linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/kernel.h>
  22#include <linux/mm.h>
  23#include <linux/stddef.h>
  24#include <linux/unistd.h>
  25#include <linux/ptrace.h>
  26#include <linux/user.h>
  27#include <linux/interrupt.h>
  28#include <linux/init.h>
  29#include <linux/extable.h>
  30#include <linux/module.h>       /* print_modules */
  31#include <linux/prctl.h>
  32#include <linux/delay.h>
  33#include <linux/kprobes.h>
  34#include <linux/kexec.h>
  35#include <linux/backlight.h>
  36#include <linux/bug.h>
  37#include <linux/kdebug.h>
  38#include <linux/ratelimit.h>
  39#include <linux/context_tracking.h>
  40
  41#include <asm/emulated_ops.h>
  42#include <asm/pgtable.h>
  43#include <linux/uaccess.h>
  44#include <asm/debugfs.h>
  45#include <asm/io.h>
  46#include <asm/machdep.h>
  47#include <asm/rtas.h>
  48#include <asm/pmc.h>
  49#include <asm/reg.h>
  50#ifdef CONFIG_PMAC_BACKLIGHT
  51#include <asm/backlight.h>
  52#endif
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/processor.h>
  56#include <asm/tm.h>
  57#endif
  58#include <asm/kexec.h>
  59#include <asm/ppc-opcode.h>
  60#include <asm/rio.h>
  61#include <asm/fadump.h>
  62#include <asm/switch_to.h>
  63#include <asm/tm.h>
  64#include <asm/debug.h>
  65#include <asm/asm-prototypes.h>
  66#include <asm/hmi.h>
  67#include <sysdev/fsl_pci.h>
  68#include <asm/kprobes.h>
  69
  70#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  71int (*__debugger)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  73int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  78
  79EXPORT_SYMBOL(__debugger);
  80EXPORT_SYMBOL(__debugger_ipi);
  81EXPORT_SYMBOL(__debugger_bpt);
  82EXPORT_SYMBOL(__debugger_sstep);
  83EXPORT_SYMBOL(__debugger_iabr_match);
  84EXPORT_SYMBOL(__debugger_break_match);
  85EXPORT_SYMBOL(__debugger_fault_handler);
  86#endif
  87
  88/* Transactional Memory trap debug */
  89#ifdef TM_DEBUG_SW
  90#define TM_DEBUG(x...) printk(KERN_INFO x)
  91#else
  92#define TM_DEBUG(x...) do { } while(0)
  93#endif
  94
  95/*
  96 * Trap & Exception support
  97 */
  98
  99#ifdef CONFIG_PMAC_BACKLIGHT
 100static void pmac_backlight_unblank(void)
 101{
 102        mutex_lock(&pmac_backlight_mutex);
 103        if (pmac_backlight) {
 104                struct backlight_properties *props;
 105
 106                props = &pmac_backlight->props;
 107                props->brightness = props->max_brightness;
 108                props->power = FB_BLANK_UNBLANK;
 109                backlight_update_status(pmac_backlight);
 110        }
 111        mutex_unlock(&pmac_backlight_mutex);
 112}
 113#else
 114static inline void pmac_backlight_unblank(void) { }
 115#endif
 116
 117/*
 118 * If oops/die is expected to crash the machine, return true here.
 119 *
 120 * This should not be expected to be 100% accurate, there may be
 121 * notifiers registered or other unexpected conditions that may bring
 122 * down the kernel. Or if the current process in the kernel is holding
 123 * locks or has other critical state, the kernel may become effectively
 124 * unusable anyway.
 125 */
 126bool die_will_crash(void)
 127{
 128        if (should_fadump_crash())
 129                return true;
 130        if (kexec_should_crash(current))
 131                return true;
 132        if (in_interrupt() || panic_on_oops ||
 133                        !current->pid || is_global_init(current))
 134                return true;
 135
 136        return false;
 137}
 138
 139static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 140static int die_owner = -1;
 141static unsigned int die_nest_count;
 142static int die_counter;
 143
 144static unsigned long oops_begin(struct pt_regs *regs)
 145{
 146        int cpu;
 147        unsigned long flags;
 148
 149        oops_enter();
 150
 151        /* racy, but better than risking deadlock. */
 152        raw_local_irq_save(flags);
 153        cpu = smp_processor_id();
 154        if (!arch_spin_trylock(&die_lock)) {
 155                if (cpu == die_owner)
 156                        /* nested oops. should stop eventually */;
 157                else
 158                        arch_spin_lock(&die_lock);
 159        }
 160        die_nest_count++;
 161        die_owner = cpu;
 162        console_verbose();
 163        bust_spinlocks(1);
 164        if (machine_is(powermac))
 165                pmac_backlight_unblank();
 166        return flags;
 167}
 168NOKPROBE_SYMBOL(oops_begin);
 169
 170static void oops_end(unsigned long flags, struct pt_regs *regs,
 171                               int signr)
 172{
 173        bust_spinlocks(0);
 174        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 175        die_nest_count--;
 176        oops_exit();
 177        printk("\n");
 178        if (!die_nest_count) {
 179                /* Nest count reaches zero, release the lock. */
 180                die_owner = -1;
 181                arch_spin_unlock(&die_lock);
 182        }
 183        raw_local_irq_restore(flags);
 184
 185        crash_fadump(regs, "die oops");
 186
 187        if (kexec_should_crash(current))
 188                crash_kexec(regs);
 189
 190        if (!signr)
 191                return;
 192
 193        /*
 194         * While our oops output is serialised by a spinlock, output
 195         * from panic() called below can race and corrupt it. If we
 196         * know we are going to panic, delay for 1 second so we have a
 197         * chance to get clean backtraces from all CPUs that are oopsing.
 198         */
 199        if (in_interrupt() || panic_on_oops || !current->pid ||
 200            is_global_init(current)) {
 201                mdelay(MSEC_PER_SEC);
 202        }
 203
 204        if (in_interrupt())
 205                panic("Fatal exception in interrupt");
 206        if (panic_on_oops)
 207                panic("Fatal exception");
 208        do_exit(signr);
 209}
 210NOKPROBE_SYMBOL(oops_end);
 211
 212static int __die(const char *str, struct pt_regs *regs, long err)
 213{
 214        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 215
 216        if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
 217                printk("LE ");
 218        else
 219                printk("BE ");
 220
 221        if (IS_ENABLED(CONFIG_PREEMPT))
 222                pr_cont("PREEMPT ");
 223
 224        if (IS_ENABLED(CONFIG_SMP))
 225                pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
 226
 227        if (debug_pagealloc_enabled())
 228                pr_cont("DEBUG_PAGEALLOC ");
 229
 230        if (IS_ENABLED(CONFIG_NUMA))
 231                pr_cont("NUMA ");
 232
 233        pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
 234
 235        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 236                return 1;
 237
 238        print_modules();
 239        show_regs(regs);
 240
 241        return 0;
 242}
 243NOKPROBE_SYMBOL(__die);
 244
 245void die(const char *str, struct pt_regs *regs, long err)
 246{
 247        unsigned long flags;
 248
 249        if (debugger(regs))
 250                return;
 251
 252        flags = oops_begin(regs);
 253        if (__die(str, regs, err))
 254                err = 0;
 255        oops_end(flags, regs, err);
 256}
 257NOKPROBE_SYMBOL(die);
 258
 259void user_single_step_siginfo(struct task_struct *tsk,
 260                                struct pt_regs *regs, siginfo_t *info)
 261{
 262        memset(info, 0, sizeof(*info));
 263        info->si_signo = SIGTRAP;
 264        info->si_code = TRAP_TRACE;
 265        info->si_addr = (void __user *)regs->nip;
 266}
 267
 268void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 269{
 270        siginfo_t info;
 271        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 272                        "at %08lx nip %08lx lr %08lx code %x\n";
 273        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 274                        "at %016lx nip %016lx lr %016lx code %x\n";
 275
 276        if (!user_mode(regs)) {
 277                die("Exception in kernel mode", regs, signr);
 278                return;
 279        }
 280
 281        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 282                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 283                                   current->comm, current->pid, signr,
 284                                   addr, regs->nip, regs->link, code);
 285        }
 286
 287        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 288                local_irq_enable();
 289
 290        current->thread.trap_nr = code;
 291        memset(&info, 0, sizeof(info));
 292        info.si_signo = signr;
 293        info.si_code = code;
 294        info.si_addr = (void __user *) addr;
 295        force_sig_info(signr, &info, current);
 296}
 297
 298void system_reset_exception(struct pt_regs *regs)
 299{
 300        /*
 301         * Avoid crashes in case of nested NMI exceptions. Recoverability
 302         * is determined by RI and in_nmi
 303         */
 304        bool nested = in_nmi();
 305        if (!nested)
 306                nmi_enter();
 307
 308        __this_cpu_inc(irq_stat.sreset_irqs);
 309
 310        /* See if any machine dependent calls */
 311        if (ppc_md.system_reset_exception) {
 312                if (ppc_md.system_reset_exception(regs))
 313                        goto out;
 314        }
 315
 316        if (debugger(regs))
 317                goto out;
 318
 319        /*
 320         * A system reset is a request to dump, so we always send
 321         * it through the crashdump code (if fadump or kdump are
 322         * registered).
 323         */
 324        crash_fadump(regs, "System Reset");
 325
 326        crash_kexec(regs);
 327
 328        /*
 329         * We aren't the primary crash CPU. We need to send it
 330         * to a holding pattern to avoid it ending up in the panic
 331         * code.
 332         */
 333        crash_kexec_secondary(regs);
 334
 335        /*
 336         * No debugger or crash dump registered, print logs then
 337         * panic.
 338         */
 339        __die("System Reset", regs, SIGABRT);
 340
 341        mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
 342        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 343        nmi_panic(regs, "System Reset");
 344
 345out:
 346#ifdef CONFIG_PPC_BOOK3S_64
 347        BUG_ON(get_paca()->in_nmi == 0);
 348        if (get_paca()->in_nmi > 1)
 349                nmi_panic(regs, "Unrecoverable nested System Reset");
 350#endif
 351        /* Must die if the interrupt is not recoverable */
 352        if (!(regs->msr & MSR_RI))
 353                nmi_panic(regs, "Unrecoverable System Reset");
 354
 355        if (!nested)
 356                nmi_exit();
 357
 358        /* What should we do here? We could issue a shutdown or hard reset. */
 359}
 360
 361/*
 362 * I/O accesses can cause machine checks on powermacs.
 363 * Check if the NIP corresponds to the address of a sync
 364 * instruction for which there is an entry in the exception
 365 * table.
 366 * Note that the 601 only takes a machine check on TEA
 367 * (transfer error ack) signal assertion, and does not
 368 * set any of the top 16 bits of SRR1.
 369 *  -- paulus.
 370 */
 371static inline int check_io_access(struct pt_regs *regs)
 372{
 373#ifdef CONFIG_PPC32
 374        unsigned long msr = regs->msr;
 375        const struct exception_table_entry *entry;
 376        unsigned int *nip = (unsigned int *)regs->nip;
 377
 378        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 379            && (entry = search_exception_tables(regs->nip)) != NULL) {
 380                /*
 381                 * Check that it's a sync instruction, or somewhere
 382                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 383                 * As the address is in the exception table
 384                 * we should be able to read the instr there.
 385                 * For the debug message, we look at the preceding
 386                 * load or store.
 387                 */
 388                if (*nip == PPC_INST_NOP)
 389                        nip -= 2;
 390                else if (*nip == PPC_INST_ISYNC)
 391                        --nip;
 392                if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
 393                        unsigned int rb;
 394
 395                        --nip;
 396                        rb = (*nip >> 11) & 0x1f;
 397                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 398                               (*nip & 0x100)? "OUT to": "IN from",
 399                               regs->gpr[rb] - _IO_BASE, nip);
 400                        regs->msr |= MSR_RI;
 401                        regs->nip = extable_fixup(entry);
 402                        return 1;
 403                }
 404        }
 405#endif /* CONFIG_PPC32 */
 406        return 0;
 407}
 408
 409#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 410/* On 4xx, the reason for the machine check or program exception
 411   is in the ESR. */
 412#define get_reason(regs)        ((regs)->dsisr)
 413#define REASON_FP               ESR_FP
 414#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 415#define REASON_PRIVILEGED       ESR_PPR
 416#define REASON_TRAP             ESR_PTR
 417
 418/* single-step stuff */
 419#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 420#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 421
 422#else
 423/* On non-4xx, the reason for the machine check or program
 424   exception is in the MSR. */
 425#define get_reason(regs)        ((regs)->msr)
 426#define REASON_TM               SRR1_PROGTM
 427#define REASON_FP               SRR1_PROGFPE
 428#define REASON_ILLEGAL          SRR1_PROGILL
 429#define REASON_PRIVILEGED       SRR1_PROGPRIV
 430#define REASON_TRAP             SRR1_PROGTRAP
 431
 432#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 433#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 434#endif
 435
 436#if defined(CONFIG_E500)
 437int machine_check_e500mc(struct pt_regs *regs)
 438{
 439        unsigned long mcsr = mfspr(SPRN_MCSR);
 440        unsigned long pvr = mfspr(SPRN_PVR);
 441        unsigned long reason = mcsr;
 442        int recoverable = 1;
 443
 444        if (reason & MCSR_LD) {
 445                recoverable = fsl_rio_mcheck_exception(regs);
 446                if (recoverable == 1)
 447                        goto silent_out;
 448        }
 449
 450        printk("Machine check in kernel mode.\n");
 451        printk("Caused by (from MCSR=%lx): ", reason);
 452
 453        if (reason & MCSR_MCP)
 454                printk("Machine Check Signal\n");
 455
 456        if (reason & MCSR_ICPERR) {
 457                printk("Instruction Cache Parity Error\n");
 458
 459                /*
 460                 * This is recoverable by invalidating the i-cache.
 461                 */
 462                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 463                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 464                        ;
 465
 466                /*
 467                 * This will generally be accompanied by an instruction
 468                 * fetch error report -- only treat MCSR_IF as fatal
 469                 * if it wasn't due to an L1 parity error.
 470                 */
 471                reason &= ~MCSR_IF;
 472        }
 473
 474        if (reason & MCSR_DCPERR_MC) {
 475                printk("Data Cache Parity Error\n");
 476
 477                /*
 478                 * In write shadow mode we auto-recover from the error, but it
 479                 * may still get logged and cause a machine check.  We should
 480                 * only treat the non-write shadow case as non-recoverable.
 481                 */
 482                /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
 483                 * is not implemented but L1 data cache always runs in write
 484                 * shadow mode. Hence on data cache parity errors HW will
 485                 * automatically invalidate the L1 Data Cache.
 486                 */
 487                if (PVR_VER(pvr) != PVR_VER_E6500) {
 488                        if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 489                                recoverable = 0;
 490                }
 491        }
 492
 493        if (reason & MCSR_L2MMU_MHIT) {
 494                printk("Hit on multiple TLB entries\n");
 495                recoverable = 0;
 496        }
 497
 498        if (reason & MCSR_NMI)
 499                printk("Non-maskable interrupt\n");
 500
 501        if (reason & MCSR_IF) {
 502                printk("Instruction Fetch Error Report\n");
 503                recoverable = 0;
 504        }
 505
 506        if (reason & MCSR_LD) {
 507                printk("Load Error Report\n");
 508                recoverable = 0;
 509        }
 510
 511        if (reason & MCSR_ST) {
 512                printk("Store Error Report\n");
 513                recoverable = 0;
 514        }
 515
 516        if (reason & MCSR_LDG) {
 517                printk("Guarded Load Error Report\n");
 518                recoverable = 0;
 519        }
 520
 521        if (reason & MCSR_TLBSYNC)
 522                printk("Simultaneous tlbsync operations\n");
 523
 524        if (reason & MCSR_BSL2_ERR) {
 525                printk("Level 2 Cache Error\n");
 526                recoverable = 0;
 527        }
 528
 529        if (reason & MCSR_MAV) {
 530                u64 addr;
 531
 532                addr = mfspr(SPRN_MCAR);
 533                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 534
 535                printk("Machine Check %s Address: %#llx\n",
 536                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 537        }
 538
 539silent_out:
 540        mtspr(SPRN_MCSR, mcsr);
 541        return mfspr(SPRN_MCSR) == 0 && recoverable;
 542}
 543
 544int machine_check_e500(struct pt_regs *regs)
 545{
 546        unsigned long reason = mfspr(SPRN_MCSR);
 547
 548        if (reason & MCSR_BUS_RBERR) {
 549                if (fsl_rio_mcheck_exception(regs))
 550                        return 1;
 551                if (fsl_pci_mcheck_exception(regs))
 552                        return 1;
 553        }
 554
 555        printk("Machine check in kernel mode.\n");
 556        printk("Caused by (from MCSR=%lx): ", reason);
 557
 558        if (reason & MCSR_MCP)
 559                printk("Machine Check Signal\n");
 560        if (reason & MCSR_ICPERR)
 561                printk("Instruction Cache Parity Error\n");
 562        if (reason & MCSR_DCP_PERR)
 563                printk("Data Cache Push Parity Error\n");
 564        if (reason & MCSR_DCPERR)
 565                printk("Data Cache Parity Error\n");
 566        if (reason & MCSR_BUS_IAERR)
 567                printk("Bus - Instruction Address Error\n");
 568        if (reason & MCSR_BUS_RAERR)
 569                printk("Bus - Read Address Error\n");
 570        if (reason & MCSR_BUS_WAERR)
 571                printk("Bus - Write Address Error\n");
 572        if (reason & MCSR_BUS_IBERR)
 573                printk("Bus - Instruction Data Error\n");
 574        if (reason & MCSR_BUS_RBERR)
 575                printk("Bus - Read Data Bus Error\n");
 576        if (reason & MCSR_BUS_WBERR)
 577                printk("Bus - Write Data Bus Error\n");
 578        if (reason & MCSR_BUS_IPERR)
 579                printk("Bus - Instruction Parity Error\n");
 580        if (reason & MCSR_BUS_RPERR)
 581                printk("Bus - Read Parity Error\n");
 582
 583        return 0;
 584}
 585
 586int machine_check_generic(struct pt_regs *regs)
 587{
 588        return 0;
 589}
 590#elif defined(CONFIG_E200)
 591int machine_check_e200(struct pt_regs *regs)
 592{
 593        unsigned long reason = mfspr(SPRN_MCSR);
 594
 595        printk("Machine check in kernel mode.\n");
 596        printk("Caused by (from MCSR=%lx): ", reason);
 597
 598        if (reason & MCSR_MCP)
 599                printk("Machine Check Signal\n");
 600        if (reason & MCSR_CP_PERR)
 601                printk("Cache Push Parity Error\n");
 602        if (reason & MCSR_CPERR)
 603                printk("Cache Parity Error\n");
 604        if (reason & MCSR_EXCP_ERR)
 605                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 606        if (reason & MCSR_BUS_IRERR)
 607                printk("Bus - Read Bus Error on instruction fetch\n");
 608        if (reason & MCSR_BUS_DRERR)
 609                printk("Bus - Read Bus Error on data load\n");
 610        if (reason & MCSR_BUS_WRERR)
 611                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 612
 613        return 0;
 614}
 615#elif defined(CONFIG_PPC32)
 616int machine_check_generic(struct pt_regs *regs)
 617{
 618        unsigned long reason = regs->msr;
 619
 620        printk("Machine check in kernel mode.\n");
 621        printk("Caused by (from SRR1=%lx): ", reason);
 622        switch (reason & 0x601F0000) {
 623        case 0x80000:
 624                printk("Machine check signal\n");
 625                break;
 626        case 0:         /* for 601 */
 627        case 0x40000:
 628        case 0x140000:  /* 7450 MSS error and TEA */
 629                printk("Transfer error ack signal\n");
 630                break;
 631        case 0x20000:
 632                printk("Data parity error signal\n");
 633                break;
 634        case 0x10000:
 635                printk("Address parity error signal\n");
 636                break;
 637        case 0x20000000:
 638                printk("L1 Data Cache error\n");
 639                break;
 640        case 0x40000000:
 641                printk("L1 Instruction Cache error\n");
 642                break;
 643        case 0x00100000:
 644                printk("L2 data cache parity error\n");
 645                break;
 646        default:
 647                printk("Unknown values in msr\n");
 648        }
 649        return 0;
 650}
 651#endif /* everything else */
 652
 653void machine_check_exception(struct pt_regs *regs)
 654{
 655        int recover = 0;
 656        bool nested = in_nmi();
 657        if (!nested)
 658                nmi_enter();
 659
 660        /* 64s accounts the mce in machine_check_early when in HVMODE */
 661        if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
 662                __this_cpu_inc(irq_stat.mce_exceptions);
 663
 664        add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 665
 666        /* See if any machine dependent calls. In theory, we would want
 667         * to call the CPU first, and call the ppc_md. one if the CPU
 668         * one returns a positive number. However there is existing code
 669         * that assumes the board gets a first chance, so let's keep it
 670         * that way for now and fix things later. --BenH.
 671         */
 672        if (ppc_md.machine_check_exception)
 673                recover = ppc_md.machine_check_exception(regs);
 674        else if (cur_cpu_spec->machine_check)
 675                recover = cur_cpu_spec->machine_check(regs);
 676
 677        if (recover > 0)
 678                goto bail;
 679
 680        if (debugger_fault_handler(regs))
 681                goto bail;
 682
 683        if (check_io_access(regs))
 684                goto bail;
 685
 686        die("Machine check", regs, SIGBUS);
 687
 688        /* Must die if the interrupt is not recoverable */
 689        if (!(regs->msr & MSR_RI))
 690                nmi_panic(regs, "Unrecoverable Machine check");
 691
 692bail:
 693        if (!nested)
 694                nmi_exit();
 695}
 696
 697void SMIException(struct pt_regs *regs)
 698{
 699        die("System Management Interrupt", regs, SIGABRT);
 700}
 701
 702void handle_hmi_exception(struct pt_regs *regs)
 703{
 704        struct pt_regs *old_regs;
 705
 706        old_regs = set_irq_regs(regs);
 707        irq_enter();
 708
 709        if (ppc_md.handle_hmi_exception)
 710                ppc_md.handle_hmi_exception(regs);
 711
 712        irq_exit();
 713        set_irq_regs(old_regs);
 714}
 715
 716void unknown_exception(struct pt_regs *regs)
 717{
 718        enum ctx_state prev_state = exception_enter();
 719
 720        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 721               regs->nip, regs->msr, regs->trap);
 722
 723        _exception(SIGTRAP, regs, 0, 0);
 724
 725        exception_exit(prev_state);
 726}
 727
 728void instruction_breakpoint_exception(struct pt_regs *regs)
 729{
 730        enum ctx_state prev_state = exception_enter();
 731
 732        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 733                                        5, SIGTRAP) == NOTIFY_STOP)
 734                goto bail;
 735        if (debugger_iabr_match(regs))
 736                goto bail;
 737        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 738
 739bail:
 740        exception_exit(prev_state);
 741}
 742
 743void RunModeException(struct pt_regs *regs)
 744{
 745        _exception(SIGTRAP, regs, 0, 0);
 746}
 747
 748void single_step_exception(struct pt_regs *regs)
 749{
 750        enum ctx_state prev_state = exception_enter();
 751
 752        clear_single_step(regs);
 753
 754        if (kprobe_post_handler(regs))
 755                return;
 756
 757        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 758                                        5, SIGTRAP) == NOTIFY_STOP)
 759                goto bail;
 760        if (debugger_sstep(regs))
 761                goto bail;
 762
 763        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 764
 765bail:
 766        exception_exit(prev_state);
 767}
 768NOKPROBE_SYMBOL(single_step_exception);
 769
 770/*
 771 * After we have successfully emulated an instruction, we have to
 772 * check if the instruction was being single-stepped, and if so,
 773 * pretend we got a single-step exception.  This was pointed out
 774 * by Kumar Gala.  -- paulus
 775 */
 776static void emulate_single_step(struct pt_regs *regs)
 777{
 778        if (single_stepping(regs))
 779                single_step_exception(regs);
 780}
 781
 782static inline int __parse_fpscr(unsigned long fpscr)
 783{
 784        int ret = 0;
 785
 786        /* Invalid operation */
 787        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 788                ret = FPE_FLTINV;
 789
 790        /* Overflow */
 791        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 792                ret = FPE_FLTOVF;
 793
 794        /* Underflow */
 795        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 796                ret = FPE_FLTUND;
 797
 798        /* Divide by zero */
 799        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 800                ret = FPE_FLTDIV;
 801
 802        /* Inexact result */
 803        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 804                ret = FPE_FLTRES;
 805
 806        return ret;
 807}
 808
 809static void parse_fpe(struct pt_regs *regs)
 810{
 811        int code = 0;
 812
 813        flush_fp_to_thread(current);
 814
 815        code = __parse_fpscr(current->thread.fp_state.fpscr);
 816
 817        _exception(SIGFPE, regs, code, regs->nip);
 818}
 819
 820/*
 821 * Illegal instruction emulation support.  Originally written to
 822 * provide the PVR to user applications using the mfspr rd, PVR.
 823 * Return non-zero if we can't emulate, or -EFAULT if the associated
 824 * memory access caused an access fault.  Return zero on success.
 825 *
 826 * There are a couple of ways to do this, either "decode" the instruction
 827 * or directly match lots of bits.  In this case, matching lots of
 828 * bits is faster and easier.
 829 *
 830 */
 831static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 832{
 833        u8 rT = (instword >> 21) & 0x1f;
 834        u8 rA = (instword >> 16) & 0x1f;
 835        u8 NB_RB = (instword >> 11) & 0x1f;
 836        u32 num_bytes;
 837        unsigned long EA;
 838        int pos = 0;
 839
 840        /* Early out if we are an invalid form of lswx */
 841        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 842                if ((rT == rA) || (rT == NB_RB))
 843                        return -EINVAL;
 844
 845        EA = (rA == 0) ? 0 : regs->gpr[rA];
 846
 847        switch (instword & PPC_INST_STRING_MASK) {
 848                case PPC_INST_LSWX:
 849                case PPC_INST_STSWX:
 850                        EA += NB_RB;
 851                        num_bytes = regs->xer & 0x7f;
 852                        break;
 853                case PPC_INST_LSWI:
 854                case PPC_INST_STSWI:
 855                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 856                        break;
 857                default:
 858                        return -EINVAL;
 859        }
 860
 861        while (num_bytes != 0)
 862        {
 863                u8 val;
 864                u32 shift = 8 * (3 - (pos & 0x3));
 865
 866                /* if process is 32-bit, clear upper 32 bits of EA */
 867                if ((regs->msr & MSR_64BIT) == 0)
 868                        EA &= 0xFFFFFFFF;
 869
 870                switch ((instword & PPC_INST_STRING_MASK)) {
 871                        case PPC_INST_LSWX:
 872                        case PPC_INST_LSWI:
 873                                if (get_user(val, (u8 __user *)EA))
 874                                        return -EFAULT;
 875                                /* first time updating this reg,
 876                                 * zero it out */
 877                                if (pos == 0)
 878                                        regs->gpr[rT] = 0;
 879                                regs->gpr[rT] |= val << shift;
 880                                break;
 881                        case PPC_INST_STSWI:
 882                        case PPC_INST_STSWX:
 883                                val = regs->gpr[rT] >> shift;
 884                                if (put_user(val, (u8 __user *)EA))
 885                                        return -EFAULT;
 886                                break;
 887                }
 888                /* move EA to next address */
 889                EA += 1;
 890                num_bytes--;
 891
 892                /* manage our position within the register */
 893                if (++pos == 4) {
 894                        pos = 0;
 895                        if (++rT == 32)
 896                                rT = 0;
 897                }
 898        }
 899
 900        return 0;
 901}
 902
 903static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 904{
 905        u32 ra,rs;
 906        unsigned long tmp;
 907
 908        ra = (instword >> 16) & 0x1f;
 909        rs = (instword >> 21) & 0x1f;
 910
 911        tmp = regs->gpr[rs];
 912        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 913        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 914        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 915        regs->gpr[ra] = tmp;
 916
 917        return 0;
 918}
 919
 920static int emulate_isel(struct pt_regs *regs, u32 instword)
 921{
 922        u8 rT = (instword >> 21) & 0x1f;
 923        u8 rA = (instword >> 16) & 0x1f;
 924        u8 rB = (instword >> 11) & 0x1f;
 925        u8 BC = (instword >> 6) & 0x1f;
 926        u8 bit;
 927        unsigned long tmp;
 928
 929        tmp = (rA == 0) ? 0 : regs->gpr[rA];
 930        bit = (regs->ccr >> (31 - BC)) & 0x1;
 931
 932        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 933
 934        return 0;
 935}
 936
 937#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 938static inline bool tm_abort_check(struct pt_regs *regs, int cause)
 939{
 940        /* If we're emulating a load/store in an active transaction, we cannot
 941         * emulate it as the kernel operates in transaction suspended context.
 942         * We need to abort the transaction.  This creates a persistent TM
 943         * abort so tell the user what caused it with a new code.
 944         */
 945        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
 946                tm_enable();
 947                tm_abort(cause);
 948                return true;
 949        }
 950        return false;
 951}
 952#else
 953static inline bool tm_abort_check(struct pt_regs *regs, int reason)
 954{
 955        return false;
 956}
 957#endif
 958
 959static int emulate_instruction(struct pt_regs *regs)
 960{
 961        u32 instword;
 962        u32 rd;
 963
 964        if (!user_mode(regs))
 965                return -EINVAL;
 966        CHECK_FULL_REGS(regs);
 967
 968        if (get_user(instword, (u32 __user *)(regs->nip)))
 969                return -EFAULT;
 970
 971        /* Emulate the mfspr rD, PVR. */
 972        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
 973                PPC_WARN_EMULATED(mfpvr, regs);
 974                rd = (instword >> 21) & 0x1f;
 975                regs->gpr[rd] = mfspr(SPRN_PVR);
 976                return 0;
 977        }
 978
 979        /* Emulating the dcba insn is just a no-op.  */
 980        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
 981                PPC_WARN_EMULATED(dcba, regs);
 982                return 0;
 983        }
 984
 985        /* Emulate the mcrxr insn.  */
 986        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
 987                int shift = (instword >> 21) & 0x1c;
 988                unsigned long msk = 0xf0000000UL >> shift;
 989
 990                PPC_WARN_EMULATED(mcrxr, regs);
 991                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
 992                regs->xer &= ~0xf0000000UL;
 993                return 0;
 994        }
 995
 996        /* Emulate load/store string insn. */
 997        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
 998                if (tm_abort_check(regs,
 999                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1000                        return -EINVAL;
1001                PPC_WARN_EMULATED(string, regs);
1002                return emulate_string_inst(regs, instword);
1003        }
1004
1005        /* Emulate the popcntb (Population Count Bytes) instruction. */
1006        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1007                PPC_WARN_EMULATED(popcntb, regs);
1008                return emulate_popcntb_inst(regs, instword);
1009        }
1010
1011        /* Emulate isel (Integer Select) instruction */
1012        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1013                PPC_WARN_EMULATED(isel, regs);
1014                return emulate_isel(regs, instword);
1015        }
1016
1017        /* Emulate sync instruction variants */
1018        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1019                PPC_WARN_EMULATED(sync, regs);
1020                asm volatile("sync");
1021                return 0;
1022        }
1023
1024#ifdef CONFIG_PPC64
1025        /* Emulate the mfspr rD, DSCR. */
1026        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1027                PPC_INST_MFSPR_DSCR_USER) ||
1028             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1029                PPC_INST_MFSPR_DSCR)) &&
1030                        cpu_has_feature(CPU_FTR_DSCR)) {
1031                PPC_WARN_EMULATED(mfdscr, regs);
1032                rd = (instword >> 21) & 0x1f;
1033                regs->gpr[rd] = mfspr(SPRN_DSCR);
1034                return 0;
1035        }
1036        /* Emulate the mtspr DSCR, rD. */
1037        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1038                PPC_INST_MTSPR_DSCR_USER) ||
1039             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1040                PPC_INST_MTSPR_DSCR)) &&
1041                        cpu_has_feature(CPU_FTR_DSCR)) {
1042                PPC_WARN_EMULATED(mtdscr, regs);
1043                rd = (instword >> 21) & 0x1f;
1044                current->thread.dscr = regs->gpr[rd];
1045                current->thread.dscr_inherit = 1;
1046                mtspr(SPRN_DSCR, current->thread.dscr);
1047                return 0;
1048        }
1049#endif
1050
1051        return -EINVAL;
1052}
1053
1054int is_valid_bugaddr(unsigned long addr)
1055{
1056        return is_kernel_addr(addr);
1057}
1058
1059#ifdef CONFIG_MATH_EMULATION
1060static int emulate_math(struct pt_regs *regs)
1061{
1062        int ret;
1063        extern int do_mathemu(struct pt_regs *regs);
1064
1065        ret = do_mathemu(regs);
1066        if (ret >= 0)
1067                PPC_WARN_EMULATED(math, regs);
1068
1069        switch (ret) {
1070        case 0:
1071                emulate_single_step(regs);
1072                return 0;
1073        case 1: {
1074                        int code = 0;
1075                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1076                        _exception(SIGFPE, regs, code, regs->nip);
1077                        return 0;
1078                }
1079        case -EFAULT:
1080                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1081                return 0;
1082        }
1083
1084        return -1;
1085}
1086#else
1087static inline int emulate_math(struct pt_regs *regs) { return -1; }
1088#endif
1089
1090void program_check_exception(struct pt_regs *regs)
1091{
1092        enum ctx_state prev_state = exception_enter();
1093        unsigned int reason = get_reason(regs);
1094
1095        /* We can now get here via a FP Unavailable exception if the core
1096         * has no FPU, in that case the reason flags will be 0 */
1097
1098        if (reason & REASON_FP) {
1099                /* IEEE FP exception */
1100                parse_fpe(regs);
1101                goto bail;
1102        }
1103        if (reason & REASON_TRAP) {
1104                unsigned long bugaddr;
1105                /* Debugger is first in line to stop recursive faults in
1106                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1107                if (debugger_bpt(regs))
1108                        goto bail;
1109
1110                if (kprobe_handler(regs))
1111                        goto bail;
1112
1113                /* trap exception */
1114                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1115                                == NOTIFY_STOP)
1116                        goto bail;
1117
1118                bugaddr = regs->nip;
1119                /*
1120                 * Fixup bugaddr for BUG_ON() in real mode
1121                 */
1122                if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1123                        bugaddr += PAGE_OFFSET;
1124
1125                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1126                    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1127                        regs->nip += 4;
1128                        goto bail;
1129                }
1130                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1131                goto bail;
1132        }
1133#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1134        if (reason & REASON_TM) {
1135                /* This is a TM "Bad Thing Exception" program check.
1136                 * This occurs when:
1137                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1138                 *    transition in TM states.
1139                 * -  A trechkpt is attempted when transactional.
1140                 * -  A treclaim is attempted when non transactional.
1141                 * -  A tend is illegally attempted.
1142                 * -  writing a TM SPR when transactional.
1143                 */
1144                if (!user_mode(regs) &&
1145                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1146                        regs->nip += 4;
1147                        goto bail;
1148                }
1149                /* If usermode caused this, it's done something illegal and
1150                 * gets a SIGILL slap on the wrist.  We call it an illegal
1151                 * operand to distinguish from the instruction just being bad
1152                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1153                 * illegal /placement/ of a valid instruction.
1154                 */
1155                if (user_mode(regs)) {
1156                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1157                        goto bail;
1158                } else {
1159                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1160                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1161                        die("Unrecoverable exception", regs, SIGABRT);
1162                }
1163        }
1164#endif
1165
1166        /*
1167         * If we took the program check in the kernel skip down to sending a
1168         * SIGILL. The subsequent cases all relate to emulating instructions
1169         * which we should only do for userspace. We also do not want to enable
1170         * interrupts for kernel faults because that might lead to further
1171         * faults, and loose the context of the original exception.
1172         */
1173        if (!user_mode(regs))
1174                goto sigill;
1175
1176        /* We restore the interrupt state now */
1177        if (!arch_irq_disabled_regs(regs))
1178                local_irq_enable();
1179
1180        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1181         * but there seems to be a hardware bug on the 405GP (RevD)
1182         * that means ESR is sometimes set incorrectly - either to
1183         * ESR_DST (!?) or 0.  In the process of chasing this with the
1184         * hardware people - not sure if it can happen on any illegal
1185         * instruction or only on FP instructions, whether there is a
1186         * pattern to occurrences etc. -dgibson 31/Mar/2003
1187         */
1188        if (!emulate_math(regs))
1189                goto bail;
1190
1191        /* Try to emulate it if we should. */
1192        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1193                switch (emulate_instruction(regs)) {
1194                case 0:
1195                        regs->nip += 4;
1196                        emulate_single_step(regs);
1197                        goto bail;
1198                case -EFAULT:
1199                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1200                        goto bail;
1201                }
1202        }
1203
1204sigill:
1205        if (reason & REASON_PRIVILEGED)
1206                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1207        else
1208                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1209
1210bail:
1211        exception_exit(prev_state);
1212}
1213NOKPROBE_SYMBOL(program_check_exception);
1214
1215/*
1216 * This occurs when running in hypervisor mode on POWER6 or later
1217 * and an illegal instruction is encountered.
1218 */
1219void emulation_assist_interrupt(struct pt_regs *regs)
1220{
1221        regs->msr |= REASON_ILLEGAL;
1222        program_check_exception(regs);
1223}
1224NOKPROBE_SYMBOL(emulation_assist_interrupt);
1225
1226void alignment_exception(struct pt_regs *regs)
1227{
1228        enum ctx_state prev_state = exception_enter();
1229        int sig, code, fixed = 0;
1230
1231        /* We restore the interrupt state now */
1232        if (!arch_irq_disabled_regs(regs))
1233                local_irq_enable();
1234
1235        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1236                goto bail;
1237
1238        /* we don't implement logging of alignment exceptions */
1239        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1240                fixed = fix_alignment(regs);
1241
1242        if (fixed == 1) {
1243                regs->nip += 4; /* skip over emulated instruction */
1244                emulate_single_step(regs);
1245                goto bail;
1246        }
1247
1248        /* Operand address was bad */
1249        if (fixed == -EFAULT) {
1250                sig = SIGSEGV;
1251                code = SEGV_ACCERR;
1252        } else {
1253                sig = SIGBUS;
1254                code = BUS_ADRALN;
1255        }
1256        if (user_mode(regs))
1257                _exception(sig, regs, code, regs->dar);
1258        else
1259                bad_page_fault(regs, regs->dar, sig);
1260
1261bail:
1262        exception_exit(prev_state);
1263}
1264
1265void slb_miss_bad_addr(struct pt_regs *regs)
1266{
1267        enum ctx_state prev_state = exception_enter();
1268
1269        if (user_mode(regs))
1270                _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1271        else
1272                bad_page_fault(regs, regs->dar, SIGSEGV);
1273
1274        exception_exit(prev_state);
1275}
1276
1277void StackOverflow(struct pt_regs *regs)
1278{
1279        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1280               current, regs->gpr[1]);
1281        debugger(regs);
1282        show_regs(regs);
1283        panic("kernel stack overflow");
1284}
1285
1286void nonrecoverable_exception(struct pt_regs *regs)
1287{
1288        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1289               regs->nip, regs->msr);
1290        debugger(regs);
1291        die("nonrecoverable exception", regs, SIGKILL);
1292}
1293
1294void kernel_fp_unavailable_exception(struct pt_regs *regs)
1295{
1296        enum ctx_state prev_state = exception_enter();
1297
1298        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1299                          "%lx at %lx\n", regs->trap, regs->nip);
1300        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1301
1302        exception_exit(prev_state);
1303}
1304
1305void altivec_unavailable_exception(struct pt_regs *regs)
1306{
1307        enum ctx_state prev_state = exception_enter();
1308
1309        if (user_mode(regs)) {
1310                /* A user program has executed an altivec instruction,
1311                   but this kernel doesn't support altivec. */
1312                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1313                goto bail;
1314        }
1315
1316        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1317                        "%lx at %lx\n", regs->trap, regs->nip);
1318        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1319
1320bail:
1321        exception_exit(prev_state);
1322}
1323
1324void vsx_unavailable_exception(struct pt_regs *regs)
1325{
1326        if (user_mode(regs)) {
1327                /* A user program has executed an vsx instruction,
1328                   but this kernel doesn't support vsx. */
1329                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1330                return;
1331        }
1332
1333        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1334                        "%lx at %lx\n", regs->trap, regs->nip);
1335        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1336}
1337
1338#ifdef CONFIG_PPC64
1339static void tm_unavailable(struct pt_regs *regs)
1340{
1341#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1342        if (user_mode(regs)) {
1343                current->thread.load_tm++;
1344                regs->msr |= MSR_TM;
1345                tm_enable();
1346                tm_restore_sprs(&current->thread);
1347                return;
1348        }
1349#endif
1350        pr_emerg("Unrecoverable TM Unavailable Exception "
1351                        "%lx at %lx\n", regs->trap, regs->nip);
1352        die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1353}
1354
1355void facility_unavailable_exception(struct pt_regs *regs)
1356{
1357        static char *facility_strings[] = {
1358                [FSCR_FP_LG] = "FPU",
1359                [FSCR_VECVSX_LG] = "VMX/VSX",
1360                [FSCR_DSCR_LG] = "DSCR",
1361                [FSCR_PM_LG] = "PMU SPRs",
1362                [FSCR_BHRB_LG] = "BHRB",
1363                [FSCR_TM_LG] = "TM",
1364                [FSCR_EBB_LG] = "EBB",
1365                [FSCR_TAR_LG] = "TAR",
1366                [FSCR_MSGP_LG] = "MSGP",
1367                [FSCR_SCV_LG] = "SCV",
1368        };
1369        char *facility = "unknown";
1370        u64 value;
1371        u32 instword, rd;
1372        u8 status;
1373        bool hv;
1374
1375        hv = (regs->trap == 0xf80);
1376        if (hv)
1377                value = mfspr(SPRN_HFSCR);
1378        else
1379                value = mfspr(SPRN_FSCR);
1380
1381        status = value >> 56;
1382        if (status == FSCR_DSCR_LG) {
1383                /*
1384                 * User is accessing the DSCR register using the problem
1385                 * state only SPR number (0x03) either through a mfspr or
1386                 * a mtspr instruction. If it is a write attempt through
1387                 * a mtspr, then we set the inherit bit. This also allows
1388                 * the user to write or read the register directly in the
1389                 * future by setting via the FSCR DSCR bit. But in case it
1390                 * is a read DSCR attempt through a mfspr instruction, we
1391                 * just emulate the instruction instead. This code path will
1392                 * always emulate all the mfspr instructions till the user
1393                 * has attempted at least one mtspr instruction. This way it
1394                 * preserves the same behaviour when the user is accessing
1395                 * the DSCR through privilege level only SPR number (0x11)
1396                 * which is emulated through illegal instruction exception.
1397                 * We always leave HFSCR DSCR set.
1398                 */
1399                if (get_user(instword, (u32 __user *)(regs->nip))) {
1400                        pr_err("Failed to fetch the user instruction\n");
1401                        return;
1402                }
1403
1404                /* Write into DSCR (mtspr 0x03, RS) */
1405                if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1406                                == PPC_INST_MTSPR_DSCR_USER) {
1407                        rd = (instword >> 21) & 0x1f;
1408                        current->thread.dscr = regs->gpr[rd];
1409                        current->thread.dscr_inherit = 1;
1410                        current->thread.fscr |= FSCR_DSCR;
1411                        mtspr(SPRN_FSCR, current->thread.fscr);
1412                }
1413
1414                /* Read from DSCR (mfspr RT, 0x03) */
1415                if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1416                                == PPC_INST_MFSPR_DSCR_USER) {
1417                        if (emulate_instruction(regs)) {
1418                                pr_err("DSCR based mfspr emulation failed\n");
1419                                return;
1420                        }
1421                        regs->nip += 4;
1422                        emulate_single_step(regs);
1423                }
1424                return;
1425        }
1426
1427        if (status == FSCR_TM_LG) {
1428                /*
1429                 * If we're here then the hardware is TM aware because it
1430                 * generated an exception with FSRM_TM set.
1431                 *
1432                 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1433                 * told us not to do TM, or the kernel is not built with TM
1434                 * support.
1435                 *
1436                 * If both of those things are true, then userspace can spam the
1437                 * console by triggering the printk() below just by continually
1438                 * doing tbegin (or any TM instruction). So in that case just
1439                 * send the process a SIGILL immediately.
1440                 */
1441                if (!cpu_has_feature(CPU_FTR_TM))
1442                        goto out;
1443
1444                tm_unavailable(regs);
1445                return;
1446        }
1447
1448        if ((hv || status >= 2) &&
1449            (status < ARRAY_SIZE(facility_strings)) &&
1450            facility_strings[status])
1451                facility = facility_strings[status];
1452
1453        /* We restore the interrupt state now */
1454        if (!arch_irq_disabled_regs(regs))
1455                local_irq_enable();
1456
1457        pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1458                hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1459
1460out:
1461        if (user_mode(regs)) {
1462                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1463                return;
1464        }
1465
1466        die("Unexpected facility unavailable exception", regs, SIGABRT);
1467}
1468#endif
1469
1470#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1471
1472void fp_unavailable_tm(struct pt_regs *regs)
1473{
1474        /* Note:  This does not handle any kind of FP laziness. */
1475
1476        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1477                 regs->nip, regs->msr);
1478
1479        /* We can only have got here if the task started using FP after
1480         * beginning the transaction.  So, the transactional regs are just a
1481         * copy of the checkpointed ones.  But, we still need to recheckpoint
1482         * as we're enabling FP for the process; it will return, abort the
1483         * transaction, and probably retry but now with FP enabled.  So the
1484         * checkpointed FP registers need to be loaded.
1485         */
1486        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1487        /* Reclaim didn't save out any FPRs to transact_fprs. */
1488
1489        /* Enable FP for the task: */
1490        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1491
1492        /* This loads and recheckpoints the FP registers from
1493         * thread.fpr[].  They will remain in registers after the
1494         * checkpoint so we don't need to reload them after.
1495         * If VMX is in use, the VRs now hold checkpointed values,
1496         * so we don't want to load the VRs from the thread_struct.
1497         */
1498        tm_recheckpoint(&current->thread, MSR_FP);
1499
1500        /* If VMX is in use, get the transactional values back */
1501        if (regs->msr & MSR_VEC) {
1502                msr_check_and_set(MSR_VEC);
1503                load_vr_state(&current->thread.vr_state);
1504                /* At this point all the VSX state is loaded, so enable it */
1505                regs->msr |= MSR_VSX;
1506        }
1507}
1508
1509void altivec_unavailable_tm(struct pt_regs *regs)
1510{
1511        /* See the comments in fp_unavailable_tm().  This function operates
1512         * the same way.
1513         */
1514
1515        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1516                 "MSR=%lx\n",
1517                 regs->nip, regs->msr);
1518        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1519        regs->msr |= MSR_VEC;
1520        tm_recheckpoint(&current->thread, MSR_VEC);
1521        current->thread.used_vr = 1;
1522
1523        if (regs->msr & MSR_FP) {
1524                msr_check_and_set(MSR_FP);
1525                load_fp_state(&current->thread.fp_state);
1526                regs->msr |= MSR_VSX;
1527        }
1528}
1529
1530void vsx_unavailable_tm(struct pt_regs *regs)
1531{
1532        unsigned long orig_msr = regs->msr;
1533
1534        /* See the comments in fp_unavailable_tm().  This works similarly,
1535         * though we're loading both FP and VEC registers in here.
1536         *
1537         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1538         * regs.  Either way, set MSR_VSX.
1539         */
1540
1541        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1542                 "MSR=%lx\n",
1543                 regs->nip, regs->msr);
1544
1545        current->thread.used_vsr = 1;
1546
1547        /* If FP and VMX are already loaded, we have all the state we need */
1548        if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1549                regs->msr |= MSR_VSX;
1550                return;
1551        }
1552
1553        /* This reclaims FP and/or VR regs if they're already enabled */
1554        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1555
1556        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1557                MSR_VSX;
1558
1559        /* This loads & recheckpoints FP and VRs; but we have
1560         * to be sure not to overwrite previously-valid state.
1561         */
1562        tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1563
1564        msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1565
1566        if (orig_msr & MSR_FP)
1567                load_fp_state(&current->thread.fp_state);
1568        if (orig_msr & MSR_VEC)
1569                load_vr_state(&current->thread.vr_state);
1570}
1571#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1572
1573void performance_monitor_exception(struct pt_regs *regs)
1574{
1575        __this_cpu_inc(irq_stat.pmu_irqs);
1576
1577        perf_irq(regs);
1578}
1579
1580#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1581static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1582{
1583        int changed = 0;
1584        /*
1585         * Determine the cause of the debug event, clear the
1586         * event flags and send a trap to the handler. Torez
1587         */
1588        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1589                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1590#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1591                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1592#endif
1593                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1594                             5);
1595                changed |= 0x01;
1596        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1597                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1598                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1599                             6);
1600                changed |= 0x01;
1601        }  else if (debug_status & DBSR_IAC1) {
1602                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1603                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1604                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1605                             1);
1606                changed |= 0x01;
1607        }  else if (debug_status & DBSR_IAC2) {
1608                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1609                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1610                             2);
1611                changed |= 0x01;
1612        }  else if (debug_status & DBSR_IAC3) {
1613                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1614                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1615                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1616                             3);
1617                changed |= 0x01;
1618        }  else if (debug_status & DBSR_IAC4) {
1619                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1620                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1621                             4);
1622                changed |= 0x01;
1623        }
1624        /*
1625         * At the point this routine was called, the MSR(DE) was turned off.
1626         * Check all other debug flags and see if that bit needs to be turned
1627         * back on or not.
1628         */
1629        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1630                               current->thread.debug.dbcr1))
1631                regs->msr |= MSR_DE;
1632        else
1633                /* Make sure the IDM flag is off */
1634                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1635
1636        if (changed & 0x01)
1637                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1638}
1639
1640void DebugException(struct pt_regs *regs, unsigned long debug_status)
1641{
1642        current->thread.debug.dbsr = debug_status;
1643
1644        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1645         * on server, it stops on the target of the branch. In order to simulate
1646         * the server behaviour, we thus restart right away with a single step
1647         * instead of stopping here when hitting a BT
1648         */
1649        if (debug_status & DBSR_BT) {
1650                regs->msr &= ~MSR_DE;
1651
1652                /* Disable BT */
1653                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1654                /* Clear the BT event */
1655                mtspr(SPRN_DBSR, DBSR_BT);
1656
1657                /* Do the single step trick only when coming from userspace */
1658                if (user_mode(regs)) {
1659                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
1660                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1661                        regs->msr |= MSR_DE;
1662                        return;
1663                }
1664
1665                if (kprobe_post_handler(regs))
1666                        return;
1667
1668                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1669                               5, SIGTRAP) == NOTIFY_STOP) {
1670                        return;
1671                }
1672                if (debugger_sstep(regs))
1673                        return;
1674        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1675                regs->msr &= ~MSR_DE;
1676
1677                /* Disable instruction completion */
1678                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1679                /* Clear the instruction completion event */
1680                mtspr(SPRN_DBSR, DBSR_IC);
1681
1682                if (kprobe_post_handler(regs))
1683                        return;
1684
1685                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1686                               5, SIGTRAP) == NOTIFY_STOP) {
1687                        return;
1688                }
1689
1690                if (debugger_sstep(regs))
1691                        return;
1692
1693                if (user_mode(regs)) {
1694                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
1695                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1696                                               current->thread.debug.dbcr1))
1697                                regs->msr |= MSR_DE;
1698                        else
1699                                /* Make sure the IDM bit is off */
1700                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1701                }
1702
1703                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1704        } else
1705                handle_debug(regs, debug_status);
1706}
1707NOKPROBE_SYMBOL(DebugException);
1708#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1709
1710#if !defined(CONFIG_TAU_INT)
1711void TAUException(struct pt_regs *regs)
1712{
1713        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1714               regs->nip, regs->msr, regs->trap, print_tainted());
1715}
1716#endif /* CONFIG_INT_TAU */
1717
1718#ifdef CONFIG_ALTIVEC
1719void altivec_assist_exception(struct pt_regs *regs)
1720{
1721        int err;
1722
1723        if (!user_mode(regs)) {
1724                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1725                       " at %lx\n", regs->nip);
1726                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1727        }
1728
1729        flush_altivec_to_thread(current);
1730
1731        PPC_WARN_EMULATED(altivec, regs);
1732        err = emulate_altivec(regs);
1733        if (err == 0) {
1734                regs->nip += 4;         /* skip emulated instruction */
1735                emulate_single_step(regs);
1736                return;
1737        }
1738
1739        if (err == -EFAULT) {
1740                /* got an error reading the instruction */
1741                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1742        } else {
1743                /* didn't recognize the instruction */
1744                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1745                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1746                                   "in %s at %lx\n", current->comm, regs->nip);
1747                current->thread.vr_state.vscr.u[3] |= 0x10000;
1748        }
1749}
1750#endif /* CONFIG_ALTIVEC */
1751
1752#ifdef CONFIG_FSL_BOOKE
1753void CacheLockingException(struct pt_regs *regs, unsigned long address,
1754                           unsigned long error_code)
1755{
1756        /* We treat cache locking instructions from the user
1757         * as priv ops, in the future we could try to do
1758         * something smarter
1759         */
1760        if (error_code & (ESR_DLK|ESR_ILK))
1761                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1762        return;
1763}
1764#endif /* CONFIG_FSL_BOOKE */
1765
1766#ifdef CONFIG_SPE
1767void SPEFloatingPointException(struct pt_regs *regs)
1768{
1769        extern int do_spe_mathemu(struct pt_regs *regs);
1770        unsigned long spefscr;
1771        int fpexc_mode;
1772        int code = 0;
1773        int err;
1774
1775        flush_spe_to_thread(current);
1776
1777        spefscr = current->thread.spefscr;
1778        fpexc_mode = current->thread.fpexc_mode;
1779
1780        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1781                code = FPE_FLTOVF;
1782        }
1783        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1784                code = FPE_FLTUND;
1785        }
1786        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1787                code = FPE_FLTDIV;
1788        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1789                code = FPE_FLTINV;
1790        }
1791        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1792                code = FPE_FLTRES;
1793
1794        err = do_spe_mathemu(regs);
1795        if (err == 0) {
1796                regs->nip += 4;         /* skip emulated instruction */
1797                emulate_single_step(regs);
1798                return;
1799        }
1800
1801        if (err == -EFAULT) {
1802                /* got an error reading the instruction */
1803                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1804        } else if (err == -EINVAL) {
1805                /* didn't recognize the instruction */
1806                printk(KERN_ERR "unrecognized spe instruction "
1807                       "in %s at %lx\n", current->comm, regs->nip);
1808        } else {
1809                _exception(SIGFPE, regs, code, regs->nip);
1810        }
1811
1812        return;
1813}
1814
1815void SPEFloatingPointRoundException(struct pt_regs *regs)
1816{
1817        extern int speround_handler(struct pt_regs *regs);
1818        int err;
1819
1820        preempt_disable();
1821        if (regs->msr & MSR_SPE)
1822                giveup_spe(current);
1823        preempt_enable();
1824
1825        regs->nip -= 4;
1826        err = speround_handler(regs);
1827        if (err == 0) {
1828                regs->nip += 4;         /* skip emulated instruction */
1829                emulate_single_step(regs);
1830                return;
1831        }
1832
1833        if (err == -EFAULT) {
1834                /* got an error reading the instruction */
1835                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1836        } else if (err == -EINVAL) {
1837                /* didn't recognize the instruction */
1838                printk(KERN_ERR "unrecognized spe instruction "
1839                       "in %s at %lx\n", current->comm, regs->nip);
1840        } else {
1841                _exception(SIGFPE, regs, 0, regs->nip);
1842                return;
1843        }
1844}
1845#endif
1846
1847/*
1848 * We enter here if we get an unrecoverable exception, that is, one
1849 * that happened at a point where the RI (recoverable interrupt) bit
1850 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1851 * we therefore lost state by taking this exception.
1852 */
1853void unrecoverable_exception(struct pt_regs *regs)
1854{
1855        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1856               regs->trap, regs->nip);
1857        die("Unrecoverable exception", regs, SIGABRT);
1858}
1859NOKPROBE_SYMBOL(unrecoverable_exception);
1860
1861#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1862/*
1863 * Default handler for a Watchdog exception,
1864 * spins until a reboot occurs
1865 */
1866void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1867{
1868        /* Generic WatchdogHandler, implement your own */
1869        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1870        return;
1871}
1872
1873void WatchdogException(struct pt_regs *regs)
1874{
1875        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1876        WatchdogHandler(regs);
1877}
1878#endif
1879
1880/*
1881 * We enter here if we discover during exception entry that we are
1882 * running in supervisor mode with a userspace value in the stack pointer.
1883 */
1884void kernel_bad_stack(struct pt_regs *regs)
1885{
1886        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1887               regs->gpr[1], regs->nip);
1888        die("Bad kernel stack pointer", regs, SIGABRT);
1889}
1890NOKPROBE_SYMBOL(kernel_bad_stack);
1891
1892void __init trap_init(void)
1893{
1894}
1895
1896
1897#ifdef CONFIG_PPC_EMULATED_STATS
1898
1899#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1900
1901struct ppc_emulated ppc_emulated = {
1902#ifdef CONFIG_ALTIVEC
1903        WARN_EMULATED_SETUP(altivec),
1904#endif
1905        WARN_EMULATED_SETUP(dcba),
1906        WARN_EMULATED_SETUP(dcbz),
1907        WARN_EMULATED_SETUP(fp_pair),
1908        WARN_EMULATED_SETUP(isel),
1909        WARN_EMULATED_SETUP(mcrxr),
1910        WARN_EMULATED_SETUP(mfpvr),
1911        WARN_EMULATED_SETUP(multiple),
1912        WARN_EMULATED_SETUP(popcntb),
1913        WARN_EMULATED_SETUP(spe),
1914        WARN_EMULATED_SETUP(string),
1915        WARN_EMULATED_SETUP(sync),
1916        WARN_EMULATED_SETUP(unaligned),
1917#ifdef CONFIG_MATH_EMULATION
1918        WARN_EMULATED_SETUP(math),
1919#endif
1920#ifdef CONFIG_VSX
1921        WARN_EMULATED_SETUP(vsx),
1922#endif
1923#ifdef CONFIG_PPC64
1924        WARN_EMULATED_SETUP(mfdscr),
1925        WARN_EMULATED_SETUP(mtdscr),
1926        WARN_EMULATED_SETUP(lq_stq),
1927#endif
1928};
1929
1930u32 ppc_warn_emulated;
1931
1932void ppc_warn_emulated_print(const char *type)
1933{
1934        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1935                            type);
1936}
1937
1938static int __init ppc_warn_emulated_init(void)
1939{
1940        struct dentry *dir, *d;
1941        unsigned int i;
1942        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1943
1944        if (!powerpc_debugfs_root)
1945                return -ENODEV;
1946
1947        dir = debugfs_create_dir("emulated_instructions",
1948                                 powerpc_debugfs_root);
1949        if (!dir)
1950                return -ENOMEM;
1951
1952        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1953                               &ppc_warn_emulated);
1954        if (!d)
1955                goto fail;
1956
1957        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1958                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1959                                       (u32 *)&entries[i].val.counter);
1960                if (!d)
1961                        goto fail;
1962        }
1963
1964        return 0;
1965
1966fail:
1967        debugfs_remove_recursive(dir);
1968        return -ENOMEM;
1969}
1970
1971device_initcall(ppc_warn_emulated_init);
1972
1973#endif /* CONFIG_PPC_EMULATED_STATS */
1974