linux/net/sched/sch_hhf.c
<<
>>
Prefs
   1/* net/sched/sch_hhf.c          Heavy-Hitter Filter (HHF)
   2 *
   3 * Copyright (C) 2013 Terry Lam <vtlam@google.com>
   4 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
   5 */
   6
   7#include <linux/jhash.h>
   8#include <linux/jiffies.h>
   9#include <linux/module.h>
  10#include <linux/skbuff.h>
  11#include <linux/vmalloc.h>
  12#include <net/pkt_sched.h>
  13#include <net/sock.h>
  14
  15/*      Heavy-Hitter Filter (HHF)
  16 *
  17 * Principles :
  18 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
  19 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
  20 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
  21 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
  22 * in which the heavy-hitter bucket is served with less weight.
  23 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
  24 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
  25 * higher share of bandwidth.
  26 *
  27 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
  28 * following paper:
  29 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
  30 * Accounting", in ACM SIGCOMM, 2002.
  31 *
  32 * Conceptually, a multi-stage filter comprises k independent hash functions
  33 * and k counter arrays. Packets are indexed into k counter arrays by k hash
  34 * functions, respectively. The counters are then increased by the packet sizes.
  35 * Therefore,
  36 *    - For a heavy-hitter flow: *all* of its k array counters must be large.
  37 *    - For a non-heavy-hitter flow: some of its k array counters can be large
  38 *      due to hash collision with other small flows; however, with high
  39 *      probability, not *all* k counters are large.
  40 *
  41 * By the design of the multi-stage filter algorithm, the false negative rate
  42 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
  43 * susceptible to false positives (non-heavy-hitters mistakenly classified as
  44 * heavy-hitters).
  45 * Therefore, we also implement the following optimizations to reduce false
  46 * positives by avoiding unnecessary increment of the counter values:
  47 *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
  48 *        accounted in the array counters. This technique is called "shielding"
  49 *        in Section 3.3.1 of [EV02].
  50 *    - Optimization O2: conservative update of counters
  51 *                       (Section 3.3.2 of [EV02]),
  52 *        New counter value = max {old counter value,
  53 *                                 smallest counter value + packet bytes}
  54 *
  55 * Finally, we refresh the counters periodically since otherwise the counter
  56 * values will keep accumulating.
  57 *
  58 * Once a flow is classified as heavy-hitter, we also save its per-flow state
  59 * in an exact-matching flow table so that its subsequent packets can be
  60 * dispatched to the heavy-hitter bucket accordingly.
  61 *
  62 *
  63 * At a high level, this qdisc works as follows:
  64 * Given a packet p:
  65 *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
  66 *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
  67 *     bucket.
  68 *   - Otherwise, forward p to the multi-stage filter, denoted filter F
  69 *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
  70 *          to the non-heavy-hitter bucket.
  71 *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
  72 *          then set up a new flow entry for the flow-id of p in the table T and
  73 *          send p to the heavy-hitter bucket.
  74 *
  75 * In this implementation:
  76 *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
  77 *     resolved by linked-list chaining.
  78 *   - F has four counter arrays, each array containing 1024 32-bit counters.
  79 *     That means 4 * 1024 * 32 bits = 16KB of memory.
  80 *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
  81 *     index into each array.
  82 *     Hence, instead of having four hash functions, we chop the 32-bit
  83 *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
  84 *     computed as XOR sum of those three chunks.
  85 *   - We need to clear the counter arrays periodically; however, directly
  86 *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
  87 *     So by representing each counter by a valid bit, we only need to reset
  88 *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
  89 *   - The Deficit Round Robin engine is taken from fq_codel implementation
  90 *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
  91 *     fq_codel_flow in fq_codel implementation.
  92 *
  93 */
  94
  95/* Non-configurable parameters */
  96#define HH_FLOWS_CNT     1024  /* number of entries in exact-matching table T */
  97#define HHF_ARRAYS_CNT   4     /* number of arrays in multi-stage filter F */
  98#define HHF_ARRAYS_LEN   1024  /* number of counters in each array of F */
  99#define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
 100#define HHF_BIT_MASK     0x3FF /* bitmask of 10 bits */
 101
 102#define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
 103enum wdrr_bucket_idx {
 104        WDRR_BUCKET_FOR_HH      = 0, /* bucket id for heavy-hitters */
 105        WDRR_BUCKET_FOR_NON_HH  = 1  /* bucket id for non-heavy-hitters */
 106};
 107
 108#define hhf_time_before(a, b)   \
 109        (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
 110
 111/* Heavy-hitter per-flow state */
 112struct hh_flow_state {
 113        u32              hash_id;       /* hash of flow-id (e.g. TCP 5-tuple) */
 114        u32              hit_timestamp; /* last time heavy-hitter was seen */
 115        struct list_head flowchain;     /* chaining under hash collision */
 116};
 117
 118/* Weighted Deficit Round Robin (WDRR) scheduler */
 119struct wdrr_bucket {
 120        struct sk_buff    *head;
 121        struct sk_buff    *tail;
 122        struct list_head  bucketchain;
 123        int               deficit;
 124};
 125
 126struct hhf_sched_data {
 127        struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
 128        u32                perturbation;   /* hash perturbation */
 129        u32                quantum;        /* psched_mtu(qdisc_dev(sch)); */
 130        u32                drop_overlimit; /* number of times max qdisc packet
 131                                            * limit was hit
 132                                            */
 133        struct list_head   *hh_flows;       /* table T (currently active HHs) */
 134        u32                hh_flows_limit;            /* max active HH allocs */
 135        u32                hh_flows_overlimit; /* num of disallowed HH allocs */
 136        u32                hh_flows_total_cnt;          /* total admitted HHs */
 137        u32                hh_flows_current_cnt;        /* total current HHs  */
 138        u32                *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
 139        u32                hhf_arrays_reset_timestamp;  /* last time hhf_arrays
 140                                                         * was reset
 141                                                         */
 142        unsigned long      *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
 143                                                             * of hhf_arrays
 144                                                             */
 145        /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
 146        struct list_head   new_buckets; /* list of new buckets */
 147        struct list_head   old_buckets; /* list of old buckets */
 148
 149        /* Configurable HHF parameters */
 150        u32                hhf_reset_timeout; /* interval to reset counter
 151                                               * arrays in filter F
 152                                               * (default 40ms)
 153                                               */
 154        u32                hhf_admit_bytes;   /* counter thresh to classify as
 155                                               * HH (default 128KB).
 156                                               * With these default values,
 157                                               * 128KB / 40ms = 25 Mbps
 158                                               * i.e., we expect to capture HHs
 159                                               * sending > 25 Mbps.
 160                                               */
 161        u32                hhf_evict_timeout; /* aging threshold to evict idle
 162                                               * HHs out of table T. This should
 163                                               * be large enough to avoid
 164                                               * reordering during HH eviction.
 165                                               * (default 1s)
 166                                               */
 167        u32                hhf_non_hh_weight; /* WDRR weight for non-HHs
 168                                               * (default 2,
 169                                               *  i.e., non-HH : HH = 2 : 1)
 170                                               */
 171};
 172
 173static u32 hhf_time_stamp(void)
 174{
 175        return jiffies;
 176}
 177
 178/* Looks up a heavy-hitter flow in a chaining list of table T. */
 179static struct hh_flow_state *seek_list(const u32 hash,
 180                                       struct list_head *head,
 181                                       struct hhf_sched_data *q)
 182{
 183        struct hh_flow_state *flow, *next;
 184        u32 now = hhf_time_stamp();
 185
 186        if (list_empty(head))
 187                return NULL;
 188
 189        list_for_each_entry_safe(flow, next, head, flowchain) {
 190                u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
 191
 192                if (hhf_time_before(prev, now)) {
 193                        /* Delete expired heavy-hitters, but preserve one entry
 194                         * to avoid kzalloc() when next time this slot is hit.
 195                         */
 196                        if (list_is_last(&flow->flowchain, head))
 197                                return NULL;
 198                        list_del(&flow->flowchain);
 199                        kfree(flow);
 200                        q->hh_flows_current_cnt--;
 201                } else if (flow->hash_id == hash) {
 202                        return flow;
 203                }
 204        }
 205        return NULL;
 206}
 207
 208/* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
 209 * entry or dynamically alloc a new entry.
 210 */
 211static struct hh_flow_state *alloc_new_hh(struct list_head *head,
 212                                          struct hhf_sched_data *q)
 213{
 214        struct hh_flow_state *flow;
 215        u32 now = hhf_time_stamp();
 216
 217        if (!list_empty(head)) {
 218                /* Find an expired heavy-hitter flow entry. */
 219                list_for_each_entry(flow, head, flowchain) {
 220                        u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
 221
 222                        if (hhf_time_before(prev, now))
 223                                return flow;
 224                }
 225        }
 226
 227        if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
 228                q->hh_flows_overlimit++;
 229                return NULL;
 230        }
 231        /* Create new entry. */
 232        flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
 233        if (!flow)
 234                return NULL;
 235
 236        q->hh_flows_current_cnt++;
 237        INIT_LIST_HEAD(&flow->flowchain);
 238        list_add_tail(&flow->flowchain, head);
 239
 240        return flow;
 241}
 242
 243/* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
 244 * classify heavy-hitters.
 245 */
 246static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
 247{
 248        struct hhf_sched_data *q = qdisc_priv(sch);
 249        u32 tmp_hash, hash;
 250        u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
 251        struct hh_flow_state *flow;
 252        u32 pkt_len, min_hhf_val;
 253        int i;
 254        u32 prev;
 255        u32 now = hhf_time_stamp();
 256
 257        /* Reset the HHF counter arrays if this is the right time. */
 258        prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
 259        if (hhf_time_before(prev, now)) {
 260                for (i = 0; i < HHF_ARRAYS_CNT; i++)
 261                        bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
 262                q->hhf_arrays_reset_timestamp = now;
 263        }
 264
 265        /* Get hashed flow-id of the skb. */
 266        hash = skb_get_hash_perturb(skb, q->perturbation);
 267
 268        /* Check if this packet belongs to an already established HH flow. */
 269        flow_pos = hash & HHF_BIT_MASK;
 270        flow = seek_list(hash, &q->hh_flows[flow_pos], q);
 271        if (flow) { /* found its HH flow */
 272                flow->hit_timestamp = now;
 273                return WDRR_BUCKET_FOR_HH;
 274        }
 275
 276        /* Now pass the packet through the multi-stage filter. */
 277        tmp_hash = hash;
 278        xorsum = 0;
 279        for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
 280                /* Split the skb_hash into three 10-bit chunks. */
 281                filter_pos[i] = tmp_hash & HHF_BIT_MASK;
 282                xorsum ^= filter_pos[i];
 283                tmp_hash >>= HHF_BIT_MASK_LEN;
 284        }
 285        /* The last chunk is computed as XOR sum of other chunks. */
 286        filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
 287
 288        pkt_len = qdisc_pkt_len(skb);
 289        min_hhf_val = ~0U;
 290        for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 291                u32 val;
 292
 293                if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
 294                        q->hhf_arrays[i][filter_pos[i]] = 0;
 295                        __set_bit(filter_pos[i], q->hhf_valid_bits[i]);
 296                }
 297
 298                val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
 299                if (min_hhf_val > val)
 300                        min_hhf_val = val;
 301        }
 302
 303        /* Found a new HH iff all counter values > HH admit threshold. */
 304        if (min_hhf_val > q->hhf_admit_bytes) {
 305                /* Just captured a new heavy-hitter. */
 306                flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
 307                if (!flow) /* memory alloc problem */
 308                        return WDRR_BUCKET_FOR_NON_HH;
 309                flow->hash_id = hash;
 310                flow->hit_timestamp = now;
 311                q->hh_flows_total_cnt++;
 312
 313                /* By returning without updating counters in q->hhf_arrays,
 314                 * we implicitly implement "shielding" (see Optimization O1).
 315                 */
 316                return WDRR_BUCKET_FOR_HH;
 317        }
 318
 319        /* Conservative update of HHF arrays (see Optimization O2). */
 320        for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 321                if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
 322                        q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
 323        }
 324        return WDRR_BUCKET_FOR_NON_HH;
 325}
 326
 327/* Removes one skb from head of bucket. */
 328static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
 329{
 330        struct sk_buff *skb = bucket->head;
 331
 332        bucket->head = skb->next;
 333        skb->next = NULL;
 334        return skb;
 335}
 336
 337/* Tail-adds skb to bucket. */
 338static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
 339{
 340        if (bucket->head == NULL)
 341                bucket->head = skb;
 342        else
 343                bucket->tail->next = skb;
 344        bucket->tail = skb;
 345        skb->next = NULL;
 346}
 347
 348static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
 349{
 350        struct hhf_sched_data *q = qdisc_priv(sch);
 351        struct wdrr_bucket *bucket;
 352
 353        /* Always try to drop from heavy-hitters first. */
 354        bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
 355        if (!bucket->head)
 356                bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
 357
 358        if (bucket->head) {
 359                struct sk_buff *skb = dequeue_head(bucket);
 360
 361                sch->q.qlen--;
 362                qdisc_qstats_backlog_dec(sch, skb);
 363                qdisc_drop(skb, sch, to_free);
 364        }
 365
 366        /* Return id of the bucket from which the packet was dropped. */
 367        return bucket - q->buckets;
 368}
 369
 370static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 371                       struct sk_buff **to_free)
 372{
 373        struct hhf_sched_data *q = qdisc_priv(sch);
 374        enum wdrr_bucket_idx idx;
 375        struct wdrr_bucket *bucket;
 376        unsigned int prev_backlog;
 377
 378        idx = hhf_classify(skb, sch);
 379
 380        bucket = &q->buckets[idx];
 381        bucket_add(bucket, skb);
 382        qdisc_qstats_backlog_inc(sch, skb);
 383
 384        if (list_empty(&bucket->bucketchain)) {
 385                unsigned int weight;
 386
 387                /* The logic of new_buckets vs. old_buckets is the same as
 388                 * new_flows vs. old_flows in the implementation of fq_codel,
 389                 * i.e., short bursts of non-HHs should have strict priority.
 390                 */
 391                if (idx == WDRR_BUCKET_FOR_HH) {
 392                        /* Always move heavy-hitters to old bucket. */
 393                        weight = 1;
 394                        list_add_tail(&bucket->bucketchain, &q->old_buckets);
 395                } else {
 396                        weight = q->hhf_non_hh_weight;
 397                        list_add_tail(&bucket->bucketchain, &q->new_buckets);
 398                }
 399                bucket->deficit = weight * q->quantum;
 400        }
 401        if (++sch->q.qlen <= sch->limit)
 402                return NET_XMIT_SUCCESS;
 403
 404        prev_backlog = sch->qstats.backlog;
 405        q->drop_overlimit++;
 406        /* Return Congestion Notification only if we dropped a packet from this
 407         * bucket.
 408         */
 409        if (hhf_drop(sch, to_free) == idx)
 410                return NET_XMIT_CN;
 411
 412        /* As we dropped a packet, better let upper stack know this. */
 413        qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
 414        return NET_XMIT_SUCCESS;
 415}
 416
 417static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
 418{
 419        struct hhf_sched_data *q = qdisc_priv(sch);
 420        struct sk_buff *skb = NULL;
 421        struct wdrr_bucket *bucket;
 422        struct list_head *head;
 423
 424begin:
 425        head = &q->new_buckets;
 426        if (list_empty(head)) {
 427                head = &q->old_buckets;
 428                if (list_empty(head))
 429                        return NULL;
 430        }
 431        bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
 432
 433        if (bucket->deficit <= 0) {
 434                int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
 435                              1 : q->hhf_non_hh_weight;
 436
 437                bucket->deficit += weight * q->quantum;
 438                list_move_tail(&bucket->bucketchain, &q->old_buckets);
 439                goto begin;
 440        }
 441
 442        if (bucket->head) {
 443                skb = dequeue_head(bucket);
 444                sch->q.qlen--;
 445                qdisc_qstats_backlog_dec(sch, skb);
 446        }
 447
 448        if (!skb) {
 449                /* Force a pass through old_buckets to prevent starvation. */
 450                if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
 451                        list_move_tail(&bucket->bucketchain, &q->old_buckets);
 452                else
 453                        list_del_init(&bucket->bucketchain);
 454                goto begin;
 455        }
 456        qdisc_bstats_update(sch, skb);
 457        bucket->deficit -= qdisc_pkt_len(skb);
 458
 459        return skb;
 460}
 461
 462static void hhf_reset(struct Qdisc *sch)
 463{
 464        struct sk_buff *skb;
 465
 466        while ((skb = hhf_dequeue(sch)) != NULL)
 467                rtnl_kfree_skbs(skb, skb);
 468}
 469
 470static void hhf_destroy(struct Qdisc *sch)
 471{
 472        int i;
 473        struct hhf_sched_data *q = qdisc_priv(sch);
 474
 475        for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 476                kvfree(q->hhf_arrays[i]);
 477                kvfree(q->hhf_valid_bits[i]);
 478        }
 479
 480        if (!q->hh_flows)
 481                return;
 482
 483        for (i = 0; i < HH_FLOWS_CNT; i++) {
 484                struct hh_flow_state *flow, *next;
 485                struct list_head *head = &q->hh_flows[i];
 486
 487                if (list_empty(head))
 488                        continue;
 489                list_for_each_entry_safe(flow, next, head, flowchain) {
 490                        list_del(&flow->flowchain);
 491                        kfree(flow);
 492                }
 493        }
 494        kvfree(q->hh_flows);
 495}
 496
 497static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
 498        [TCA_HHF_BACKLOG_LIMIT]  = { .type = NLA_U32 },
 499        [TCA_HHF_QUANTUM]        = { .type = NLA_U32 },
 500        [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
 501        [TCA_HHF_RESET_TIMEOUT]  = { .type = NLA_U32 },
 502        [TCA_HHF_ADMIT_BYTES]    = { .type = NLA_U32 },
 503        [TCA_HHF_EVICT_TIMEOUT]  = { .type = NLA_U32 },
 504        [TCA_HHF_NON_HH_WEIGHT]  = { .type = NLA_U32 },
 505};
 506
 507static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
 508{
 509        struct hhf_sched_data *q = qdisc_priv(sch);
 510        struct nlattr *tb[TCA_HHF_MAX + 1];
 511        unsigned int qlen, prev_backlog;
 512        int err;
 513        u64 non_hh_quantum;
 514        u32 new_quantum = q->quantum;
 515        u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
 516
 517        if (!opt)
 518                return -EINVAL;
 519
 520        err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy, NULL);
 521        if (err < 0)
 522                return err;
 523
 524        if (tb[TCA_HHF_QUANTUM])
 525                new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
 526
 527        if (tb[TCA_HHF_NON_HH_WEIGHT])
 528                new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
 529
 530        non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
 531        if (non_hh_quantum > INT_MAX)
 532                return -EINVAL;
 533
 534        sch_tree_lock(sch);
 535
 536        if (tb[TCA_HHF_BACKLOG_LIMIT])
 537                sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
 538
 539        q->quantum = new_quantum;
 540        q->hhf_non_hh_weight = new_hhf_non_hh_weight;
 541
 542        if (tb[TCA_HHF_HH_FLOWS_LIMIT])
 543                q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
 544
 545        if (tb[TCA_HHF_RESET_TIMEOUT]) {
 546                u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
 547
 548                q->hhf_reset_timeout = usecs_to_jiffies(us);
 549        }
 550
 551        if (tb[TCA_HHF_ADMIT_BYTES])
 552                q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
 553
 554        if (tb[TCA_HHF_EVICT_TIMEOUT]) {
 555                u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
 556
 557                q->hhf_evict_timeout = usecs_to_jiffies(us);
 558        }
 559
 560        qlen = sch->q.qlen;
 561        prev_backlog = sch->qstats.backlog;
 562        while (sch->q.qlen > sch->limit) {
 563                struct sk_buff *skb = hhf_dequeue(sch);
 564
 565                rtnl_kfree_skbs(skb, skb);
 566        }
 567        qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
 568                                  prev_backlog - sch->qstats.backlog);
 569
 570        sch_tree_unlock(sch);
 571        return 0;
 572}
 573
 574static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
 575{
 576        struct hhf_sched_data *q = qdisc_priv(sch);
 577        int i;
 578
 579        sch->limit = 1000;
 580        q->quantum = psched_mtu(qdisc_dev(sch));
 581        q->perturbation = prandom_u32();
 582        INIT_LIST_HEAD(&q->new_buckets);
 583        INIT_LIST_HEAD(&q->old_buckets);
 584
 585        /* Configurable HHF parameters */
 586        q->hhf_reset_timeout = HZ / 25; /* 40  ms */
 587        q->hhf_admit_bytes = 131072;    /* 128 KB */
 588        q->hhf_evict_timeout = HZ;      /* 1  sec */
 589        q->hhf_non_hh_weight = 2;
 590
 591        if (opt) {
 592                int err = hhf_change(sch, opt);
 593
 594                if (err)
 595                        return err;
 596        }
 597
 598        if (!q->hh_flows) {
 599                /* Initialize heavy-hitter flow table. */
 600                q->hh_flows = kvzalloc(HH_FLOWS_CNT *
 601                                         sizeof(struct list_head), GFP_KERNEL);
 602                if (!q->hh_flows)
 603                        return -ENOMEM;
 604                for (i = 0; i < HH_FLOWS_CNT; i++)
 605                        INIT_LIST_HEAD(&q->hh_flows[i]);
 606
 607                /* Cap max active HHs at twice len of hh_flows table. */
 608                q->hh_flows_limit = 2 * HH_FLOWS_CNT;
 609                q->hh_flows_overlimit = 0;
 610                q->hh_flows_total_cnt = 0;
 611                q->hh_flows_current_cnt = 0;
 612
 613                /* Initialize heavy-hitter filter arrays. */
 614                for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 615                        q->hhf_arrays[i] = kvzalloc(HHF_ARRAYS_LEN *
 616                                                      sizeof(u32), GFP_KERNEL);
 617                        if (!q->hhf_arrays[i]) {
 618                                /* Note: hhf_destroy() will be called
 619                                 * by our caller.
 620                                 */
 621                                return -ENOMEM;
 622                        }
 623                }
 624                q->hhf_arrays_reset_timestamp = hhf_time_stamp();
 625
 626                /* Initialize valid bits of heavy-hitter filter arrays. */
 627                for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 628                        q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN /
 629                                                          BITS_PER_BYTE, GFP_KERNEL);
 630                        if (!q->hhf_valid_bits[i]) {
 631                                /* Note: hhf_destroy() will be called
 632                                 * by our caller.
 633                                 */
 634                                return -ENOMEM;
 635                        }
 636                }
 637
 638                /* Initialize Weighted DRR buckets. */
 639                for (i = 0; i < WDRR_BUCKET_CNT; i++) {
 640                        struct wdrr_bucket *bucket = q->buckets + i;
 641
 642                        INIT_LIST_HEAD(&bucket->bucketchain);
 643                }
 644        }
 645
 646        return 0;
 647}
 648
 649static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
 650{
 651        struct hhf_sched_data *q = qdisc_priv(sch);
 652        struct nlattr *opts;
 653
 654        opts = nla_nest_start(skb, TCA_OPTIONS);
 655        if (opts == NULL)
 656                goto nla_put_failure;
 657
 658        if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
 659            nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
 660            nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
 661            nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
 662                        jiffies_to_usecs(q->hhf_reset_timeout)) ||
 663            nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
 664            nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
 665                        jiffies_to_usecs(q->hhf_evict_timeout)) ||
 666            nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
 667                goto nla_put_failure;
 668
 669        return nla_nest_end(skb, opts);
 670
 671nla_put_failure:
 672        return -1;
 673}
 674
 675static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 676{
 677        struct hhf_sched_data *q = qdisc_priv(sch);
 678        struct tc_hhf_xstats st = {
 679                .drop_overlimit = q->drop_overlimit,
 680                .hh_overlimit   = q->hh_flows_overlimit,
 681                .hh_tot_count   = q->hh_flows_total_cnt,
 682                .hh_cur_count   = q->hh_flows_current_cnt,
 683        };
 684
 685        return gnet_stats_copy_app(d, &st, sizeof(st));
 686}
 687
 688static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
 689        .id             =       "hhf",
 690        .priv_size      =       sizeof(struct hhf_sched_data),
 691
 692        .enqueue        =       hhf_enqueue,
 693        .dequeue        =       hhf_dequeue,
 694        .peek           =       qdisc_peek_dequeued,
 695        .init           =       hhf_init,
 696        .reset          =       hhf_reset,
 697        .destroy        =       hhf_destroy,
 698        .change         =       hhf_change,
 699        .dump           =       hhf_dump,
 700        .dump_stats     =       hhf_dump_stats,
 701        .owner          =       THIS_MODULE,
 702};
 703
 704static int __init hhf_module_init(void)
 705{
 706        return register_qdisc(&hhf_qdisc_ops);
 707}
 708
 709static void __exit hhf_module_exit(void)
 710{
 711        unregister_qdisc(&hhf_qdisc_ops);
 712}
 713
 714module_init(hhf_module_init)
 715module_exit(hhf_module_exit)
 716MODULE_AUTHOR("Terry Lam");
 717MODULE_AUTHOR("Nandita Dukkipati");
 718MODULE_LICENSE("GPL");
 719