linux/mm/page_io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/page_io.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, 
   8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
   9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
  10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  12 */
  13
  14#include <linux/mm.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/gfp.h>
  17#include <linux/pagemap.h>
  18#include <linux/swap.h>
  19#include <linux/bio.h>
  20#include <linux/swapops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/writeback.h>
  23#include <linux/frontswap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uio.h>
  26#include <linux/sched/task.h>
  27#include <asm/pgtable.h>
  28
  29static struct bio *get_swap_bio(gfp_t gfp_flags,
  30                                struct page *page, bio_end_io_t end_io)
  31{
  32        int i, nr = hpage_nr_pages(page);
  33        struct bio *bio;
  34
  35        bio = bio_alloc(gfp_flags, nr);
  36        if (bio) {
  37                struct block_device *bdev;
  38
  39                bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
  40                bio_set_dev(bio, bdev);
  41                bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  42                bio->bi_end_io = end_io;
  43
  44                for (i = 0; i < nr; i++)
  45                        bio_add_page(bio, page + i, PAGE_SIZE, 0);
  46                VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
  47        }
  48        return bio;
  49}
  50
  51void end_swap_bio_write(struct bio *bio)
  52{
  53        struct page *page = bio->bi_io_vec[0].bv_page;
  54
  55        if (bio->bi_status) {
  56                SetPageError(page);
  57                /*
  58                 * We failed to write the page out to swap-space.
  59                 * Re-dirty the page in order to avoid it being reclaimed.
  60                 * Also print a dire warning that things will go BAD (tm)
  61                 * very quickly.
  62                 *
  63                 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  64                 */
  65                set_page_dirty(page);
  66                pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  67                         MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  68                         (unsigned long long)bio->bi_iter.bi_sector);
  69                ClearPageReclaim(page);
  70        }
  71        end_page_writeback(page);
  72        bio_put(bio);
  73}
  74
  75static void swap_slot_free_notify(struct page *page)
  76{
  77        struct swap_info_struct *sis;
  78        struct gendisk *disk;
  79
  80        /*
  81         * There is no guarantee that the page is in swap cache - the software
  82         * suspend code (at least) uses end_swap_bio_read() against a non-
  83         * swapcache page.  So we must check PG_swapcache before proceeding with
  84         * this optimization.
  85         */
  86        if (unlikely(!PageSwapCache(page)))
  87                return;
  88
  89        sis = page_swap_info(page);
  90        if (!(sis->flags & SWP_BLKDEV))
  91                return;
  92
  93        /*
  94         * The swap subsystem performs lazy swap slot freeing,
  95         * expecting that the page will be swapped out again.
  96         * So we can avoid an unnecessary write if the page
  97         * isn't redirtied.
  98         * This is good for real swap storage because we can
  99         * reduce unnecessary I/O and enhance wear-leveling
 100         * if an SSD is used as the as swap device.
 101         * But if in-memory swap device (eg zram) is used,
 102         * this causes a duplicated copy between uncompressed
 103         * data in VM-owned memory and compressed data in
 104         * zram-owned memory.  So let's free zram-owned memory
 105         * and make the VM-owned decompressed page *dirty*,
 106         * so the page should be swapped out somewhere again if
 107         * we again wish to reclaim it.
 108         */
 109        disk = sis->bdev->bd_disk;
 110        if (disk->fops->swap_slot_free_notify) {
 111                swp_entry_t entry;
 112                unsigned long offset;
 113
 114                entry.val = page_private(page);
 115                offset = swp_offset(entry);
 116
 117                SetPageDirty(page);
 118                disk->fops->swap_slot_free_notify(sis->bdev,
 119                                offset);
 120        }
 121}
 122
 123static void end_swap_bio_read(struct bio *bio)
 124{
 125        struct page *page = bio->bi_io_vec[0].bv_page;
 126        struct task_struct *waiter = bio->bi_private;
 127
 128        if (bio->bi_status) {
 129                SetPageError(page);
 130                ClearPageUptodate(page);
 131                pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
 132                         MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 133                         (unsigned long long)bio->bi_iter.bi_sector);
 134                goto out;
 135        }
 136
 137        SetPageUptodate(page);
 138        swap_slot_free_notify(page);
 139out:
 140        unlock_page(page);
 141        WRITE_ONCE(bio->bi_private, NULL);
 142        bio_put(bio);
 143        wake_up_process(waiter);
 144        put_task_struct(waiter);
 145}
 146
 147int generic_swapfile_activate(struct swap_info_struct *sis,
 148                                struct file *swap_file,
 149                                sector_t *span)
 150{
 151        struct address_space *mapping = swap_file->f_mapping;
 152        struct inode *inode = mapping->host;
 153        unsigned blocks_per_page;
 154        unsigned long page_no;
 155        unsigned blkbits;
 156        sector_t probe_block;
 157        sector_t last_block;
 158        sector_t lowest_block = -1;
 159        sector_t highest_block = 0;
 160        int nr_extents = 0;
 161        int ret;
 162
 163        blkbits = inode->i_blkbits;
 164        blocks_per_page = PAGE_SIZE >> blkbits;
 165
 166        /*
 167         * Map all the blocks into the extent list.  This code doesn't try
 168         * to be very smart.
 169         */
 170        probe_block = 0;
 171        page_no = 0;
 172        last_block = i_size_read(inode) >> blkbits;
 173        while ((probe_block + blocks_per_page) <= last_block &&
 174                        page_no < sis->max) {
 175                unsigned block_in_page;
 176                sector_t first_block;
 177
 178                cond_resched();
 179
 180                first_block = bmap(inode, probe_block);
 181                if (first_block == 0)
 182                        goto bad_bmap;
 183
 184                /*
 185                 * It must be PAGE_SIZE aligned on-disk
 186                 */
 187                if (first_block & (blocks_per_page - 1)) {
 188                        probe_block++;
 189                        goto reprobe;
 190                }
 191
 192                for (block_in_page = 1; block_in_page < blocks_per_page;
 193                                        block_in_page++) {
 194                        sector_t block;
 195
 196                        block = bmap(inode, probe_block + block_in_page);
 197                        if (block == 0)
 198                                goto bad_bmap;
 199                        if (block != first_block + block_in_page) {
 200                                /* Discontiguity */
 201                                probe_block++;
 202                                goto reprobe;
 203                        }
 204                }
 205
 206                first_block >>= (PAGE_SHIFT - blkbits);
 207                if (page_no) {  /* exclude the header page */
 208                        if (first_block < lowest_block)
 209                                lowest_block = first_block;
 210                        if (first_block > highest_block)
 211                                highest_block = first_block;
 212                }
 213
 214                /*
 215                 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
 216                 */
 217                ret = add_swap_extent(sis, page_no, 1, first_block);
 218                if (ret < 0)
 219                        goto out;
 220                nr_extents += ret;
 221                page_no++;
 222                probe_block += blocks_per_page;
 223reprobe:
 224                continue;
 225        }
 226        ret = nr_extents;
 227        *span = 1 + highest_block - lowest_block;
 228        if (page_no == 0)
 229                page_no = 1;    /* force Empty message */
 230        sis->max = page_no;
 231        sis->pages = page_no - 1;
 232        sis->highest_bit = page_no - 1;
 233out:
 234        return ret;
 235bad_bmap:
 236        pr_err("swapon: swapfile has holes\n");
 237        ret = -EINVAL;
 238        goto out;
 239}
 240
 241/*
 242 * We may have stale swap cache pages in memory: notice
 243 * them here and get rid of the unnecessary final write.
 244 */
 245int swap_writepage(struct page *page, struct writeback_control *wbc)
 246{
 247        int ret = 0;
 248
 249        if (try_to_free_swap(page)) {
 250                unlock_page(page);
 251                goto out;
 252        }
 253        if (frontswap_store(page) == 0) {
 254                set_page_writeback(page);
 255                unlock_page(page);
 256                end_page_writeback(page);
 257                goto out;
 258        }
 259        ret = __swap_writepage(page, wbc, end_swap_bio_write);
 260out:
 261        return ret;
 262}
 263
 264static sector_t swap_page_sector(struct page *page)
 265{
 266        return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
 267}
 268
 269static inline void count_swpout_vm_event(struct page *page)
 270{
 271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 272        if (unlikely(PageTransHuge(page)))
 273                count_vm_event(THP_SWPOUT);
 274#endif
 275        count_vm_events(PSWPOUT, hpage_nr_pages(page));
 276}
 277
 278int __swap_writepage(struct page *page, struct writeback_control *wbc,
 279                bio_end_io_t end_write_func)
 280{
 281        struct bio *bio;
 282        int ret;
 283        struct swap_info_struct *sis = page_swap_info(page);
 284
 285        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 286        if (sis->flags & SWP_FILE) {
 287                struct kiocb kiocb;
 288                struct file *swap_file = sis->swap_file;
 289                struct address_space *mapping = swap_file->f_mapping;
 290                struct bio_vec bv = {
 291                        .bv_page = page,
 292                        .bv_len  = PAGE_SIZE,
 293                        .bv_offset = 0
 294                };
 295                struct iov_iter from;
 296
 297                iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
 298                init_sync_kiocb(&kiocb, swap_file);
 299                kiocb.ki_pos = page_file_offset(page);
 300
 301                set_page_writeback(page);
 302                unlock_page(page);
 303                ret = mapping->a_ops->direct_IO(&kiocb, &from);
 304                if (ret == PAGE_SIZE) {
 305                        count_vm_event(PSWPOUT);
 306                        ret = 0;
 307                } else {
 308                        /*
 309                         * In the case of swap-over-nfs, this can be a
 310                         * temporary failure if the system has limited
 311                         * memory for allocating transmit buffers.
 312                         * Mark the page dirty and avoid
 313                         * rotate_reclaimable_page but rate-limit the
 314                         * messages but do not flag PageError like
 315                         * the normal direct-to-bio case as it could
 316                         * be temporary.
 317                         */
 318                        set_page_dirty(page);
 319                        ClearPageReclaim(page);
 320                        pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
 321                                           page_file_offset(page));
 322                }
 323                end_page_writeback(page);
 324                return ret;
 325        }
 326
 327        ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
 328        if (!ret) {
 329                count_swpout_vm_event(page);
 330                return 0;
 331        }
 332
 333        ret = 0;
 334        bio = get_swap_bio(GFP_NOIO, page, end_write_func);
 335        if (bio == NULL) {
 336                set_page_dirty(page);
 337                unlock_page(page);
 338                ret = -ENOMEM;
 339                goto out;
 340        }
 341        bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 342        count_swpout_vm_event(page);
 343        set_page_writeback(page);
 344        unlock_page(page);
 345        submit_bio(bio);
 346out:
 347        return ret;
 348}
 349
 350int swap_readpage(struct page *page, bool do_poll)
 351{
 352        struct bio *bio;
 353        int ret = 0;
 354        struct swap_info_struct *sis = page_swap_info(page);
 355        blk_qc_t qc;
 356        struct gendisk *disk;
 357
 358        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 359        VM_BUG_ON_PAGE(!PageLocked(page), page);
 360        VM_BUG_ON_PAGE(PageUptodate(page), page);
 361        if (frontswap_load(page) == 0) {
 362                SetPageUptodate(page);
 363                unlock_page(page);
 364                goto out;
 365        }
 366
 367        if (sis->flags & SWP_FILE) {
 368                struct file *swap_file = sis->swap_file;
 369                struct address_space *mapping = swap_file->f_mapping;
 370
 371                ret = mapping->a_ops->readpage(swap_file, page);
 372                if (!ret)
 373                        count_vm_event(PSWPIN);
 374                return ret;
 375        }
 376
 377        ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
 378        if (!ret) {
 379                if (trylock_page(page)) {
 380                        swap_slot_free_notify(page);
 381                        unlock_page(page);
 382                }
 383
 384                count_vm_event(PSWPIN);
 385                return 0;
 386        }
 387
 388        ret = 0;
 389        bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
 390        if (bio == NULL) {
 391                unlock_page(page);
 392                ret = -ENOMEM;
 393                goto out;
 394        }
 395        disk = bio->bi_disk;
 396        /*
 397         * Keep this task valid during swap readpage because the oom killer may
 398         * attempt to access it in the page fault retry time check.
 399         */
 400        get_task_struct(current);
 401        bio->bi_private = current;
 402        bio_set_op_attrs(bio, REQ_OP_READ, 0);
 403        count_vm_event(PSWPIN);
 404        bio_get(bio);
 405        qc = submit_bio(bio);
 406        while (do_poll) {
 407                set_current_state(TASK_UNINTERRUPTIBLE);
 408                if (!READ_ONCE(bio->bi_private))
 409                        break;
 410
 411                if (!blk_mq_poll(disk->queue, qc))
 412                        break;
 413        }
 414        __set_current_state(TASK_RUNNING);
 415        bio_put(bio);
 416
 417out:
 418        return ret;
 419}
 420
 421int swap_set_page_dirty(struct page *page)
 422{
 423        struct swap_info_struct *sis = page_swap_info(page);
 424
 425        if (sis->flags & SWP_FILE) {
 426                struct address_space *mapping = sis->swap_file->f_mapping;
 427
 428                VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 429                return mapping->a_ops->set_page_dirty(page);
 430        } else {
 431                return __set_page_dirty_no_writeback(page);
 432        }
 433}
 434