linux/arch/cris/arch-v32/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/cris/arch-v32/kernel/time.c
   4 *
   5 *  Copyright (C) 2003-2010 Axis Communications AB
   6 *
   7 */
   8
   9#include <linux/timex.h>
  10#include <linux/time.h>
  11#include <linux/clocksource.h>
  12#include <linux/clockchips.h>
  13#include <linux/interrupt.h>
  14#include <linux/swap.h>
  15#include <linux/sched.h>
  16#include <linux/init.h>
  17#include <linux/threads.h>
  18#include <linux/cpufreq.h>
  19#include <linux/sched_clock.h>
  20#include <linux/mm.h>
  21#include <asm/types.h>
  22#include <asm/signal.h>
  23#include <asm/io.h>
  24#include <asm/delay.h>
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27
  28#include <hwregs/reg_map.h>
  29#include <hwregs/reg_rdwr.h>
  30#include <hwregs/timer_defs.h>
  31#include <hwregs/intr_vect_defs.h>
  32#ifdef CONFIG_CRIS_MACH_ARTPEC3
  33#include <hwregs/clkgen_defs.h>
  34#endif
  35
  36/* Watchdog defines */
  37#define ETRAX_WD_KEY_MASK       0x7F /* key is 7 bit */
  38#define ETRAX_WD_HZ             763 /* watchdog counts at 763 Hz */
  39/* Number of 763 counts before watchdog bites */
  40#define ETRAX_WD_CNT            ((2*ETRAX_WD_HZ)/HZ + 1)
  41
  42#define CRISV32_TIMER_FREQ      (100000000lu)
  43
  44unsigned long timer_regs[NR_CPUS] =
  45{
  46        regi_timer0,
  47};
  48
  49extern int set_rtc_mmss(unsigned long nowtime);
  50
  51#ifdef CONFIG_CPU_FREQ
  52static int cris_time_freq_notifier(struct notifier_block *nb,
  53                                   unsigned long val, void *data);
  54
  55static struct notifier_block cris_time_freq_notifier_block = {
  56        .notifier_call = cris_time_freq_notifier,
  57};
  58#endif
  59
  60unsigned long get_ns_in_jiffie(void)
  61{
  62        reg_timer_r_tmr0_data data;
  63        unsigned long ns;
  64
  65        data = REG_RD(timer, regi_timer0, r_tmr0_data);
  66        ns = (TIMER0_DIV - data) * 10;
  67        return ns;
  68}
  69
  70/* From timer MDS describing the hardware watchdog:
  71 * 4.3.1 Watchdog Operation
  72 * The watchdog timer is an 8-bit timer with a configurable start value.
  73 * Once started the watchdog counts downwards with a frequency of 763 Hz
  74 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
  75 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
  76 * chip.
  77 */
  78/* This gives us 1.3 ms to do something useful when the NMI comes */
  79
  80/* Right now, starting the watchdog is the same as resetting it */
  81#define start_watchdog reset_watchdog
  82
  83#if defined(CONFIG_ETRAX_WATCHDOG)
  84static short int watchdog_key = 42;  /* arbitrary 7 bit number */
  85#endif
  86
  87/* Number of pages to consider "out of memory". It is normal that the memory
  88 * is used though, so set this really low. */
  89#define WATCHDOG_MIN_FREE_PAGES 8
  90
  91#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
  92/* for reliable NICE_DOGGY behaviour */
  93static int bite_in_progress;
  94#endif
  95
  96void reset_watchdog(void)
  97{
  98#if defined(CONFIG_ETRAX_WATCHDOG)
  99        reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
 100
 101#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
 102        if (unlikely(bite_in_progress))
 103                return;
 104#endif
 105        /* Only keep watchdog happy as long as we have memory left! */
 106        if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
 107                /* Reset the watchdog with the inverse of the old key */
 108                /* Invert key, which is 7 bits */
 109                watchdog_key ^= ETRAX_WD_KEY_MASK;
 110                wd_ctrl.cnt = ETRAX_WD_CNT;
 111                wd_ctrl.cmd = regk_timer_start;
 112                wd_ctrl.key = watchdog_key;
 113                REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
 114        }
 115#endif
 116}
 117
 118/* stop the watchdog - we still need the correct key */
 119
 120void stop_watchdog(void)
 121{
 122#if defined(CONFIG_ETRAX_WATCHDOG)
 123        reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
 124        watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
 125        wd_ctrl.cnt = ETRAX_WD_CNT;
 126        wd_ctrl.cmd = regk_timer_stop;
 127        wd_ctrl.key = watchdog_key;
 128        REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
 129#endif
 130}
 131
 132extern void show_registers(struct pt_regs *regs);
 133
 134void handle_watchdog_bite(struct pt_regs *regs)
 135{
 136#if defined(CONFIG_ETRAX_WATCHDOG)
 137        extern int cause_of_death;
 138
 139        nmi_enter();
 140        oops_in_progress = 1;
 141#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
 142        bite_in_progress = 1;
 143#endif
 144        printk(KERN_WARNING "Watchdog bite\n");
 145
 146        /* Check if forced restart or unexpected watchdog */
 147        if (cause_of_death == 0xbedead) {
 148#ifdef CONFIG_CRIS_MACH_ARTPEC3
 149                /* There is a bug in Artpec-3 (voodoo TR 78) that requires
 150                 * us to go to lower frequency for the reset to be reliable
 151                 */
 152                reg_clkgen_rw_clk_ctrl ctrl =
 153                        REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
 154                ctrl.pll = 0;
 155                REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
 156#endif
 157                while(1);
 158        }
 159
 160        /* Unexpected watchdog, stop the watchdog and dump registers. */
 161        stop_watchdog();
 162        printk(KERN_WARNING "Oops: bitten by watchdog\n");
 163        show_registers(regs);
 164        oops_in_progress = 0;
 165        printk("\n"); /* Flush mtdoops.  */
 166#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
 167        reset_watchdog();
 168#endif
 169        while(1) /* nothing */;
 170#endif
 171}
 172
 173extern void cris_profile_sample(struct pt_regs *regs);
 174static void __iomem *timer_base;
 175
 176static int crisv32_clkevt_switch_state(struct clock_event_device *dev)
 177{
 178        reg_timer_rw_tmr0_ctrl ctrl = {
 179                .op = regk_timer_hold,
 180                .freq = regk_timer_f100,
 181        };
 182
 183        REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
 184        return 0;
 185}
 186
 187static int crisv32_clkevt_next_event(unsigned long evt,
 188                                     struct clock_event_device *dev)
 189{
 190        reg_timer_rw_tmr0_ctrl ctrl = {
 191                .op = regk_timer_ld,
 192                .freq = regk_timer_f100,
 193        };
 194
 195        REG_WR(timer, timer_base, rw_tmr0_div, evt);
 196        REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
 197
 198        ctrl.op = regk_timer_run;
 199        REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
 200
 201        return 0;
 202}
 203
 204static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id)
 205{
 206        struct clock_event_device *evt = dev_id;
 207        reg_timer_rw_tmr0_ctrl ctrl = {
 208                .op = regk_timer_hold,
 209                .freq = regk_timer_f100,
 210        };
 211        reg_timer_rw_ack_intr ack = { .tmr0 = 1 };
 212        reg_timer_r_masked_intr intr;
 213
 214        intr = REG_RD(timer, timer_base, r_masked_intr);
 215        if (!intr.tmr0)
 216                return IRQ_NONE;
 217
 218        REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
 219        REG_WR(timer, timer_base, rw_ack_intr, ack);
 220
 221        reset_watchdog();
 222#ifdef CONFIG_SYSTEM_PROFILER
 223        cris_profile_sample(get_irq_regs());
 224#endif
 225
 226        evt->event_handler(evt);
 227
 228        return IRQ_HANDLED;
 229}
 230
 231static struct clock_event_device crisv32_clockevent = {
 232        .name = "crisv32-timer",
 233        .rating = 300,
 234        .features = CLOCK_EVT_FEAT_ONESHOT,
 235        .set_state_oneshot = crisv32_clkevt_switch_state,
 236        .set_state_shutdown = crisv32_clkevt_switch_state,
 237        .tick_resume = crisv32_clkevt_switch_state,
 238        .set_next_event = crisv32_clkevt_next_event,
 239};
 240
 241/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
 242static struct irqaction irq_timer = {
 243        .handler = crisv32_timer_interrupt,
 244        .flags = IRQF_TIMER | IRQF_SHARED,
 245        .name = "crisv32-timer",
 246        .dev_id = &crisv32_clockevent,
 247};
 248
 249static u64 notrace crisv32_timer_sched_clock(void)
 250{
 251        return REG_RD(timer, timer_base, r_time);
 252}
 253
 254static void __init crisv32_timer_init(void)
 255{
 256        reg_timer_rw_intr_mask timer_intr_mask;
 257        reg_timer_rw_tmr0_ctrl ctrl = {
 258                .op = regk_timer_hold,
 259                .freq = regk_timer_f100,
 260        };
 261
 262        REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
 263
 264        timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask);
 265        timer_intr_mask.tmr0 = 1;
 266        REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask);
 267}
 268
 269void __init time_init(void)
 270{
 271        int irq;
 272        int ret;
 273
 274        /* Probe for the RTC and read it if it exists.
 275         * Before the RTC can be probed the loops_per_usec variable needs
 276         * to be initialized to make usleep work. A better value for
 277         * loops_per_usec is calculated by the kernel later once the
 278         * clock has started.
 279         */
 280        loops_per_usec = 50;
 281
 282        irq = TIMER0_INTR_VECT;
 283        timer_base = (void __iomem *) regi_timer0;
 284
 285        crisv32_timer_init();
 286
 287        sched_clock_register(crisv32_timer_sched_clock, 32,
 288                             CRISV32_TIMER_FREQ);
 289
 290        clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time,
 291                              "crisv32-timer", CRISV32_TIMER_FREQ,
 292                              300, 32, clocksource_mmio_readl_up);
 293
 294        crisv32_clockevent.cpumask = cpu_possible_mask;
 295        crisv32_clockevent.irq = irq;
 296
 297        ret = setup_irq(irq, &irq_timer);
 298        if (ret)
 299                pr_warn("failed to setup irq %d\n", irq);
 300
 301        clockevents_config_and_register(&crisv32_clockevent,
 302                                        CRISV32_TIMER_FREQ,
 303                                        2, 0xffffffff);
 304
 305        /* Enable watchdog if we should use one. */
 306
 307#if defined(CONFIG_ETRAX_WATCHDOG)
 308        printk(KERN_INFO "Enabling watchdog...\n");
 309        start_watchdog();
 310
 311        /* If we use the hardware watchdog, we want to trap it as an NMI
 312         * and dump registers before it resets us.  For this to happen, we
 313         * must set the "m" NMI enable flag (which once set, is unset only
 314         * when an NMI is taken). */
 315        {
 316                unsigned long flags;
 317                local_save_flags(flags);
 318                flags |= (1<<30); /* NMI M flag is at bit 30 */
 319                local_irq_restore(flags);
 320        }
 321#endif
 322
 323#ifdef CONFIG_CPU_FREQ
 324        cpufreq_register_notifier(&cris_time_freq_notifier_block,
 325                                  CPUFREQ_TRANSITION_NOTIFIER);
 326#endif
 327}
 328
 329#ifdef CONFIG_CPU_FREQ
 330static int cris_time_freq_notifier(struct notifier_block *nb,
 331                                   unsigned long val, void *data)
 332{
 333        struct cpufreq_freqs *freqs = data;
 334        if (val == CPUFREQ_POSTCHANGE) {
 335                reg_timer_r_tmr0_data data;
 336                reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
 337                do {
 338                        data = REG_RD(timer, timer_regs[freqs->cpu],
 339                                r_tmr0_data);
 340                } while (data > 20);
 341                REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
 342        }
 343        return 0;
 344}
 345#endif
 346