linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        wq->flags = 0;
 261        RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263        ei->socket.state = SS_UNCONNECTED;
 264        ei->socket.flags = 0;
 265        ei->socket.ops = NULL;
 266        ei->socket.sk = NULL;
 267        ei->socket.file = NULL;
 268
 269        return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274        struct socket_alloc *ei;
 275        struct socket_wq *wq;
 276
 277        ei = container_of(inode, struct socket_alloc, vfs_inode);
 278        wq = rcu_dereference_protected(ei->socket.wq, 1);
 279        kfree_rcu(wq, rcu);
 280        kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285        struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287        inode_init_once(&ei->vfs_inode);
 288}
 289
 290static void init_inodecache(void)
 291{
 292        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293                                              sizeof(struct socket_alloc),
 294                                              0,
 295                                              (SLAB_HWCACHE_ALIGN |
 296                                               SLAB_RECLAIM_ACCOUNT |
 297                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298                                              init_once);
 299        BUG_ON(sock_inode_cachep == NULL);
 300}
 301
 302static const struct super_operations sockfs_ops = {
 303        .alloc_inode    = sock_alloc_inode,
 304        .destroy_inode  = sock_destroy_inode,
 305        .statfs         = simple_statfs,
 306};
 307
 308/*
 309 * sockfs_dname() is called from d_path().
 310 */
 311static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 312{
 313        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 314                                d_inode(dentry)->i_ino);
 315}
 316
 317static const struct dentry_operations sockfs_dentry_operations = {
 318        .d_dname  = sockfs_dname,
 319};
 320
 321static int sockfs_xattr_get(const struct xattr_handler *handler,
 322                            struct dentry *dentry, struct inode *inode,
 323                            const char *suffix, void *value, size_t size)
 324{
 325        if (value) {
 326                if (dentry->d_name.len + 1 > size)
 327                        return -ERANGE;
 328                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 329        }
 330        return dentry->d_name.len + 1;
 331}
 332
 333#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 334#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 335#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 336
 337static const struct xattr_handler sockfs_xattr_handler = {
 338        .name = XATTR_NAME_SOCKPROTONAME,
 339        .get = sockfs_xattr_get,
 340};
 341
 342static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 343                                     struct dentry *dentry, struct inode *inode,
 344                                     const char *suffix, const void *value,
 345                                     size_t size, int flags)
 346{
 347        /* Handled by LSM. */
 348        return -EAGAIN;
 349}
 350
 351static const struct xattr_handler sockfs_security_xattr_handler = {
 352        .prefix = XATTR_SECURITY_PREFIX,
 353        .set = sockfs_security_xattr_set,
 354};
 355
 356static const struct xattr_handler *sockfs_xattr_handlers[] = {
 357        &sockfs_xattr_handler,
 358        &sockfs_security_xattr_handler,
 359        NULL
 360};
 361
 362static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 363                         int flags, const char *dev_name, void *data)
 364{
 365        return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 366                                  sockfs_xattr_handlers,
 367                                  &sockfs_dentry_operations, SOCKFS_MAGIC);
 368}
 369
 370static struct vfsmount *sock_mnt __read_mostly;
 371
 372static struct file_system_type sock_fs_type = {
 373        .name =         "sockfs",
 374        .mount =        sockfs_mount,
 375        .kill_sb =      kill_anon_super,
 376};
 377
 378/*
 379 *      Obtains the first available file descriptor and sets it up for use.
 380 *
 381 *      These functions create file structures and maps them to fd space
 382 *      of the current process. On success it returns file descriptor
 383 *      and file struct implicitly stored in sock->file.
 384 *      Note that another thread may close file descriptor before we return
 385 *      from this function. We use the fact that now we do not refer
 386 *      to socket after mapping. If one day we will need it, this
 387 *      function will increment ref. count on file by 1.
 388 *
 389 *      In any case returned fd MAY BE not valid!
 390 *      This race condition is unavoidable
 391 *      with shared fd spaces, we cannot solve it inside kernel,
 392 *      but we take care of internal coherence yet.
 393 */
 394
 395struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 396{
 397        struct qstr name = { .name = "" };
 398        struct path path;
 399        struct file *file;
 400
 401        if (dname) {
 402                name.name = dname;
 403                name.len = strlen(name.name);
 404        } else if (sock->sk) {
 405                name.name = sock->sk->sk_prot_creator->name;
 406                name.len = strlen(name.name);
 407        }
 408        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 409        if (unlikely(!path.dentry))
 410                return ERR_PTR(-ENOMEM);
 411        path.mnt = mntget(sock_mnt);
 412
 413        d_instantiate(path.dentry, SOCK_INODE(sock));
 414
 415        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 416                  &socket_file_ops);
 417        if (IS_ERR(file)) {
 418                /* drop dentry, keep inode */
 419                ihold(d_inode(path.dentry));
 420                path_put(&path);
 421                return file;
 422        }
 423
 424        sock->file = file;
 425        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 426        file->private_data = sock;
 427        return file;
 428}
 429EXPORT_SYMBOL(sock_alloc_file);
 430
 431static int sock_map_fd(struct socket *sock, int flags)
 432{
 433        struct file *newfile;
 434        int fd = get_unused_fd_flags(flags);
 435        if (unlikely(fd < 0))
 436                return fd;
 437
 438        newfile = sock_alloc_file(sock, flags, NULL);
 439        if (likely(!IS_ERR(newfile))) {
 440                fd_install(fd, newfile);
 441                return fd;
 442        }
 443
 444        put_unused_fd(fd);
 445        return PTR_ERR(newfile);
 446}
 447
 448struct socket *sock_from_file(struct file *file, int *err)
 449{
 450        if (file->f_op == &socket_file_ops)
 451                return file->private_data;      /* set in sock_map_fd */
 452
 453        *err = -ENOTSOCK;
 454        return NULL;
 455}
 456EXPORT_SYMBOL(sock_from_file);
 457
 458/**
 459 *      sockfd_lookup - Go from a file number to its socket slot
 460 *      @fd: file handle
 461 *      @err: pointer to an error code return
 462 *
 463 *      The file handle passed in is locked and the socket it is bound
 464 *      to is returned. If an error occurs the err pointer is overwritten
 465 *      with a negative errno code and NULL is returned. The function checks
 466 *      for both invalid handles and passing a handle which is not a socket.
 467 *
 468 *      On a success the socket object pointer is returned.
 469 */
 470
 471struct socket *sockfd_lookup(int fd, int *err)
 472{
 473        struct file *file;
 474        struct socket *sock;
 475
 476        file = fget(fd);
 477        if (!file) {
 478                *err = -EBADF;
 479                return NULL;
 480        }
 481
 482        sock = sock_from_file(file, err);
 483        if (!sock)
 484                fput(file);
 485        return sock;
 486}
 487EXPORT_SYMBOL(sockfd_lookup);
 488
 489static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 490{
 491        struct fd f = fdget(fd);
 492        struct socket *sock;
 493
 494        *err = -EBADF;
 495        if (f.file) {
 496                sock = sock_from_file(f.file, err);
 497                if (likely(sock)) {
 498                        *fput_needed = f.flags;
 499                        return sock;
 500                }
 501                fdput(f);
 502        }
 503        return NULL;
 504}
 505
 506static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 507                                size_t size)
 508{
 509        ssize_t len;
 510        ssize_t used = 0;
 511
 512        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 513        if (len < 0)
 514                return len;
 515        used += len;
 516        if (buffer) {
 517                if (size < used)
 518                        return -ERANGE;
 519                buffer += len;
 520        }
 521
 522        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 523        used += len;
 524        if (buffer) {
 525                if (size < used)
 526                        return -ERANGE;
 527                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 528                buffer += len;
 529        }
 530
 531        return used;
 532}
 533
 534static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 535{
 536        int err = simple_setattr(dentry, iattr);
 537
 538        if (!err && (iattr->ia_valid & ATTR_UID)) {
 539                struct socket *sock = SOCKET_I(d_inode(dentry));
 540
 541                sock->sk->sk_uid = iattr->ia_uid;
 542        }
 543
 544        return err;
 545}
 546
 547static const struct inode_operations sockfs_inode_ops = {
 548        .listxattr = sockfs_listxattr,
 549        .setattr = sockfs_setattr,
 550};
 551
 552/**
 553 *      sock_alloc      -       allocate a socket
 554 *
 555 *      Allocate a new inode and socket object. The two are bound together
 556 *      and initialised. The socket is then returned. If we are out of inodes
 557 *      NULL is returned.
 558 */
 559
 560struct socket *sock_alloc(void)
 561{
 562        struct inode *inode;
 563        struct socket *sock;
 564
 565        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 566        if (!inode)
 567                return NULL;
 568
 569        sock = SOCKET_I(inode);
 570
 571        kmemcheck_annotate_bitfield(sock, type);
 572        inode->i_ino = get_next_ino();
 573        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 574        inode->i_uid = current_fsuid();
 575        inode->i_gid = current_fsgid();
 576        inode->i_op = &sockfs_inode_ops;
 577
 578        this_cpu_add(sockets_in_use, 1);
 579        return sock;
 580}
 581EXPORT_SYMBOL(sock_alloc);
 582
 583/**
 584 *      sock_release    -       close a socket
 585 *      @sock: socket to close
 586 *
 587 *      The socket is released from the protocol stack if it has a release
 588 *      callback, and the inode is then released if the socket is bound to
 589 *      an inode not a file.
 590 */
 591
 592void sock_release(struct socket *sock)
 593{
 594        if (sock->ops) {
 595                struct module *owner = sock->ops->owner;
 596
 597                sock->ops->release(sock);
 598                sock->ops = NULL;
 599                module_put(owner);
 600        }
 601
 602        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 603                pr_err("%s: fasync list not empty!\n", __func__);
 604
 605        this_cpu_sub(sockets_in_use, 1);
 606        if (!sock->file) {
 607                iput(SOCK_INODE(sock));
 608                return;
 609        }
 610        sock->file = NULL;
 611}
 612EXPORT_SYMBOL(sock_release);
 613
 614void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 615{
 616        u8 flags = *tx_flags;
 617
 618        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 619                flags |= SKBTX_HW_TSTAMP;
 620
 621        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 622                flags |= SKBTX_SW_TSTAMP;
 623
 624        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 625                flags |= SKBTX_SCHED_TSTAMP;
 626
 627        *tx_flags = flags;
 628}
 629EXPORT_SYMBOL(__sock_tx_timestamp);
 630
 631static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 632{
 633        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 634        BUG_ON(ret == -EIOCBQUEUED);
 635        return ret;
 636}
 637
 638int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 639{
 640        int err = security_socket_sendmsg(sock, msg,
 641                                          msg_data_left(msg));
 642
 643        return err ?: sock_sendmsg_nosec(sock, msg);
 644}
 645EXPORT_SYMBOL(sock_sendmsg);
 646
 647int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 648                   struct kvec *vec, size_t num, size_t size)
 649{
 650        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 651        return sock_sendmsg(sock, msg);
 652}
 653EXPORT_SYMBOL(kernel_sendmsg);
 654
 655int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 656                          struct kvec *vec, size_t num, size_t size)
 657{
 658        struct socket *sock = sk->sk_socket;
 659
 660        if (!sock->ops->sendmsg_locked)
 661                return sock_no_sendmsg_locked(sk, msg, size);
 662
 663        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 664
 665        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 666}
 667EXPORT_SYMBOL(kernel_sendmsg_locked);
 668
 669static bool skb_is_err_queue(const struct sk_buff *skb)
 670{
 671        /* pkt_type of skbs enqueued on the error queue are set to
 672         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 673         * in recvmsg, since skbs received on a local socket will never
 674         * have a pkt_type of PACKET_OUTGOING.
 675         */
 676        return skb->pkt_type == PACKET_OUTGOING;
 677}
 678
 679/* On transmit, software and hardware timestamps are returned independently.
 680 * As the two skb clones share the hardware timestamp, which may be updated
 681 * before the software timestamp is received, a hardware TX timestamp may be
 682 * returned only if there is no software TX timestamp. Ignore false software
 683 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 684 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
 685 * hardware timestamp.
 686 */
 687static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 688{
 689        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 690}
 691
 692static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 693{
 694        struct scm_ts_pktinfo ts_pktinfo;
 695        struct net_device *orig_dev;
 696
 697        if (!skb_mac_header_was_set(skb))
 698                return;
 699
 700        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 701
 702        rcu_read_lock();
 703        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 704        if (orig_dev)
 705                ts_pktinfo.if_index = orig_dev->ifindex;
 706        rcu_read_unlock();
 707
 708        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 709        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 710                 sizeof(ts_pktinfo), &ts_pktinfo);
 711}
 712
 713/*
 714 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 715 */
 716void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 717        struct sk_buff *skb)
 718{
 719        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 720        struct scm_timestamping tss;
 721        int empty = 1, false_tstamp = 0;
 722        struct skb_shared_hwtstamps *shhwtstamps =
 723                skb_hwtstamps(skb);
 724
 725        /* Race occurred between timestamp enabling and packet
 726           receiving.  Fill in the current time for now. */
 727        if (need_software_tstamp && skb->tstamp == 0) {
 728                __net_timestamp(skb);
 729                false_tstamp = 1;
 730        }
 731
 732        if (need_software_tstamp) {
 733                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 734                        struct timeval tv;
 735                        skb_get_timestamp(skb, &tv);
 736                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 737                                 sizeof(tv), &tv);
 738                } else {
 739                        struct timespec ts;
 740                        skb_get_timestampns(skb, &ts);
 741                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 742                                 sizeof(ts), &ts);
 743                }
 744        }
 745
 746        memset(&tss, 0, sizeof(tss));
 747        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 748            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 749                empty = 0;
 750        if (shhwtstamps &&
 751            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 752            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 753            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 754                empty = 0;
 755                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 756                    !skb_is_err_queue(skb))
 757                        put_ts_pktinfo(msg, skb);
 758        }
 759        if (!empty) {
 760                put_cmsg(msg, SOL_SOCKET,
 761                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 762
 763                if (skb_is_err_queue(skb) && skb->len &&
 764                    SKB_EXT_ERR(skb)->opt_stats)
 765                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 766                                 skb->len, skb->data);
 767        }
 768}
 769EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 770
 771void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 772        struct sk_buff *skb)
 773{
 774        int ack;
 775
 776        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 777                return;
 778        if (!skb->wifi_acked_valid)
 779                return;
 780
 781        ack = skb->wifi_acked;
 782
 783        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 784}
 785EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 786
 787static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 788                                   struct sk_buff *skb)
 789{
 790        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 791                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 792                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 793}
 794
 795void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 796        struct sk_buff *skb)
 797{
 798        sock_recv_timestamp(msg, sk, skb);
 799        sock_recv_drops(msg, sk, skb);
 800}
 801EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 802
 803static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 804                                     int flags)
 805{
 806        return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 807}
 808
 809int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 810{
 811        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 812
 813        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 814}
 815EXPORT_SYMBOL(sock_recvmsg);
 816
 817/**
 818 * kernel_recvmsg - Receive a message from a socket (kernel space)
 819 * @sock:       The socket to receive the message from
 820 * @msg:        Received message
 821 * @vec:        Input s/g array for message data
 822 * @num:        Size of input s/g array
 823 * @size:       Number of bytes to read
 824 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 825 *
 826 * On return the msg structure contains the scatter/gather array passed in the
 827 * vec argument. The array is modified so that it consists of the unfilled
 828 * portion of the original array.
 829 *
 830 * The returned value is the total number of bytes received, or an error.
 831 */
 832int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 833                   struct kvec *vec, size_t num, size_t size, int flags)
 834{
 835        mm_segment_t oldfs = get_fs();
 836        int result;
 837
 838        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 839        set_fs(KERNEL_DS);
 840        result = sock_recvmsg(sock, msg, flags);
 841        set_fs(oldfs);
 842        return result;
 843}
 844EXPORT_SYMBOL(kernel_recvmsg);
 845
 846static ssize_t sock_sendpage(struct file *file, struct page *page,
 847                             int offset, size_t size, loff_t *ppos, int more)
 848{
 849        struct socket *sock;
 850        int flags;
 851
 852        sock = file->private_data;
 853
 854        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 855        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 856        flags |= more;
 857
 858        return kernel_sendpage(sock, page, offset, size, flags);
 859}
 860
 861static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 862                                struct pipe_inode_info *pipe, size_t len,
 863                                unsigned int flags)
 864{
 865        struct socket *sock = file->private_data;
 866
 867        if (unlikely(!sock->ops->splice_read))
 868                return -EINVAL;
 869
 870        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 871}
 872
 873static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 874{
 875        struct file *file = iocb->ki_filp;
 876        struct socket *sock = file->private_data;
 877        struct msghdr msg = {.msg_iter = *to,
 878                             .msg_iocb = iocb};
 879        ssize_t res;
 880
 881        if (file->f_flags & O_NONBLOCK)
 882                msg.msg_flags = MSG_DONTWAIT;
 883
 884        if (iocb->ki_pos != 0)
 885                return -ESPIPE;
 886
 887        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 888                return 0;
 889
 890        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 891        *to = msg.msg_iter;
 892        return res;
 893}
 894
 895static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 896{
 897        struct file *file = iocb->ki_filp;
 898        struct socket *sock = file->private_data;
 899        struct msghdr msg = {.msg_iter = *from,
 900                             .msg_iocb = iocb};
 901        ssize_t res;
 902
 903        if (iocb->ki_pos != 0)
 904                return -ESPIPE;
 905
 906        if (file->f_flags & O_NONBLOCK)
 907                msg.msg_flags = MSG_DONTWAIT;
 908
 909        if (sock->type == SOCK_SEQPACKET)
 910                msg.msg_flags |= MSG_EOR;
 911
 912        res = sock_sendmsg(sock, &msg);
 913        *from = msg.msg_iter;
 914        return res;
 915}
 916
 917/*
 918 * Atomic setting of ioctl hooks to avoid race
 919 * with module unload.
 920 */
 921
 922static DEFINE_MUTEX(br_ioctl_mutex);
 923static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 924
 925void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 926{
 927        mutex_lock(&br_ioctl_mutex);
 928        br_ioctl_hook = hook;
 929        mutex_unlock(&br_ioctl_mutex);
 930}
 931EXPORT_SYMBOL(brioctl_set);
 932
 933static DEFINE_MUTEX(vlan_ioctl_mutex);
 934static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 935
 936void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 937{
 938        mutex_lock(&vlan_ioctl_mutex);
 939        vlan_ioctl_hook = hook;
 940        mutex_unlock(&vlan_ioctl_mutex);
 941}
 942EXPORT_SYMBOL(vlan_ioctl_set);
 943
 944static DEFINE_MUTEX(dlci_ioctl_mutex);
 945static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 946
 947void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 948{
 949        mutex_lock(&dlci_ioctl_mutex);
 950        dlci_ioctl_hook = hook;
 951        mutex_unlock(&dlci_ioctl_mutex);
 952}
 953EXPORT_SYMBOL(dlci_ioctl_set);
 954
 955static long sock_do_ioctl(struct net *net, struct socket *sock,
 956                                 unsigned int cmd, unsigned long arg)
 957{
 958        int err;
 959        void __user *argp = (void __user *)arg;
 960
 961        err = sock->ops->ioctl(sock, cmd, arg);
 962
 963        /*
 964         * If this ioctl is unknown try to hand it down
 965         * to the NIC driver.
 966         */
 967        if (err == -ENOIOCTLCMD)
 968                err = dev_ioctl(net, cmd, argp);
 969
 970        return err;
 971}
 972
 973/*
 974 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 975 *      what to do with it - that's up to the protocol still.
 976 */
 977
 978static struct ns_common *get_net_ns(struct ns_common *ns)
 979{
 980        return &get_net(container_of(ns, struct net, ns))->ns;
 981}
 982
 983static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 984{
 985        struct socket *sock;
 986        struct sock *sk;
 987        void __user *argp = (void __user *)arg;
 988        int pid, err;
 989        struct net *net;
 990
 991        sock = file->private_data;
 992        sk = sock->sk;
 993        net = sock_net(sk);
 994        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 995                err = dev_ioctl(net, cmd, argp);
 996        } else
 997#ifdef CONFIG_WEXT_CORE
 998        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 999                err = dev_ioctl(net, cmd, argp);
1000        } else
1001#endif
1002                switch (cmd) {
1003                case FIOSETOWN:
1004                case SIOCSPGRP:
1005                        err = -EFAULT;
1006                        if (get_user(pid, (int __user *)argp))
1007                                break;
1008                        err = f_setown(sock->file, pid, 1);
1009                        break;
1010                case FIOGETOWN:
1011                case SIOCGPGRP:
1012                        err = put_user(f_getown(sock->file),
1013                                       (int __user *)argp);
1014                        break;
1015                case SIOCGIFBR:
1016                case SIOCSIFBR:
1017                case SIOCBRADDBR:
1018                case SIOCBRDELBR:
1019                        err = -ENOPKG;
1020                        if (!br_ioctl_hook)
1021                                request_module("bridge");
1022
1023                        mutex_lock(&br_ioctl_mutex);
1024                        if (br_ioctl_hook)
1025                                err = br_ioctl_hook(net, cmd, argp);
1026                        mutex_unlock(&br_ioctl_mutex);
1027                        break;
1028                case SIOCGIFVLAN:
1029                case SIOCSIFVLAN:
1030                        err = -ENOPKG;
1031                        if (!vlan_ioctl_hook)
1032                                request_module("8021q");
1033
1034                        mutex_lock(&vlan_ioctl_mutex);
1035                        if (vlan_ioctl_hook)
1036                                err = vlan_ioctl_hook(net, argp);
1037                        mutex_unlock(&vlan_ioctl_mutex);
1038                        break;
1039                case SIOCADDDLCI:
1040                case SIOCDELDLCI:
1041                        err = -ENOPKG;
1042                        if (!dlci_ioctl_hook)
1043                                request_module("dlci");
1044
1045                        mutex_lock(&dlci_ioctl_mutex);
1046                        if (dlci_ioctl_hook)
1047                                err = dlci_ioctl_hook(cmd, argp);
1048                        mutex_unlock(&dlci_ioctl_mutex);
1049                        break;
1050                case SIOCGSKNS:
1051                        err = -EPERM;
1052                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1053                                break;
1054
1055                        err = open_related_ns(&net->ns, get_net_ns);
1056                        break;
1057                default:
1058                        err = sock_do_ioctl(net, sock, cmd, arg);
1059                        break;
1060                }
1061        return err;
1062}
1063
1064int sock_create_lite(int family, int type, int protocol, struct socket **res)
1065{
1066        int err;
1067        struct socket *sock = NULL;
1068
1069        err = security_socket_create(family, type, protocol, 1);
1070        if (err)
1071                goto out;
1072
1073        sock = sock_alloc();
1074        if (!sock) {
1075                err = -ENOMEM;
1076                goto out;
1077        }
1078
1079        sock->type = type;
1080        err = security_socket_post_create(sock, family, type, protocol, 1);
1081        if (err)
1082                goto out_release;
1083
1084out:
1085        *res = sock;
1086        return err;
1087out_release:
1088        sock_release(sock);
1089        sock = NULL;
1090        goto out;
1091}
1092EXPORT_SYMBOL(sock_create_lite);
1093
1094/* No kernel lock held - perfect */
1095static unsigned int sock_poll(struct file *file, poll_table *wait)
1096{
1097        unsigned int busy_flag = 0;
1098        struct socket *sock;
1099
1100        /*
1101         *      We can't return errors to poll, so it's either yes or no.
1102         */
1103        sock = file->private_data;
1104
1105        if (sk_can_busy_loop(sock->sk)) {
1106                /* this socket can poll_ll so tell the system call */
1107                busy_flag = POLL_BUSY_LOOP;
1108
1109                /* once, only if requested by syscall */
1110                if (wait && (wait->_key & POLL_BUSY_LOOP))
1111                        sk_busy_loop(sock->sk, 1);
1112        }
1113
1114        return busy_flag | sock->ops->poll(file, sock, wait);
1115}
1116
1117static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1118{
1119        struct socket *sock = file->private_data;
1120
1121        return sock->ops->mmap(file, sock, vma);
1122}
1123
1124static int sock_close(struct inode *inode, struct file *filp)
1125{
1126        sock_release(SOCKET_I(inode));
1127        return 0;
1128}
1129
1130/*
1131 *      Update the socket async list
1132 *
1133 *      Fasync_list locking strategy.
1134 *
1135 *      1. fasync_list is modified only under process context socket lock
1136 *         i.e. under semaphore.
1137 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138 *         or under socket lock
1139 */
1140
1141static int sock_fasync(int fd, struct file *filp, int on)
1142{
1143        struct socket *sock = filp->private_data;
1144        struct sock *sk = sock->sk;
1145        struct socket_wq *wq;
1146
1147        if (sk == NULL)
1148                return -EINVAL;
1149
1150        lock_sock(sk);
1151        wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1152        fasync_helper(fd, filp, on, &wq->fasync_list);
1153
1154        if (!wq->fasync_list)
1155                sock_reset_flag(sk, SOCK_FASYNC);
1156        else
1157                sock_set_flag(sk, SOCK_FASYNC);
1158
1159        release_sock(sk);
1160        return 0;
1161}
1162
1163/* This function may be called only under rcu_lock */
1164
1165int sock_wake_async(struct socket_wq *wq, int how, int band)
1166{
1167        if (!wq || !wq->fasync_list)
1168                return -1;
1169
1170        switch (how) {
1171        case SOCK_WAKE_WAITD:
1172                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1173                        break;
1174                goto call_kill;
1175        case SOCK_WAKE_SPACE:
1176                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1177                        break;
1178                /* fall through */
1179        case SOCK_WAKE_IO:
1180call_kill:
1181                kill_fasync(&wq->fasync_list, SIGIO, band);
1182                break;
1183        case SOCK_WAKE_URG:
1184                kill_fasync(&wq->fasync_list, SIGURG, band);
1185        }
1186
1187        return 0;
1188}
1189EXPORT_SYMBOL(sock_wake_async);
1190
1191int __sock_create(struct net *net, int family, int type, int protocol,
1192                         struct socket **res, int kern)
1193{
1194        int err;
1195        struct socket *sock;
1196        const struct net_proto_family *pf;
1197
1198        /*
1199         *      Check protocol is in range
1200         */
1201        if (family < 0 || family >= NPROTO)
1202                return -EAFNOSUPPORT;
1203        if (type < 0 || type >= SOCK_MAX)
1204                return -EINVAL;
1205
1206        /* Compatibility.
1207
1208           This uglymoron is moved from INET layer to here to avoid
1209           deadlock in module load.
1210         */
1211        if (family == PF_INET && type == SOCK_PACKET) {
1212                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1213                             current->comm);
1214                family = PF_PACKET;
1215        }
1216
1217        err = security_socket_create(family, type, protocol, kern);
1218        if (err)
1219                return err;
1220
1221        /*
1222         *      Allocate the socket and allow the family to set things up. if
1223         *      the protocol is 0, the family is instructed to select an appropriate
1224         *      default.
1225         */
1226        sock = sock_alloc();
1227        if (!sock) {
1228                net_warn_ratelimited("socket: no more sockets\n");
1229                return -ENFILE; /* Not exactly a match, but its the
1230                                   closest posix thing */
1231        }
1232
1233        sock->type = type;
1234
1235#ifdef CONFIG_MODULES
1236        /* Attempt to load a protocol module if the find failed.
1237         *
1238         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1239         * requested real, full-featured networking support upon configuration.
1240         * Otherwise module support will break!
1241         */
1242        if (rcu_access_pointer(net_families[family]) == NULL)
1243                request_module("net-pf-%d", family);
1244#endif
1245
1246        rcu_read_lock();
1247        pf = rcu_dereference(net_families[family]);
1248        err = -EAFNOSUPPORT;
1249        if (!pf)
1250                goto out_release;
1251
1252        /*
1253         * We will call the ->create function, that possibly is in a loadable
1254         * module, so we have to bump that loadable module refcnt first.
1255         */
1256        if (!try_module_get(pf->owner))
1257                goto out_release;
1258
1259        /* Now protected by module ref count */
1260        rcu_read_unlock();
1261
1262        err = pf->create(net, sock, protocol, kern);
1263        if (err < 0)
1264                goto out_module_put;
1265
1266        /*
1267         * Now to bump the refcnt of the [loadable] module that owns this
1268         * socket at sock_release time we decrement its refcnt.
1269         */
1270        if (!try_module_get(sock->ops->owner))
1271                goto out_module_busy;
1272
1273        /*
1274         * Now that we're done with the ->create function, the [loadable]
1275         * module can have its refcnt decremented
1276         */
1277        module_put(pf->owner);
1278        err = security_socket_post_create(sock, family, type, protocol, kern);
1279        if (err)
1280                goto out_sock_release;
1281        *res = sock;
1282
1283        return 0;
1284
1285out_module_busy:
1286        err = -EAFNOSUPPORT;
1287out_module_put:
1288        sock->ops = NULL;
1289        module_put(pf->owner);
1290out_sock_release:
1291        sock_release(sock);
1292        return err;
1293
1294out_release:
1295        rcu_read_unlock();
1296        goto out_sock_release;
1297}
1298EXPORT_SYMBOL(__sock_create);
1299
1300int sock_create(int family, int type, int protocol, struct socket **res)
1301{
1302        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1303}
1304EXPORT_SYMBOL(sock_create);
1305
1306int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1307{
1308        return __sock_create(net, family, type, protocol, res, 1);
1309}
1310EXPORT_SYMBOL(sock_create_kern);
1311
1312SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1313{
1314        int retval;
1315        struct socket *sock;
1316        int flags;
1317
1318        /* Check the SOCK_* constants for consistency.  */
1319        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1320        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1321        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1322        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1323
1324        flags = type & ~SOCK_TYPE_MASK;
1325        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1326                return -EINVAL;
1327        type &= SOCK_TYPE_MASK;
1328
1329        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1330                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1331
1332        retval = sock_create(family, type, protocol, &sock);
1333        if (retval < 0)
1334                goto out;
1335
1336        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1337        if (retval < 0)
1338                goto out_release;
1339
1340out:
1341        /* It may be already another descriptor 8) Not kernel problem. */
1342        return retval;
1343
1344out_release:
1345        sock_release(sock);
1346        return retval;
1347}
1348
1349/*
1350 *      Create a pair of connected sockets.
1351 */
1352
1353SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1354                int __user *, usockvec)
1355{
1356        struct socket *sock1, *sock2;
1357        int fd1, fd2, err;
1358        struct file *newfile1, *newfile2;
1359        int flags;
1360
1361        flags = type & ~SOCK_TYPE_MASK;
1362        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1363                return -EINVAL;
1364        type &= SOCK_TYPE_MASK;
1365
1366        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1367                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1368
1369        /*
1370         * Obtain the first socket and check if the underlying protocol
1371         * supports the socketpair call.
1372         */
1373
1374        err = sock_create(family, type, protocol, &sock1);
1375        if (err < 0)
1376                goto out;
1377
1378        err = sock_create(family, type, protocol, &sock2);
1379        if (err < 0)
1380                goto out_release_1;
1381
1382        err = sock1->ops->socketpair(sock1, sock2);
1383        if (err < 0)
1384                goto out_release_both;
1385
1386        fd1 = get_unused_fd_flags(flags);
1387        if (unlikely(fd1 < 0)) {
1388                err = fd1;
1389                goto out_release_both;
1390        }
1391
1392        fd2 = get_unused_fd_flags(flags);
1393        if (unlikely(fd2 < 0)) {
1394                err = fd2;
1395                goto out_put_unused_1;
1396        }
1397
1398        newfile1 = sock_alloc_file(sock1, flags, NULL);
1399        if (IS_ERR(newfile1)) {
1400                err = PTR_ERR(newfile1);
1401                goto out_put_unused_both;
1402        }
1403
1404        newfile2 = sock_alloc_file(sock2, flags, NULL);
1405        if (IS_ERR(newfile2)) {
1406                err = PTR_ERR(newfile2);
1407                goto out_fput_1;
1408        }
1409
1410        err = put_user(fd1, &usockvec[0]);
1411        if (err)
1412                goto out_fput_both;
1413
1414        err = put_user(fd2, &usockvec[1]);
1415        if (err)
1416                goto out_fput_both;
1417
1418        audit_fd_pair(fd1, fd2);
1419
1420        fd_install(fd1, newfile1);
1421        fd_install(fd2, newfile2);
1422        /* fd1 and fd2 may be already another descriptors.
1423         * Not kernel problem.
1424         */
1425
1426        return 0;
1427
1428out_fput_both:
1429        fput(newfile2);
1430        fput(newfile1);
1431        put_unused_fd(fd2);
1432        put_unused_fd(fd1);
1433        goto out;
1434
1435out_fput_1:
1436        fput(newfile1);
1437        put_unused_fd(fd2);
1438        put_unused_fd(fd1);
1439        sock_release(sock2);
1440        goto out;
1441
1442out_put_unused_both:
1443        put_unused_fd(fd2);
1444out_put_unused_1:
1445        put_unused_fd(fd1);
1446out_release_both:
1447        sock_release(sock2);
1448out_release_1:
1449        sock_release(sock1);
1450out:
1451        return err;
1452}
1453
1454/*
1455 *      Bind a name to a socket. Nothing much to do here since it's
1456 *      the protocol's responsibility to handle the local address.
1457 *
1458 *      We move the socket address to kernel space before we call
1459 *      the protocol layer (having also checked the address is ok).
1460 */
1461
1462SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1463{
1464        struct socket *sock;
1465        struct sockaddr_storage address;
1466        int err, fput_needed;
1467
1468        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1469        if (sock) {
1470                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1471                if (err >= 0) {
1472                        err = security_socket_bind(sock,
1473                                                   (struct sockaddr *)&address,
1474                                                   addrlen);
1475                        if (!err)
1476                                err = sock->ops->bind(sock,
1477                                                      (struct sockaddr *)
1478                                                      &address, addrlen);
1479                }
1480                fput_light(sock->file, fput_needed);
1481        }
1482        return err;
1483}
1484
1485/*
1486 *      Perform a listen. Basically, we allow the protocol to do anything
1487 *      necessary for a listen, and if that works, we mark the socket as
1488 *      ready for listening.
1489 */
1490
1491SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1492{
1493        struct socket *sock;
1494        int err, fput_needed;
1495        int somaxconn;
1496
1497        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1498        if (sock) {
1499                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1500                if ((unsigned int)backlog > somaxconn)
1501                        backlog = somaxconn;
1502
1503                err = security_socket_listen(sock, backlog);
1504                if (!err)
1505                        err = sock->ops->listen(sock, backlog);
1506
1507                fput_light(sock->file, fput_needed);
1508        }
1509        return err;
1510}
1511
1512/*
1513 *      For accept, we attempt to create a new socket, set up the link
1514 *      with the client, wake up the client, then return the new
1515 *      connected fd. We collect the address of the connector in kernel
1516 *      space and move it to user at the very end. This is unclean because
1517 *      we open the socket then return an error.
1518 *
1519 *      1003.1g adds the ability to recvmsg() to query connection pending
1520 *      status to recvmsg. We need to add that support in a way thats
1521 *      clean when we restucture accept also.
1522 */
1523
1524SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1525                int __user *, upeer_addrlen, int, flags)
1526{
1527        struct socket *sock, *newsock;
1528        struct file *newfile;
1529        int err, len, newfd, fput_needed;
1530        struct sockaddr_storage address;
1531
1532        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1533                return -EINVAL;
1534
1535        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1536                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1537
1538        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1539        if (!sock)
1540                goto out;
1541
1542        err = -ENFILE;
1543        newsock = sock_alloc();
1544        if (!newsock)
1545                goto out_put;
1546
1547        newsock->type = sock->type;
1548        newsock->ops = sock->ops;
1549
1550        /*
1551         * We don't need try_module_get here, as the listening socket (sock)
1552         * has the protocol module (sock->ops->owner) held.
1553         */
1554        __module_get(newsock->ops->owner);
1555
1556        newfd = get_unused_fd_flags(flags);
1557        if (unlikely(newfd < 0)) {
1558                err = newfd;
1559                sock_release(newsock);
1560                goto out_put;
1561        }
1562        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1563        if (IS_ERR(newfile)) {
1564                err = PTR_ERR(newfile);
1565                put_unused_fd(newfd);
1566                sock_release(newsock);
1567                goto out_put;
1568        }
1569
1570        err = security_socket_accept(sock, newsock);
1571        if (err)
1572                goto out_fd;
1573
1574        err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1575        if (err < 0)
1576                goto out_fd;
1577
1578        if (upeer_sockaddr) {
1579                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1580                                          &len, 2) < 0) {
1581                        err = -ECONNABORTED;
1582                        goto out_fd;
1583                }
1584                err = move_addr_to_user(&address,
1585                                        len, upeer_sockaddr, upeer_addrlen);
1586                if (err < 0)
1587                        goto out_fd;
1588        }
1589
1590        /* File flags are not inherited via accept() unlike another OSes. */
1591
1592        fd_install(newfd, newfile);
1593        err = newfd;
1594
1595out_put:
1596        fput_light(sock->file, fput_needed);
1597out:
1598        return err;
1599out_fd:
1600        fput(newfile);
1601        put_unused_fd(newfd);
1602        goto out_put;
1603}
1604
1605SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1606                int __user *, upeer_addrlen)
1607{
1608        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1609}
1610
1611/*
1612 *      Attempt to connect to a socket with the server address.  The address
1613 *      is in user space so we verify it is OK and move it to kernel space.
1614 *
1615 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1616 *      break bindings
1617 *
1618 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1619 *      other SEQPACKET protocols that take time to connect() as it doesn't
1620 *      include the -EINPROGRESS status for such sockets.
1621 */
1622
1623SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1624                int, addrlen)
1625{
1626        struct socket *sock;
1627        struct sockaddr_storage address;
1628        int err, fput_needed;
1629
1630        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631        if (!sock)
1632                goto out;
1633        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1634        if (err < 0)
1635                goto out_put;
1636
1637        err =
1638            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1639        if (err)
1640                goto out_put;
1641
1642        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1643                                 sock->file->f_flags);
1644out_put:
1645        fput_light(sock->file, fput_needed);
1646out:
1647        return err;
1648}
1649
1650/*
1651 *      Get the local address ('name') of a socket object. Move the obtained
1652 *      name to user space.
1653 */
1654
1655SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1656                int __user *, usockaddr_len)
1657{
1658        struct socket *sock;
1659        struct sockaddr_storage address;
1660        int len, err, fput_needed;
1661
1662        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663        if (!sock)
1664                goto out;
1665
1666        err = security_socket_getsockname(sock);
1667        if (err)
1668                goto out_put;
1669
1670        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1671        if (err)
1672                goto out_put;
1673        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1674
1675out_put:
1676        fput_light(sock->file, fput_needed);
1677out:
1678        return err;
1679}
1680
1681/*
1682 *      Get the remote address ('name') of a socket object. Move the obtained
1683 *      name to user space.
1684 */
1685
1686SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1687                int __user *, usockaddr_len)
1688{
1689        struct socket *sock;
1690        struct sockaddr_storage address;
1691        int len, err, fput_needed;
1692
1693        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694        if (sock != NULL) {
1695                err = security_socket_getpeername(sock);
1696                if (err) {
1697                        fput_light(sock->file, fput_needed);
1698                        return err;
1699                }
1700
1701                err =
1702                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1703                                       1);
1704                if (!err)
1705                        err = move_addr_to_user(&address, len, usockaddr,
1706                                                usockaddr_len);
1707                fput_light(sock->file, fput_needed);
1708        }
1709        return err;
1710}
1711
1712/*
1713 *      Send a datagram to a given address. We move the address into kernel
1714 *      space and check the user space data area is readable before invoking
1715 *      the protocol.
1716 */
1717
1718SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1719                unsigned int, flags, struct sockaddr __user *, addr,
1720                int, addr_len)
1721{
1722        struct socket *sock;
1723        struct sockaddr_storage address;
1724        int err;
1725        struct msghdr msg;
1726        struct iovec iov;
1727        int fput_needed;
1728
1729        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1730        if (unlikely(err))
1731                return err;
1732        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1733        if (!sock)
1734                goto out;
1735
1736        msg.msg_name = NULL;
1737        msg.msg_control = NULL;
1738        msg.msg_controllen = 0;
1739        msg.msg_namelen = 0;
1740        if (addr) {
1741                err = move_addr_to_kernel(addr, addr_len, &address);
1742                if (err < 0)
1743                        goto out_put;
1744                msg.msg_name = (struct sockaddr *)&address;
1745                msg.msg_namelen = addr_len;
1746        }
1747        if (sock->file->f_flags & O_NONBLOCK)
1748                flags |= MSG_DONTWAIT;
1749        msg.msg_flags = flags;
1750        err = sock_sendmsg(sock, &msg);
1751
1752out_put:
1753        fput_light(sock->file, fput_needed);
1754out:
1755        return err;
1756}
1757
1758/*
1759 *      Send a datagram down a socket.
1760 */
1761
1762SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1763                unsigned int, flags)
1764{
1765        return sys_sendto(fd, buff, len, flags, NULL, 0);
1766}
1767
1768/*
1769 *      Receive a frame from the socket and optionally record the address of the
1770 *      sender. We verify the buffers are writable and if needed move the
1771 *      sender address from kernel to user space.
1772 */
1773
1774SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1775                unsigned int, flags, struct sockaddr __user *, addr,
1776                int __user *, addr_len)
1777{
1778        struct socket *sock;
1779        struct iovec iov;
1780        struct msghdr msg;
1781        struct sockaddr_storage address;
1782        int err, err2;
1783        int fput_needed;
1784
1785        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1786        if (unlikely(err))
1787                return err;
1788        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789        if (!sock)
1790                goto out;
1791
1792        msg.msg_control = NULL;
1793        msg.msg_controllen = 0;
1794        /* Save some cycles and don't copy the address if not needed */
1795        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1796        /* We assume all kernel code knows the size of sockaddr_storage */
1797        msg.msg_namelen = 0;
1798        msg.msg_iocb = NULL;
1799        msg.msg_flags = 0;
1800        if (sock->file->f_flags & O_NONBLOCK)
1801                flags |= MSG_DONTWAIT;
1802        err = sock_recvmsg(sock, &msg, flags);
1803
1804        if (err >= 0 && addr != NULL) {
1805                err2 = move_addr_to_user(&address,
1806                                         msg.msg_namelen, addr, addr_len);
1807                if (err2 < 0)
1808                        err = err2;
1809        }
1810
1811        fput_light(sock->file, fput_needed);
1812out:
1813        return err;
1814}
1815
1816/*
1817 *      Receive a datagram from a socket.
1818 */
1819
1820SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1821                unsigned int, flags)
1822{
1823        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1824}
1825
1826/*
1827 *      Set a socket option. Because we don't know the option lengths we have
1828 *      to pass the user mode parameter for the protocols to sort out.
1829 */
1830
1831SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1832                char __user *, optval, int, optlen)
1833{
1834        int err, fput_needed;
1835        struct socket *sock;
1836
1837        if (optlen < 0)
1838                return -EINVAL;
1839
1840        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1841        if (sock != NULL) {
1842                err = security_socket_setsockopt(sock, level, optname);
1843                if (err)
1844                        goto out_put;
1845
1846                if (level == SOL_SOCKET)
1847                        err =
1848                            sock_setsockopt(sock, level, optname, optval,
1849                                            optlen);
1850                else
1851                        err =
1852                            sock->ops->setsockopt(sock, level, optname, optval,
1853                                                  optlen);
1854out_put:
1855                fput_light(sock->file, fput_needed);
1856        }
1857        return err;
1858}
1859
1860/*
1861 *      Get a socket option. Because we don't know the option lengths we have
1862 *      to pass a user mode parameter for the protocols to sort out.
1863 */
1864
1865SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1866                char __user *, optval, int __user *, optlen)
1867{
1868        int err, fput_needed;
1869        struct socket *sock;
1870
1871        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1872        if (sock != NULL) {
1873                err = security_socket_getsockopt(sock, level, optname);
1874                if (err)
1875                        goto out_put;
1876
1877                if (level == SOL_SOCKET)
1878                        err =
1879                            sock_getsockopt(sock, level, optname, optval,
1880                                            optlen);
1881                else
1882                        err =
1883                            sock->ops->getsockopt(sock, level, optname, optval,
1884                                                  optlen);
1885out_put:
1886                fput_light(sock->file, fput_needed);
1887        }
1888        return err;
1889}
1890
1891/*
1892 *      Shutdown a socket.
1893 */
1894
1895SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1896{
1897        int err, fput_needed;
1898        struct socket *sock;
1899
1900        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901        if (sock != NULL) {
1902                err = security_socket_shutdown(sock, how);
1903                if (!err)
1904                        err = sock->ops->shutdown(sock, how);
1905                fput_light(sock->file, fput_needed);
1906        }
1907        return err;
1908}
1909
1910/* A couple of helpful macros for getting the address of the 32/64 bit
1911 * fields which are the same type (int / unsigned) on our platforms.
1912 */
1913#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1914#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1915#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1916
1917struct used_address {
1918        struct sockaddr_storage name;
1919        unsigned int name_len;
1920};
1921
1922static int copy_msghdr_from_user(struct msghdr *kmsg,
1923                                 struct user_msghdr __user *umsg,
1924                                 struct sockaddr __user **save_addr,
1925                                 struct iovec **iov)
1926{
1927        struct user_msghdr msg;
1928        ssize_t err;
1929
1930        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1931                return -EFAULT;
1932
1933        kmsg->msg_control = (void __force *)msg.msg_control;
1934        kmsg->msg_controllen = msg.msg_controllen;
1935        kmsg->msg_flags = msg.msg_flags;
1936
1937        kmsg->msg_namelen = msg.msg_namelen;
1938        if (!msg.msg_name)
1939                kmsg->msg_namelen = 0;
1940
1941        if (kmsg->msg_namelen < 0)
1942                return -EINVAL;
1943
1944        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1945                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1946
1947        if (save_addr)
1948                *save_addr = msg.msg_name;
1949
1950        if (msg.msg_name && kmsg->msg_namelen) {
1951                if (!save_addr) {
1952                        err = move_addr_to_kernel(msg.msg_name,
1953                                                  kmsg->msg_namelen,
1954                                                  kmsg->msg_name);
1955                        if (err < 0)
1956                                return err;
1957                }
1958        } else {
1959                kmsg->msg_name = NULL;
1960                kmsg->msg_namelen = 0;
1961        }
1962
1963        if (msg.msg_iovlen > UIO_MAXIOV)
1964                return -EMSGSIZE;
1965
1966        kmsg->msg_iocb = NULL;
1967
1968        return import_iovec(save_addr ? READ : WRITE,
1969                            msg.msg_iov, msg.msg_iovlen,
1970                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1971}
1972
1973static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1974                         struct msghdr *msg_sys, unsigned int flags,
1975                         struct used_address *used_address,
1976                         unsigned int allowed_msghdr_flags)
1977{
1978        struct compat_msghdr __user *msg_compat =
1979            (struct compat_msghdr __user *)msg;
1980        struct sockaddr_storage address;
1981        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1982        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1983                                __aligned(sizeof(__kernel_size_t));
1984        /* 20 is size of ipv6_pktinfo */
1985        unsigned char *ctl_buf = ctl;
1986        int ctl_len;
1987        ssize_t err;
1988
1989        msg_sys->msg_name = &address;
1990
1991        if (MSG_CMSG_COMPAT & flags)
1992                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1993        else
1994                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1995        if (err < 0)
1996                return err;
1997
1998        err = -ENOBUFS;
1999
2000        if (msg_sys->msg_controllen > INT_MAX)
2001                goto out_freeiov;
2002        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2003        ctl_len = msg_sys->msg_controllen;
2004        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2005                err =
2006                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2007                                                     sizeof(ctl));
2008                if (err)
2009                        goto out_freeiov;
2010                ctl_buf = msg_sys->msg_control;
2011                ctl_len = msg_sys->msg_controllen;
2012        } else if (ctl_len) {
2013                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2014                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2015                if (ctl_len > sizeof(ctl)) {
2016                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2017                        if (ctl_buf == NULL)
2018                                goto out_freeiov;
2019                }
2020                err = -EFAULT;
2021                /*
2022                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2023                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2024                 * checking falls down on this.
2025                 */
2026                if (copy_from_user(ctl_buf,
2027                                   (void __user __force *)msg_sys->msg_control,
2028                                   ctl_len))
2029                        goto out_freectl;
2030                msg_sys->msg_control = ctl_buf;
2031        }
2032        msg_sys->msg_flags = flags;
2033
2034        if (sock->file->f_flags & O_NONBLOCK)
2035                msg_sys->msg_flags |= MSG_DONTWAIT;
2036        /*
2037         * If this is sendmmsg() and current destination address is same as
2038         * previously succeeded address, omit asking LSM's decision.
2039         * used_address->name_len is initialized to UINT_MAX so that the first
2040         * destination address never matches.
2041         */
2042        if (used_address && msg_sys->msg_name &&
2043            used_address->name_len == msg_sys->msg_namelen &&
2044            !memcmp(&used_address->name, msg_sys->msg_name,
2045                    used_address->name_len)) {
2046                err = sock_sendmsg_nosec(sock, msg_sys);
2047                goto out_freectl;
2048        }
2049        err = sock_sendmsg(sock, msg_sys);
2050        /*
2051         * If this is sendmmsg() and sending to current destination address was
2052         * successful, remember it.
2053         */
2054        if (used_address && err >= 0) {
2055                used_address->name_len = msg_sys->msg_namelen;
2056                if (msg_sys->msg_name)
2057                        memcpy(&used_address->name, msg_sys->msg_name,
2058                               used_address->name_len);
2059        }
2060
2061out_freectl:
2062        if (ctl_buf != ctl)
2063                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2064out_freeiov:
2065        kfree(iov);
2066        return err;
2067}
2068
2069/*
2070 *      BSD sendmsg interface
2071 */
2072
2073long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2074{
2075        int fput_needed, err;
2076        struct msghdr msg_sys;
2077        struct socket *sock;
2078
2079        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2080        if (!sock)
2081                goto out;
2082
2083        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2084
2085        fput_light(sock->file, fput_needed);
2086out:
2087        return err;
2088}
2089
2090SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2091{
2092        if (flags & MSG_CMSG_COMPAT)
2093                return -EINVAL;
2094        return __sys_sendmsg(fd, msg, flags);
2095}
2096
2097/*
2098 *      Linux sendmmsg interface
2099 */
2100
2101int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2102                   unsigned int flags)
2103{
2104        int fput_needed, err, datagrams;
2105        struct socket *sock;
2106        struct mmsghdr __user *entry;
2107        struct compat_mmsghdr __user *compat_entry;
2108        struct msghdr msg_sys;
2109        struct used_address used_address;
2110        unsigned int oflags = flags;
2111
2112        if (vlen > UIO_MAXIOV)
2113                vlen = UIO_MAXIOV;
2114
2115        datagrams = 0;
2116
2117        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2118        if (!sock)
2119                return err;
2120
2121        used_address.name_len = UINT_MAX;
2122        entry = mmsg;
2123        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2124        err = 0;
2125        flags |= MSG_BATCH;
2126
2127        while (datagrams < vlen) {
2128                if (datagrams == vlen - 1)
2129                        flags = oflags;
2130
2131                if (MSG_CMSG_COMPAT & flags) {
2132                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2133                                             &msg_sys, flags, &used_address, MSG_EOR);
2134                        if (err < 0)
2135                                break;
2136                        err = __put_user(err, &compat_entry->msg_len);
2137                        ++compat_entry;
2138                } else {
2139                        err = ___sys_sendmsg(sock,
2140                                             (struct user_msghdr __user *)entry,
2141                                             &msg_sys, flags, &used_address, MSG_EOR);
2142                        if (err < 0)
2143                                break;
2144                        err = put_user(err, &entry->msg_len);
2145                        ++entry;
2146                }
2147
2148                if (err)
2149                        break;
2150                ++datagrams;
2151                if (msg_data_left(&msg_sys))
2152                        break;
2153                cond_resched();
2154        }
2155
2156        fput_light(sock->file, fput_needed);
2157
2158        /* We only return an error if no datagrams were able to be sent */
2159        if (datagrams != 0)
2160                return datagrams;
2161
2162        return err;
2163}
2164
2165SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2166                unsigned int, vlen, unsigned int, flags)
2167{
2168        if (flags & MSG_CMSG_COMPAT)
2169                return -EINVAL;
2170        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2171}
2172
2173static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2174                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2175{
2176        struct compat_msghdr __user *msg_compat =
2177            (struct compat_msghdr __user *)msg;
2178        struct iovec iovstack[UIO_FASTIOV];
2179        struct iovec *iov = iovstack;
2180        unsigned long cmsg_ptr;
2181        int len;
2182        ssize_t err;
2183
2184        /* kernel mode address */
2185        struct sockaddr_storage addr;
2186
2187        /* user mode address pointers */
2188        struct sockaddr __user *uaddr;
2189        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2190
2191        msg_sys->msg_name = &addr;
2192
2193        if (MSG_CMSG_COMPAT & flags)
2194                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2195        else
2196                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2197        if (err < 0)
2198                return err;
2199
2200        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2201        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2202
2203        /* We assume all kernel code knows the size of sockaddr_storage */
2204        msg_sys->msg_namelen = 0;
2205
2206        if (sock->file->f_flags & O_NONBLOCK)
2207                flags |= MSG_DONTWAIT;
2208        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2209        if (err < 0)
2210                goto out_freeiov;
2211        len = err;
2212
2213        if (uaddr != NULL) {
2214                err = move_addr_to_user(&addr,
2215                                        msg_sys->msg_namelen, uaddr,
2216                                        uaddr_len);
2217                if (err < 0)
2218                        goto out_freeiov;
2219        }
2220        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2221                         COMPAT_FLAGS(msg));
2222        if (err)
2223                goto out_freeiov;
2224        if (MSG_CMSG_COMPAT & flags)
2225                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2226                                 &msg_compat->msg_controllen);
2227        else
2228                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2229                                 &msg->msg_controllen);
2230        if (err)
2231                goto out_freeiov;
2232        err = len;
2233
2234out_freeiov:
2235        kfree(iov);
2236        return err;
2237}
2238
2239/*
2240 *      BSD recvmsg interface
2241 */
2242
2243long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2244{
2245        int fput_needed, err;
2246        struct msghdr msg_sys;
2247        struct socket *sock;
2248
2249        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2250        if (!sock)
2251                goto out;
2252
2253        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2254
2255        fput_light(sock->file, fput_needed);
2256out:
2257        return err;
2258}
2259
2260SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2261                unsigned int, flags)
2262{
2263        if (flags & MSG_CMSG_COMPAT)
2264                return -EINVAL;
2265        return __sys_recvmsg(fd, msg, flags);
2266}
2267
2268/*
2269 *     Linux recvmmsg interface
2270 */
2271
2272int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2273                   unsigned int flags, struct timespec *timeout)
2274{
2275        int fput_needed, err, datagrams;
2276        struct socket *sock;
2277        struct mmsghdr __user *entry;
2278        struct compat_mmsghdr __user *compat_entry;
2279        struct msghdr msg_sys;
2280        struct timespec64 end_time;
2281        struct timespec64 timeout64;
2282
2283        if (timeout &&
2284            poll_select_set_timeout(&end_time, timeout->tv_sec,
2285                                    timeout->tv_nsec))
2286                return -EINVAL;
2287
2288        datagrams = 0;
2289
2290        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2291        if (!sock)
2292                return err;
2293
2294        err = sock_error(sock->sk);
2295        if (err) {
2296                datagrams = err;
2297                goto out_put;
2298        }
2299
2300        entry = mmsg;
2301        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2302
2303        while (datagrams < vlen) {
2304                /*
2305                 * No need to ask LSM for more than the first datagram.
2306                 */
2307                if (MSG_CMSG_COMPAT & flags) {
2308                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2309                                             &msg_sys, flags & ~MSG_WAITFORONE,
2310                                             datagrams);
2311                        if (err < 0)
2312                                break;
2313                        err = __put_user(err, &compat_entry->msg_len);
2314                        ++compat_entry;
2315                } else {
2316                        err = ___sys_recvmsg(sock,
2317                                             (struct user_msghdr __user *)entry,
2318                                             &msg_sys, flags & ~MSG_WAITFORONE,
2319                                             datagrams);
2320                        if (err < 0)
2321                                break;
2322                        err = put_user(err, &entry->msg_len);
2323                        ++entry;
2324                }
2325
2326                if (err)
2327                        break;
2328                ++datagrams;
2329
2330                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2331                if (flags & MSG_WAITFORONE)
2332                        flags |= MSG_DONTWAIT;
2333
2334                if (timeout) {
2335                        ktime_get_ts64(&timeout64);
2336                        *timeout = timespec64_to_timespec(
2337                                        timespec64_sub(end_time, timeout64));
2338                        if (timeout->tv_sec < 0) {
2339                                timeout->tv_sec = timeout->tv_nsec = 0;
2340                                break;
2341                        }
2342
2343                        /* Timeout, return less than vlen datagrams */
2344                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2345                                break;
2346                }
2347
2348                /* Out of band data, return right away */
2349                if (msg_sys.msg_flags & MSG_OOB)
2350                        break;
2351                cond_resched();
2352        }
2353
2354        if (err == 0)
2355                goto out_put;
2356
2357        if (datagrams == 0) {
2358                datagrams = err;
2359                goto out_put;
2360        }
2361
2362        /*
2363         * We may return less entries than requested (vlen) if the
2364         * sock is non block and there aren't enough datagrams...
2365         */
2366        if (err != -EAGAIN) {
2367                /*
2368                 * ... or  if recvmsg returns an error after we
2369                 * received some datagrams, where we record the
2370                 * error to return on the next call or if the
2371                 * app asks about it using getsockopt(SO_ERROR).
2372                 */
2373                sock->sk->sk_err = -err;
2374        }
2375out_put:
2376        fput_light(sock->file, fput_needed);
2377
2378        return datagrams;
2379}
2380
2381SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2382                unsigned int, vlen, unsigned int, flags,
2383                struct timespec __user *, timeout)
2384{
2385        int datagrams;
2386        struct timespec timeout_sys;
2387
2388        if (flags & MSG_CMSG_COMPAT)
2389                return -EINVAL;
2390
2391        if (!timeout)
2392                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2393
2394        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2395                return -EFAULT;
2396
2397        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2398
2399        if (datagrams > 0 &&
2400            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2401                datagrams = -EFAULT;
2402
2403        return datagrams;
2404}
2405
2406#ifdef __ARCH_WANT_SYS_SOCKETCALL
2407/* Argument list sizes for sys_socketcall */
2408#define AL(x) ((x) * sizeof(unsigned long))
2409static const unsigned char nargs[21] = {
2410        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2411        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2412        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2413        AL(4), AL(5), AL(4)
2414};
2415
2416#undef AL
2417
2418/*
2419 *      System call vectors.
2420 *
2421 *      Argument checking cleaned up. Saved 20% in size.
2422 *  This function doesn't need to set the kernel lock because
2423 *  it is set by the callees.
2424 */
2425
2426SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2427{
2428        unsigned long a[AUDITSC_ARGS];
2429        unsigned long a0, a1;
2430        int err;
2431        unsigned int len;
2432
2433        if (call < 1 || call > SYS_SENDMMSG)
2434                return -EINVAL;
2435
2436        len = nargs[call];
2437        if (len > sizeof(a))
2438                return -EINVAL;
2439
2440        /* copy_from_user should be SMP safe. */
2441        if (copy_from_user(a, args, len))
2442                return -EFAULT;
2443
2444        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2445        if (err)
2446                return err;
2447
2448        a0 = a[0];
2449        a1 = a[1];
2450
2451        switch (call) {
2452        case SYS_SOCKET:
2453                err = sys_socket(a0, a1, a[2]);
2454                break;
2455        case SYS_BIND:
2456                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2457                break;
2458        case SYS_CONNECT:
2459                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2460                break;
2461        case SYS_LISTEN:
2462                err = sys_listen(a0, a1);
2463                break;
2464        case SYS_ACCEPT:
2465                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2466                                  (int __user *)a[2], 0);
2467                break;
2468        case SYS_GETSOCKNAME:
2469                err =
2470                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2471                                    (int __user *)a[2]);
2472                break;
2473        case SYS_GETPEERNAME:
2474                err =
2475                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2476                                    (int __user *)a[2]);
2477                break;
2478        case SYS_SOCKETPAIR:
2479                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2480                break;
2481        case SYS_SEND:
2482                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2483                break;
2484        case SYS_SENDTO:
2485                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2486                                 (struct sockaddr __user *)a[4], a[5]);
2487                break;
2488        case SYS_RECV:
2489                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2490                break;
2491        case SYS_RECVFROM:
2492                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2493                                   (struct sockaddr __user *)a[4],
2494                                   (int __user *)a[5]);
2495                break;
2496        case SYS_SHUTDOWN:
2497                err = sys_shutdown(a0, a1);
2498                break;
2499        case SYS_SETSOCKOPT:
2500                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2501                break;
2502        case SYS_GETSOCKOPT:
2503                err =
2504                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2505                                   (int __user *)a[4]);
2506                break;
2507        case SYS_SENDMSG:
2508                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2509                break;
2510        case SYS_SENDMMSG:
2511                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2512                break;
2513        case SYS_RECVMSG:
2514                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2515                break;
2516        case SYS_RECVMMSG:
2517                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2518                                   (struct timespec __user *)a[4]);
2519                break;
2520        case SYS_ACCEPT4:
2521                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2522                                  (int __user *)a[2], a[3]);
2523                break;
2524        default:
2525                err = -EINVAL;
2526                break;
2527        }
2528        return err;
2529}
2530
2531#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2532
2533/**
2534 *      sock_register - add a socket protocol handler
2535 *      @ops: description of protocol
2536 *
2537 *      This function is called by a protocol handler that wants to
2538 *      advertise its address family, and have it linked into the
2539 *      socket interface. The value ops->family corresponds to the
2540 *      socket system call protocol family.
2541 */
2542int sock_register(const struct net_proto_family *ops)
2543{
2544        int err;
2545
2546        if (ops->family >= NPROTO) {
2547                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2548                return -ENOBUFS;
2549        }
2550
2551        spin_lock(&net_family_lock);
2552        if (rcu_dereference_protected(net_families[ops->family],
2553                                      lockdep_is_held(&net_family_lock)))
2554                err = -EEXIST;
2555        else {
2556                rcu_assign_pointer(net_families[ops->family], ops);
2557                err = 0;
2558        }
2559        spin_unlock(&net_family_lock);
2560
2561        pr_info("NET: Registered protocol family %d\n", ops->family);
2562        return err;
2563}
2564EXPORT_SYMBOL(sock_register);
2565
2566/**
2567 *      sock_unregister - remove a protocol handler
2568 *      @family: protocol family to remove
2569 *
2570 *      This function is called by a protocol handler that wants to
2571 *      remove its address family, and have it unlinked from the
2572 *      new socket creation.
2573 *
2574 *      If protocol handler is a module, then it can use module reference
2575 *      counts to protect against new references. If protocol handler is not
2576 *      a module then it needs to provide its own protection in
2577 *      the ops->create routine.
2578 */
2579void sock_unregister(int family)
2580{
2581        BUG_ON(family < 0 || family >= NPROTO);
2582
2583        spin_lock(&net_family_lock);
2584        RCU_INIT_POINTER(net_families[family], NULL);
2585        spin_unlock(&net_family_lock);
2586
2587        synchronize_rcu();
2588
2589        pr_info("NET: Unregistered protocol family %d\n", family);
2590}
2591EXPORT_SYMBOL(sock_unregister);
2592
2593static int __init sock_init(void)
2594{
2595        int err;
2596        /*
2597         *      Initialize the network sysctl infrastructure.
2598         */
2599        err = net_sysctl_init();
2600        if (err)
2601                goto out;
2602
2603        /*
2604         *      Initialize skbuff SLAB cache
2605         */
2606        skb_init();
2607
2608        /*
2609         *      Initialize the protocols module.
2610         */
2611
2612        init_inodecache();
2613
2614        err = register_filesystem(&sock_fs_type);
2615        if (err)
2616                goto out_fs;
2617        sock_mnt = kern_mount(&sock_fs_type);
2618        if (IS_ERR(sock_mnt)) {
2619                err = PTR_ERR(sock_mnt);
2620                goto out_mount;
2621        }
2622
2623        /* The real protocol initialization is performed in later initcalls.
2624         */
2625
2626#ifdef CONFIG_NETFILTER
2627        err = netfilter_init();
2628        if (err)
2629                goto out;
2630#endif
2631
2632        ptp_classifier_init();
2633
2634out:
2635        return err;
2636
2637out_mount:
2638        unregister_filesystem(&sock_fs_type);
2639out_fs:
2640        goto out;
2641}
2642
2643core_initcall(sock_init);       /* early initcall */
2644
2645#ifdef CONFIG_PROC_FS
2646void socket_seq_show(struct seq_file *seq)
2647{
2648        int cpu;
2649        int counter = 0;
2650
2651        for_each_possible_cpu(cpu)
2652            counter += per_cpu(sockets_in_use, cpu);
2653
2654        /* It can be negative, by the way. 8) */
2655        if (counter < 0)
2656                counter = 0;
2657
2658        seq_printf(seq, "sockets: used %d\n", counter);
2659}
2660#endif                          /* CONFIG_PROC_FS */
2661
2662#ifdef CONFIG_COMPAT
2663static int do_siocgstamp(struct net *net, struct socket *sock,
2664                         unsigned int cmd, void __user *up)
2665{
2666        mm_segment_t old_fs = get_fs();
2667        struct timeval ktv;
2668        int err;
2669
2670        set_fs(KERNEL_DS);
2671        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2672        set_fs(old_fs);
2673        if (!err)
2674                err = compat_put_timeval(&ktv, up);
2675
2676        return err;
2677}
2678
2679static int do_siocgstampns(struct net *net, struct socket *sock,
2680                           unsigned int cmd, void __user *up)
2681{
2682        mm_segment_t old_fs = get_fs();
2683        struct timespec kts;
2684        int err;
2685
2686        set_fs(KERNEL_DS);
2687        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2688        set_fs(old_fs);
2689        if (!err)
2690                err = compat_put_timespec(&kts, up);
2691
2692        return err;
2693}
2694
2695static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2696{
2697        struct ifreq __user *uifr;
2698        int err;
2699
2700        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2701        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2702                return -EFAULT;
2703
2704        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2705        if (err)
2706                return err;
2707
2708        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2709                return -EFAULT;
2710
2711        return 0;
2712}
2713
2714static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2715{
2716        struct compat_ifconf ifc32;
2717        struct ifconf ifc;
2718        struct ifconf __user *uifc;
2719        struct compat_ifreq __user *ifr32;
2720        struct ifreq __user *ifr;
2721        unsigned int i, j;
2722        int err;
2723
2724        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2725                return -EFAULT;
2726
2727        memset(&ifc, 0, sizeof(ifc));
2728        if (ifc32.ifcbuf == 0) {
2729                ifc32.ifc_len = 0;
2730                ifc.ifc_len = 0;
2731                ifc.ifc_req = NULL;
2732                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2733        } else {
2734                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2735                        sizeof(struct ifreq);
2736                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2737                ifc.ifc_len = len;
2738                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2739                ifr32 = compat_ptr(ifc32.ifcbuf);
2740                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2741                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2742                                return -EFAULT;
2743                        ifr++;
2744                        ifr32++;
2745                }
2746        }
2747        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2748                return -EFAULT;
2749
2750        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2751        if (err)
2752                return err;
2753
2754        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2755                return -EFAULT;
2756
2757        ifr = ifc.ifc_req;
2758        ifr32 = compat_ptr(ifc32.ifcbuf);
2759        for (i = 0, j = 0;
2760             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2761             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2762                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2763                        return -EFAULT;
2764                ifr32++;
2765                ifr++;
2766        }
2767
2768        if (ifc32.ifcbuf == 0) {
2769                /* Translate from 64-bit structure multiple to
2770                 * a 32-bit one.
2771                 */
2772                i = ifc.ifc_len;
2773                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2774                ifc32.ifc_len = i;
2775        } else {
2776                ifc32.ifc_len = i;
2777        }
2778        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2779                return -EFAULT;
2780
2781        return 0;
2782}
2783
2784static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2785{
2786        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2787        bool convert_in = false, convert_out = false;
2788        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2789        struct ethtool_rxnfc __user *rxnfc;
2790        struct ifreq __user *ifr;
2791        u32 rule_cnt = 0, actual_rule_cnt;
2792        u32 ethcmd;
2793        u32 data;
2794        int ret;
2795
2796        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2797                return -EFAULT;
2798
2799        compat_rxnfc = compat_ptr(data);
2800
2801        if (get_user(ethcmd, &compat_rxnfc->cmd))
2802                return -EFAULT;
2803
2804        /* Most ethtool structures are defined without padding.
2805         * Unfortunately struct ethtool_rxnfc is an exception.
2806         */
2807        switch (ethcmd) {
2808        default:
2809                break;
2810        case ETHTOOL_GRXCLSRLALL:
2811                /* Buffer size is variable */
2812                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2813                        return -EFAULT;
2814                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2815                        return -ENOMEM;
2816                buf_size += rule_cnt * sizeof(u32);
2817                /* fall through */
2818        case ETHTOOL_GRXRINGS:
2819        case ETHTOOL_GRXCLSRLCNT:
2820        case ETHTOOL_GRXCLSRULE:
2821        case ETHTOOL_SRXCLSRLINS:
2822                convert_out = true;
2823                /* fall through */
2824        case ETHTOOL_SRXCLSRLDEL:
2825                buf_size += sizeof(struct ethtool_rxnfc);
2826                convert_in = true;
2827                break;
2828        }
2829
2830        ifr = compat_alloc_user_space(buf_size);
2831        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2832
2833        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2834                return -EFAULT;
2835
2836        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2837                     &ifr->ifr_ifru.ifru_data))
2838                return -EFAULT;
2839
2840        if (convert_in) {
2841                /* We expect there to be holes between fs.m_ext and
2842                 * fs.ring_cookie and at the end of fs, but nowhere else.
2843                 */
2844                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2845                             sizeof(compat_rxnfc->fs.m_ext) !=
2846                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2847                             sizeof(rxnfc->fs.m_ext));
2848                BUILD_BUG_ON(
2849                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2850                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2851                        offsetof(struct ethtool_rxnfc, fs.location) -
2852                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2853
2854                if (copy_in_user(rxnfc, compat_rxnfc,
2855                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2856                                 (void __user *)rxnfc) ||
2857                    copy_in_user(&rxnfc->fs.ring_cookie,
2858                                 &compat_rxnfc->fs.ring_cookie,
2859                                 (void __user *)(&rxnfc->fs.location + 1) -
2860                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2861                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2862                                 sizeof(rxnfc->rule_cnt)))
2863                        return -EFAULT;
2864        }
2865
2866        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2867        if (ret)
2868                return ret;
2869
2870        if (convert_out) {
2871                if (copy_in_user(compat_rxnfc, rxnfc,
2872                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2873                                 (const void __user *)rxnfc) ||
2874                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2875                                 &rxnfc->fs.ring_cookie,
2876                                 (const void __user *)(&rxnfc->fs.location + 1) -
2877                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2878                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2879                                 sizeof(rxnfc->rule_cnt)))
2880                        return -EFAULT;
2881
2882                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2883                        /* As an optimisation, we only copy the actual
2884                         * number of rules that the underlying
2885                         * function returned.  Since Mallory might
2886                         * change the rule count in user memory, we
2887                         * check that it is less than the rule count
2888                         * originally given (as the user buffer size),
2889                         * which has been range-checked.
2890                         */
2891                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2892                                return -EFAULT;
2893                        if (actual_rule_cnt < rule_cnt)
2894                                rule_cnt = actual_rule_cnt;
2895                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2896                                         &rxnfc->rule_locs[0],
2897                                         rule_cnt * sizeof(u32)))
2898                                return -EFAULT;
2899                }
2900        }
2901
2902        return 0;
2903}
2904
2905static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2906{
2907        void __user *uptr;
2908        compat_uptr_t uptr32;
2909        struct ifreq __user *uifr;
2910
2911        uifr = compat_alloc_user_space(sizeof(*uifr));
2912        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2913                return -EFAULT;
2914
2915        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2916                return -EFAULT;
2917
2918        uptr = compat_ptr(uptr32);
2919
2920        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2921                return -EFAULT;
2922
2923        return dev_ioctl(net, SIOCWANDEV, uifr);
2924}
2925
2926static int bond_ioctl(struct net *net, unsigned int cmd,
2927                         struct compat_ifreq __user *ifr32)
2928{
2929        struct ifreq kifr;
2930        mm_segment_t old_fs;
2931        int err;
2932
2933        switch (cmd) {
2934        case SIOCBONDENSLAVE:
2935        case SIOCBONDRELEASE:
2936        case SIOCBONDSETHWADDR:
2937        case SIOCBONDCHANGEACTIVE:
2938                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2939                        return -EFAULT;
2940
2941                old_fs = get_fs();
2942                set_fs(KERNEL_DS);
2943                err = dev_ioctl(net, cmd,
2944                                (struct ifreq __user __force *) &kifr);
2945                set_fs(old_fs);
2946
2947                return err;
2948        default:
2949                return -ENOIOCTLCMD;
2950        }
2951}
2952
2953/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2954static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2955                                 struct compat_ifreq __user *u_ifreq32)
2956{
2957        struct ifreq __user *u_ifreq64;
2958        char tmp_buf[IFNAMSIZ];
2959        void __user *data64;
2960        u32 data32;
2961
2962        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2963                           IFNAMSIZ))
2964                return -EFAULT;
2965        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2966                return -EFAULT;
2967        data64 = compat_ptr(data32);
2968
2969        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2970
2971        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2972                         IFNAMSIZ))
2973                return -EFAULT;
2974        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2975                return -EFAULT;
2976
2977        return dev_ioctl(net, cmd, u_ifreq64);
2978}
2979
2980static int dev_ifsioc(struct net *net, struct socket *sock,
2981                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2982{
2983        struct ifreq __user *uifr;
2984        int err;
2985
2986        uifr = compat_alloc_user_space(sizeof(*uifr));
2987        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2988                return -EFAULT;
2989
2990        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2991
2992        if (!err) {
2993                switch (cmd) {
2994                case SIOCGIFFLAGS:
2995                case SIOCGIFMETRIC:
2996                case SIOCGIFMTU:
2997                case SIOCGIFMEM:
2998                case SIOCGIFHWADDR:
2999                case SIOCGIFINDEX:
3000                case SIOCGIFADDR:
3001                case SIOCGIFBRDADDR:
3002                case SIOCGIFDSTADDR:
3003                case SIOCGIFNETMASK:
3004                case SIOCGIFPFLAGS:
3005                case SIOCGIFTXQLEN:
3006                case SIOCGMIIPHY:
3007                case SIOCGMIIREG:
3008                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3009                                err = -EFAULT;
3010                        break;
3011                }
3012        }
3013        return err;
3014}
3015
3016static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017                        struct compat_ifreq __user *uifr32)
3018{
3019        struct ifreq ifr;
3020        struct compat_ifmap __user *uifmap32;
3021        mm_segment_t old_fs;
3022        int err;
3023
3024        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3025        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3026        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3027        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3028        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3029        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3030        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3031        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3032        if (err)
3033                return -EFAULT;
3034
3035        old_fs = get_fs();
3036        set_fs(KERNEL_DS);
3037        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3038        set_fs(old_fs);
3039
3040        if (cmd == SIOCGIFMAP && !err) {
3041                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3042                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3043                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3044                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3045                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3046                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3047                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3048                if (err)
3049                        err = -EFAULT;
3050        }
3051        return err;
3052}
3053
3054struct rtentry32 {
3055        u32             rt_pad1;
3056        struct sockaddr rt_dst;         /* target address               */
3057        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3058        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3059        unsigned short  rt_flags;
3060        short           rt_pad2;
3061        u32             rt_pad3;
3062        unsigned char   rt_tos;
3063        unsigned char   rt_class;
3064        short           rt_pad4;
3065        short           rt_metric;      /* +1 for binary compatibility! */
3066        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3067        u32             rt_mtu;         /* per route MTU/Window         */
3068        u32             rt_window;      /* Window clamping              */
3069        unsigned short  rt_irtt;        /* Initial RTT                  */
3070};
3071
3072struct in6_rtmsg32 {
3073        struct in6_addr         rtmsg_dst;
3074        struct in6_addr         rtmsg_src;
3075        struct in6_addr         rtmsg_gateway;
3076        u32                     rtmsg_type;
3077        u16                     rtmsg_dst_len;
3078        u16                     rtmsg_src_len;
3079        u32                     rtmsg_metric;
3080        u32                     rtmsg_info;
3081        u32                     rtmsg_flags;
3082        s32                     rtmsg_ifindex;
3083};
3084
3085static int routing_ioctl(struct net *net, struct socket *sock,
3086                         unsigned int cmd, void __user *argp)
3087{
3088        int ret;
3089        void *r = NULL;
3090        struct in6_rtmsg r6;
3091        struct rtentry r4;
3092        char devname[16];
3093        u32 rtdev;
3094        mm_segment_t old_fs = get_fs();
3095
3096        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3097                struct in6_rtmsg32 __user *ur6 = argp;
3098                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3099                        3 * sizeof(struct in6_addr));
3100                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3101                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3102                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3103                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3104                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3105                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3106                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3107
3108                r = (void *) &r6;
3109        } else { /* ipv4 */
3110                struct rtentry32 __user *ur4 = argp;
3111                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3112                                        3 * sizeof(struct sockaddr));
3113                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3114                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3115                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3116                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3117                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3118                ret |= get_user(rtdev, &(ur4->rt_dev));
3119                if (rtdev) {
3120                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3121                        r4.rt_dev = (char __user __force *)devname;
3122                        devname[15] = 0;
3123                } else
3124                        r4.rt_dev = NULL;
3125
3126                r = (void *) &r4;
3127        }
3128
3129        if (ret) {
3130                ret = -EFAULT;
3131                goto out;
3132        }
3133
3134        set_fs(KERNEL_DS);
3135        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3136        set_fs(old_fs);
3137
3138out:
3139        return ret;
3140}
3141
3142/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3143 * for some operations; this forces use of the newer bridge-utils that
3144 * use compatible ioctls
3145 */
3146static int old_bridge_ioctl(compat_ulong_t __user *argp)
3147{
3148        compat_ulong_t tmp;
3149
3150        if (get_user(tmp, argp))
3151                return -EFAULT;
3152        if (tmp == BRCTL_GET_VERSION)
3153                return BRCTL_VERSION + 1;
3154        return -EINVAL;
3155}
3156
3157static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3158                         unsigned int cmd, unsigned long arg)
3159{
3160        void __user *argp = compat_ptr(arg);
3161        struct sock *sk = sock->sk;
3162        struct net *net = sock_net(sk);
3163
3164        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3165                return compat_ifr_data_ioctl(net, cmd, argp);
3166
3167        switch (cmd) {
3168        case SIOCSIFBR:
3169        case SIOCGIFBR:
3170                return old_bridge_ioctl(argp);
3171        case SIOCGIFNAME:
3172                return dev_ifname32(net, argp);
3173        case SIOCGIFCONF:
3174                return dev_ifconf(net, argp);
3175        case SIOCETHTOOL:
3176                return ethtool_ioctl(net, argp);
3177        case SIOCWANDEV:
3178                return compat_siocwandev(net, argp);
3179        case SIOCGIFMAP:
3180        case SIOCSIFMAP:
3181                return compat_sioc_ifmap(net, cmd, argp);
3182        case SIOCBONDENSLAVE:
3183        case SIOCBONDRELEASE:
3184        case SIOCBONDSETHWADDR:
3185        case SIOCBONDCHANGEACTIVE:
3186                return bond_ioctl(net, cmd, argp);
3187        case SIOCADDRT:
3188        case SIOCDELRT:
3189                return routing_ioctl(net, sock, cmd, argp);
3190        case SIOCGSTAMP:
3191                return do_siocgstamp(net, sock, cmd, argp);
3192        case SIOCGSTAMPNS:
3193                return do_siocgstampns(net, sock, cmd, argp);
3194        case SIOCBONDSLAVEINFOQUERY:
3195        case SIOCBONDINFOQUERY:
3196        case SIOCSHWTSTAMP:
3197        case SIOCGHWTSTAMP:
3198                return compat_ifr_data_ioctl(net, cmd, argp);
3199
3200        case FIOSETOWN:
3201        case SIOCSPGRP:
3202        case FIOGETOWN:
3203        case SIOCGPGRP:
3204        case SIOCBRADDBR:
3205        case SIOCBRDELBR:
3206        case SIOCGIFVLAN:
3207        case SIOCSIFVLAN:
3208        case SIOCADDDLCI:
3209        case SIOCDELDLCI:
3210        case SIOCGSKNS:
3211                return sock_ioctl(file, cmd, arg);
3212
3213        case SIOCGIFFLAGS:
3214        case SIOCSIFFLAGS:
3215        case SIOCGIFMETRIC:
3216        case SIOCSIFMETRIC:
3217        case SIOCGIFMTU:
3218        case SIOCSIFMTU:
3219        case SIOCGIFMEM:
3220        case SIOCSIFMEM:
3221        case SIOCGIFHWADDR:
3222        case SIOCSIFHWADDR:
3223        case SIOCADDMULTI:
3224        case SIOCDELMULTI:
3225        case SIOCGIFINDEX:
3226        case SIOCGIFADDR:
3227        case SIOCSIFADDR:
3228        case SIOCSIFHWBROADCAST:
3229        case SIOCDIFADDR:
3230        case SIOCGIFBRDADDR:
3231        case SIOCSIFBRDADDR:
3232        case SIOCGIFDSTADDR:
3233        case SIOCSIFDSTADDR:
3234        case SIOCGIFNETMASK:
3235        case SIOCSIFNETMASK:
3236        case SIOCSIFPFLAGS:
3237        case SIOCGIFPFLAGS:
3238        case SIOCGIFTXQLEN:
3239        case SIOCSIFTXQLEN:
3240        case SIOCBRADDIF:
3241        case SIOCBRDELIF:
3242        case SIOCSIFNAME:
3243        case SIOCGMIIPHY:
3244        case SIOCGMIIREG:
3245        case SIOCSMIIREG:
3246                return dev_ifsioc(net, sock, cmd, argp);
3247
3248        case SIOCSARP:
3249        case SIOCGARP:
3250        case SIOCDARP:
3251        case SIOCATMARK:
3252                return sock_do_ioctl(net, sock, cmd, arg);
3253        }
3254
3255        return -ENOIOCTLCMD;
3256}
3257
3258static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3259                              unsigned long arg)
3260{
3261        struct socket *sock = file->private_data;
3262        int ret = -ENOIOCTLCMD;
3263        struct sock *sk;
3264        struct net *net;
3265
3266        sk = sock->sk;
3267        net = sock_net(sk);
3268
3269        if (sock->ops->compat_ioctl)
3270                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3271
3272        if (ret == -ENOIOCTLCMD &&
3273            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3274                ret = compat_wext_handle_ioctl(net, cmd, arg);
3275
3276        if (ret == -ENOIOCTLCMD)
3277                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3278
3279        return ret;
3280}
3281#endif
3282
3283int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3284{
3285        return sock->ops->bind(sock, addr, addrlen);
3286}
3287EXPORT_SYMBOL(kernel_bind);
3288
3289int kernel_listen(struct socket *sock, int backlog)
3290{
3291        return sock->ops->listen(sock, backlog);
3292}
3293EXPORT_SYMBOL(kernel_listen);
3294
3295int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3296{
3297        struct sock *sk = sock->sk;
3298        int err;
3299
3300        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3301                               newsock);
3302        if (err < 0)
3303                goto done;
3304
3305        err = sock->ops->accept(sock, *newsock, flags, true);
3306        if (err < 0) {
3307                sock_release(*newsock);
3308                *newsock = NULL;
3309                goto done;
3310        }
3311
3312        (*newsock)->ops = sock->ops;
3313        __module_get((*newsock)->ops->owner);
3314
3315done:
3316        return err;
3317}
3318EXPORT_SYMBOL(kernel_accept);
3319
3320int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3321                   int flags)
3322{
3323        return sock->ops->connect(sock, addr, addrlen, flags);
3324}
3325EXPORT_SYMBOL(kernel_connect);
3326
3327int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3328                         int *addrlen)
3329{
3330        return sock->ops->getname(sock, addr, addrlen, 0);
3331}
3332EXPORT_SYMBOL(kernel_getsockname);
3333
3334int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3335                         int *addrlen)
3336{
3337        return sock->ops->getname(sock, addr, addrlen, 1);
3338}
3339EXPORT_SYMBOL(kernel_getpeername);
3340
3341int kernel_getsockopt(struct socket *sock, int level, int optname,
3342                        char *optval, int *optlen)
3343{
3344        mm_segment_t oldfs = get_fs();
3345        char __user *uoptval;
3346        int __user *uoptlen;
3347        int err;
3348
3349        uoptval = (char __user __force *) optval;
3350        uoptlen = (int __user __force *) optlen;
3351
3352        set_fs(KERNEL_DS);
3353        if (level == SOL_SOCKET)
3354                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3355        else
3356                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3357                                            uoptlen);
3358        set_fs(oldfs);
3359        return err;
3360}
3361EXPORT_SYMBOL(kernel_getsockopt);
3362
3363int kernel_setsockopt(struct socket *sock, int level, int optname,
3364                        char *optval, unsigned int optlen)
3365{
3366        mm_segment_t oldfs = get_fs();
3367        char __user *uoptval;
3368        int err;
3369
3370        uoptval = (char __user __force *) optval;
3371
3372        set_fs(KERNEL_DS);
3373        if (level == SOL_SOCKET)
3374                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3375        else
3376                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3377                                            optlen);
3378        set_fs(oldfs);
3379        return err;
3380}
3381EXPORT_SYMBOL(kernel_setsockopt);
3382
3383int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3384                    size_t size, int flags)
3385{
3386        if (sock->ops->sendpage)
3387                return sock->ops->sendpage(sock, page, offset, size, flags);
3388
3389        return sock_no_sendpage(sock, page, offset, size, flags);
3390}
3391EXPORT_SYMBOL(kernel_sendpage);
3392
3393int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3394                           size_t size, int flags)
3395{
3396        struct socket *sock = sk->sk_socket;
3397
3398        if (sock->ops->sendpage_locked)
3399                return sock->ops->sendpage_locked(sk, page, offset, size,
3400                                                  flags);
3401
3402        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3403}
3404EXPORT_SYMBOL(kernel_sendpage_locked);
3405
3406int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3407{
3408        mm_segment_t oldfs = get_fs();
3409        int err;
3410
3411        set_fs(KERNEL_DS);
3412        err = sock->ops->ioctl(sock, cmd, arg);
3413        set_fs(oldfs);
3414
3415        return err;
3416}
3417EXPORT_SYMBOL(kernel_sock_ioctl);
3418
3419int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3420{
3421        return sock->ops->shutdown(sock, how);
3422}
3423EXPORT_SYMBOL(kernel_sock_shutdown);
3424
3425/* This routine returns the IP overhead imposed by a socket i.e.
3426 * the length of the underlying IP header, depending on whether
3427 * this is an IPv4 or IPv6 socket and the length from IP options turned
3428 * on at the socket. Assumes that the caller has a lock on the socket.
3429 */
3430u32 kernel_sock_ip_overhead(struct sock *sk)
3431{
3432        struct inet_sock *inet;
3433        struct ip_options_rcu *opt;
3434        u32 overhead = 0;
3435#if IS_ENABLED(CONFIG_IPV6)
3436        struct ipv6_pinfo *np;
3437        struct ipv6_txoptions *optv6 = NULL;
3438#endif /* IS_ENABLED(CONFIG_IPV6) */
3439
3440        if (!sk)
3441                return overhead;
3442
3443        switch (sk->sk_family) {
3444        case AF_INET:
3445                inet = inet_sk(sk);
3446                overhead += sizeof(struct iphdr);
3447                opt = rcu_dereference_protected(inet->inet_opt,
3448                                                sock_owned_by_user(sk));
3449                if (opt)
3450                        overhead += opt->opt.optlen;
3451                return overhead;
3452#if IS_ENABLED(CONFIG_IPV6)
3453        case AF_INET6:
3454                np = inet6_sk(sk);
3455                overhead += sizeof(struct ipv6hdr);
3456                if (np)
3457                        optv6 = rcu_dereference_protected(np->opt,
3458                                                          sock_owned_by_user(sk));
3459                if (optv6)
3460                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3461                return overhead;
3462#endif /* IS_ENABLED(CONFIG_IPV6) */
3463        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3464                return overhead;
3465        }
3466}
3467EXPORT_SYMBOL(kernel_sock_ip_overhead);
3468