linux/net/core/filter.c
<<
>>
Prefs
   1/*
   2 * Linux Socket Filter - Kernel level socket filtering
   3 *
   4 * Based on the design of the Berkeley Packet Filter. The new
   5 * internal format has been designed by PLUMgrid:
   6 *
   7 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   8 *
   9 * Authors:
  10 *
  11 *      Jay Schulist <jschlst@samba.org>
  12 *      Alexei Starovoitov <ast@plumgrid.com>
  13 *      Daniel Borkmann <dborkman@redhat.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * Andi Kleen - Fix a few bad bugs and races.
  21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/mm.h>
  27#include <linux/fcntl.h>
  28#include <linux/socket.h>
  29#include <linux/sock_diag.h>
  30#include <linux/in.h>
  31#include <linux/inet.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_packet.h>
  34#include <linux/if_arp.h>
  35#include <linux/gfp.h>
  36#include <net/ip.h>
  37#include <net/protocol.h>
  38#include <net/netlink.h>
  39#include <linux/skbuff.h>
  40#include <net/sock.h>
  41#include <net/flow_dissector.h>
  42#include <linux/errno.h>
  43#include <linux/timer.h>
  44#include <linux/uaccess.h>
  45#include <asm/unaligned.h>
  46#include <linux/filter.h>
  47#include <linux/ratelimit.h>
  48#include <linux/seccomp.h>
  49#include <linux/if_vlan.h>
  50#include <linux/bpf.h>
  51#include <net/sch_generic.h>
  52#include <net/cls_cgroup.h>
  53#include <net/dst_metadata.h>
  54#include <net/dst.h>
  55#include <net/sock_reuseport.h>
  56#include <net/busy_poll.h>
  57#include <net/tcp.h>
  58#include <linux/bpf_trace.h>
  59
  60/**
  61 *      sk_filter_trim_cap - run a packet through a socket filter
  62 *      @sk: sock associated with &sk_buff
  63 *      @skb: buffer to filter
  64 *      @cap: limit on how short the eBPF program may trim the packet
  65 *
  66 * Run the eBPF program and then cut skb->data to correct size returned by
  67 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
  68 * than pkt_len we keep whole skb->data. This is the socket level
  69 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
  70 * be accepted or -EPERM if the packet should be tossed.
  71 *
  72 */
  73int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
  74{
  75        int err;
  76        struct sk_filter *filter;
  77
  78        /*
  79         * If the skb was allocated from pfmemalloc reserves, only
  80         * allow SOCK_MEMALLOC sockets to use it as this socket is
  81         * helping free memory
  82         */
  83        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
  84                NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
  85                return -ENOMEM;
  86        }
  87        err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
  88        if (err)
  89                return err;
  90
  91        err = security_sock_rcv_skb(sk, skb);
  92        if (err)
  93                return err;
  94
  95        rcu_read_lock();
  96        filter = rcu_dereference(sk->sk_filter);
  97        if (filter) {
  98                struct sock *save_sk = skb->sk;
  99                unsigned int pkt_len;
 100
 101                skb->sk = sk;
 102                pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
 103                skb->sk = save_sk;
 104                err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
 105        }
 106        rcu_read_unlock();
 107
 108        return err;
 109}
 110EXPORT_SYMBOL(sk_filter_trim_cap);
 111
 112BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
 113{
 114        return skb_get_poff(skb);
 115}
 116
 117BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
 118{
 119        struct nlattr *nla;
 120
 121        if (skb_is_nonlinear(skb))
 122                return 0;
 123
 124        if (skb->len < sizeof(struct nlattr))
 125                return 0;
 126
 127        if (a > skb->len - sizeof(struct nlattr))
 128                return 0;
 129
 130        nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
 131        if (nla)
 132                return (void *) nla - (void *) skb->data;
 133
 134        return 0;
 135}
 136
 137BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
 138{
 139        struct nlattr *nla;
 140
 141        if (skb_is_nonlinear(skb))
 142                return 0;
 143
 144        if (skb->len < sizeof(struct nlattr))
 145                return 0;
 146
 147        if (a > skb->len - sizeof(struct nlattr))
 148                return 0;
 149
 150        nla = (struct nlattr *) &skb->data[a];
 151        if (nla->nla_len > skb->len - a)
 152                return 0;
 153
 154        nla = nla_find_nested(nla, x);
 155        if (nla)
 156                return (void *) nla - (void *) skb->data;
 157
 158        return 0;
 159}
 160
 161BPF_CALL_0(__get_raw_cpu_id)
 162{
 163        return raw_smp_processor_id();
 164}
 165
 166static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
 167        .func           = __get_raw_cpu_id,
 168        .gpl_only       = false,
 169        .ret_type       = RET_INTEGER,
 170};
 171
 172static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
 173                              struct bpf_insn *insn_buf)
 174{
 175        struct bpf_insn *insn = insn_buf;
 176
 177        switch (skb_field) {
 178        case SKF_AD_MARK:
 179                BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
 180
 181                *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
 182                                      offsetof(struct sk_buff, mark));
 183                break;
 184
 185        case SKF_AD_PKTTYPE:
 186                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
 187                *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
 188#ifdef __BIG_ENDIAN_BITFIELD
 189                *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
 190#endif
 191                break;
 192
 193        case SKF_AD_QUEUE:
 194                BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
 195
 196                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 197                                      offsetof(struct sk_buff, queue_mapping));
 198                break;
 199
 200        case SKF_AD_VLAN_TAG:
 201        case SKF_AD_VLAN_TAG_PRESENT:
 202                BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
 203                BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
 204
 205                /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
 206                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 207                                      offsetof(struct sk_buff, vlan_tci));
 208                if (skb_field == SKF_AD_VLAN_TAG) {
 209                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
 210                                                ~VLAN_TAG_PRESENT);
 211                } else {
 212                        /* dst_reg >>= 12 */
 213                        *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
 214                        /* dst_reg &= 1 */
 215                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
 216                }
 217                break;
 218        }
 219
 220        return insn - insn_buf;
 221}
 222
 223static bool convert_bpf_extensions(struct sock_filter *fp,
 224                                   struct bpf_insn **insnp)
 225{
 226        struct bpf_insn *insn = *insnp;
 227        u32 cnt;
 228
 229        switch (fp->k) {
 230        case SKF_AD_OFF + SKF_AD_PROTOCOL:
 231                BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
 232
 233                /* A = *(u16 *) (CTX + offsetof(protocol)) */
 234                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 235                                      offsetof(struct sk_buff, protocol));
 236                /* A = ntohs(A) [emitting a nop or swap16] */
 237                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 238                break;
 239
 240        case SKF_AD_OFF + SKF_AD_PKTTYPE:
 241                cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
 242                insn += cnt - 1;
 243                break;
 244
 245        case SKF_AD_OFF + SKF_AD_IFINDEX:
 246        case SKF_AD_OFF + SKF_AD_HATYPE:
 247                BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
 248                BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
 249
 250                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
 251                                      BPF_REG_TMP, BPF_REG_CTX,
 252                                      offsetof(struct sk_buff, dev));
 253                /* if (tmp != 0) goto pc + 1 */
 254                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
 255                *insn++ = BPF_EXIT_INSN();
 256                if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
 257                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
 258                                            offsetof(struct net_device, ifindex));
 259                else
 260                        *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
 261                                            offsetof(struct net_device, type));
 262                break;
 263
 264        case SKF_AD_OFF + SKF_AD_MARK:
 265                cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
 266                insn += cnt - 1;
 267                break;
 268
 269        case SKF_AD_OFF + SKF_AD_RXHASH:
 270                BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
 271
 272                *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
 273                                    offsetof(struct sk_buff, hash));
 274                break;
 275
 276        case SKF_AD_OFF + SKF_AD_QUEUE:
 277                cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
 278                insn += cnt - 1;
 279                break;
 280
 281        case SKF_AD_OFF + SKF_AD_VLAN_TAG:
 282                cnt = convert_skb_access(SKF_AD_VLAN_TAG,
 283                                         BPF_REG_A, BPF_REG_CTX, insn);
 284                insn += cnt - 1;
 285                break;
 286
 287        case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
 288                cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
 289                                         BPF_REG_A, BPF_REG_CTX, insn);
 290                insn += cnt - 1;
 291                break;
 292
 293        case SKF_AD_OFF + SKF_AD_VLAN_TPID:
 294                BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
 295
 296                /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
 297                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 298                                      offsetof(struct sk_buff, vlan_proto));
 299                /* A = ntohs(A) [emitting a nop or swap16] */
 300                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 301                break;
 302
 303        case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 304        case SKF_AD_OFF + SKF_AD_NLATTR:
 305        case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 306        case SKF_AD_OFF + SKF_AD_CPU:
 307        case SKF_AD_OFF + SKF_AD_RANDOM:
 308                /* arg1 = CTX */
 309                *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 310                /* arg2 = A */
 311                *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
 312                /* arg3 = X */
 313                *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
 314                /* Emit call(arg1=CTX, arg2=A, arg3=X) */
 315                switch (fp->k) {
 316                case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 317                        *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
 318                        break;
 319                case SKF_AD_OFF + SKF_AD_NLATTR:
 320                        *insn = BPF_EMIT_CALL(__skb_get_nlattr);
 321                        break;
 322                case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 323                        *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
 324                        break;
 325                case SKF_AD_OFF + SKF_AD_CPU:
 326                        *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
 327                        break;
 328                case SKF_AD_OFF + SKF_AD_RANDOM:
 329                        *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
 330                        bpf_user_rnd_init_once();
 331                        break;
 332                }
 333                break;
 334
 335        case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
 336                /* A ^= X */
 337                *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
 338                break;
 339
 340        default:
 341                /* This is just a dummy call to avoid letting the compiler
 342                 * evict __bpf_call_base() as an optimization. Placed here
 343                 * where no-one bothers.
 344                 */
 345                BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
 346                return false;
 347        }
 348
 349        *insnp = insn;
 350        return true;
 351}
 352
 353/**
 354 *      bpf_convert_filter - convert filter program
 355 *      @prog: the user passed filter program
 356 *      @len: the length of the user passed filter program
 357 *      @new_prog: allocated 'struct bpf_prog' or NULL
 358 *      @new_len: pointer to store length of converted program
 359 *
 360 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 361 * style extended BPF (eBPF).
 362 * Conversion workflow:
 363 *
 364 * 1) First pass for calculating the new program length:
 365 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
 366 *
 367 * 2) 2nd pass to remap in two passes: 1st pass finds new
 368 *    jump offsets, 2nd pass remapping:
 369 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
 370 */
 371static int bpf_convert_filter(struct sock_filter *prog, int len,
 372                              struct bpf_prog *new_prog, int *new_len)
 373{
 374        int new_flen = 0, pass = 0, target, i, stack_off;
 375        struct bpf_insn *new_insn, *first_insn = NULL;
 376        struct sock_filter *fp;
 377        int *addrs = NULL;
 378        u8 bpf_src;
 379
 380        BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
 381        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 382
 383        if (len <= 0 || len > BPF_MAXINSNS)
 384                return -EINVAL;
 385
 386        if (new_prog) {
 387                first_insn = new_prog->insnsi;
 388                addrs = kcalloc(len, sizeof(*addrs),
 389                                GFP_KERNEL | __GFP_NOWARN);
 390                if (!addrs)
 391                        return -ENOMEM;
 392        }
 393
 394do_pass:
 395        new_insn = first_insn;
 396        fp = prog;
 397
 398        /* Classic BPF related prologue emission. */
 399        if (new_prog) {
 400                /* Classic BPF expects A and X to be reset first. These need
 401                 * to be guaranteed to be the first two instructions.
 402                 */
 403                *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 404                *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
 405
 406                /* All programs must keep CTX in callee saved BPF_REG_CTX.
 407                 * In eBPF case it's done by the compiler, here we need to
 408                 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
 409                 */
 410                *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
 411        } else {
 412                new_insn += 3;
 413        }
 414
 415        for (i = 0; i < len; fp++, i++) {
 416                struct bpf_insn tmp_insns[6] = { };
 417                struct bpf_insn *insn = tmp_insns;
 418
 419                if (addrs)
 420                        addrs[i] = new_insn - first_insn;
 421
 422                switch (fp->code) {
 423                /* All arithmetic insns and skb loads map as-is. */
 424                case BPF_ALU | BPF_ADD | BPF_X:
 425                case BPF_ALU | BPF_ADD | BPF_K:
 426                case BPF_ALU | BPF_SUB | BPF_X:
 427                case BPF_ALU | BPF_SUB | BPF_K:
 428                case BPF_ALU | BPF_AND | BPF_X:
 429                case BPF_ALU | BPF_AND | BPF_K:
 430                case BPF_ALU | BPF_OR | BPF_X:
 431                case BPF_ALU | BPF_OR | BPF_K:
 432                case BPF_ALU | BPF_LSH | BPF_X:
 433                case BPF_ALU | BPF_LSH | BPF_K:
 434                case BPF_ALU | BPF_RSH | BPF_X:
 435                case BPF_ALU | BPF_RSH | BPF_K:
 436                case BPF_ALU | BPF_XOR | BPF_X:
 437                case BPF_ALU | BPF_XOR | BPF_K:
 438                case BPF_ALU | BPF_MUL | BPF_X:
 439                case BPF_ALU | BPF_MUL | BPF_K:
 440                case BPF_ALU | BPF_DIV | BPF_X:
 441                case BPF_ALU | BPF_DIV | BPF_K:
 442                case BPF_ALU | BPF_MOD | BPF_X:
 443                case BPF_ALU | BPF_MOD | BPF_K:
 444                case BPF_ALU | BPF_NEG:
 445                case BPF_LD | BPF_ABS | BPF_W:
 446                case BPF_LD | BPF_ABS | BPF_H:
 447                case BPF_LD | BPF_ABS | BPF_B:
 448                case BPF_LD | BPF_IND | BPF_W:
 449                case BPF_LD | BPF_IND | BPF_H:
 450                case BPF_LD | BPF_IND | BPF_B:
 451                        /* Check for overloaded BPF extension and
 452                         * directly convert it if found, otherwise
 453                         * just move on with mapping.
 454                         */
 455                        if (BPF_CLASS(fp->code) == BPF_LD &&
 456                            BPF_MODE(fp->code) == BPF_ABS &&
 457                            convert_bpf_extensions(fp, &insn))
 458                                break;
 459
 460                        *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
 461                        break;
 462
 463                /* Jump transformation cannot use BPF block macros
 464                 * everywhere as offset calculation and target updates
 465                 * require a bit more work than the rest, i.e. jump
 466                 * opcodes map as-is, but offsets need adjustment.
 467                 */
 468
 469#define BPF_EMIT_JMP                                                    \
 470        do {                                                            \
 471                if (target >= len || target < 0)                        \
 472                        goto err;                                       \
 473                insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;   \
 474                /* Adjust pc relative offset for 2nd or 3rd insn. */    \
 475                insn->off -= insn - tmp_insns;                          \
 476        } while (0)
 477
 478                case BPF_JMP | BPF_JA:
 479                        target = i + fp->k + 1;
 480                        insn->code = fp->code;
 481                        BPF_EMIT_JMP;
 482                        break;
 483
 484                case BPF_JMP | BPF_JEQ | BPF_K:
 485                case BPF_JMP | BPF_JEQ | BPF_X:
 486                case BPF_JMP | BPF_JSET | BPF_K:
 487                case BPF_JMP | BPF_JSET | BPF_X:
 488                case BPF_JMP | BPF_JGT | BPF_K:
 489                case BPF_JMP | BPF_JGT | BPF_X:
 490                case BPF_JMP | BPF_JGE | BPF_K:
 491                case BPF_JMP | BPF_JGE | BPF_X:
 492                        if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
 493                                /* BPF immediates are signed, zero extend
 494                                 * immediate into tmp register and use it
 495                                 * in compare insn.
 496                                 */
 497                                *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
 498
 499                                insn->dst_reg = BPF_REG_A;
 500                                insn->src_reg = BPF_REG_TMP;
 501                                bpf_src = BPF_X;
 502                        } else {
 503                                insn->dst_reg = BPF_REG_A;
 504                                insn->imm = fp->k;
 505                                bpf_src = BPF_SRC(fp->code);
 506                                insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
 507                        }
 508
 509                        /* Common case where 'jump_false' is next insn. */
 510                        if (fp->jf == 0) {
 511                                insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 512                                target = i + fp->jt + 1;
 513                                BPF_EMIT_JMP;
 514                                break;
 515                        }
 516
 517                        /* Convert some jumps when 'jump_true' is next insn. */
 518                        if (fp->jt == 0) {
 519                                switch (BPF_OP(fp->code)) {
 520                                case BPF_JEQ:
 521                                        insn->code = BPF_JMP | BPF_JNE | bpf_src;
 522                                        break;
 523                                case BPF_JGT:
 524                                        insn->code = BPF_JMP | BPF_JLE | bpf_src;
 525                                        break;
 526                                case BPF_JGE:
 527                                        insn->code = BPF_JMP | BPF_JLT | bpf_src;
 528                                        break;
 529                                default:
 530                                        goto jmp_rest;
 531                                }
 532
 533                                target = i + fp->jf + 1;
 534                                BPF_EMIT_JMP;
 535                                break;
 536                        }
 537jmp_rest:
 538                        /* Other jumps are mapped into two insns: Jxx and JA. */
 539                        target = i + fp->jt + 1;
 540                        insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 541                        BPF_EMIT_JMP;
 542                        insn++;
 543
 544                        insn->code = BPF_JMP | BPF_JA;
 545                        target = i + fp->jf + 1;
 546                        BPF_EMIT_JMP;
 547                        break;
 548
 549                /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
 550                case BPF_LDX | BPF_MSH | BPF_B:
 551                        /* tmp = A */
 552                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
 553                        /* A = BPF_R0 = *(u8 *) (skb->data + K) */
 554                        *insn++ = BPF_LD_ABS(BPF_B, fp->k);
 555                        /* A &= 0xf */
 556                        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
 557                        /* A <<= 2 */
 558                        *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
 559                        /* X = A */
 560                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 561                        /* A = tmp */
 562                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
 563                        break;
 564
 565                /* RET_K is remaped into 2 insns. RET_A case doesn't need an
 566                 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
 567                 */
 568                case BPF_RET | BPF_A:
 569                case BPF_RET | BPF_K:
 570                        if (BPF_RVAL(fp->code) == BPF_K)
 571                                *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
 572                                                        0, fp->k);
 573                        *insn = BPF_EXIT_INSN();
 574                        break;
 575
 576                /* Store to stack. */
 577                case BPF_ST:
 578                case BPF_STX:
 579                        stack_off = fp->k * 4  + 4;
 580                        *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
 581                                            BPF_ST ? BPF_REG_A : BPF_REG_X,
 582                                            -stack_off);
 583                        /* check_load_and_stores() verifies that classic BPF can
 584                         * load from stack only after write, so tracking
 585                         * stack_depth for ST|STX insns is enough
 586                         */
 587                        if (new_prog && new_prog->aux->stack_depth < stack_off)
 588                                new_prog->aux->stack_depth = stack_off;
 589                        break;
 590
 591                /* Load from stack. */
 592                case BPF_LD | BPF_MEM:
 593                case BPF_LDX | BPF_MEM:
 594                        stack_off = fp->k * 4  + 4;
 595                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
 596                                            BPF_REG_A : BPF_REG_X, BPF_REG_FP,
 597                                            -stack_off);
 598                        break;
 599
 600                /* A = K or X = K */
 601                case BPF_LD | BPF_IMM:
 602                case BPF_LDX | BPF_IMM:
 603                        *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
 604                                              BPF_REG_A : BPF_REG_X, fp->k);
 605                        break;
 606
 607                /* X = A */
 608                case BPF_MISC | BPF_TAX:
 609                        *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 610                        break;
 611
 612                /* A = X */
 613                case BPF_MISC | BPF_TXA:
 614                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
 615                        break;
 616
 617                /* A = skb->len or X = skb->len */
 618                case BPF_LD | BPF_W | BPF_LEN:
 619                case BPF_LDX | BPF_W | BPF_LEN:
 620                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
 621                                            BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
 622                                            offsetof(struct sk_buff, len));
 623                        break;
 624
 625                /* Access seccomp_data fields. */
 626                case BPF_LDX | BPF_ABS | BPF_W:
 627                        /* A = *(u32 *) (ctx + K) */
 628                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
 629                        break;
 630
 631                /* Unknown instruction. */
 632                default:
 633                        goto err;
 634                }
 635
 636                insn++;
 637                if (new_prog)
 638                        memcpy(new_insn, tmp_insns,
 639                               sizeof(*insn) * (insn - tmp_insns));
 640                new_insn += insn - tmp_insns;
 641        }
 642
 643        if (!new_prog) {
 644                /* Only calculating new length. */
 645                *new_len = new_insn - first_insn;
 646                return 0;
 647        }
 648
 649        pass++;
 650        if (new_flen != new_insn - first_insn) {
 651                new_flen = new_insn - first_insn;
 652                if (pass > 2)
 653                        goto err;
 654                goto do_pass;
 655        }
 656
 657        kfree(addrs);
 658        BUG_ON(*new_len != new_flen);
 659        return 0;
 660err:
 661        kfree(addrs);
 662        return -EINVAL;
 663}
 664
 665/* Security:
 666 *
 667 * As we dont want to clear mem[] array for each packet going through
 668 * __bpf_prog_run(), we check that filter loaded by user never try to read
 669 * a cell if not previously written, and we check all branches to be sure
 670 * a malicious user doesn't try to abuse us.
 671 */
 672static int check_load_and_stores(const struct sock_filter *filter, int flen)
 673{
 674        u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
 675        int pc, ret = 0;
 676
 677        BUILD_BUG_ON(BPF_MEMWORDS > 16);
 678
 679        masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
 680        if (!masks)
 681                return -ENOMEM;
 682
 683        memset(masks, 0xff, flen * sizeof(*masks));
 684
 685        for (pc = 0; pc < flen; pc++) {
 686                memvalid &= masks[pc];
 687
 688                switch (filter[pc].code) {
 689                case BPF_ST:
 690                case BPF_STX:
 691                        memvalid |= (1 << filter[pc].k);
 692                        break;
 693                case BPF_LD | BPF_MEM:
 694                case BPF_LDX | BPF_MEM:
 695                        if (!(memvalid & (1 << filter[pc].k))) {
 696                                ret = -EINVAL;
 697                                goto error;
 698                        }
 699                        break;
 700                case BPF_JMP | BPF_JA:
 701                        /* A jump must set masks on target */
 702                        masks[pc + 1 + filter[pc].k] &= memvalid;
 703                        memvalid = ~0;
 704                        break;
 705                case BPF_JMP | BPF_JEQ | BPF_K:
 706                case BPF_JMP | BPF_JEQ | BPF_X:
 707                case BPF_JMP | BPF_JGE | BPF_K:
 708                case BPF_JMP | BPF_JGE | BPF_X:
 709                case BPF_JMP | BPF_JGT | BPF_K:
 710                case BPF_JMP | BPF_JGT | BPF_X:
 711                case BPF_JMP | BPF_JSET | BPF_K:
 712                case BPF_JMP | BPF_JSET | BPF_X:
 713                        /* A jump must set masks on targets */
 714                        masks[pc + 1 + filter[pc].jt] &= memvalid;
 715                        masks[pc + 1 + filter[pc].jf] &= memvalid;
 716                        memvalid = ~0;
 717                        break;
 718                }
 719        }
 720error:
 721        kfree(masks);
 722        return ret;
 723}
 724
 725static bool chk_code_allowed(u16 code_to_probe)
 726{
 727        static const bool codes[] = {
 728                /* 32 bit ALU operations */
 729                [BPF_ALU | BPF_ADD | BPF_K] = true,
 730                [BPF_ALU | BPF_ADD | BPF_X] = true,
 731                [BPF_ALU | BPF_SUB | BPF_K] = true,
 732                [BPF_ALU | BPF_SUB | BPF_X] = true,
 733                [BPF_ALU | BPF_MUL | BPF_K] = true,
 734                [BPF_ALU | BPF_MUL | BPF_X] = true,
 735                [BPF_ALU | BPF_DIV | BPF_K] = true,
 736                [BPF_ALU | BPF_DIV | BPF_X] = true,
 737                [BPF_ALU | BPF_MOD | BPF_K] = true,
 738                [BPF_ALU | BPF_MOD | BPF_X] = true,
 739                [BPF_ALU | BPF_AND | BPF_K] = true,
 740                [BPF_ALU | BPF_AND | BPF_X] = true,
 741                [BPF_ALU | BPF_OR | BPF_K] = true,
 742                [BPF_ALU | BPF_OR | BPF_X] = true,
 743                [BPF_ALU | BPF_XOR | BPF_K] = true,
 744                [BPF_ALU | BPF_XOR | BPF_X] = true,
 745                [BPF_ALU | BPF_LSH | BPF_K] = true,
 746                [BPF_ALU | BPF_LSH | BPF_X] = true,
 747                [BPF_ALU | BPF_RSH | BPF_K] = true,
 748                [BPF_ALU | BPF_RSH | BPF_X] = true,
 749                [BPF_ALU | BPF_NEG] = true,
 750                /* Load instructions */
 751                [BPF_LD | BPF_W | BPF_ABS] = true,
 752                [BPF_LD | BPF_H | BPF_ABS] = true,
 753                [BPF_LD | BPF_B | BPF_ABS] = true,
 754                [BPF_LD | BPF_W | BPF_LEN] = true,
 755                [BPF_LD | BPF_W | BPF_IND] = true,
 756                [BPF_LD | BPF_H | BPF_IND] = true,
 757                [BPF_LD | BPF_B | BPF_IND] = true,
 758                [BPF_LD | BPF_IMM] = true,
 759                [BPF_LD | BPF_MEM] = true,
 760                [BPF_LDX | BPF_W | BPF_LEN] = true,
 761                [BPF_LDX | BPF_B | BPF_MSH] = true,
 762                [BPF_LDX | BPF_IMM] = true,
 763                [BPF_LDX | BPF_MEM] = true,
 764                /* Store instructions */
 765                [BPF_ST] = true,
 766                [BPF_STX] = true,
 767                /* Misc instructions */
 768                [BPF_MISC | BPF_TAX] = true,
 769                [BPF_MISC | BPF_TXA] = true,
 770                /* Return instructions */
 771                [BPF_RET | BPF_K] = true,
 772                [BPF_RET | BPF_A] = true,
 773                /* Jump instructions */
 774                [BPF_JMP | BPF_JA] = true,
 775                [BPF_JMP | BPF_JEQ | BPF_K] = true,
 776                [BPF_JMP | BPF_JEQ | BPF_X] = true,
 777                [BPF_JMP | BPF_JGE | BPF_K] = true,
 778                [BPF_JMP | BPF_JGE | BPF_X] = true,
 779                [BPF_JMP | BPF_JGT | BPF_K] = true,
 780                [BPF_JMP | BPF_JGT | BPF_X] = true,
 781                [BPF_JMP | BPF_JSET | BPF_K] = true,
 782                [BPF_JMP | BPF_JSET | BPF_X] = true,
 783        };
 784
 785        if (code_to_probe >= ARRAY_SIZE(codes))
 786                return false;
 787
 788        return codes[code_to_probe];
 789}
 790
 791static bool bpf_check_basics_ok(const struct sock_filter *filter,
 792                                unsigned int flen)
 793{
 794        if (filter == NULL)
 795                return false;
 796        if (flen == 0 || flen > BPF_MAXINSNS)
 797                return false;
 798
 799        return true;
 800}
 801
 802/**
 803 *      bpf_check_classic - verify socket filter code
 804 *      @filter: filter to verify
 805 *      @flen: length of filter
 806 *
 807 * Check the user's filter code. If we let some ugly
 808 * filter code slip through kaboom! The filter must contain
 809 * no references or jumps that are out of range, no illegal
 810 * instructions, and must end with a RET instruction.
 811 *
 812 * All jumps are forward as they are not signed.
 813 *
 814 * Returns 0 if the rule set is legal or -EINVAL if not.
 815 */
 816static int bpf_check_classic(const struct sock_filter *filter,
 817                             unsigned int flen)
 818{
 819        bool anc_found;
 820        int pc;
 821
 822        /* Check the filter code now */
 823        for (pc = 0; pc < flen; pc++) {
 824                const struct sock_filter *ftest = &filter[pc];
 825
 826                /* May we actually operate on this code? */
 827                if (!chk_code_allowed(ftest->code))
 828                        return -EINVAL;
 829
 830                /* Some instructions need special checks */
 831                switch (ftest->code) {
 832                case BPF_ALU | BPF_DIV | BPF_K:
 833                case BPF_ALU | BPF_MOD | BPF_K:
 834                        /* Check for division by zero */
 835                        if (ftest->k == 0)
 836                                return -EINVAL;
 837                        break;
 838                case BPF_ALU | BPF_LSH | BPF_K:
 839                case BPF_ALU | BPF_RSH | BPF_K:
 840                        if (ftest->k >= 32)
 841                                return -EINVAL;
 842                        break;
 843                case BPF_LD | BPF_MEM:
 844                case BPF_LDX | BPF_MEM:
 845                case BPF_ST:
 846                case BPF_STX:
 847                        /* Check for invalid memory addresses */
 848                        if (ftest->k >= BPF_MEMWORDS)
 849                                return -EINVAL;
 850                        break;
 851                case BPF_JMP | BPF_JA:
 852                        /* Note, the large ftest->k might cause loops.
 853                         * Compare this with conditional jumps below,
 854                         * where offsets are limited. --ANK (981016)
 855                         */
 856                        if (ftest->k >= (unsigned int)(flen - pc - 1))
 857                                return -EINVAL;
 858                        break;
 859                case BPF_JMP | BPF_JEQ | BPF_K:
 860                case BPF_JMP | BPF_JEQ | BPF_X:
 861                case BPF_JMP | BPF_JGE | BPF_K:
 862                case BPF_JMP | BPF_JGE | BPF_X:
 863                case BPF_JMP | BPF_JGT | BPF_K:
 864                case BPF_JMP | BPF_JGT | BPF_X:
 865                case BPF_JMP | BPF_JSET | BPF_K:
 866                case BPF_JMP | BPF_JSET | BPF_X:
 867                        /* Both conditionals must be safe */
 868                        if (pc + ftest->jt + 1 >= flen ||
 869                            pc + ftest->jf + 1 >= flen)
 870                                return -EINVAL;
 871                        break;
 872                case BPF_LD | BPF_W | BPF_ABS:
 873                case BPF_LD | BPF_H | BPF_ABS:
 874                case BPF_LD | BPF_B | BPF_ABS:
 875                        anc_found = false;
 876                        if (bpf_anc_helper(ftest) & BPF_ANC)
 877                                anc_found = true;
 878                        /* Ancillary operation unknown or unsupported */
 879                        if (anc_found == false && ftest->k >= SKF_AD_OFF)
 880                                return -EINVAL;
 881                }
 882        }
 883
 884        /* Last instruction must be a RET code */
 885        switch (filter[flen - 1].code) {
 886        case BPF_RET | BPF_K:
 887        case BPF_RET | BPF_A:
 888                return check_load_and_stores(filter, flen);
 889        }
 890
 891        return -EINVAL;
 892}
 893
 894static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
 895                                      const struct sock_fprog *fprog)
 896{
 897        unsigned int fsize = bpf_classic_proglen(fprog);
 898        struct sock_fprog_kern *fkprog;
 899
 900        fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
 901        if (!fp->orig_prog)
 902                return -ENOMEM;
 903
 904        fkprog = fp->orig_prog;
 905        fkprog->len = fprog->len;
 906
 907        fkprog->filter = kmemdup(fp->insns, fsize,
 908                                 GFP_KERNEL | __GFP_NOWARN);
 909        if (!fkprog->filter) {
 910                kfree(fp->orig_prog);
 911                return -ENOMEM;
 912        }
 913
 914        return 0;
 915}
 916
 917static void bpf_release_orig_filter(struct bpf_prog *fp)
 918{
 919        struct sock_fprog_kern *fprog = fp->orig_prog;
 920
 921        if (fprog) {
 922                kfree(fprog->filter);
 923                kfree(fprog);
 924        }
 925}
 926
 927static void __bpf_prog_release(struct bpf_prog *prog)
 928{
 929        if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
 930                bpf_prog_put(prog);
 931        } else {
 932                bpf_release_orig_filter(prog);
 933                bpf_prog_free(prog);
 934        }
 935}
 936
 937static void __sk_filter_release(struct sk_filter *fp)
 938{
 939        __bpf_prog_release(fp->prog);
 940        kfree(fp);
 941}
 942
 943/**
 944 *      sk_filter_release_rcu - Release a socket filter by rcu_head
 945 *      @rcu: rcu_head that contains the sk_filter to free
 946 */
 947static void sk_filter_release_rcu(struct rcu_head *rcu)
 948{
 949        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
 950
 951        __sk_filter_release(fp);
 952}
 953
 954/**
 955 *      sk_filter_release - release a socket filter
 956 *      @fp: filter to remove
 957 *
 958 *      Remove a filter from a socket and release its resources.
 959 */
 960static void sk_filter_release(struct sk_filter *fp)
 961{
 962        if (refcount_dec_and_test(&fp->refcnt))
 963                call_rcu(&fp->rcu, sk_filter_release_rcu);
 964}
 965
 966void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
 967{
 968        u32 filter_size = bpf_prog_size(fp->prog->len);
 969
 970        atomic_sub(filter_size, &sk->sk_omem_alloc);
 971        sk_filter_release(fp);
 972}
 973
 974/* try to charge the socket memory if there is space available
 975 * return true on success
 976 */
 977static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
 978{
 979        u32 filter_size = bpf_prog_size(fp->prog->len);
 980
 981        /* same check as in sock_kmalloc() */
 982        if (filter_size <= sysctl_optmem_max &&
 983            atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
 984                atomic_add(filter_size, &sk->sk_omem_alloc);
 985                return true;
 986        }
 987        return false;
 988}
 989
 990bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
 991{
 992        if (!refcount_inc_not_zero(&fp->refcnt))
 993                return false;
 994
 995        if (!__sk_filter_charge(sk, fp)) {
 996                sk_filter_release(fp);
 997                return false;
 998        }
 999        return true;
1000}
1001
1002static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1003{
1004        struct sock_filter *old_prog;
1005        struct bpf_prog *old_fp;
1006        int err, new_len, old_len = fp->len;
1007
1008        /* We are free to overwrite insns et al right here as it
1009         * won't be used at this point in time anymore internally
1010         * after the migration to the internal BPF instruction
1011         * representation.
1012         */
1013        BUILD_BUG_ON(sizeof(struct sock_filter) !=
1014                     sizeof(struct bpf_insn));
1015
1016        /* Conversion cannot happen on overlapping memory areas,
1017         * so we need to keep the user BPF around until the 2nd
1018         * pass. At this time, the user BPF is stored in fp->insns.
1019         */
1020        old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1021                           GFP_KERNEL | __GFP_NOWARN);
1022        if (!old_prog) {
1023                err = -ENOMEM;
1024                goto out_err;
1025        }
1026
1027        /* 1st pass: calculate the new program length. */
1028        err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1029        if (err)
1030                goto out_err_free;
1031
1032        /* Expand fp for appending the new filter representation. */
1033        old_fp = fp;
1034        fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1035        if (!fp) {
1036                /* The old_fp is still around in case we couldn't
1037                 * allocate new memory, so uncharge on that one.
1038                 */
1039                fp = old_fp;
1040                err = -ENOMEM;
1041                goto out_err_free;
1042        }
1043
1044        fp->len = new_len;
1045
1046        /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1047        err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1048        if (err)
1049                /* 2nd bpf_convert_filter() can fail only if it fails
1050                 * to allocate memory, remapping must succeed. Note,
1051                 * that at this time old_fp has already been released
1052                 * by krealloc().
1053                 */
1054                goto out_err_free;
1055
1056        /* We are guaranteed to never error here with cBPF to eBPF
1057         * transitions, since there's no issue with type compatibility
1058         * checks on program arrays.
1059         */
1060        fp = bpf_prog_select_runtime(fp, &err);
1061
1062        kfree(old_prog);
1063        return fp;
1064
1065out_err_free:
1066        kfree(old_prog);
1067out_err:
1068        __bpf_prog_release(fp);
1069        return ERR_PTR(err);
1070}
1071
1072static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1073                                           bpf_aux_classic_check_t trans)
1074{
1075        int err;
1076
1077        fp->bpf_func = NULL;
1078        fp->jited = 0;
1079
1080        err = bpf_check_classic(fp->insns, fp->len);
1081        if (err) {
1082                __bpf_prog_release(fp);
1083                return ERR_PTR(err);
1084        }
1085
1086        /* There might be additional checks and transformations
1087         * needed on classic filters, f.e. in case of seccomp.
1088         */
1089        if (trans) {
1090                err = trans(fp->insns, fp->len);
1091                if (err) {
1092                        __bpf_prog_release(fp);
1093                        return ERR_PTR(err);
1094                }
1095        }
1096
1097        /* Probe if we can JIT compile the filter and if so, do
1098         * the compilation of the filter.
1099         */
1100        bpf_jit_compile(fp);
1101
1102        /* JIT compiler couldn't process this filter, so do the
1103         * internal BPF translation for the optimized interpreter.
1104         */
1105        if (!fp->jited)
1106                fp = bpf_migrate_filter(fp);
1107
1108        return fp;
1109}
1110
1111/**
1112 *      bpf_prog_create - create an unattached filter
1113 *      @pfp: the unattached filter that is created
1114 *      @fprog: the filter program
1115 *
1116 * Create a filter independent of any socket. We first run some
1117 * sanity checks on it to make sure it does not explode on us later.
1118 * If an error occurs or there is insufficient memory for the filter
1119 * a negative errno code is returned. On success the return is zero.
1120 */
1121int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1122{
1123        unsigned int fsize = bpf_classic_proglen(fprog);
1124        struct bpf_prog *fp;
1125
1126        /* Make sure new filter is there and in the right amounts. */
1127        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1128                return -EINVAL;
1129
1130        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1131        if (!fp)
1132                return -ENOMEM;
1133
1134        memcpy(fp->insns, fprog->filter, fsize);
1135
1136        fp->len = fprog->len;
1137        /* Since unattached filters are not copied back to user
1138         * space through sk_get_filter(), we do not need to hold
1139         * a copy here, and can spare us the work.
1140         */
1141        fp->orig_prog = NULL;
1142
1143        /* bpf_prepare_filter() already takes care of freeing
1144         * memory in case something goes wrong.
1145         */
1146        fp = bpf_prepare_filter(fp, NULL);
1147        if (IS_ERR(fp))
1148                return PTR_ERR(fp);
1149
1150        *pfp = fp;
1151        return 0;
1152}
1153EXPORT_SYMBOL_GPL(bpf_prog_create);
1154
1155/**
1156 *      bpf_prog_create_from_user - create an unattached filter from user buffer
1157 *      @pfp: the unattached filter that is created
1158 *      @fprog: the filter program
1159 *      @trans: post-classic verifier transformation handler
1160 *      @save_orig: save classic BPF program
1161 *
1162 * This function effectively does the same as bpf_prog_create(), only
1163 * that it builds up its insns buffer from user space provided buffer.
1164 * It also allows for passing a bpf_aux_classic_check_t handler.
1165 */
1166int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1167                              bpf_aux_classic_check_t trans, bool save_orig)
1168{
1169        unsigned int fsize = bpf_classic_proglen(fprog);
1170        struct bpf_prog *fp;
1171        int err;
1172
1173        /* Make sure new filter is there and in the right amounts. */
1174        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1175                return -EINVAL;
1176
1177        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1178        if (!fp)
1179                return -ENOMEM;
1180
1181        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1182                __bpf_prog_free(fp);
1183                return -EFAULT;
1184        }
1185
1186        fp->len = fprog->len;
1187        fp->orig_prog = NULL;
1188
1189        if (save_orig) {
1190                err = bpf_prog_store_orig_filter(fp, fprog);
1191                if (err) {
1192                        __bpf_prog_free(fp);
1193                        return -ENOMEM;
1194                }
1195        }
1196
1197        /* bpf_prepare_filter() already takes care of freeing
1198         * memory in case something goes wrong.
1199         */
1200        fp = bpf_prepare_filter(fp, trans);
1201        if (IS_ERR(fp))
1202                return PTR_ERR(fp);
1203
1204        *pfp = fp;
1205        return 0;
1206}
1207EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1208
1209void bpf_prog_destroy(struct bpf_prog *fp)
1210{
1211        __bpf_prog_release(fp);
1212}
1213EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1214
1215static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1216{
1217        struct sk_filter *fp, *old_fp;
1218
1219        fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1220        if (!fp)
1221                return -ENOMEM;
1222
1223        fp->prog = prog;
1224
1225        if (!__sk_filter_charge(sk, fp)) {
1226                kfree(fp);
1227                return -ENOMEM;
1228        }
1229        refcount_set(&fp->refcnt, 1);
1230
1231        old_fp = rcu_dereference_protected(sk->sk_filter,
1232                                           lockdep_sock_is_held(sk));
1233        rcu_assign_pointer(sk->sk_filter, fp);
1234
1235        if (old_fp)
1236                sk_filter_uncharge(sk, old_fp);
1237
1238        return 0;
1239}
1240
1241static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1242{
1243        struct bpf_prog *old_prog;
1244        int err;
1245
1246        if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1247                return -ENOMEM;
1248
1249        if (sk_unhashed(sk) && sk->sk_reuseport) {
1250                err = reuseport_alloc(sk);
1251                if (err)
1252                        return err;
1253        } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1254                /* The socket wasn't bound with SO_REUSEPORT */
1255                return -EINVAL;
1256        }
1257
1258        old_prog = reuseport_attach_prog(sk, prog);
1259        if (old_prog)
1260                bpf_prog_destroy(old_prog);
1261
1262        return 0;
1263}
1264
1265static
1266struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1267{
1268        unsigned int fsize = bpf_classic_proglen(fprog);
1269        struct bpf_prog *prog;
1270        int err;
1271
1272        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1273                return ERR_PTR(-EPERM);
1274
1275        /* Make sure new filter is there and in the right amounts. */
1276        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1277                return ERR_PTR(-EINVAL);
1278
1279        prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1280        if (!prog)
1281                return ERR_PTR(-ENOMEM);
1282
1283        if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1284                __bpf_prog_free(prog);
1285                return ERR_PTR(-EFAULT);
1286        }
1287
1288        prog->len = fprog->len;
1289
1290        err = bpf_prog_store_orig_filter(prog, fprog);
1291        if (err) {
1292                __bpf_prog_free(prog);
1293                return ERR_PTR(-ENOMEM);
1294        }
1295
1296        /* bpf_prepare_filter() already takes care of freeing
1297         * memory in case something goes wrong.
1298         */
1299        return bpf_prepare_filter(prog, NULL);
1300}
1301
1302/**
1303 *      sk_attach_filter - attach a socket filter
1304 *      @fprog: the filter program
1305 *      @sk: the socket to use
1306 *
1307 * Attach the user's filter code. We first run some sanity checks on
1308 * it to make sure it does not explode on us later. If an error
1309 * occurs or there is insufficient memory for the filter a negative
1310 * errno code is returned. On success the return is zero.
1311 */
1312int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1313{
1314        struct bpf_prog *prog = __get_filter(fprog, sk);
1315        int err;
1316
1317        if (IS_ERR(prog))
1318                return PTR_ERR(prog);
1319
1320        err = __sk_attach_prog(prog, sk);
1321        if (err < 0) {
1322                __bpf_prog_release(prog);
1323                return err;
1324        }
1325
1326        return 0;
1327}
1328EXPORT_SYMBOL_GPL(sk_attach_filter);
1329
1330int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1331{
1332        struct bpf_prog *prog = __get_filter(fprog, sk);
1333        int err;
1334
1335        if (IS_ERR(prog))
1336                return PTR_ERR(prog);
1337
1338        err = __reuseport_attach_prog(prog, sk);
1339        if (err < 0) {
1340                __bpf_prog_release(prog);
1341                return err;
1342        }
1343
1344        return 0;
1345}
1346
1347static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1348{
1349        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1350                return ERR_PTR(-EPERM);
1351
1352        return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1353}
1354
1355int sk_attach_bpf(u32 ufd, struct sock *sk)
1356{
1357        struct bpf_prog *prog = __get_bpf(ufd, sk);
1358        int err;
1359
1360        if (IS_ERR(prog))
1361                return PTR_ERR(prog);
1362
1363        err = __sk_attach_prog(prog, sk);
1364        if (err < 0) {
1365                bpf_prog_put(prog);
1366                return err;
1367        }
1368
1369        return 0;
1370}
1371
1372int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1373{
1374        struct bpf_prog *prog = __get_bpf(ufd, sk);
1375        int err;
1376
1377        if (IS_ERR(prog))
1378                return PTR_ERR(prog);
1379
1380        err = __reuseport_attach_prog(prog, sk);
1381        if (err < 0) {
1382                bpf_prog_put(prog);
1383                return err;
1384        }
1385
1386        return 0;
1387}
1388
1389struct bpf_scratchpad {
1390        union {
1391                __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1392                u8     buff[MAX_BPF_STACK];
1393        };
1394};
1395
1396static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1397
1398static inline int __bpf_try_make_writable(struct sk_buff *skb,
1399                                          unsigned int write_len)
1400{
1401        return skb_ensure_writable(skb, write_len);
1402}
1403
1404static inline int bpf_try_make_writable(struct sk_buff *skb,
1405                                        unsigned int write_len)
1406{
1407        int err = __bpf_try_make_writable(skb, write_len);
1408
1409        bpf_compute_data_end(skb);
1410        return err;
1411}
1412
1413static int bpf_try_make_head_writable(struct sk_buff *skb)
1414{
1415        return bpf_try_make_writable(skb, skb_headlen(skb));
1416}
1417
1418static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1419{
1420        if (skb_at_tc_ingress(skb))
1421                skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1422}
1423
1424static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1425{
1426        if (skb_at_tc_ingress(skb))
1427                skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1428}
1429
1430BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1431           const void *, from, u32, len, u64, flags)
1432{
1433        void *ptr;
1434
1435        if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1436                return -EINVAL;
1437        if (unlikely(offset > 0xffff))
1438                return -EFAULT;
1439        if (unlikely(bpf_try_make_writable(skb, offset + len)))
1440                return -EFAULT;
1441
1442        ptr = skb->data + offset;
1443        if (flags & BPF_F_RECOMPUTE_CSUM)
1444                __skb_postpull_rcsum(skb, ptr, len, offset);
1445
1446        memcpy(ptr, from, len);
1447
1448        if (flags & BPF_F_RECOMPUTE_CSUM)
1449                __skb_postpush_rcsum(skb, ptr, len, offset);
1450        if (flags & BPF_F_INVALIDATE_HASH)
1451                skb_clear_hash(skb);
1452
1453        return 0;
1454}
1455
1456static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1457        .func           = bpf_skb_store_bytes,
1458        .gpl_only       = false,
1459        .ret_type       = RET_INTEGER,
1460        .arg1_type      = ARG_PTR_TO_CTX,
1461        .arg2_type      = ARG_ANYTHING,
1462        .arg3_type      = ARG_PTR_TO_MEM,
1463        .arg4_type      = ARG_CONST_SIZE,
1464        .arg5_type      = ARG_ANYTHING,
1465};
1466
1467BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1468           void *, to, u32, len)
1469{
1470        void *ptr;
1471
1472        if (unlikely(offset > 0xffff))
1473                goto err_clear;
1474
1475        ptr = skb_header_pointer(skb, offset, len, to);
1476        if (unlikely(!ptr))
1477                goto err_clear;
1478        if (ptr != to)
1479                memcpy(to, ptr, len);
1480
1481        return 0;
1482err_clear:
1483        memset(to, 0, len);
1484        return -EFAULT;
1485}
1486
1487static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1488        .func           = bpf_skb_load_bytes,
1489        .gpl_only       = false,
1490        .ret_type       = RET_INTEGER,
1491        .arg1_type      = ARG_PTR_TO_CTX,
1492        .arg2_type      = ARG_ANYTHING,
1493        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1494        .arg4_type      = ARG_CONST_SIZE,
1495};
1496
1497BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1498{
1499        /* Idea is the following: should the needed direct read/write
1500         * test fail during runtime, we can pull in more data and redo
1501         * again, since implicitly, we invalidate previous checks here.
1502         *
1503         * Or, since we know how much we need to make read/writeable,
1504         * this can be done once at the program beginning for direct
1505         * access case. By this we overcome limitations of only current
1506         * headroom being accessible.
1507         */
1508        return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1509}
1510
1511static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1512        .func           = bpf_skb_pull_data,
1513        .gpl_only       = false,
1514        .ret_type       = RET_INTEGER,
1515        .arg1_type      = ARG_PTR_TO_CTX,
1516        .arg2_type      = ARG_ANYTHING,
1517};
1518
1519BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1520           u64, from, u64, to, u64, flags)
1521{
1522        __sum16 *ptr;
1523
1524        if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1525                return -EINVAL;
1526        if (unlikely(offset > 0xffff || offset & 1))
1527                return -EFAULT;
1528        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1529                return -EFAULT;
1530
1531        ptr = (__sum16 *)(skb->data + offset);
1532        switch (flags & BPF_F_HDR_FIELD_MASK) {
1533        case 0:
1534                if (unlikely(from != 0))
1535                        return -EINVAL;
1536
1537                csum_replace_by_diff(ptr, to);
1538                break;
1539        case 2:
1540                csum_replace2(ptr, from, to);
1541                break;
1542        case 4:
1543                csum_replace4(ptr, from, to);
1544                break;
1545        default:
1546                return -EINVAL;
1547        }
1548
1549        return 0;
1550}
1551
1552static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1553        .func           = bpf_l3_csum_replace,
1554        .gpl_only       = false,
1555        .ret_type       = RET_INTEGER,
1556        .arg1_type      = ARG_PTR_TO_CTX,
1557        .arg2_type      = ARG_ANYTHING,
1558        .arg3_type      = ARG_ANYTHING,
1559        .arg4_type      = ARG_ANYTHING,
1560        .arg5_type      = ARG_ANYTHING,
1561};
1562
1563BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1564           u64, from, u64, to, u64, flags)
1565{
1566        bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1567        bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1568        bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1569        __sum16 *ptr;
1570
1571        if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1572                               BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1573                return -EINVAL;
1574        if (unlikely(offset > 0xffff || offset & 1))
1575                return -EFAULT;
1576        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1577                return -EFAULT;
1578
1579        ptr = (__sum16 *)(skb->data + offset);
1580        if (is_mmzero && !do_mforce && !*ptr)
1581                return 0;
1582
1583        switch (flags & BPF_F_HDR_FIELD_MASK) {
1584        case 0:
1585                if (unlikely(from != 0))
1586                        return -EINVAL;
1587
1588                inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1589                break;
1590        case 2:
1591                inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1592                break;
1593        case 4:
1594                inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1595                break;
1596        default:
1597                return -EINVAL;
1598        }
1599
1600        if (is_mmzero && !*ptr)
1601                *ptr = CSUM_MANGLED_0;
1602        return 0;
1603}
1604
1605static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1606        .func           = bpf_l4_csum_replace,
1607        .gpl_only       = false,
1608        .ret_type       = RET_INTEGER,
1609        .arg1_type      = ARG_PTR_TO_CTX,
1610        .arg2_type      = ARG_ANYTHING,
1611        .arg3_type      = ARG_ANYTHING,
1612        .arg4_type      = ARG_ANYTHING,
1613        .arg5_type      = ARG_ANYTHING,
1614};
1615
1616BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1617           __be32 *, to, u32, to_size, __wsum, seed)
1618{
1619        struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1620        u32 diff_size = from_size + to_size;
1621        int i, j = 0;
1622
1623        /* This is quite flexible, some examples:
1624         *
1625         * from_size == 0, to_size > 0,  seed := csum --> pushing data
1626         * from_size > 0,  to_size == 0, seed := csum --> pulling data
1627         * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1628         *
1629         * Even for diffing, from_size and to_size don't need to be equal.
1630         */
1631        if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1632                     diff_size > sizeof(sp->diff)))
1633                return -EINVAL;
1634
1635        for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1636                sp->diff[j] = ~from[i];
1637        for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1638                sp->diff[j] = to[i];
1639
1640        return csum_partial(sp->diff, diff_size, seed);
1641}
1642
1643static const struct bpf_func_proto bpf_csum_diff_proto = {
1644        .func           = bpf_csum_diff,
1645        .gpl_only       = false,
1646        .pkt_access     = true,
1647        .ret_type       = RET_INTEGER,
1648        .arg1_type      = ARG_PTR_TO_MEM,
1649        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1650        .arg3_type      = ARG_PTR_TO_MEM,
1651        .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1652        .arg5_type      = ARG_ANYTHING,
1653};
1654
1655BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1656{
1657        /* The interface is to be used in combination with bpf_csum_diff()
1658         * for direct packet writes. csum rotation for alignment as well
1659         * as emulating csum_sub() can be done from the eBPF program.
1660         */
1661        if (skb->ip_summed == CHECKSUM_COMPLETE)
1662                return (skb->csum = csum_add(skb->csum, csum));
1663
1664        return -ENOTSUPP;
1665}
1666
1667static const struct bpf_func_proto bpf_csum_update_proto = {
1668        .func           = bpf_csum_update,
1669        .gpl_only       = false,
1670        .ret_type       = RET_INTEGER,
1671        .arg1_type      = ARG_PTR_TO_CTX,
1672        .arg2_type      = ARG_ANYTHING,
1673};
1674
1675static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1676{
1677        return dev_forward_skb(dev, skb);
1678}
1679
1680static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1681                                      struct sk_buff *skb)
1682{
1683        int ret = ____dev_forward_skb(dev, skb);
1684
1685        if (likely(!ret)) {
1686                skb->dev = dev;
1687                ret = netif_rx(skb);
1688        }
1689
1690        return ret;
1691}
1692
1693static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1694{
1695        int ret;
1696
1697        if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1698                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1699                kfree_skb(skb);
1700                return -ENETDOWN;
1701        }
1702
1703        skb->dev = dev;
1704
1705        __this_cpu_inc(xmit_recursion);
1706        ret = dev_queue_xmit(skb);
1707        __this_cpu_dec(xmit_recursion);
1708
1709        return ret;
1710}
1711
1712static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1713                                 u32 flags)
1714{
1715        /* skb->mac_len is not set on normal egress */
1716        unsigned int mlen = skb->network_header - skb->mac_header;
1717
1718        __skb_pull(skb, mlen);
1719
1720        /* At ingress, the mac header has already been pulled once.
1721         * At egress, skb_pospull_rcsum has to be done in case that
1722         * the skb is originated from ingress (i.e. a forwarded skb)
1723         * to ensure that rcsum starts at net header.
1724         */
1725        if (!skb_at_tc_ingress(skb))
1726                skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1727        skb_pop_mac_header(skb);
1728        skb_reset_mac_len(skb);
1729        return flags & BPF_F_INGRESS ?
1730               __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1731}
1732
1733static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1734                                 u32 flags)
1735{
1736        /* Verify that a link layer header is carried */
1737        if (unlikely(skb->mac_header >= skb->network_header)) {
1738                kfree_skb(skb);
1739                return -ERANGE;
1740        }
1741
1742        bpf_push_mac_rcsum(skb);
1743        return flags & BPF_F_INGRESS ?
1744               __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1745}
1746
1747static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1748                          u32 flags)
1749{
1750        if (dev_is_mac_header_xmit(dev))
1751                return __bpf_redirect_common(skb, dev, flags);
1752        else
1753                return __bpf_redirect_no_mac(skb, dev, flags);
1754}
1755
1756BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1757{
1758        struct net_device *dev;
1759        struct sk_buff *clone;
1760        int ret;
1761
1762        if (unlikely(flags & ~(BPF_F_INGRESS)))
1763                return -EINVAL;
1764
1765        dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1766        if (unlikely(!dev))
1767                return -EINVAL;
1768
1769        clone = skb_clone(skb, GFP_ATOMIC);
1770        if (unlikely(!clone))
1771                return -ENOMEM;
1772
1773        /* For direct write, we need to keep the invariant that the skbs
1774         * we're dealing with need to be uncloned. Should uncloning fail
1775         * here, we need to free the just generated clone to unclone once
1776         * again.
1777         */
1778        ret = bpf_try_make_head_writable(skb);
1779        if (unlikely(ret)) {
1780                kfree_skb(clone);
1781                return -ENOMEM;
1782        }
1783
1784        return __bpf_redirect(clone, dev, flags);
1785}
1786
1787static const struct bpf_func_proto bpf_clone_redirect_proto = {
1788        .func           = bpf_clone_redirect,
1789        .gpl_only       = false,
1790        .ret_type       = RET_INTEGER,
1791        .arg1_type      = ARG_PTR_TO_CTX,
1792        .arg2_type      = ARG_ANYTHING,
1793        .arg3_type      = ARG_ANYTHING,
1794};
1795
1796struct redirect_info {
1797        u32 ifindex;
1798        u32 flags;
1799        struct bpf_map *map;
1800        struct bpf_map *map_to_flush;
1801        unsigned long   map_owner;
1802};
1803
1804static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1805
1806BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1807{
1808        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1809
1810        if (unlikely(flags & ~(BPF_F_INGRESS)))
1811                return TC_ACT_SHOT;
1812
1813        ri->ifindex = ifindex;
1814        ri->flags = flags;
1815
1816        return TC_ACT_REDIRECT;
1817}
1818
1819int skb_do_redirect(struct sk_buff *skb)
1820{
1821        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1822        struct net_device *dev;
1823
1824        dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1825        ri->ifindex = 0;
1826        if (unlikely(!dev)) {
1827                kfree_skb(skb);
1828                return -EINVAL;
1829        }
1830
1831        return __bpf_redirect(skb, dev, ri->flags);
1832}
1833
1834static const struct bpf_func_proto bpf_redirect_proto = {
1835        .func           = bpf_redirect,
1836        .gpl_only       = false,
1837        .ret_type       = RET_INTEGER,
1838        .arg1_type      = ARG_ANYTHING,
1839        .arg2_type      = ARG_ANYTHING,
1840};
1841
1842BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1843           struct bpf_map *, map, u32, key, u64, flags)
1844{
1845        struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1846
1847        /* If user passes invalid input drop the packet. */
1848        if (unlikely(flags))
1849                return SK_DROP;
1850
1851        tcb->bpf.key = key;
1852        tcb->bpf.flags = flags;
1853        tcb->bpf.map = map;
1854
1855        return SK_PASS;
1856}
1857
1858struct sock *do_sk_redirect_map(struct sk_buff *skb)
1859{
1860        struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1861        struct sock *sk = NULL;
1862
1863        if (tcb->bpf.map) {
1864                sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1865
1866                tcb->bpf.key = 0;
1867                tcb->bpf.map = NULL;
1868        }
1869
1870        return sk;
1871}
1872
1873static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1874        .func           = bpf_sk_redirect_map,
1875        .gpl_only       = false,
1876        .ret_type       = RET_INTEGER,
1877        .arg1_type      = ARG_PTR_TO_CTX,
1878        .arg2_type      = ARG_CONST_MAP_PTR,
1879        .arg3_type      = ARG_ANYTHING,
1880        .arg4_type      = ARG_ANYTHING,
1881};
1882
1883BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1884{
1885        return task_get_classid(skb);
1886}
1887
1888static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1889        .func           = bpf_get_cgroup_classid,
1890        .gpl_only       = false,
1891        .ret_type       = RET_INTEGER,
1892        .arg1_type      = ARG_PTR_TO_CTX,
1893};
1894
1895BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1896{
1897        return dst_tclassid(skb);
1898}
1899
1900static const struct bpf_func_proto bpf_get_route_realm_proto = {
1901        .func           = bpf_get_route_realm,
1902        .gpl_only       = false,
1903        .ret_type       = RET_INTEGER,
1904        .arg1_type      = ARG_PTR_TO_CTX,
1905};
1906
1907BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1908{
1909        /* If skb_clear_hash() was called due to mangling, we can
1910         * trigger SW recalculation here. Later access to hash
1911         * can then use the inline skb->hash via context directly
1912         * instead of calling this helper again.
1913         */
1914        return skb_get_hash(skb);
1915}
1916
1917static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1918        .func           = bpf_get_hash_recalc,
1919        .gpl_only       = false,
1920        .ret_type       = RET_INTEGER,
1921        .arg1_type      = ARG_PTR_TO_CTX,
1922};
1923
1924BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1925{
1926        /* After all direct packet write, this can be used once for
1927         * triggering a lazy recalc on next skb_get_hash() invocation.
1928         */
1929        skb_clear_hash(skb);
1930        return 0;
1931}
1932
1933static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1934        .func           = bpf_set_hash_invalid,
1935        .gpl_only       = false,
1936        .ret_type       = RET_INTEGER,
1937        .arg1_type      = ARG_PTR_TO_CTX,
1938};
1939
1940BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
1941{
1942        /* Set user specified hash as L4(+), so that it gets returned
1943         * on skb_get_hash() call unless BPF prog later on triggers a
1944         * skb_clear_hash().
1945         */
1946        __skb_set_sw_hash(skb, hash, true);
1947        return 0;
1948}
1949
1950static const struct bpf_func_proto bpf_set_hash_proto = {
1951        .func           = bpf_set_hash,
1952        .gpl_only       = false,
1953        .ret_type       = RET_INTEGER,
1954        .arg1_type      = ARG_PTR_TO_CTX,
1955        .arg2_type      = ARG_ANYTHING,
1956};
1957
1958BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1959           u16, vlan_tci)
1960{
1961        int ret;
1962
1963        if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1964                     vlan_proto != htons(ETH_P_8021AD)))
1965                vlan_proto = htons(ETH_P_8021Q);
1966
1967        bpf_push_mac_rcsum(skb);
1968        ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1969        bpf_pull_mac_rcsum(skb);
1970
1971        bpf_compute_data_end(skb);
1972        return ret;
1973}
1974
1975const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1976        .func           = bpf_skb_vlan_push,
1977        .gpl_only       = false,
1978        .ret_type       = RET_INTEGER,
1979        .arg1_type      = ARG_PTR_TO_CTX,
1980        .arg2_type      = ARG_ANYTHING,
1981        .arg3_type      = ARG_ANYTHING,
1982};
1983EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1984
1985BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1986{
1987        int ret;
1988
1989        bpf_push_mac_rcsum(skb);
1990        ret = skb_vlan_pop(skb);
1991        bpf_pull_mac_rcsum(skb);
1992
1993        bpf_compute_data_end(skb);
1994        return ret;
1995}
1996
1997const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1998        .func           = bpf_skb_vlan_pop,
1999        .gpl_only       = false,
2000        .ret_type       = RET_INTEGER,
2001        .arg1_type      = ARG_PTR_TO_CTX,
2002};
2003EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2004
2005static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2006{
2007        /* Caller already did skb_cow() with len as headroom,
2008         * so no need to do it here.
2009         */
2010        skb_push(skb, len);
2011        memmove(skb->data, skb->data + len, off);
2012        memset(skb->data + off, 0, len);
2013
2014        /* No skb_postpush_rcsum(skb, skb->data + off, len)
2015         * needed here as it does not change the skb->csum
2016         * result for checksum complete when summing over
2017         * zeroed blocks.
2018         */
2019        return 0;
2020}
2021
2022static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2023{
2024        /* skb_ensure_writable() is not needed here, as we're
2025         * already working on an uncloned skb.
2026         */
2027        if (unlikely(!pskb_may_pull(skb, off + len)))
2028                return -ENOMEM;
2029
2030        skb_postpull_rcsum(skb, skb->data + off, len);
2031        memmove(skb->data + len, skb->data, off);
2032        __skb_pull(skb, len);
2033
2034        return 0;
2035}
2036
2037static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2038{
2039        bool trans_same = skb->transport_header == skb->network_header;
2040        int ret;
2041
2042        /* There's no need for __skb_push()/__skb_pull() pair to
2043         * get to the start of the mac header as we're guaranteed
2044         * to always start from here under eBPF.
2045         */
2046        ret = bpf_skb_generic_push(skb, off, len);
2047        if (likely(!ret)) {
2048                skb->mac_header -= len;
2049                skb->network_header -= len;
2050                if (trans_same)
2051                        skb->transport_header = skb->network_header;
2052        }
2053
2054        return ret;
2055}
2056
2057static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2058{
2059        bool trans_same = skb->transport_header == skb->network_header;
2060        int ret;
2061
2062        /* Same here, __skb_push()/__skb_pull() pair not needed. */
2063        ret = bpf_skb_generic_pop(skb, off, len);
2064        if (likely(!ret)) {
2065                skb->mac_header += len;
2066                skb->network_header += len;
2067                if (trans_same)
2068                        skb->transport_header = skb->network_header;
2069        }
2070
2071        return ret;
2072}
2073
2074static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2075{
2076        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2077        u32 off = skb_mac_header_len(skb);
2078        int ret;
2079
2080        ret = skb_cow(skb, len_diff);
2081        if (unlikely(ret < 0))
2082                return ret;
2083
2084        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2085        if (unlikely(ret < 0))
2086                return ret;
2087
2088        if (skb_is_gso(skb)) {
2089                /* SKB_GSO_TCPV4 needs to be changed into
2090                 * SKB_GSO_TCPV6.
2091                 */
2092                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2093                        skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
2094                        skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
2095                }
2096
2097                /* Due to IPv6 header, MSS needs to be downgraded. */
2098                skb_shinfo(skb)->gso_size -= len_diff;
2099                /* Header must be checked, and gso_segs recomputed. */
2100                skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2101                skb_shinfo(skb)->gso_segs = 0;
2102        }
2103
2104        skb->protocol = htons(ETH_P_IPV6);
2105        skb_clear_hash(skb);
2106
2107        return 0;
2108}
2109
2110static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2111{
2112        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2113        u32 off = skb_mac_header_len(skb);
2114        int ret;
2115
2116        ret = skb_unclone(skb, GFP_ATOMIC);
2117        if (unlikely(ret < 0))
2118                return ret;
2119
2120        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2121        if (unlikely(ret < 0))
2122                return ret;
2123
2124        if (skb_is_gso(skb)) {
2125                /* SKB_GSO_TCPV6 needs to be changed into
2126                 * SKB_GSO_TCPV4.
2127                 */
2128                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2129                        skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2130                        skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
2131                }
2132
2133                /* Due to IPv4 header, MSS can be upgraded. */
2134                skb_shinfo(skb)->gso_size += len_diff;
2135                /* Header must be checked, and gso_segs recomputed. */
2136                skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2137                skb_shinfo(skb)->gso_segs = 0;
2138        }
2139
2140        skb->protocol = htons(ETH_P_IP);
2141        skb_clear_hash(skb);
2142
2143        return 0;
2144}
2145
2146static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2147{
2148        __be16 from_proto = skb->protocol;
2149
2150        if (from_proto == htons(ETH_P_IP) &&
2151              to_proto == htons(ETH_P_IPV6))
2152                return bpf_skb_proto_4_to_6(skb);
2153
2154        if (from_proto == htons(ETH_P_IPV6) &&
2155              to_proto == htons(ETH_P_IP))
2156                return bpf_skb_proto_6_to_4(skb);
2157
2158        return -ENOTSUPP;
2159}
2160
2161BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2162           u64, flags)
2163{
2164        int ret;
2165
2166        if (unlikely(flags))
2167                return -EINVAL;
2168
2169        /* General idea is that this helper does the basic groundwork
2170         * needed for changing the protocol, and eBPF program fills the
2171         * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2172         * and other helpers, rather than passing a raw buffer here.
2173         *
2174         * The rationale is to keep this minimal and without a need to
2175         * deal with raw packet data. F.e. even if we would pass buffers
2176         * here, the program still needs to call the bpf_lX_csum_replace()
2177         * helpers anyway. Plus, this way we keep also separation of
2178         * concerns, since f.e. bpf_skb_store_bytes() should only take
2179         * care of stores.
2180         *
2181         * Currently, additional options and extension header space are
2182         * not supported, but flags register is reserved so we can adapt
2183         * that. For offloads, we mark packet as dodgy, so that headers
2184         * need to be verified first.
2185         */
2186        ret = bpf_skb_proto_xlat(skb, proto);
2187        bpf_compute_data_end(skb);
2188        return ret;
2189}
2190
2191static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2192        .func           = bpf_skb_change_proto,
2193        .gpl_only       = false,
2194        .ret_type       = RET_INTEGER,
2195        .arg1_type      = ARG_PTR_TO_CTX,
2196        .arg2_type      = ARG_ANYTHING,
2197        .arg3_type      = ARG_ANYTHING,
2198};
2199
2200BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2201{
2202        /* We only allow a restricted subset to be changed for now. */
2203        if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2204                     !skb_pkt_type_ok(pkt_type)))
2205                return -EINVAL;
2206
2207        skb->pkt_type = pkt_type;
2208        return 0;
2209}
2210
2211static const struct bpf_func_proto bpf_skb_change_type_proto = {
2212        .func           = bpf_skb_change_type,
2213        .gpl_only       = false,
2214        .ret_type       = RET_INTEGER,
2215        .arg1_type      = ARG_PTR_TO_CTX,
2216        .arg2_type      = ARG_ANYTHING,
2217};
2218
2219static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2220{
2221        switch (skb->protocol) {
2222        case htons(ETH_P_IP):
2223                return sizeof(struct iphdr);
2224        case htons(ETH_P_IPV6):
2225                return sizeof(struct ipv6hdr);
2226        default:
2227                return ~0U;
2228        }
2229}
2230
2231static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2232{
2233        u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2234        int ret;
2235
2236        ret = skb_cow(skb, len_diff);
2237        if (unlikely(ret < 0))
2238                return ret;
2239
2240        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2241        if (unlikely(ret < 0))
2242                return ret;
2243
2244        if (skb_is_gso(skb)) {
2245                /* Due to header grow, MSS needs to be downgraded. */
2246                skb_shinfo(skb)->gso_size -= len_diff;
2247                /* Header must be checked, and gso_segs recomputed. */
2248                skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2249                skb_shinfo(skb)->gso_segs = 0;
2250        }
2251
2252        return 0;
2253}
2254
2255static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2256{
2257        u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2258        int ret;
2259
2260        ret = skb_unclone(skb, GFP_ATOMIC);
2261        if (unlikely(ret < 0))
2262                return ret;
2263
2264        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2265        if (unlikely(ret < 0))
2266                return ret;
2267
2268        if (skb_is_gso(skb)) {
2269                /* Due to header shrink, MSS can be upgraded. */
2270                skb_shinfo(skb)->gso_size += len_diff;
2271                /* Header must be checked, and gso_segs recomputed. */
2272                skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2273                skb_shinfo(skb)->gso_segs = 0;
2274        }
2275
2276        return 0;
2277}
2278
2279static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2280{
2281        return skb->dev->mtu + skb->dev->hard_header_len;
2282}
2283
2284static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2285{
2286        bool trans_same = skb->transport_header == skb->network_header;
2287        u32 len_cur, len_diff_abs = abs(len_diff);
2288        u32 len_min = bpf_skb_net_base_len(skb);
2289        u32 len_max = __bpf_skb_max_len(skb);
2290        __be16 proto = skb->protocol;
2291        bool shrink = len_diff < 0;
2292        int ret;
2293
2294        if (unlikely(len_diff_abs > 0xfffU))
2295                return -EFAULT;
2296        if (unlikely(proto != htons(ETH_P_IP) &&
2297                     proto != htons(ETH_P_IPV6)))
2298                return -ENOTSUPP;
2299
2300        len_cur = skb->len - skb_network_offset(skb);
2301        if (skb_transport_header_was_set(skb) && !trans_same)
2302                len_cur = skb_network_header_len(skb);
2303        if ((shrink && (len_diff_abs >= len_cur ||
2304                        len_cur - len_diff_abs < len_min)) ||
2305            (!shrink && (skb->len + len_diff_abs > len_max &&
2306                         !skb_is_gso(skb))))
2307                return -ENOTSUPP;
2308
2309        ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2310                       bpf_skb_net_grow(skb, len_diff_abs);
2311
2312        bpf_compute_data_end(skb);
2313        return ret;
2314}
2315
2316BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2317           u32, mode, u64, flags)
2318{
2319        if (unlikely(flags))
2320                return -EINVAL;
2321        if (likely(mode == BPF_ADJ_ROOM_NET))
2322                return bpf_skb_adjust_net(skb, len_diff);
2323
2324        return -ENOTSUPP;
2325}
2326
2327static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2328        .func           = bpf_skb_adjust_room,
2329        .gpl_only       = false,
2330        .ret_type       = RET_INTEGER,
2331        .arg1_type      = ARG_PTR_TO_CTX,
2332        .arg2_type      = ARG_ANYTHING,
2333        .arg3_type      = ARG_ANYTHING,
2334        .arg4_type      = ARG_ANYTHING,
2335};
2336
2337static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2338{
2339        u32 min_len = skb_network_offset(skb);
2340
2341        if (skb_transport_header_was_set(skb))
2342                min_len = skb_transport_offset(skb);
2343        if (skb->ip_summed == CHECKSUM_PARTIAL)
2344                min_len = skb_checksum_start_offset(skb) +
2345                          skb->csum_offset + sizeof(__sum16);
2346        return min_len;
2347}
2348
2349static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2350{
2351        unsigned int old_len = skb->len;
2352        int ret;
2353
2354        ret = __skb_grow_rcsum(skb, new_len);
2355        if (!ret)
2356                memset(skb->data + old_len, 0, new_len - old_len);
2357        return ret;
2358}
2359
2360static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2361{
2362        return __skb_trim_rcsum(skb, new_len);
2363}
2364
2365BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2366           u64, flags)
2367{
2368        u32 max_len = __bpf_skb_max_len(skb);
2369        u32 min_len = __bpf_skb_min_len(skb);
2370        int ret;
2371
2372        if (unlikely(flags || new_len > max_len || new_len < min_len))
2373                return -EINVAL;
2374        if (skb->encapsulation)
2375                return -ENOTSUPP;
2376
2377        /* The basic idea of this helper is that it's performing the
2378         * needed work to either grow or trim an skb, and eBPF program
2379         * rewrites the rest via helpers like bpf_skb_store_bytes(),
2380         * bpf_lX_csum_replace() and others rather than passing a raw
2381         * buffer here. This one is a slow path helper and intended
2382         * for replies with control messages.
2383         *
2384         * Like in bpf_skb_change_proto(), we want to keep this rather
2385         * minimal and without protocol specifics so that we are able
2386         * to separate concerns as in bpf_skb_store_bytes() should only
2387         * be the one responsible for writing buffers.
2388         *
2389         * It's really expected to be a slow path operation here for
2390         * control message replies, so we're implicitly linearizing,
2391         * uncloning and drop offloads from the skb by this.
2392         */
2393        ret = __bpf_try_make_writable(skb, skb->len);
2394        if (!ret) {
2395                if (new_len > skb->len)
2396                        ret = bpf_skb_grow_rcsum(skb, new_len);
2397                else if (new_len < skb->len)
2398                        ret = bpf_skb_trim_rcsum(skb, new_len);
2399                if (!ret && skb_is_gso(skb))
2400                        skb_gso_reset(skb);
2401        }
2402
2403        bpf_compute_data_end(skb);
2404        return ret;
2405}
2406
2407static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2408        .func           = bpf_skb_change_tail,
2409        .gpl_only       = false,
2410        .ret_type       = RET_INTEGER,
2411        .arg1_type      = ARG_PTR_TO_CTX,
2412        .arg2_type      = ARG_ANYTHING,
2413        .arg3_type      = ARG_ANYTHING,
2414};
2415
2416BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2417           u64, flags)
2418{
2419        u32 max_len = __bpf_skb_max_len(skb);
2420        u32 new_len = skb->len + head_room;
2421        int ret;
2422
2423        if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2424                     new_len < skb->len))
2425                return -EINVAL;
2426
2427        ret = skb_cow(skb, head_room);
2428        if (likely(!ret)) {
2429                /* Idea for this helper is that we currently only
2430                 * allow to expand on mac header. This means that
2431                 * skb->protocol network header, etc, stay as is.
2432                 * Compared to bpf_skb_change_tail(), we're more
2433                 * flexible due to not needing to linearize or
2434                 * reset GSO. Intention for this helper is to be
2435                 * used by an L3 skb that needs to push mac header
2436                 * for redirection into L2 device.
2437                 */
2438                __skb_push(skb, head_room);
2439                memset(skb->data, 0, head_room);
2440                skb_reset_mac_header(skb);
2441        }
2442
2443        bpf_compute_data_end(skb);
2444        return 0;
2445}
2446
2447static const struct bpf_func_proto bpf_skb_change_head_proto = {
2448        .func           = bpf_skb_change_head,
2449        .gpl_only       = false,
2450        .ret_type       = RET_INTEGER,
2451        .arg1_type      = ARG_PTR_TO_CTX,
2452        .arg2_type      = ARG_ANYTHING,
2453        .arg3_type      = ARG_ANYTHING,
2454};
2455
2456BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2457{
2458        void *data = xdp->data + offset;
2459
2460        if (unlikely(data < xdp->data_hard_start ||
2461                     data > xdp->data_end - ETH_HLEN))
2462                return -EINVAL;
2463
2464        xdp->data = data;
2465
2466        return 0;
2467}
2468
2469static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2470        .func           = bpf_xdp_adjust_head,
2471        .gpl_only       = false,
2472        .ret_type       = RET_INTEGER,
2473        .arg1_type      = ARG_PTR_TO_CTX,
2474        .arg2_type      = ARG_ANYTHING,
2475};
2476
2477static int __bpf_tx_xdp(struct net_device *dev,
2478                        struct bpf_map *map,
2479                        struct xdp_buff *xdp,
2480                        u32 index)
2481{
2482        int err;
2483
2484        if (!dev->netdev_ops->ndo_xdp_xmit) {
2485                return -EOPNOTSUPP;
2486        }
2487
2488        err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2489        if (err)
2490                return err;
2491        if (map)
2492                __dev_map_insert_ctx(map, index);
2493        else
2494                dev->netdev_ops->ndo_xdp_flush(dev);
2495        return 0;
2496}
2497
2498void xdp_do_flush_map(void)
2499{
2500        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2501        struct bpf_map *map = ri->map_to_flush;
2502
2503        ri->map_to_flush = NULL;
2504        if (map)
2505                __dev_map_flush(map);
2506}
2507EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2508
2509static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2510                                   unsigned long aux)
2511{
2512        return (unsigned long)xdp_prog->aux != aux;
2513}
2514
2515static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2516                               struct bpf_prog *xdp_prog)
2517{
2518        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2519        unsigned long map_owner = ri->map_owner;
2520        struct bpf_map *map = ri->map;
2521        struct net_device *fwd = NULL;
2522        u32 index = ri->ifindex;
2523        int err;
2524
2525        ri->ifindex = 0;
2526        ri->map = NULL;
2527        ri->map_owner = 0;
2528
2529        if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2530                err = -EFAULT;
2531                map = NULL;
2532                goto err;
2533        }
2534
2535        fwd = __dev_map_lookup_elem(map, index);
2536        if (!fwd) {
2537                err = -EINVAL;
2538                goto err;
2539        }
2540        if (ri->map_to_flush && ri->map_to_flush != map)
2541                xdp_do_flush_map();
2542
2543        err = __bpf_tx_xdp(fwd, map, xdp, index);
2544        if (unlikely(err))
2545                goto err;
2546
2547        ri->map_to_flush = map;
2548        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2549        return 0;
2550err:
2551        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2552        return err;
2553}
2554
2555int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2556                    struct bpf_prog *xdp_prog)
2557{
2558        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2559        struct net_device *fwd;
2560        u32 index = ri->ifindex;
2561        int err;
2562
2563        if (ri->map)
2564                return xdp_do_redirect_map(dev, xdp, xdp_prog);
2565
2566        fwd = dev_get_by_index_rcu(dev_net(dev), index);
2567        ri->ifindex = 0;
2568        if (unlikely(!fwd)) {
2569                err = -EINVAL;
2570                goto err;
2571        }
2572
2573        err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2574        if (unlikely(err))
2575                goto err;
2576
2577        _trace_xdp_redirect(dev, xdp_prog, index);
2578        return 0;
2579err:
2580        _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2581        return err;
2582}
2583EXPORT_SYMBOL_GPL(xdp_do_redirect);
2584
2585int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2586                            struct bpf_prog *xdp_prog)
2587{
2588        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2589        unsigned long map_owner = ri->map_owner;
2590        struct bpf_map *map = ri->map;
2591        struct net_device *fwd = NULL;
2592        u32 index = ri->ifindex;
2593        unsigned int len;
2594        int err = 0;
2595
2596        ri->ifindex = 0;
2597        ri->map = NULL;
2598        ri->map_owner = 0;
2599
2600        if (map) {
2601                if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2602                        err = -EFAULT;
2603                        map = NULL;
2604                        goto err;
2605                }
2606                fwd = __dev_map_lookup_elem(map, index);
2607        } else {
2608                fwd = dev_get_by_index_rcu(dev_net(dev), index);
2609        }
2610        if (unlikely(!fwd)) {
2611                err = -EINVAL;
2612                goto err;
2613        }
2614
2615        if (unlikely(!(fwd->flags & IFF_UP))) {
2616                err = -ENETDOWN;
2617                goto err;
2618        }
2619
2620        len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2621        if (skb->len > len) {
2622                err = -EMSGSIZE;
2623                goto err;
2624        }
2625
2626        skb->dev = fwd;
2627        map ? _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index)
2628                : _trace_xdp_redirect(dev, xdp_prog, index);
2629        return 0;
2630err:
2631        map ? _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err)
2632                : _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2633        return err;
2634}
2635EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2636
2637BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2638{
2639        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2640
2641        if (unlikely(flags))
2642                return XDP_ABORTED;
2643
2644        ri->ifindex = ifindex;
2645        ri->flags = flags;
2646        ri->map = NULL;
2647        ri->map_owner = 0;
2648
2649        return XDP_REDIRECT;
2650}
2651
2652static const struct bpf_func_proto bpf_xdp_redirect_proto = {
2653        .func           = bpf_xdp_redirect,
2654        .gpl_only       = false,
2655        .ret_type       = RET_INTEGER,
2656        .arg1_type      = ARG_ANYTHING,
2657        .arg2_type      = ARG_ANYTHING,
2658};
2659
2660BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
2661           unsigned long, map_owner)
2662{
2663        struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2664
2665        if (unlikely(flags))
2666                return XDP_ABORTED;
2667
2668        ri->ifindex = ifindex;
2669        ri->flags = flags;
2670        ri->map = map;
2671        ri->map_owner = map_owner;
2672
2673        return XDP_REDIRECT;
2674}
2675
2676/* Note, arg4 is hidden from users and populated by the verifier
2677 * with the right pointer.
2678 */
2679static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
2680        .func           = bpf_xdp_redirect_map,
2681        .gpl_only       = false,
2682        .ret_type       = RET_INTEGER,
2683        .arg1_type      = ARG_CONST_MAP_PTR,
2684        .arg2_type      = ARG_ANYTHING,
2685        .arg3_type      = ARG_ANYTHING,
2686};
2687
2688bool bpf_helper_changes_pkt_data(void *func)
2689{
2690        if (func == bpf_skb_vlan_push ||
2691            func == bpf_skb_vlan_pop ||
2692            func == bpf_skb_store_bytes ||
2693            func == bpf_skb_change_proto ||
2694            func == bpf_skb_change_head ||
2695            func == bpf_skb_change_tail ||
2696            func == bpf_skb_adjust_room ||
2697            func == bpf_skb_pull_data ||
2698            func == bpf_clone_redirect ||
2699            func == bpf_l3_csum_replace ||
2700            func == bpf_l4_csum_replace ||
2701            func == bpf_xdp_adjust_head)
2702                return true;
2703
2704        return false;
2705}
2706
2707static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2708                                  unsigned long off, unsigned long len)
2709{
2710        void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2711
2712        if (unlikely(!ptr))
2713                return len;
2714        if (ptr != dst_buff)
2715                memcpy(dst_buff, ptr, len);
2716
2717        return 0;
2718}
2719
2720BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2721           u64, flags, void *, meta, u64, meta_size)
2722{
2723        u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2724
2725        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2726                return -EINVAL;
2727        if (unlikely(skb_size > skb->len))
2728                return -EFAULT;
2729
2730        return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2731                                bpf_skb_copy);
2732}
2733
2734static const struct bpf_func_proto bpf_skb_event_output_proto = {
2735        .func           = bpf_skb_event_output,
2736        .gpl_only       = true,
2737        .ret_type       = RET_INTEGER,
2738        .arg1_type      = ARG_PTR_TO_CTX,
2739        .arg2_type      = ARG_CONST_MAP_PTR,
2740        .arg3_type      = ARG_ANYTHING,
2741        .arg4_type      = ARG_PTR_TO_MEM,
2742        .arg5_type      = ARG_CONST_SIZE,
2743};
2744
2745static unsigned short bpf_tunnel_key_af(u64 flags)
2746{
2747        return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2748}
2749
2750BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2751           u32, size, u64, flags)
2752{
2753        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2754        u8 compat[sizeof(struct bpf_tunnel_key)];
2755        void *to_orig = to;
2756        int err;
2757
2758        if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2759                err = -EINVAL;
2760                goto err_clear;
2761        }
2762        if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2763                err = -EPROTO;
2764                goto err_clear;
2765        }
2766        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2767                err = -EINVAL;
2768                switch (size) {
2769                case offsetof(struct bpf_tunnel_key, tunnel_label):
2770                case offsetof(struct bpf_tunnel_key, tunnel_ext):
2771                        goto set_compat;
2772                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2773                        /* Fixup deprecated structure layouts here, so we have
2774                         * a common path later on.
2775                         */
2776                        if (ip_tunnel_info_af(info) != AF_INET)
2777                                goto err_clear;
2778set_compat:
2779                        to = (struct bpf_tunnel_key *)compat;
2780                        break;
2781                default:
2782                        goto err_clear;
2783                }
2784        }
2785
2786        to->tunnel_id = be64_to_cpu(info->key.tun_id);
2787        to->tunnel_tos = info->key.tos;
2788        to->tunnel_ttl = info->key.ttl;
2789
2790        if (flags & BPF_F_TUNINFO_IPV6) {
2791                memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2792                       sizeof(to->remote_ipv6));
2793                to->tunnel_label = be32_to_cpu(info->key.label);
2794        } else {
2795                to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2796        }
2797
2798        if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2799                memcpy(to_orig, to, size);
2800
2801        return 0;
2802err_clear:
2803        memset(to_orig, 0, size);
2804        return err;
2805}
2806
2807static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2808        .func           = bpf_skb_get_tunnel_key,
2809        .gpl_only       = false,
2810        .ret_type       = RET_INTEGER,
2811        .arg1_type      = ARG_PTR_TO_CTX,
2812        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
2813        .arg3_type      = ARG_CONST_SIZE,
2814        .arg4_type      = ARG_ANYTHING,
2815};
2816
2817BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2818{
2819        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2820        int err;
2821
2822        if (unlikely(!info ||
2823                     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2824                err = -ENOENT;
2825                goto err_clear;
2826        }
2827        if (unlikely(size < info->options_len)) {
2828                err = -ENOMEM;
2829                goto err_clear;
2830        }
2831
2832        ip_tunnel_info_opts_get(to, info);
2833        if (size > info->options_len)
2834                memset(to + info->options_len, 0, size - info->options_len);
2835
2836        return info->options_len;
2837err_clear:
2838        memset(to, 0, size);
2839        return err;
2840}
2841
2842static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2843        .func           = bpf_skb_get_tunnel_opt,
2844        .gpl_only       = false,
2845        .ret_type       = RET_INTEGER,
2846        .arg1_type      = ARG_PTR_TO_CTX,
2847        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
2848        .arg3_type      = ARG_CONST_SIZE,
2849};
2850
2851static struct metadata_dst __percpu *md_dst;
2852
2853BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2854           const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2855{
2856        struct metadata_dst *md = this_cpu_ptr(md_dst);
2857        u8 compat[sizeof(struct bpf_tunnel_key)];
2858        struct ip_tunnel_info *info;
2859
2860        if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2861                               BPF_F_DONT_FRAGMENT)))
2862                return -EINVAL;
2863        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2864                switch (size) {
2865                case offsetof(struct bpf_tunnel_key, tunnel_label):
2866                case offsetof(struct bpf_tunnel_key, tunnel_ext):
2867                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2868                        /* Fixup deprecated structure layouts here, so we have
2869                         * a common path later on.
2870                         */
2871                        memcpy(compat, from, size);
2872                        memset(compat + size, 0, sizeof(compat) - size);
2873                        from = (const struct bpf_tunnel_key *) compat;
2874                        break;
2875                default:
2876                        return -EINVAL;
2877                }
2878        }
2879        if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
2880                     from->tunnel_ext))
2881                return -EINVAL;
2882
2883        skb_dst_drop(skb);
2884        dst_hold((struct dst_entry *) md);
2885        skb_dst_set(skb, (struct dst_entry *) md);
2886
2887        info = &md->u.tun_info;
2888        info->mode = IP_TUNNEL_INFO_TX;
2889
2890        info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2891        if (flags & BPF_F_DONT_FRAGMENT)
2892                info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
2893
2894        info->key.tun_id = cpu_to_be64(from->tunnel_id);
2895        info->key.tos = from->tunnel_tos;
2896        info->key.ttl = from->tunnel_ttl;
2897
2898        if (flags & BPF_F_TUNINFO_IPV6) {
2899                info->mode |= IP_TUNNEL_INFO_IPV6;
2900                memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
2901                       sizeof(from->remote_ipv6));
2902                info->key.label = cpu_to_be32(from->tunnel_label) &
2903                                  IPV6_FLOWLABEL_MASK;
2904        } else {
2905                info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2906                if (flags & BPF_F_ZERO_CSUM_TX)
2907                        info->key.tun_flags &= ~TUNNEL_CSUM;
2908        }
2909
2910        return 0;
2911}
2912
2913static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2914        .func           = bpf_skb_set_tunnel_key,
2915        .gpl_only       = false,
2916        .ret_type       = RET_INTEGER,
2917        .arg1_type      = ARG_PTR_TO_CTX,
2918        .arg2_type      = ARG_PTR_TO_MEM,
2919        .arg3_type      = ARG_CONST_SIZE,
2920        .arg4_type      = ARG_ANYTHING,
2921};
2922
2923BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
2924           const u8 *, from, u32, size)
2925{
2926        struct ip_tunnel_info *info = skb_tunnel_info(skb);
2927        const struct metadata_dst *md = this_cpu_ptr(md_dst);
2928
2929        if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
2930                return -EINVAL;
2931        if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2932                return -ENOMEM;
2933
2934        ip_tunnel_info_opts_set(info, from, size);
2935
2936        return 0;
2937}
2938
2939static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
2940        .func           = bpf_skb_set_tunnel_opt,
2941        .gpl_only       = false,
2942        .ret_type       = RET_INTEGER,
2943        .arg1_type      = ARG_PTR_TO_CTX,
2944        .arg2_type      = ARG_PTR_TO_MEM,
2945        .arg3_type      = ARG_CONST_SIZE,
2946};
2947
2948static const struct bpf_func_proto *
2949bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2950{
2951        if (!md_dst) {
2952                /* Race is not possible, since it's called from verifier
2953                 * that is holding verifier mutex.
2954                 */
2955                md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2956                                                   METADATA_IP_TUNNEL,
2957                                                   GFP_KERNEL);
2958                if (!md_dst)
2959                        return NULL;
2960        }
2961
2962        switch (which) {
2963        case BPF_FUNC_skb_set_tunnel_key:
2964                return &bpf_skb_set_tunnel_key_proto;
2965        case BPF_FUNC_skb_set_tunnel_opt:
2966                return &bpf_skb_set_tunnel_opt_proto;
2967        default:
2968                return NULL;
2969        }
2970}
2971
2972BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
2973           u32, idx)
2974{
2975        struct bpf_array *array = container_of(map, struct bpf_array, map);
2976        struct cgroup *cgrp;
2977        struct sock *sk;
2978
2979        sk = skb_to_full_sk(skb);
2980        if (!sk || !sk_fullsock(sk))
2981                return -ENOENT;
2982        if (unlikely(idx >= array->map.max_entries))
2983                return -E2BIG;
2984
2985        cgrp = READ_ONCE(array->ptrs[idx]);
2986        if (unlikely(!cgrp))
2987                return -EAGAIN;
2988
2989        return sk_under_cgroup_hierarchy(sk, cgrp);
2990}
2991
2992static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
2993        .func           = bpf_skb_under_cgroup,
2994        .gpl_only       = false,
2995        .ret_type       = RET_INTEGER,
2996        .arg1_type      = ARG_PTR_TO_CTX,
2997        .arg2_type      = ARG_CONST_MAP_PTR,
2998        .arg3_type      = ARG_ANYTHING,
2999};
3000
3001static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3002                                  unsigned long off, unsigned long len)
3003{
3004        memcpy(dst_buff, src_buff + off, len);
3005        return 0;
3006}
3007
3008BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3009           u64, flags, void *, meta, u64, meta_size)
3010{
3011        u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3012
3013        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3014                return -EINVAL;
3015        if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3016                return -EFAULT;
3017
3018        return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3019                                xdp_size, bpf_xdp_copy);
3020}
3021
3022static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3023        .func           = bpf_xdp_event_output,
3024        .gpl_only       = true,
3025        .ret_type       = RET_INTEGER,
3026        .arg1_type      = ARG_PTR_TO_CTX,
3027        .arg2_type      = ARG_CONST_MAP_PTR,
3028        .arg3_type      = ARG_ANYTHING,
3029        .arg4_type      = ARG_PTR_TO_MEM,
3030        .arg5_type      = ARG_CONST_SIZE,
3031};
3032
3033BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3034{
3035        return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3036}
3037
3038static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3039        .func           = bpf_get_socket_cookie,
3040        .gpl_only       = false,
3041        .ret_type       = RET_INTEGER,
3042        .arg1_type      = ARG_PTR_TO_CTX,
3043};
3044
3045BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3046{
3047        struct sock *sk = sk_to_full_sk(skb->sk);
3048        kuid_t kuid;
3049
3050        if (!sk || !sk_fullsock(sk))
3051                return overflowuid;
3052        kuid = sock_net_uid(sock_net(sk), sk);
3053        return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3054}
3055
3056static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3057        .func           = bpf_get_socket_uid,
3058        .gpl_only       = false,
3059        .ret_type       = RET_INTEGER,
3060        .arg1_type      = ARG_PTR_TO_CTX,
3061};
3062
3063BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3064           int, level, int, optname, char *, optval, int, optlen)
3065{
3066        struct sock *sk = bpf_sock->sk;
3067        int ret = 0;
3068        int val;
3069
3070        if (!sk_fullsock(sk))
3071                return -EINVAL;
3072
3073        if (level == SOL_SOCKET) {
3074                if (optlen != sizeof(int))
3075                        return -EINVAL;
3076                val = *((int *)optval);
3077
3078                /* Only some socketops are supported */
3079                switch (optname) {
3080                case SO_RCVBUF:
3081                        sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3082                        sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3083                        break;
3084                case SO_SNDBUF:
3085                        sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3086                        sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3087                        break;
3088                case SO_MAX_PACING_RATE:
3089                        sk->sk_max_pacing_rate = val;
3090                        sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3091                                                 sk->sk_max_pacing_rate);
3092                        break;
3093                case SO_PRIORITY:
3094                        sk->sk_priority = val;
3095                        break;
3096                case SO_RCVLOWAT:
3097                        if (val < 0)
3098                                val = INT_MAX;
3099                        sk->sk_rcvlowat = val ? : 1;
3100                        break;
3101                case SO_MARK:
3102                        sk->sk_mark = val;
3103                        break;
3104                default:
3105                        ret = -EINVAL;
3106                }
3107#ifdef CONFIG_INET
3108        } else if (level == SOL_TCP &&
3109                   sk->sk_prot->setsockopt == tcp_setsockopt) {
3110                if (optname == TCP_CONGESTION) {
3111                        char name[TCP_CA_NAME_MAX];
3112                        bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3113
3114                        strncpy(name, optval, min_t(long, optlen,
3115                                                    TCP_CA_NAME_MAX-1));
3116                        name[TCP_CA_NAME_MAX-1] = 0;
3117                        ret = tcp_set_congestion_control(sk, name, false, reinit);
3118                } else {
3119                        struct tcp_sock *tp = tcp_sk(sk);
3120
3121                        if (optlen != sizeof(int))
3122                                return -EINVAL;
3123
3124                        val = *((int *)optval);
3125                        /* Only some options are supported */
3126                        switch (optname) {
3127                        case TCP_BPF_IW:
3128                                if (val <= 0 || tp->data_segs_out > 0)
3129                                        ret = -EINVAL;
3130                                else
3131                                        tp->snd_cwnd = val;
3132                                break;
3133                        case TCP_BPF_SNDCWND_CLAMP:
3134                                if (val <= 0) {
3135                                        ret = -EINVAL;
3136                                } else {
3137                                        tp->snd_cwnd_clamp = val;
3138                                        tp->snd_ssthresh = val;
3139                                }
3140                                break;
3141                        default:
3142                                ret = -EINVAL;
3143                        }
3144                }
3145#endif
3146        } else {
3147                ret = -EINVAL;
3148        }
3149        return ret;
3150}
3151
3152static const struct bpf_func_proto bpf_setsockopt_proto = {
3153        .func           = bpf_setsockopt,
3154        .gpl_only       = true,
3155        .ret_type       = RET_INTEGER,
3156        .arg1_type      = ARG_PTR_TO_CTX,
3157        .arg2_type      = ARG_ANYTHING,
3158        .arg3_type      = ARG_ANYTHING,
3159        .arg4_type      = ARG_PTR_TO_MEM,
3160        .arg5_type      = ARG_CONST_SIZE,
3161};
3162
3163static const struct bpf_func_proto *
3164bpf_base_func_proto(enum bpf_func_id func_id)
3165{
3166        switch (func_id) {
3167        case BPF_FUNC_map_lookup_elem:
3168                return &bpf_map_lookup_elem_proto;
3169        case BPF_FUNC_map_update_elem:
3170                return &bpf_map_update_elem_proto;
3171        case BPF_FUNC_map_delete_elem:
3172                return &bpf_map_delete_elem_proto;
3173        case BPF_FUNC_get_prandom_u32:
3174                return &bpf_get_prandom_u32_proto;
3175        case BPF_FUNC_get_smp_processor_id:
3176                return &bpf_get_raw_smp_processor_id_proto;
3177        case BPF_FUNC_get_numa_node_id:
3178                return &bpf_get_numa_node_id_proto;
3179        case BPF_FUNC_tail_call:
3180                return &bpf_tail_call_proto;
3181        case BPF_FUNC_ktime_get_ns:
3182                return &bpf_ktime_get_ns_proto;
3183        case BPF_FUNC_trace_printk:
3184                if (capable(CAP_SYS_ADMIN))
3185                        return bpf_get_trace_printk_proto();
3186        default:
3187                return NULL;
3188        }
3189}
3190
3191static const struct bpf_func_proto *
3192sock_filter_func_proto(enum bpf_func_id func_id)
3193{
3194        switch (func_id) {
3195        /* inet and inet6 sockets are created in a process
3196         * context so there is always a valid uid/gid
3197         */
3198        case BPF_FUNC_get_current_uid_gid:
3199                return &bpf_get_current_uid_gid_proto;
3200        default:
3201                return bpf_base_func_proto(func_id);
3202        }
3203}
3204
3205static const struct bpf_func_proto *
3206sk_filter_func_proto(enum bpf_func_id func_id)
3207{
3208        switch (func_id) {
3209        case BPF_FUNC_skb_load_bytes:
3210                return &bpf_skb_load_bytes_proto;
3211        case BPF_FUNC_get_socket_cookie:
3212                return &bpf_get_socket_cookie_proto;
3213        case BPF_FUNC_get_socket_uid:
3214                return &bpf_get_socket_uid_proto;
3215        default:
3216                return bpf_base_func_proto(func_id);
3217        }
3218}
3219
3220static const struct bpf_func_proto *
3221tc_cls_act_func_proto(enum bpf_func_id func_id)
3222{
3223        switch (func_id) {
3224        case BPF_FUNC_skb_store_bytes:
3225                return &bpf_skb_store_bytes_proto;
3226        case BPF_FUNC_skb_load_bytes:
3227                return &bpf_skb_load_bytes_proto;
3228        case BPF_FUNC_skb_pull_data:
3229                return &bpf_skb_pull_data_proto;
3230        case BPF_FUNC_csum_diff:
3231                return &bpf_csum_diff_proto;
3232        case BPF_FUNC_csum_update:
3233                return &bpf_csum_update_proto;
3234        case BPF_FUNC_l3_csum_replace:
3235                return &bpf_l3_csum_replace_proto;
3236        case BPF_FUNC_l4_csum_replace:
3237                return &bpf_l4_csum_replace_proto;
3238        case BPF_FUNC_clone_redirect:
3239                return &bpf_clone_redirect_proto;
3240        case BPF_FUNC_get_cgroup_classid:
3241                return &bpf_get_cgroup_classid_proto;
3242        case BPF_FUNC_skb_vlan_push:
3243                return &bpf_skb_vlan_push_proto;
3244        case BPF_FUNC_skb_vlan_pop:
3245                return &bpf_skb_vlan_pop_proto;
3246        case BPF_FUNC_skb_change_proto:
3247                return &bpf_skb_change_proto_proto;
3248        case BPF_FUNC_skb_change_type:
3249                return &bpf_skb_change_type_proto;
3250        case BPF_FUNC_skb_adjust_room:
3251                return &bpf_skb_adjust_room_proto;
3252        case BPF_FUNC_skb_change_tail:
3253                return &bpf_skb_change_tail_proto;
3254        case BPF_FUNC_skb_get_tunnel_key:
3255                return &bpf_skb_get_tunnel_key_proto;
3256        case BPF_FUNC_skb_set_tunnel_key:
3257                return bpf_get_skb_set_tunnel_proto(func_id);
3258        case BPF_FUNC_skb_get_tunnel_opt:
3259                return &bpf_skb_get_tunnel_opt_proto;
3260        case BPF_FUNC_skb_set_tunnel_opt:
3261                return bpf_get_skb_set_tunnel_proto(func_id);
3262        case BPF_FUNC_redirect:
3263                return &bpf_redirect_proto;
3264        case BPF_FUNC_get_route_realm:
3265                return &bpf_get_route_realm_proto;
3266        case BPF_FUNC_get_hash_recalc:
3267                return &bpf_get_hash_recalc_proto;
3268        case BPF_FUNC_set_hash_invalid:
3269                return &bpf_set_hash_invalid_proto;
3270        case BPF_FUNC_set_hash:
3271                return &bpf_set_hash_proto;
3272        case BPF_FUNC_perf_event_output:
3273                return &bpf_skb_event_output_proto;
3274        case BPF_FUNC_get_smp_processor_id:
3275                return &bpf_get_smp_processor_id_proto;
3276        case BPF_FUNC_skb_under_cgroup:
3277                return &bpf_skb_under_cgroup_proto;
3278        case BPF_FUNC_get_socket_cookie:
3279                return &bpf_get_socket_cookie_proto;
3280        case BPF_FUNC_get_socket_uid:
3281                return &bpf_get_socket_uid_proto;
3282        default:
3283                return bpf_base_func_proto(func_id);
3284        }
3285}
3286
3287static const struct bpf_func_proto *
3288xdp_func_proto(enum bpf_func_id func_id)
3289{
3290        switch (func_id) {
3291        case BPF_FUNC_perf_event_output:
3292                return &bpf_xdp_event_output_proto;
3293        case BPF_FUNC_get_smp_processor_id:
3294                return &bpf_get_smp_processor_id_proto;
3295        case BPF_FUNC_xdp_adjust_head:
3296                return &bpf_xdp_adjust_head_proto;
3297        case BPF_FUNC_redirect:
3298                return &bpf_xdp_redirect_proto;
3299        case BPF_FUNC_redirect_map:
3300                return &bpf_xdp_redirect_map_proto;
3301        default:
3302                return bpf_base_func_proto(func_id);
3303        }
3304}
3305
3306static const struct bpf_func_proto *
3307lwt_inout_func_proto(enum bpf_func_id func_id)
3308{
3309        switch (func_id) {
3310        case BPF_FUNC_skb_load_bytes:
3311                return &bpf_skb_load_bytes_proto;
3312        case BPF_FUNC_skb_pull_data:
3313                return &bpf_skb_pull_data_proto;
3314        case BPF_FUNC_csum_diff:
3315                return &bpf_csum_diff_proto;
3316        case BPF_FUNC_get_cgroup_classid:
3317                return &bpf_get_cgroup_classid_proto;
3318        case BPF_FUNC_get_route_realm:
3319                return &bpf_get_route_realm_proto;
3320        case BPF_FUNC_get_hash_recalc:
3321                return &bpf_get_hash_recalc_proto;
3322        case BPF_FUNC_perf_event_output:
3323                return &bpf_skb_event_output_proto;
3324        case BPF_FUNC_get_smp_processor_id:
3325                return &bpf_get_smp_processor_id_proto;
3326        case BPF_FUNC_skb_under_cgroup:
3327                return &bpf_skb_under_cgroup_proto;
3328        default:
3329                return bpf_base_func_proto(func_id);
3330        }
3331}
3332
3333static const struct bpf_func_proto *
3334        sock_ops_func_proto(enum bpf_func_id func_id)
3335{
3336        switch (func_id) {
3337        case BPF_FUNC_setsockopt:
3338                return &bpf_setsockopt_proto;
3339        case BPF_FUNC_sock_map_update:
3340                return &bpf_sock_map_update_proto;
3341        default:
3342                return bpf_base_func_proto(func_id);
3343        }
3344}
3345
3346static const struct bpf_func_proto *sk_skb_func_proto(enum bpf_func_id func_id)
3347{
3348        switch (func_id) {
3349        case BPF_FUNC_skb_store_bytes:
3350                return &bpf_skb_store_bytes_proto;
3351        case BPF_FUNC_skb_load_bytes:
3352                return &bpf_skb_load_bytes_proto;
3353        case BPF_FUNC_skb_pull_data:
3354                return &bpf_skb_pull_data_proto;
3355        case BPF_FUNC_skb_change_tail:
3356                return &bpf_skb_change_tail_proto;
3357        case BPF_FUNC_skb_change_head:
3358                return &bpf_skb_change_head_proto;
3359        case BPF_FUNC_get_socket_cookie:
3360                return &bpf_get_socket_cookie_proto;
3361        case BPF_FUNC_get_socket_uid:
3362                return &bpf_get_socket_uid_proto;
3363        case BPF_FUNC_sk_redirect_map:
3364                return &bpf_sk_redirect_map_proto;
3365        default:
3366                return bpf_base_func_proto(func_id);
3367        }
3368}
3369
3370static const struct bpf_func_proto *
3371lwt_xmit_func_proto(enum bpf_func_id func_id)
3372{
3373        switch (func_id) {
3374        case BPF_FUNC_skb_get_tunnel_key:
3375                return &bpf_skb_get_tunnel_key_proto;
3376        case BPF_FUNC_skb_set_tunnel_key:
3377                return bpf_get_skb_set_tunnel_proto(func_id);
3378        case BPF_FUNC_skb_get_tunnel_opt:
3379                return &bpf_skb_get_tunnel_opt_proto;
3380        case BPF_FUNC_skb_set_tunnel_opt:
3381                return bpf_get_skb_set_tunnel_proto(func_id);
3382        case BPF_FUNC_redirect:
3383                return &bpf_redirect_proto;
3384        case BPF_FUNC_clone_redirect:
3385                return &bpf_clone_redirect_proto;
3386        case BPF_FUNC_skb_change_tail:
3387                return &bpf_skb_change_tail_proto;
3388        case BPF_FUNC_skb_change_head:
3389                return &bpf_skb_change_head_proto;
3390        case BPF_FUNC_skb_store_bytes:
3391                return &bpf_skb_store_bytes_proto;
3392        case BPF_FUNC_csum_update:
3393                return &bpf_csum_update_proto;
3394        case BPF_FUNC_l3_csum_replace:
3395                return &bpf_l3_csum_replace_proto;
3396        case BPF_FUNC_l4_csum_replace:
3397                return &bpf_l4_csum_replace_proto;
3398        case BPF_FUNC_set_hash_invalid:
3399                return &bpf_set_hash_invalid_proto;
3400        default:
3401                return lwt_inout_func_proto(func_id);
3402        }
3403}
3404
3405static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3406                                    struct bpf_insn_access_aux *info)
3407{
3408        const int size_default = sizeof(__u32);
3409
3410        if (off < 0 || off >= sizeof(struct __sk_buff))
3411                return false;
3412
3413        /* The verifier guarantees that size > 0. */
3414        if (off % size != 0)
3415                return false;
3416
3417        switch (off) {
3418        case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3419                if (off + size > offsetofend(struct __sk_buff, cb[4]))
3420                        return false;
3421                break;
3422        case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
3423        case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
3424        case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
3425        case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
3426        case bpf_ctx_range(struct __sk_buff, data):
3427        case bpf_ctx_range(struct __sk_buff, data_end):
3428                if (size != size_default)
3429                        return false;
3430                break;
3431        default:
3432                /* Only narrow read access allowed for now. */
3433                if (type == BPF_WRITE) {
3434                        if (size != size_default)
3435                                return false;
3436                } else {
3437                        bpf_ctx_record_field_size(info, size_default);
3438                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3439                                return false;
3440                }
3441        }
3442
3443        return true;
3444}
3445
3446static bool sk_filter_is_valid_access(int off, int size,
3447                                      enum bpf_access_type type,
3448                                      struct bpf_insn_access_aux *info)
3449{
3450        switch (off) {
3451        case bpf_ctx_range(struct __sk_buff, tc_classid):
3452        case bpf_ctx_range(struct __sk_buff, data):
3453        case bpf_ctx_range(struct __sk_buff, data_end):
3454        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3455                return false;
3456        }
3457
3458        if (type == BPF_WRITE) {
3459                switch (off) {
3460                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3461                        break;
3462                default:
3463                        return false;
3464                }
3465        }
3466
3467        return bpf_skb_is_valid_access(off, size, type, info);
3468}
3469
3470static bool lwt_is_valid_access(int off, int size,
3471                                enum bpf_access_type type,
3472                                struct bpf_insn_access_aux *info)
3473{
3474        switch (off) {
3475        case bpf_ctx_range(struct __sk_buff, tc_classid):
3476        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3477                return false;
3478        }
3479
3480        if (type == BPF_WRITE) {
3481                switch (off) {
3482                case bpf_ctx_range(struct __sk_buff, mark):
3483                case bpf_ctx_range(struct __sk_buff, priority):
3484                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3485                        break;
3486                default:
3487                        return false;
3488                }
3489        }
3490
3491        switch (off) {
3492        case bpf_ctx_range(struct __sk_buff, data):
3493                info->reg_type = PTR_TO_PACKET;
3494                break;
3495        case bpf_ctx_range(struct __sk_buff, data_end):
3496                info->reg_type = PTR_TO_PACKET_END;
3497                break;
3498        }
3499
3500        return bpf_skb_is_valid_access(off, size, type, info);
3501}
3502
3503static bool sock_filter_is_valid_access(int off, int size,
3504                                        enum bpf_access_type type,
3505                                        struct bpf_insn_access_aux *info)
3506{
3507        if (type == BPF_WRITE) {
3508                switch (off) {
3509                case offsetof(struct bpf_sock, bound_dev_if):
3510                case offsetof(struct bpf_sock, mark):
3511                case offsetof(struct bpf_sock, priority):
3512                        break;
3513                default:
3514                        return false;
3515                }
3516        }
3517
3518        if (off < 0 || off + size > sizeof(struct bpf_sock))
3519                return false;
3520        /* The verifier guarantees that size > 0. */
3521        if (off % size != 0)
3522                return false;
3523        if (size != sizeof(__u32))
3524                return false;
3525
3526        return true;
3527}
3528
3529static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
3530                                const struct bpf_prog *prog, int drop_verdict)
3531{
3532        struct bpf_insn *insn = insn_buf;
3533
3534        if (!direct_write)
3535                return 0;
3536
3537        /* if (!skb->cloned)
3538         *       goto start;
3539         *
3540         * (Fast-path, otherwise approximation that we might be
3541         *  a clone, do the rest in helper.)
3542         */
3543        *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
3544        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
3545        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
3546
3547        /* ret = bpf_skb_pull_data(skb, 0); */
3548        *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
3549        *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
3550        *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
3551                               BPF_FUNC_skb_pull_data);
3552        /* if (!ret)
3553         *      goto restore;
3554         * return TC_ACT_SHOT;
3555         */
3556        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
3557        *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
3558        *insn++ = BPF_EXIT_INSN();
3559
3560        /* restore: */
3561        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
3562        /* start: */
3563        *insn++ = prog->insnsi[0];
3564
3565        return insn - insn_buf;
3566}
3567
3568static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
3569                               const struct bpf_prog *prog)
3570{
3571        return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
3572}
3573
3574static bool tc_cls_act_is_valid_access(int off, int size,
3575                                       enum bpf_access_type type,
3576                                       struct bpf_insn_access_aux *info)
3577{
3578        if (type == BPF_WRITE) {
3579                switch (off) {
3580                case bpf_ctx_range(struct __sk_buff, mark):
3581                case bpf_ctx_range(struct __sk_buff, tc_index):
3582                case bpf_ctx_range(struct __sk_buff, priority):
3583                case bpf_ctx_range(struct __sk_buff, tc_classid):
3584                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3585                        break;
3586                default:
3587                        return false;
3588                }
3589        }
3590
3591        switch (off) {
3592        case bpf_ctx_range(struct __sk_buff, data):
3593                info->reg_type = PTR_TO_PACKET;
3594                break;
3595        case bpf_ctx_range(struct __sk_buff, data_end):
3596                info->reg_type = PTR_TO_PACKET_END;
3597                break;
3598        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3599                return false;
3600        }
3601
3602        return bpf_skb_is_valid_access(off, size, type, info);
3603}
3604
3605static bool __is_valid_xdp_access(int off, int size)
3606{
3607        if (off < 0 || off >= sizeof(struct xdp_md))
3608                return false;
3609        if (off % size != 0)
3610                return false;
3611        if (size != sizeof(__u32))
3612                return false;
3613
3614        return true;
3615}
3616
3617static bool xdp_is_valid_access(int off, int size,
3618                                enum bpf_access_type type,
3619                                struct bpf_insn_access_aux *info)
3620{
3621        if (type == BPF_WRITE)
3622                return false;
3623
3624        switch (off) {
3625        case offsetof(struct xdp_md, data):
3626                info->reg_type = PTR_TO_PACKET;
3627                break;
3628        case offsetof(struct xdp_md, data_end):
3629                info->reg_type = PTR_TO_PACKET_END;
3630                break;
3631        }
3632
3633        return __is_valid_xdp_access(off, size);
3634}
3635
3636void bpf_warn_invalid_xdp_action(u32 act)
3637{
3638        const u32 act_max = XDP_REDIRECT;
3639
3640        WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
3641                  act > act_max ? "Illegal" : "Driver unsupported",
3642                  act);
3643}
3644EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
3645
3646static bool __is_valid_sock_ops_access(int off, int size)
3647{
3648        if (off < 0 || off >= sizeof(struct bpf_sock_ops))
3649                return false;
3650        /* The verifier guarantees that size > 0. */
3651        if (off % size != 0)
3652                return false;
3653        if (size != sizeof(__u32))
3654                return false;
3655
3656        return true;
3657}
3658
3659static bool sock_ops_is_valid_access(int off, int size,
3660                                     enum bpf_access_type type,
3661                                     struct bpf_insn_access_aux *info)
3662{
3663        if (type == BPF_WRITE) {
3664                switch (off) {
3665                case offsetof(struct bpf_sock_ops, op) ...
3666                     offsetof(struct bpf_sock_ops, replylong[3]):
3667                        break;
3668                default:
3669                        return false;
3670                }
3671        }
3672
3673        return __is_valid_sock_ops_access(off, size);
3674}
3675
3676static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
3677                           const struct bpf_prog *prog)
3678{
3679        return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
3680}
3681
3682static bool sk_skb_is_valid_access(int off, int size,
3683                                   enum bpf_access_type type,
3684                                   struct bpf_insn_access_aux *info)
3685{
3686        if (type == BPF_WRITE) {
3687                switch (off) {
3688                case bpf_ctx_range(struct __sk_buff, tc_index):
3689                case bpf_ctx_range(struct __sk_buff, priority):
3690                        break;
3691                default:
3692                        return false;
3693                }
3694        }
3695
3696        switch (off) {
3697        case bpf_ctx_range(struct __sk_buff, mark):
3698        case bpf_ctx_range(struct __sk_buff, tc_classid):
3699                return false;
3700        case bpf_ctx_range(struct __sk_buff, data):
3701                info->reg_type = PTR_TO_PACKET;
3702                break;
3703        case bpf_ctx_range(struct __sk_buff, data_end):
3704                info->reg_type = PTR_TO_PACKET_END;
3705                break;
3706        }
3707
3708        return bpf_skb_is_valid_access(off, size, type, info);
3709}
3710
3711static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3712                                  const struct bpf_insn *si,
3713                                  struct bpf_insn *insn_buf,
3714                                  struct bpf_prog *prog, u32 *target_size)
3715{
3716        struct bpf_insn *insn = insn_buf;
3717        int off;
3718
3719        switch (si->off) {
3720        case offsetof(struct __sk_buff, len):
3721                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3722                                      bpf_target_off(struct sk_buff, len, 4,
3723                                                     target_size));
3724                break;
3725
3726        case offsetof(struct __sk_buff, protocol):
3727                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3728                                      bpf_target_off(struct sk_buff, protocol, 2,
3729                                                     target_size));
3730                break;
3731
3732        case offsetof(struct __sk_buff, vlan_proto):
3733                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3734                                      bpf_target_off(struct sk_buff, vlan_proto, 2,
3735                                                     target_size));
3736                break;
3737
3738        case offsetof(struct __sk_buff, priority):
3739                if (type == BPF_WRITE)
3740                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3741                                              bpf_target_off(struct sk_buff, priority, 4,
3742                                                             target_size));
3743                else
3744                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3745                                              bpf_target_off(struct sk_buff, priority, 4,
3746                                                             target_size));
3747                break;
3748
3749        case offsetof(struct __sk_buff, ingress_ifindex):
3750                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3751                                      bpf_target_off(struct sk_buff, skb_iif, 4,
3752                                                     target_size));
3753                break;
3754
3755        case offsetof(struct __sk_buff, ifindex):
3756                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3757                                      si->dst_reg, si->src_reg,
3758                                      offsetof(struct sk_buff, dev));
3759                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
3760                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3761                                      bpf_target_off(struct net_device, ifindex, 4,
3762                                                     target_size));
3763                break;
3764
3765        case offsetof(struct __sk_buff, hash):
3766                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3767                                      bpf_target_off(struct sk_buff, hash, 4,
3768                                                     target_size));
3769                break;
3770
3771        case offsetof(struct __sk_buff, mark):
3772                if (type == BPF_WRITE)
3773                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3774                                              bpf_target_off(struct sk_buff, mark, 4,
3775                                                             target_size));
3776                else
3777                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3778                                              bpf_target_off(struct sk_buff, mark, 4,
3779                                                             target_size));
3780                break;
3781
3782        case offsetof(struct __sk_buff, pkt_type):
3783                *target_size = 1;
3784                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
3785                                      PKT_TYPE_OFFSET());
3786                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
3787#ifdef __BIG_ENDIAN_BITFIELD
3788                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
3789#endif
3790                break;
3791
3792        case offsetof(struct __sk_buff, queue_mapping):
3793                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3794                                      bpf_target_off(struct sk_buff, queue_mapping, 2,
3795                                                     target_size));
3796                break;
3797
3798        case offsetof(struct __sk_buff, vlan_present):
3799        case offsetof(struct __sk_buff, vlan_tci):
3800                BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
3801
3802                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3803                                      bpf_target_off(struct sk_buff, vlan_tci, 2,
3804                                                     target_size));
3805                if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
3806                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
3807                                                ~VLAN_TAG_PRESENT);
3808                } else {
3809                        *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
3810                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
3811                }
3812                break;
3813
3814        case offsetof(struct __sk_buff, cb[0]) ...
3815             offsetofend(struct __sk_buff, cb[4]) - 1:
3816                BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3817                BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
3818                              offsetof(struct qdisc_skb_cb, data)) %
3819                             sizeof(__u64));
3820
3821                prog->cb_access = 1;
3822                off  = si->off;
3823                off -= offsetof(struct __sk_buff, cb[0]);
3824                off += offsetof(struct sk_buff, cb);
3825                off += offsetof(struct qdisc_skb_cb, data);
3826                if (type == BPF_WRITE)
3827                        *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3828                                              si->src_reg, off);
3829                else
3830                        *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3831                                              si->src_reg, off);
3832                break;
3833
3834        case offsetof(struct __sk_buff, tc_classid):
3835                BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
3836
3837                off  = si->off;
3838                off -= offsetof(struct __sk_buff, tc_classid);
3839                off += offsetof(struct sk_buff, cb);
3840                off += offsetof(struct qdisc_skb_cb, tc_classid);
3841                *target_size = 2;
3842                if (type == BPF_WRITE)
3843                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
3844                                              si->src_reg, off);
3845                else
3846                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
3847                                              si->src_reg, off);
3848                break;
3849
3850        case offsetof(struct __sk_buff, data):
3851                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3852                                      si->dst_reg, si->src_reg,
3853                                      offsetof(struct sk_buff, data));
3854                break;
3855
3856        case offsetof(struct __sk_buff, data_end):
3857                off  = si->off;
3858                off -= offsetof(struct __sk_buff, data_end);
3859                off += offsetof(struct sk_buff, cb);
3860                off += offsetof(struct bpf_skb_data_end, data_end);
3861                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
3862                                      si->src_reg, off);
3863                break;
3864
3865        case offsetof(struct __sk_buff, tc_index):
3866#ifdef CONFIG_NET_SCHED
3867                if (type == BPF_WRITE)
3868                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3869                                              bpf_target_off(struct sk_buff, tc_index, 2,
3870                                                             target_size));
3871                else
3872                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3873                                              bpf_target_off(struct sk_buff, tc_index, 2,
3874                                                             target_size));
3875#else
3876                *target_size = 2;
3877                if (type == BPF_WRITE)
3878                        *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3879                else
3880                        *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3881#endif
3882                break;
3883
3884        case offsetof(struct __sk_buff, napi_id):
3885#if defined(CONFIG_NET_RX_BUSY_POLL)
3886                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3887                                      bpf_target_off(struct sk_buff, napi_id, 4,
3888                                                     target_size));
3889                *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
3890                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3891#else
3892                *target_size = 4;
3893                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3894#endif
3895                break;
3896        case offsetof(struct __sk_buff, family):
3897                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
3898
3899                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3900                                      si->dst_reg, si->src_reg,
3901                                      offsetof(struct sk_buff, sk));
3902                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3903                                      bpf_target_off(struct sock_common,
3904                                                     skc_family,
3905                                                     2, target_size));
3906                break;
3907        case offsetof(struct __sk_buff, remote_ip4):
3908                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
3909
3910                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3911                                      si->dst_reg, si->src_reg,
3912                                      offsetof(struct sk_buff, sk));
3913                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3914                                      bpf_target_off(struct sock_common,
3915                                                     skc_daddr,
3916                                                     4, target_size));
3917                break;
3918        case offsetof(struct __sk_buff, local_ip4):
3919                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3920                                          skc_rcv_saddr) != 4);
3921
3922                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3923                                      si->dst_reg, si->src_reg,
3924                                      offsetof(struct sk_buff, sk));
3925                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3926                                      bpf_target_off(struct sock_common,
3927                                                     skc_rcv_saddr,
3928                                                     4, target_size));
3929                break;
3930        case offsetof(struct __sk_buff, remote_ip6[0]) ...
3931             offsetof(struct __sk_buff, remote_ip6[3]):
3932#if IS_ENABLED(CONFIG_IPV6)
3933                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3934                                          skc_v6_daddr.s6_addr32[0]) != 4);
3935
3936                off = si->off;
3937                off -= offsetof(struct __sk_buff, remote_ip6[0]);
3938
3939                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3940                                      si->dst_reg, si->src_reg,
3941                                      offsetof(struct sk_buff, sk));
3942                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3943                                      offsetof(struct sock_common,
3944                                               skc_v6_daddr.s6_addr32[0]) +
3945                                      off);
3946#else
3947                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
3948#endif
3949                break;
3950        case offsetof(struct __sk_buff, local_ip6[0]) ...
3951             offsetof(struct __sk_buff, local_ip6[3]):
3952#if IS_ENABLED(CONFIG_IPV6)
3953                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3954                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
3955
3956                off = si->off;
3957                off -= offsetof(struct __sk_buff, local_ip6[0]);
3958
3959                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3960                                      si->dst_reg, si->src_reg,
3961                                      offsetof(struct sk_buff, sk));
3962                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3963                                      offsetof(struct sock_common,
3964                                               skc_v6_rcv_saddr.s6_addr32[0]) +
3965                                      off);
3966#else
3967                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
3968#endif
3969                break;
3970
3971        case offsetof(struct __sk_buff, remote_port):
3972                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
3973
3974                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3975                                      si->dst_reg, si->src_reg,
3976                                      offsetof(struct sk_buff, sk));
3977                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3978                                      bpf_target_off(struct sock_common,
3979                                                     skc_dport,
3980                                                     2, target_size));
3981#ifndef __BIG_ENDIAN_BITFIELD
3982                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
3983#endif
3984                break;
3985
3986        case offsetof(struct __sk_buff, local_port):
3987                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
3988
3989                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
3990                                      si->dst_reg, si->src_reg,
3991                                      offsetof(struct sk_buff, sk));
3992                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3993                                      bpf_target_off(struct sock_common,
3994                                                     skc_num, 2, target_size));
3995                break;
3996        }
3997
3998        return insn - insn_buf;
3999}
4000
4001static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4002                                          const struct bpf_insn *si,
4003                                          struct bpf_insn *insn_buf,
4004                                          struct bpf_prog *prog, u32 *target_size)
4005{
4006        struct bpf_insn *insn = insn_buf;
4007
4008        switch (si->off) {
4009        case offsetof(struct bpf_sock, bound_dev_if):
4010                BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
4011
4012                if (type == BPF_WRITE)
4013                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4014                                        offsetof(struct sock, sk_bound_dev_if));
4015                else
4016                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4017                                      offsetof(struct sock, sk_bound_dev_if));
4018                break;
4019
4020        case offsetof(struct bpf_sock, mark):
4021                BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
4022
4023                if (type == BPF_WRITE)
4024                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4025                                        offsetof(struct sock, sk_mark));
4026                else
4027                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4028                                      offsetof(struct sock, sk_mark));
4029                break;
4030
4031        case offsetof(struct bpf_sock, priority):
4032                BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
4033
4034                if (type == BPF_WRITE)
4035                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4036                                        offsetof(struct sock, sk_priority));
4037                else
4038                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4039                                      offsetof(struct sock, sk_priority));
4040                break;
4041
4042        case offsetof(struct bpf_sock, family):
4043                BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
4044
4045                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4046                                      offsetof(struct sock, sk_family));
4047                break;
4048
4049        case offsetof(struct bpf_sock, type):
4050                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4051                                      offsetof(struct sock, __sk_flags_offset));
4052                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
4053                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4054                break;
4055
4056        case offsetof(struct bpf_sock, protocol):
4057                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4058                                      offsetof(struct sock, __sk_flags_offset));
4059                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
4060                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4061                break;
4062        }
4063
4064        return insn - insn_buf;
4065}
4066
4067static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
4068                                         const struct bpf_insn *si,
4069                                         struct bpf_insn *insn_buf,
4070                                         struct bpf_prog *prog, u32 *target_size)
4071{
4072        struct bpf_insn *insn = insn_buf;
4073
4074        switch (si->off) {
4075        case offsetof(struct __sk_buff, ifindex):
4076                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4077                                      si->dst_reg, si->src_reg,
4078                                      offsetof(struct sk_buff, dev));
4079                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4080                                      bpf_target_off(struct net_device, ifindex, 4,
4081                                                     target_size));
4082                break;
4083        default:
4084                return bpf_convert_ctx_access(type, si, insn_buf, prog,
4085                                              target_size);
4086        }
4087
4088        return insn - insn_buf;
4089}
4090
4091static u32 xdp_convert_ctx_access(enum bpf_access_type type,
4092                                  const struct bpf_insn *si,
4093                                  struct bpf_insn *insn_buf,
4094                                  struct bpf_prog *prog, u32 *target_size)
4095{
4096        struct bpf_insn *insn = insn_buf;
4097
4098        switch (si->off) {
4099        case offsetof(struct xdp_md, data):
4100                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4101                                      si->dst_reg, si->src_reg,
4102                                      offsetof(struct xdp_buff, data));
4103                break;
4104        case offsetof(struct xdp_md, data_end):
4105                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4106                                      si->dst_reg, si->src_reg,
4107                                      offsetof(struct xdp_buff, data_end));
4108                break;
4109        }
4110
4111        return insn - insn_buf;
4112}
4113
4114static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
4115                                       const struct bpf_insn *si,
4116                                       struct bpf_insn *insn_buf,
4117                                       struct bpf_prog *prog,
4118                                       u32 *target_size)
4119{
4120        struct bpf_insn *insn = insn_buf;
4121        int off;
4122
4123        switch (si->off) {
4124        case offsetof(struct bpf_sock_ops, op) ...
4125             offsetof(struct bpf_sock_ops, replylong[3]):
4126                BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
4127                             FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
4128                BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
4129                             FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
4130                BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
4131                             FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
4132                off = si->off;
4133                off -= offsetof(struct bpf_sock_ops, op);
4134                off += offsetof(struct bpf_sock_ops_kern, op);
4135                if (type == BPF_WRITE)
4136                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4137                                              off);
4138                else
4139                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4140                                              off);
4141                break;
4142
4143        case offsetof(struct bpf_sock_ops, family):
4144                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4145
4146                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4147                                              struct bpf_sock_ops_kern, sk),
4148                                      si->dst_reg, si->src_reg,
4149                                      offsetof(struct bpf_sock_ops_kern, sk));
4150                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4151                                      offsetof(struct sock_common, skc_family));
4152                break;
4153
4154        case offsetof(struct bpf_sock_ops, remote_ip4):
4155                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4156
4157                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4158                                                struct bpf_sock_ops_kern, sk),
4159                                      si->dst_reg, si->src_reg,
4160                                      offsetof(struct bpf_sock_ops_kern, sk));
4161                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4162                                      offsetof(struct sock_common, skc_daddr));
4163                break;
4164
4165        case offsetof(struct bpf_sock_ops, local_ip4):
4166                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
4167
4168                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4169                                              struct bpf_sock_ops_kern, sk),
4170                                      si->dst_reg, si->src_reg,
4171                                      offsetof(struct bpf_sock_ops_kern, sk));
4172                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4173                                      offsetof(struct sock_common,
4174                                               skc_rcv_saddr));
4175                break;
4176
4177        case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
4178             offsetof(struct bpf_sock_ops, remote_ip6[3]):
4179#if IS_ENABLED(CONFIG_IPV6)
4180                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4181                                          skc_v6_daddr.s6_addr32[0]) != 4);
4182
4183                off = si->off;
4184                off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
4185                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4186                                                struct bpf_sock_ops_kern, sk),
4187                                      si->dst_reg, si->src_reg,
4188                                      offsetof(struct bpf_sock_ops_kern, sk));
4189                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4190                                      offsetof(struct sock_common,
4191                                               skc_v6_daddr.s6_addr32[0]) +
4192                                      off);
4193#else
4194                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4195#endif
4196                break;
4197
4198        case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
4199             offsetof(struct bpf_sock_ops, local_ip6[3]):
4200#if IS_ENABLED(CONFIG_IPV6)
4201                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4202                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4203
4204                off = si->off;
4205                off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
4206                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4207                                                struct bpf_sock_ops_kern, sk),
4208                                      si->dst_reg, si->src_reg,
4209                                      offsetof(struct bpf_sock_ops_kern, sk));
4210                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4211                                      offsetof(struct sock_common,
4212                                               skc_v6_rcv_saddr.s6_addr32[0]) +
4213                                      off);
4214#else
4215                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4216#endif
4217                break;
4218
4219        case offsetof(struct bpf_sock_ops, remote_port):
4220                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4221
4222                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4223                                                struct bpf_sock_ops_kern, sk),
4224                                      si->dst_reg, si->src_reg,
4225                                      offsetof(struct bpf_sock_ops_kern, sk));
4226                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4227                                      offsetof(struct sock_common, skc_dport));
4228#ifndef __BIG_ENDIAN_BITFIELD
4229                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4230#endif
4231                break;
4232
4233        case offsetof(struct bpf_sock_ops, local_port):
4234                BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4235
4236                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4237                                                struct bpf_sock_ops_kern, sk),
4238                                      si->dst_reg, si->src_reg,
4239                                      offsetof(struct bpf_sock_ops_kern, sk));
4240                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4241                                      offsetof(struct sock_common, skc_num));
4242                break;
4243        }
4244        return insn - insn_buf;
4245}
4246
4247static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
4248                                     const struct bpf_insn *si,
4249                                     struct bpf_insn *insn_buf,
4250                                     struct bpf_prog *prog, u32 *target_size)
4251{
4252        struct bpf_insn *insn = insn_buf;
4253        int off;
4254
4255        switch (si->off) {
4256        case offsetof(struct __sk_buff, data_end):
4257                off  = si->off;
4258                off -= offsetof(struct __sk_buff, data_end);
4259                off += offsetof(struct sk_buff, cb);
4260                off += offsetof(struct tcp_skb_cb, bpf.data_end);
4261                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4262                                      si->src_reg, off);
4263                break;
4264        default:
4265                return bpf_convert_ctx_access(type, si, insn_buf, prog,
4266                                              target_size);
4267        }
4268
4269        return insn - insn_buf;
4270}
4271
4272const struct bpf_verifier_ops sk_filter_prog_ops = {
4273        .get_func_proto         = sk_filter_func_proto,
4274        .is_valid_access        = sk_filter_is_valid_access,
4275        .convert_ctx_access     = bpf_convert_ctx_access,
4276};
4277
4278const struct bpf_verifier_ops tc_cls_act_prog_ops = {
4279        .get_func_proto         = tc_cls_act_func_proto,
4280        .is_valid_access        = tc_cls_act_is_valid_access,
4281        .convert_ctx_access     = tc_cls_act_convert_ctx_access,
4282        .gen_prologue           = tc_cls_act_prologue,
4283        .test_run               = bpf_prog_test_run_skb,
4284};
4285
4286const struct bpf_verifier_ops xdp_prog_ops = {
4287        .get_func_proto         = xdp_func_proto,
4288        .is_valid_access        = xdp_is_valid_access,
4289        .convert_ctx_access     = xdp_convert_ctx_access,
4290        .test_run               = bpf_prog_test_run_xdp,
4291};
4292
4293const struct bpf_verifier_ops cg_skb_prog_ops = {
4294        .get_func_proto         = sk_filter_func_proto,
4295        .is_valid_access        = sk_filter_is_valid_access,
4296        .convert_ctx_access     = bpf_convert_ctx_access,
4297        .test_run               = bpf_prog_test_run_skb,
4298};
4299
4300const struct bpf_verifier_ops lwt_inout_prog_ops = {
4301        .get_func_proto         = lwt_inout_func_proto,
4302        .is_valid_access        = lwt_is_valid_access,
4303        .convert_ctx_access     = bpf_convert_ctx_access,
4304        .test_run               = bpf_prog_test_run_skb,
4305};
4306
4307const struct bpf_verifier_ops lwt_xmit_prog_ops = {
4308        .get_func_proto         = lwt_xmit_func_proto,
4309        .is_valid_access        = lwt_is_valid_access,
4310        .convert_ctx_access     = bpf_convert_ctx_access,
4311        .gen_prologue           = tc_cls_act_prologue,
4312        .test_run               = bpf_prog_test_run_skb,
4313};
4314
4315const struct bpf_verifier_ops cg_sock_prog_ops = {
4316        .get_func_proto         = sock_filter_func_proto,
4317        .is_valid_access        = sock_filter_is_valid_access,
4318        .convert_ctx_access     = sock_filter_convert_ctx_access,
4319};
4320
4321const struct bpf_verifier_ops sock_ops_prog_ops = {
4322        .get_func_proto         = sock_ops_func_proto,
4323        .is_valid_access        = sock_ops_is_valid_access,
4324        .convert_ctx_access     = sock_ops_convert_ctx_access,
4325};
4326
4327const struct bpf_verifier_ops sk_skb_prog_ops = {
4328        .get_func_proto         = sk_skb_func_proto,
4329        .is_valid_access        = sk_skb_is_valid_access,
4330        .convert_ctx_access     = sk_skb_convert_ctx_access,
4331        .gen_prologue           = sk_skb_prologue,
4332};
4333
4334int sk_detach_filter(struct sock *sk)
4335{
4336        int ret = -ENOENT;
4337        struct sk_filter *filter;
4338
4339        if (sock_flag(sk, SOCK_FILTER_LOCKED))
4340                return -EPERM;
4341
4342        filter = rcu_dereference_protected(sk->sk_filter,
4343                                           lockdep_sock_is_held(sk));
4344        if (filter) {
4345                RCU_INIT_POINTER(sk->sk_filter, NULL);
4346                sk_filter_uncharge(sk, filter);
4347                ret = 0;
4348        }
4349
4350        return ret;
4351}
4352EXPORT_SYMBOL_GPL(sk_detach_filter);
4353
4354int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
4355                  unsigned int len)
4356{
4357        struct sock_fprog_kern *fprog;
4358        struct sk_filter *filter;
4359        int ret = 0;
4360
4361        lock_sock(sk);
4362        filter = rcu_dereference_protected(sk->sk_filter,
4363                                           lockdep_sock_is_held(sk));
4364        if (!filter)
4365                goto out;
4366
4367        /* We're copying the filter that has been originally attached,
4368         * so no conversion/decode needed anymore. eBPF programs that
4369         * have no original program cannot be dumped through this.
4370         */
4371        ret = -EACCES;
4372        fprog = filter->prog->orig_prog;
4373        if (!fprog)
4374                goto out;
4375
4376        ret = fprog->len;
4377        if (!len)
4378                /* User space only enquires number of filter blocks. */
4379                goto out;
4380
4381        ret = -EINVAL;
4382        if (len < fprog->len)
4383                goto out;
4384
4385        ret = -EFAULT;
4386        if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
4387                goto out;
4388
4389        /* Instead of bytes, the API requests to return the number
4390         * of filter blocks.
4391         */
4392        ret = fprog->len;
4393out:
4394        release_sock(sk);
4395        return ret;
4396}
4397