362                        if (object == scanned)
1363                                /* circular reference, ignore */
1364                                continue;
1365                        spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1366                        update_refs(object);
1367                        spin_unlock(&object->lock);
1368                }
1369        }
1370        read_unlock_irqrestore(&kmemleak_lock, flags);
1371}
1372
1373/*
1374 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1375 */
1376static void scan_large_block(void *start, void *end)
1377{
1378        void *next;
1379
1380        while (start < end) {
1381                next = min(start + MAX_SCAN_SIZE, end);
1382                scan_block(start, next, NULL);
1383                start = next;
1384                cond_resched();
1385        }
1386}
1387
1388/*
1389 * Scan a memory block corresponding to a kmemleak_object. A condition is
1390 * that object->use_count >= 1.
1391 */
1392static void scan_object(struct kmemleak_object *object)
1393{
1394        struct kmemleak_scan_area *area;
1395        unsigned long flags;
1396
1397        /*
1398         * Once the object->lock is acquired, the corresponding memory block
1399         * cannot be freed (the same lock is acquired in delete_object).
1400         */
1401        spin_lock_irqsave(&object->lock, flags);
1402        if (object->flags & OBJECT_NO_SCAN)
1403                goto out;
1404        if (!(object->flags & OBJECT_ALLOCATED))
1405                /* already freed object */
1406                goto out;
1407        if (hlist_empty(&object->area_list)) {
1408                void *start = (void *)object->pointer;
1409                void *end = (void *)(object->pointer + object->size);
1410                void *next;
1411
1412                do {
1413                        next = min(start + MAX_SCAN_SIZE, end);
1414                        scan_block(start, next, object);
1415
1416                        start = next;
1417                        if (start >= end)
1418                                break;
1419
1420                        spin_unlock_irqrestore(&object->lock, flags);
1421                        cond_resched();
1422                        spin_lock_irqsave(&object->lock, flags);
1423                } while (object->flags & OBJECT_ALLOCATED);
1424        } else
1425                hlist_for_each_entry(area, &object->area_list, node)
1426                        scan_block((void *)area->start,
1427                                   (void *)(area->start + area->size),
1428                                   object);
1429out:
1430        spin_unlock_irqrestore(&object->lock, flags);
1431}
1432
1433/*
1434 * Scan the objects already referenced (gray objects). More objects will be
1435 * referenced and, if there are no memory leaks, all the objects are scanned.
1436 */
1437static void scan_gray_list(void)
1438{
1439        struct kmemleak_object *object, *tmp;
1440
1441        /*
1442         * The list traversal is safe for both tail additions and removals
1443         * from inside the loop. The kmemleak objects cannot be freed from
1444         * outside the loop because their use_count was incremented.
1445         */
1446        object = list_entry(gray_list.next, typeof(*object), gray_list);
1447        while (&object->gray_list != &gray_list) {
1448                cond_resched();
1449
1450                /* may add new objects to the list */
1451                if (!scan_should_stop())
1452                        scan_object(object);
1453
1454                tmp = list_entry(object->gray_list.next, typeof(*object),
1455                                 gray_list);
1456
1457                /* remove the object from the list and release it */
1458                list_del(&object->gray_list);
1459                put_object(object);
1460
1461                object = tmp;
1462        }
1463        WARN_ON(!list_empty(&gray_list));
1464}
1465
1466/*
1467 * Scan data sections and all the referenced memory blocks allocated via the
1468 * kernel's standard allocators. This function must be called with the
1469 * scan_mutex held.
1470 */
1471static void kmemleak_scan(void)
1472{
1473        unsigned long flags;
1474        struct kmemleak_object *object;
1475        int i;
1476        int new_leaks = 0;
1477
1478        jiffies_last_scan = jiffies;
1479
1480        /* prepare the kmemleak_object's */
1481        rcu_read_lock();
1482        list_for_each_entry_rcu(object, &object_list, object_list) {
1483                spin_lock_irqsave(&object->lock, flags);
1484#ifdef DEBUG
1485                /*
1486                 * With a few exceptions there should be a maximum of
1487                 * 1 reference to any object at this point.
1488                 */
1489                if (atomic_read(&object->use_count) > 1) {
1490                        pr_debug("object->use_count = %d\n",
1491                                 atomic_read(&object->use_count));
1492                        dump_object_info(object);
1493                }
1494#endif
1495                /* reset the reference count (whiten the object) */
1496                object->count = 0;
1497                if (color_gray(object) && get_object(object))
1498                        list_add_tail(&object->gray_list, &gray_list);
1499
1500                spin_unlock_irqrestore(&object->lock, flags);
1501        }
1502        rcu_read_unlock();
1503
1504        /* data/bss scanning */
1505        scan_large_block(_sdata, _edata);
1506        scan_large_block(__bss_start, __bss_stop);
1507        scan_large_block(__start_ro_after_init, __end_ro_after_init);
1508
1509#ifdef CONFIG_SMP
1510        /* per-cpu sections scanning */
1511        for_each_possible_cpu(i)
1512                scan_large_block(__per_cpu_start + per_cpu_offset(i),
1513                                 __per_cpu_end + per_cpu_offset(i));
1514#endif
1515
1516        /*
1517         * Struct page scanning for each node.
1518         */
1519        get_online_mems();
1520        for_each_online_node(i) {
1521                unsigned long start_pfn = node_start_pfn(i);
1522                unsigned long end_pfn = node_end_pfn(i);
1523                unsigned long pfn;
1524
1525                for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526                        struct page *page;
1527
1528                        if (!pfn_valid(pfn))
1529                                continue;
1530                        page = pfn_to_page(pfn);
1531                        /* only scan if page is in use */
1532                        if (page_count(page) == 0)
1533                                continue;
1534                        scan_block(page, page + 1, NULL);
1535                }
1536        }
1537        put_online_mems();
1538
1539        /*
1540         * Scanning the task stacks (may introduce false negatives).
1541         */
1542        if (kmemleak_stack_scan) {
1543                struct task_struct *p, *g;
1544
1545                read_lock(&tasklist_lock);
1546                do_each_thread(g, p) {
1547                        void *stack = try_get_task_stack(p);
1548                        if (stack) {
1549                                scan_block(stack, stack + THREAD_SIZE, NULL);
1550                                put_task_stack(p);
1551                        }
1552                } while_each_thread(g, p);
1553                read_unlock(&tasklist_lock);
1554        }
1555
1556        /*
1557         * Scan the objects already referenced from the sections scanned
1558         * above.
1559         */
1560        scan_gray_list();
1561
1562        /*
1563         * Check for new or unreferenced objects modified since the previous
1564         * scan and color them gray until the next scan.
1565         */
1566        rcu_read_lock();
1567        list_for_each_entry_rcu(object, &object_list, object_list) {
1568                spin_lock_irqsave(&object->lock, flags);
1569                if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1570                    && update_checksum(object) && get_object(object)) {
1571                        /* color it gray temporarily */
1572                        object->count = object->min_count;
1573                        list_add_tail(&object->gray_list, &gray_list);
1574                }
1575                spin_unlock_irqrestore(&object->lock, flags);
1576        }
1577        rcu_read_unlock();
1578
1579        /*
1580         * Re-scan the gray list for modified unreferenced objects.
1581         */
1582        scan_gray_list();
1583
1584        /*
1585         * If scanning was stopped do not report any new unreferenced objects.
1586         */
1587        if (scan_should_stop())
1588                return;
1589
1590        /*
1591         * Scanning result reporting.
1592         */
1593        rcu_read_lock();
1594        list_for_each_entry_rcu(object, &object_list, object_list) {
1595                spin_lock_irqsave(&object->lock, flags);
1596                if (unreferenced_object(object) &&
1597                    !(object->flags & OBJECT_REPORTED)) {
1598                        object->flags |= OBJECT_REPORTED;
1599                        new_leaks++;
1600                }
1601                spin_unlock_irqrestore(&object->lock, flags);
1602        }
1603        rcu_read_unlock();
1604
1605        if (new_leaks) {
1606                kmemleak_found_leaks = true;
1607
1608                pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1609                        new_leaks);
1610        }
1611
1612}
1613
1614/*
1615 * Thread function performing automatic memory scanning. Unreferenced objects
1616 * at the end of a memory scan are reported but only the first time.
1617 */
1618static int kmemleak_scan_thread(void *arg)
1619{
1620        static int first_run = 1;
1621
1622        pr_info("Automatic memory scanning thread started\n");
1623        set_user_nice(current, 10);
1624
1625        /*
1626         * Wait before the first scan to allow the system to fully initialize.
1627         */
1628        if (first_run) {
1629                signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1630                first_run = 0;
1631                while (timeout && !kthread_should_stop())
1632                        timeout = schedule_timeout_interruptible(timeout);
1633        }
1634
1635        while (!kthread_should_stop()) {
1636                signed long timeout = jiffies_scan_wait;
1637
1638                mutex_lock(&scan_mutex);
1639                kmemleak_scan();
1640                mutex_unlock(&scan_mutex);
1641
1642                /* wait before the next scan */
1643                while (timeout && !kthread_should_stop())
1644                        timeout = schedule_timeout_interruptible(timeout);
1645        }
1646
1647        pr_info("Automatic memory scanning thread ended\n");
1648
1649        return 0;
1650}
1651
1652/*
1653 * Start the automatic memory scanning thread. This function must be called
1654 * with the scan_mutex held.
1655 */
1656static void start_scan_thread(void)
1657{
1658        if (scan_thread)
1659                return;
1660        scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1661        if (IS_ERR(scan_thread)) {
1662                pr_warn("Failed to create the scan thread\n");
1663                scan_thread = NULL;
1664        }
1665}
1666
1667/*
1668 * Stop the automatic memory scanning thread. This function must be called
1669 * with the scan_mutex held.
1670 */
1671static void stop_scan_thread(void)
1672{
1673        if (scan_thread) {
1674                kthread_stop(scan_thread);
1675                scan_thread = NULL;
1676        }
1677}
1678
1679/*
1680 * Iterate over the object_list and return the first valid object at or after
1681 * the required position with its use_count incremented. The function triggers
1682 * a memory scanning when the pos argument points to the first position.
1683 */
1684static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1685{
1686        struct kmemleak_object *object;
1687        loff_t n = *pos;
1688        int err;
1689
1690        err = mutex_lock_interruptible(&scan_mutex);
1691        if (err < 0)
1692                return ERR_PTR(err);
1693
1694        rcu_read_lock();
1695        list_for_each_entry_rcu(object, &object_list, object_list) {
1696                if (n-- > 0)
1697                        continue;
1698                if (get_object(object))
1699                        goto out;
1700        }
1701        object = NULL;
1702out:
1703        return object;
1704}
1705
1706/*
1707 * Return the next object in the object_list. The function decrements the
1708 * use_count of the previous object and increases that of the next one.
1709 */
1710static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1711{
1712        struct kmemleak_object *prev_obj = v;
1713        struct kmemleak_object *next_obj = NULL;
1714        struct kmemleak_object *obj = prev_obj;
1715
1716        ++(*pos);
1717
1718        list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1719                if (get_object(obj)) {
1720                        next_obj = obj;
1721                        break;
1722                }
1723        }
1724
1725        put_object(prev_obj);
1726        return next_obj;
1727}
1728
1729/*
1730 * Decrement the use_count of the last object required, if any.
1731 */
1732static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1733{
1734        if (!IS_ERR(v)) {
1735                /*
1736                 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1737                 * waiting was interrupted, so only release it if !IS_ERR.
1738                 */
1739                rcu_read_unlock();
1740                mutex_unlock(&scan_mutex);
1741                if (v)
1742                        put_object(v);
1743        }
1744}
1745
1746/*
1747 * Print the information for an unreferenced object to the seq file.
1748 */
1749static int kmemleak_seq_show(struct seq_file *seq, void *v)
1750{
1751        struct kmemleak_object *object = v;
1752        unsigned long flags;
1753
1754        spin_lock_irqsave(&object->lock, flags);
1755        if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1756                print_unreferenced(seq, object);
1757        spin_unlock_irqrestore(&object->lock, flags);
1758        return 0;
1759}
1760
1761static const struct seq_operations kmemleak_seq_ops = {
1762        .start = kmemleak_seq_start,
1763        .next  = kmemleak_seq_next,
1764        .stop  = kmemleak_seq_stop,
1765        .show  = kmemleak_seq_show,
1766};
1767
1768static int kmemleak_open(struct inode *inode, struct file *file)
1769{
1770        return seq_open(file, &kmemleak_seq_ops);
1771}
1772
1773static int dump_str_object_info(const char *str)
1774{
1775        unsigned long flags;
1776        struct kmemleak_object *object;
1777        unsigned long addr;
1778
1779        if (kstrtoul(str, 0, &addr))
1780                return -EINVAL;
1781        object = find_and_get_object(addr, 0);
1782        if (!object) {
1783                pr_info("Unknown object at 0x%08lx\n", addr);
1784                return -EINVAL;
1785        }
1786
1787        spin_lock_irqsave(&object->lock, flags);
1788        dump_object_info(object);
1789        spin_unlock_irqrestore(&object->lock, flags);
1790
1791        put_object(object);
1792        return 0;
1793}
1794
1795/*
1796 * We use grey instead of black to ensure we can do future scans on the same
1797 * objects. If we did not do future scans these black objects could
1798 * potentially contain references to newly allocated objects in the future and
1799 * we'd end up with false positives.
1800 */
1801static void kmemleak_clear(void)
1802{
1803        struct kmemleak_object *object;
1804        unsigned long flags;
1805
1806        rcu_read_lock();
1807        list_for_each_entry_rcu(object, &object_list, object_list) {
1808                spin_lock_irqsave(&object->lock, flags);
1809                if ((object->flags & OBJECT_REPORTED) &&
1810                    unreferenced_object(object))
1811                        __paint_it(object, KMEMLEAK_GREY);
1812                spin_unlock_irqrestore(&object->lock, flags);
1813        }
1814        rcu_read_unlock();
1815
1816        kmemleak_found_leaks = false;
1817}
1818
1819static void __kmemleak_do_cleanup(void);
1820
1821/*
1822 * File write operation to configure kmemleak at run-time. The following
1823 * commands can be written to the /sys/kernel/debug/kmemleak file:
1824 *   off        - disable kmemleak (irreversible)
1825 *   stack=on   - enable the task stacks scanning
1826 *   stack=off  - disable the tasks stacks scanning
1827 *   scan=on    - start the automatic memory scanning thread
1828 *   scan=off   - stop the automatic memory scanning thread
1829 *   scan=...   - set the automatic memory scanning period in seconds (0 to
1830 *                disable it)
1831 *   scan       - trigger a memory scan
1832 *   clear      - mark all current reported unreferenced kmemleak objects as
1833 *                grey to ignore printing them, or free all kmemleak objects
1834 *                if kmemleak has been disabled.
1835 *   dump=...   - dump information about the object found at the given address
1836 */
1837static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1838                              size_t size, loff_t *ppos)
1839{
1840        char buf[64];
1841        int buf_size;
1842        int ret;
1843
1844        buf_size = min(size, (sizeof(buf) - 1));
1845        if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1846                return -EFAULT;
1847        buf[buf_size] = 0;
1848
1849        ret = mutex_lock_interruptible(&scan_mutex);
1850        if (ret < 0)
1851                return ret;
1852
1853        if (strncmp(buf, "clear", 5) == 0) {
1854                if (kmemleak_enabled)
1855                        kmemleak_clear();
1856                else
1857                        __kmemleak_do_cleanup();
1858                goto out;
1859        }
1860
1861        if (!kmemleak_enabled) {
1862                ret = -EBUSY;
1863                goto out;
1864        }
1865
1866        if (strncmp(buf, "off", 3) == 0)
1867                kmemleak_disable();
1868        else if (strncmp(buf, "stack=on", 8) == 0)
1869                kmemleak_stack_scan = 1;
1870        else if (strncmp(buf, "stack=off", 9) == 0)
1871                kmemleak_stack_scan = 0;
1872        else if (strncmp(buf, "scan=on", 7) == 0)
1873                start_scan_thread();
1874        else if (strncmp(buf, "scan=off", 8) == 0)
1875                stop_scan_thread();
1876        else if (strncmp(buf, "scan=", 5) == 0) {
1877                unsigned long secs;
1878
1879                ret = kstrtoul(buf + 5, 0, &secs);
1880                if (ret < 0)
1881                        goto out;
1882                stop_scan_thread();
1883                if (secs) {
1884                        jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1885                        start_scan_thread();
1886                }
1887        } else if (strncmp(buf, "scan", 4) == 0)
1888                kmemleak_scan();
1889        else if (strncmp(buf, "dump=", 5) == 0)
1890                ret = dump_str_object_info(buf + 5);
1891        else
1892                ret = -EINVAL;
1893
1894out:
1895        mutex_unlock(&scan_mutex);
1896        if (ret < 0)
1897                return ret;
1898
1899        /* ignore the rest of the buffer, only one command at a time */
1900        *ppos += size;
1901        return size;
1902}
1903
1904static const struct file_operations kmemleak_fops = {
1905        .owner          = THIS_MODULE,
1906        .open           = kmemleak_open,
1907        .read           = seq_read,
1908        .write          = kmemleak_write,
1909        .llseek         = seq_lseek,
1910        .release        = seq_release,
1911};
1912
1913static void __kmemleak_do_cleanup(void)
1914{
1915        struct kmemleak_object *object;
1916
1917        rcu_read_lock();
1918        list_for_each_entry_rcu(object, &object_list, object_list)
1919                delete_object_full(object->pointer);
1920        rcu_read_unlock();
1921}
1922
1923/*
1924 * Stop the memory scanning thread and free the kmemleak internal objects if
1925 * no previous scan thread (otherwise, kmemleak may still have some useful
1926 * information on memory leaks).
1927 */
1928static void kmemleak_do_cleanup(struct work_struct *work)
1929{
1930        stop_scan_thread();
1931
1932        /*
1933         * Once the scan thread has stopped, it is safe to no longer track
1934         * object freeing. Ordering of the scan thread stopping and the memory
1935         * accesses below is guaranteed by the kthread_stop() function.
1936         */
1937        kmemleak_free_enabled = 0;
1938
1939        if (!kmemleak_found_leaks)
1940                __kmemleak_do_cleanup();
1941        else
1942                pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1943}
1944
1945static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1946
1947/*
1948 * Disable kmemleak. No memory allocation/freeing will be traced once this
1949 * function is called. Disabling kmemleak is an irreversible operation.
1950 */
1951static void kmemleak_disable(void)
1952{
1953        /* atomically check whether it was already invoked */
1954        if (cmpxchg(&kmemleak_error, 0, 1))
1955                return;
1956
1957        /* stop any memory operation tracing */
1958        kmemleak_enabled = 0;
1959
1960        /* check whether it is too early for a kernel thread */
1961        if (kmemleak_initialized)
1962                schedule_work(&cleanup_work);
1963        else
1964                kmemleak_free_enabled = 0;
1965
1966        pr_info("Kernel memory leak detector disabled\n");
1967}
1968
1969/*
1970 * Allow boot-time kmemleak disabling (enabled by default).
1971 */
1972static int kmemleak_boot_config(char *str)
1973{
1974        if (!str)
1975                return -EINVAL;
1976        if (strcmp(str, "off") == 0)
1977                kmemleak_disable();
1978        else if (strcmp(str, "on") == 0)
1979                kmemleak_skip_disable = 1;
1980        else
1981                return -EINVAL;
1982        return 0;
1983}
1984early_param("kmemleak", kmemleak_boot_config);
1985
1986static void __init print_log_trace(struct early_log *log)
1987{
1988        struct stack_trace trace;
1989
1990        trace.nr_entries = log->trace_len;
1991        trace.entries = log->trace;
1992
1993        pr_notice("Early log backtrace:\n");
1994        print_stack_trace(&trace, 2);
1995}
1996
1997/*
1998 * Kmemleak initialization.
1999 */
2000void __init kmemleak_init(void)
2001{
2002        int i;
2003        unsigned long flags;
2004
2005#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2006        if (!kmemleak_skip_disable) {
2007                kmemleak_early_log = 0;
2008                kmemleak_disable();
2009                return;
2010        }
2011#endif
2012
2013        jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2014        jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2015
2016        object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2017        scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2018
2019        if (crt_early_log > ARRAY_SIZE(early_log))
2020                pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2021                        crt_early_log);
2022
2023        /* the kernel is still in UP mode, so disabling the IRQs is enough */
2024        local_irq_save(flags);
2025        kmemleak_early_log = 0;
2026        if (kmemleak_error) {
2027                local_irq_restore(flags);
2028                return;
2029        } else {
2030                kmemleak_enabled = 1;
2031                kmemleak_free_enabled = 1;
2032        }
2033        local_irq_restore(flags);
2034
2035        /*
2036         * This is the point where tracking allocations is safe. Automatic
2037         * scanning is started during the late initcall. Add the early logged
2038         * callbacks to the kmemleak infrastructure.
2039         */
2040        for (i = 0; i < crt_early_log; i++) {
2041                struct early_log *log = &early_log[i];
2042
2043                switch (log->op_type) {
2044                case KMEMLEAK_ALLOC:
2045                        early_alloc(log);
2046                        break;
2047                case KMEMLEAK_ALLOC_PERCPU:
2048                        early_alloc_percpu(log);
2049                        break;
2050                case KMEMLEAK_FREE:
2051                        kmemleak_free(log->ptr);
2052                        break;
2053                case KMEMLEAK_FREE_PART:
2054                        kmemleak_free_part(log->ptr, log->size);
2055                        break;
2056                case KMEMLEAK_FREE_PERCPU:
2057                        kmemleak_free_percpu(log->ptr);
2058                        break;
2059                case KMEMLEAK_NOT_LEAK:
2060                        kmemleak_not_leak(log->ptr);
2061                        break;
2062                case KMEMLEAK_IGNORE:
2063                        kmemleak_ignore(log->ptr);
2064                        break;
2065                case KMEMLEAK_SCAN_AREA:
2066                        kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2067                        break;
2068                case KMEMLEAK_NO_SCAN:
2069                        kmemleak_no_scan(log->ptr);
2070                        break;
2071                case KMEMLEAK_SET_EXCESS_REF:
2072                        object_set_excess_ref((unsigned long)log->ptr,
2073                                              log->excess_ref);
2074                        break;
2075                default:
2076                        kmemleak_warn("Unknown early log operation: %d\n",
2077                                      log->op_type);
2078                }
2079
2080                if (kmemleak_warning) {
2081                        print_log_trace(log);
2082                        kmemleak_warning = 0;
2083                }
2084        }
2085}
2086
2087/*
2088 * Late initialization function.
2089 */
2090static int __init kmemleak_late_init(void)
2091{
2092        struct dentry *dentry;
2093
2094        kmemleak_initialized = 1;
2095
2096        if (kmemleak_error) {
2097                /*
2098                 * Some error occurred and kmemleak was disabled. There is a
2099                 * small chance that kmemleak_disable() was called immediately
2100                 * after setting kmemleak_initialized and we may end up with
2101                 * two clean-up threads but serialized by scan_mutex.
2102                 */
2103                schedule_work(&cleanup_work);
2104                return -ENOMEM;
2105        }
2106
2107        dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2108                                     &kmemleak_fops);
2109        if (!dentry)
2110                pr_warn("Failed to create the debugfs kmemleak file\n");
2111        mutex_lock(&scan_mutex);
2112        start_scan_thread();
2113        mutex_unlock(&scan_mutex);
2114
2115        pr_info("Kernel memory leak detector initialized\n");
2116
2117        return 0;
2118}
2119late_initcall(kmemleak_late_init);
2120