linux/arch/powerpc/kvm/book3s_32_mmu_host.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
   3 *
   4 * Authors:
   5 *     Alexander Graf <agraf@suse.de>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License, version 2, as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  19 */
  20
  21#include <linux/kvm_host.h>
  22
  23#include <asm/kvm_ppc.h>
  24#include <asm/kvm_book3s.h>
  25#include <asm/book3s/32/mmu-hash.h>
  26#include <asm/machdep.h>
  27#include <asm/mmu_context.h>
  28#include <asm/hw_irq.h>
  29#include "book3s.h"
  30
  31/* #define DEBUG_MMU */
  32/* #define DEBUG_SR */
  33
  34#ifdef DEBUG_MMU
  35#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
  36#else
  37#define dprintk_mmu(a, ...) do { } while(0)
  38#endif
  39
  40#ifdef DEBUG_SR
  41#define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
  42#else
  43#define dprintk_sr(a, ...) do { } while(0)
  44#endif
  45
  46#if PAGE_SHIFT != 12
  47#error Unknown page size
  48#endif
  49
  50#ifdef CONFIG_SMP
  51#error XXX need to grab mmu_hash_lock
  52#endif
  53
  54#ifdef CONFIG_PTE_64BIT
  55#error Only 32 bit pages are supported for now
  56#endif
  57
  58static ulong htab;
  59static u32 htabmask;
  60
  61void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  62{
  63        volatile u32 *pteg;
  64
  65        /* Remove from host HTAB */
  66        pteg = (u32*)pte->slot;
  67        pteg[0] = 0;
  68
  69        /* And make sure it's gone from the TLB too */
  70        asm volatile ("sync");
  71        asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
  72        asm volatile ("sync");
  73        asm volatile ("tlbsync");
  74}
  75
  76/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
  77 * a hash, so we don't waste cycles on looping */
  78static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
  79{
  80        return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
  81                     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
  82                     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
  83                     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
  84                     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
  85                     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
  86                     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
  87                     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
  88}
  89
  90
  91static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
  92{
  93        struct kvmppc_sid_map *map;
  94        u16 sid_map_mask;
  95
  96        if (kvmppc_get_msr(vcpu) & MSR_PR)
  97                gvsid |= VSID_PR;
  98
  99        sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
 100        map = &to_book3s(vcpu)->sid_map[sid_map_mask];
 101        if (map->guest_vsid == gvsid) {
 102                dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
 103                            gvsid, map->host_vsid);
 104                return map;
 105        }
 106
 107        map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
 108        if (map->guest_vsid == gvsid) {
 109                dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
 110                            gvsid, map->host_vsid);
 111                return map;
 112        }
 113
 114        dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
 115        return NULL;
 116}
 117
 118static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
 119                                bool primary)
 120{
 121        u32 page, hash;
 122        ulong pteg = htab;
 123
 124        page = (eaddr & ~ESID_MASK) >> 12;
 125
 126        hash = ((vsid ^ page) << 6);
 127        if (!primary)
 128                hash = ~hash;
 129
 130        hash &= htabmask;
 131
 132        pteg |= hash;
 133
 134        dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n",
 135                htab, hash, htabmask, pteg);
 136
 137        return (u32*)pteg;
 138}
 139
 140extern char etext[];
 141
 142int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
 143                        bool iswrite)
 144{
 145        kvm_pfn_t hpaddr;
 146        u64 vpn;
 147        u64 vsid;
 148        struct kvmppc_sid_map *map;
 149        volatile u32 *pteg;
 150        u32 eaddr = orig_pte->eaddr;
 151        u32 pteg0, pteg1;
 152        register int rr = 0;
 153        bool primary = false;
 154        bool evict = false;
 155        struct hpte_cache *pte;
 156        int r = 0;
 157        bool writable;
 158
 159        /* Get host physical address for gpa */
 160        hpaddr = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable);
 161        if (is_error_noslot_pfn(hpaddr)) {
 162                printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n",
 163                                 orig_pte->raddr);
 164                r = -EINVAL;
 165                goto out;
 166        }
 167        hpaddr <<= PAGE_SHIFT;
 168
 169        /* and write the mapping ea -> hpa into the pt */
 170        vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
 171        map = find_sid_vsid(vcpu, vsid);
 172        if (!map) {
 173                kvmppc_mmu_map_segment(vcpu, eaddr);
 174                map = find_sid_vsid(vcpu, vsid);
 175        }
 176        BUG_ON(!map);
 177
 178        vsid = map->host_vsid;
 179        vpn = (vsid << (SID_SHIFT - VPN_SHIFT)) |
 180                ((eaddr & ~ESID_MASK) >> VPN_SHIFT);
 181next_pteg:
 182        if (rr == 16) {
 183                primary = !primary;
 184                evict = true;
 185                rr = 0;
 186        }
 187
 188        pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);
 189
 190        /* not evicting yet */
 191        if (!evict && (pteg[rr] & PTE_V)) {
 192                rr += 2;
 193                goto next_pteg;
 194        }
 195
 196        dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
 197        dprintk_mmu("KVM:   %08x - %08x\n", pteg[0], pteg[1]);
 198        dprintk_mmu("KVM:   %08x - %08x\n", pteg[2], pteg[3]);
 199        dprintk_mmu("KVM:   %08x - %08x\n", pteg[4], pteg[5]);
 200        dprintk_mmu("KVM:   %08x - %08x\n", pteg[6], pteg[7]);
 201        dprintk_mmu("KVM:   %08x - %08x\n", pteg[8], pteg[9]);
 202        dprintk_mmu("KVM:   %08x - %08x\n", pteg[10], pteg[11]);
 203        dprintk_mmu("KVM:   %08x - %08x\n", pteg[12], pteg[13]);
 204        dprintk_mmu("KVM:   %08x - %08x\n", pteg[14], pteg[15]);
 205
 206        pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
 207                (primary ? 0 : PTE_SEC);
 208        pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;
 209
 210        if (orig_pte->may_write && writable) {
 211                pteg1 |= PP_RWRW;
 212                mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
 213        } else {
 214                pteg1 |= PP_RWRX;
 215        }
 216
 217        if (orig_pte->may_execute)
 218                kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
 219
 220        local_irq_disable();
 221
 222        if (pteg[rr]) {
 223                pteg[rr] = 0;
 224                asm volatile ("sync");
 225        }
 226        pteg[rr + 1] = pteg1;
 227        pteg[rr] = pteg0;
 228        asm volatile ("sync");
 229
 230        local_irq_enable();
 231
 232        dprintk_mmu("KVM: new PTEG: %p\n", pteg);
 233        dprintk_mmu("KVM:   %08x - %08x\n", pteg[0], pteg[1]);
 234        dprintk_mmu("KVM:   %08x - %08x\n", pteg[2], pteg[3]);
 235        dprintk_mmu("KVM:   %08x - %08x\n", pteg[4], pteg[5]);
 236        dprintk_mmu("KVM:   %08x - %08x\n", pteg[6], pteg[7]);
 237        dprintk_mmu("KVM:   %08x - %08x\n", pteg[8], pteg[9]);
 238        dprintk_mmu("KVM:   %08x - %08x\n", pteg[10], pteg[11]);
 239        dprintk_mmu("KVM:   %08x - %08x\n", pteg[12], pteg[13]);
 240        dprintk_mmu("KVM:   %08x - %08x\n", pteg[14], pteg[15]);
 241
 242
 243        /* Now tell our Shadow PTE code about the new page */
 244
 245        pte = kvmppc_mmu_hpte_cache_next(vcpu);
 246        if (!pte) {
 247                kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
 248                r = -EAGAIN;
 249                goto out;
 250        }
 251
 252        dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
 253                    orig_pte->may_write ? 'w' : '-',
 254                    orig_pte->may_execute ? 'x' : '-',
 255                    orig_pte->eaddr, (ulong)pteg, vpn,
 256                    orig_pte->vpage, hpaddr);
 257
 258        pte->slot = (ulong)&pteg[rr];
 259        pte->host_vpn = vpn;
 260        pte->pte = *orig_pte;
 261        pte->pfn = hpaddr >> PAGE_SHIFT;
 262
 263        kvmppc_mmu_hpte_cache_map(vcpu, pte);
 264
 265        kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
 266out:
 267        return r;
 268}
 269
 270void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
 271{
 272        kvmppc_mmu_pte_vflush(vcpu, pte->vpage, 0xfffffffffULL);
 273}
 274
 275static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
 276{
 277        struct kvmppc_sid_map *map;
 278        struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
 279        u16 sid_map_mask;
 280        static int backwards_map = 0;
 281
 282        if (kvmppc_get_msr(vcpu) & MSR_PR)
 283                gvsid |= VSID_PR;
 284
 285        /* We might get collisions that trap in preceding order, so let's
 286           map them differently */
 287
 288        sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
 289        if (backwards_map)
 290                sid_map_mask = SID_MAP_MASK - sid_map_mask;
 291
 292        map = &to_book3s(vcpu)->sid_map[sid_map_mask];
 293
 294        /* Make sure we're taking the other map next time */
 295        backwards_map = !backwards_map;
 296
 297        /* Uh-oh ... out of mappings. Let's flush! */
 298        if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) {
 299                vcpu_book3s->vsid_next = 0;
 300                memset(vcpu_book3s->sid_map, 0,
 301                       sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
 302                kvmppc_mmu_pte_flush(vcpu, 0, 0);
 303                kvmppc_mmu_flush_segments(vcpu);
 304        }
 305        map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next];
 306        vcpu_book3s->vsid_next++;
 307
 308        map->guest_vsid = gvsid;
 309        map->valid = true;
 310
 311        return map;
 312}
 313
 314int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
 315{
 316        u32 esid = eaddr >> SID_SHIFT;
 317        u64 gvsid;
 318        u32 sr;
 319        struct kvmppc_sid_map *map;
 320        struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
 321        int r = 0;
 322
 323        if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
 324                /* Invalidate an entry */
 325                svcpu->sr[esid] = SR_INVALID;
 326                r = -ENOENT;
 327                goto out;
 328        }
 329
 330        map = find_sid_vsid(vcpu, gvsid);
 331        if (!map)
 332                map = create_sid_map(vcpu, gvsid);
 333
 334        map->guest_esid = esid;
 335        sr = map->host_vsid | SR_KP;
 336        svcpu->sr[esid] = sr;
 337
 338        dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
 339
 340out:
 341        svcpu_put(svcpu);
 342        return r;
 343}
 344
 345void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
 346{
 347        int i;
 348        struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
 349
 350        dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
 351        for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
 352                svcpu->sr[i] = SR_INVALID;
 353
 354        svcpu_put(svcpu);
 355}
 356
 357void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu)
 358{
 359        int i;
 360
 361        kvmppc_mmu_hpte_destroy(vcpu);
 362        preempt_disable();
 363        for (i = 0; i < SID_CONTEXTS; i++)
 364                __destroy_context(to_book3s(vcpu)->context_id[i]);
 365        preempt_enable();
 366}
 367
 368/* From mm/mmu_context_hash32.c */
 369#define CTX_TO_VSID(c, id)      ((((c) * (897 * 16)) + (id * 0x111)) & 0xffffff)
 370
 371int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
 372{
 373        struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
 374        int err;
 375        ulong sdr1;
 376        int i;
 377        int j;
 378
 379        for (i = 0; i < SID_CONTEXTS; i++) {
 380                err = __init_new_context();
 381                if (err < 0)
 382                        goto init_fail;
 383                vcpu3s->context_id[i] = err;
 384
 385                /* Remember context id for this combination */
 386                for (j = 0; j < 16; j++)
 387                        vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j);
 388        }
 389
 390        vcpu3s->vsid_next = 0;
 391
 392        /* Remember where the HTAB is */
 393        asm ( "mfsdr1 %0" : "=r"(sdr1) );
 394        htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0;
 395        htab = (ulong)__va(sdr1 & 0xffff0000);
 396
 397        kvmppc_mmu_hpte_init(vcpu);
 398
 399        return 0;
 400
 401init_fail:
 402        for (j = 0; j < i; j++) {
 403                if (!vcpu3s->context_id[j])
 404                        continue;
 405
 406                __destroy_context(to_book3s(vcpu)->context_id[j]);
 407        }
 408
 409        return -1;
 410}
 411