linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39#include <linux/frame.h>
  40
  41#include <asm/apic.h>
  42#include <asm/perf_event.h>
  43#include <asm/tlbflush.h>
  44#include <asm/desc.h>
  45#include <asm/debugreg.h>
  46#include <asm/kvm_para.h>
  47#include <asm/irq_remapping.h>
  48
  49#include <asm/virtext.h>
  50#include "trace.h"
  51
  52#define __ex(x) __kvm_handle_fault_on_reboot(x)
  53
  54MODULE_AUTHOR("Qumranet");
  55MODULE_LICENSE("GPL");
  56
  57static const struct x86_cpu_id svm_cpu_id[] = {
  58        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  59        {}
  60};
  61MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  62
  63#define IOPM_ALLOC_ORDER 2
  64#define MSRPM_ALLOC_ORDER 1
  65
  66#define SEG_TYPE_LDT 2
  67#define SEG_TYPE_BUSY_TSS16 3
  68
  69#define SVM_FEATURE_NPT            (1 <<  0)
  70#define SVM_FEATURE_LBRV           (1 <<  1)
  71#define SVM_FEATURE_SVML           (1 <<  2)
  72#define SVM_FEATURE_NRIP           (1 <<  3)
  73#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  74#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  75#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  76#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  77#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  78
  79#define SVM_AVIC_DOORBELL       0xc001011b
  80
  81#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  82#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  83#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  84
  85#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  86
  87#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  88#define TSC_RATIO_MIN           0x0000000000000001ULL
  89#define TSC_RATIO_MAX           0x000000ffffffffffULL
  90
  91#define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
  92
  93/*
  94 * 0xff is broadcast, so the max index allowed for physical APIC ID
  95 * table is 0xfe.  APIC IDs above 0xff are reserved.
  96 */
  97#define AVIC_MAX_PHYSICAL_ID_COUNT      255
  98
  99#define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
 100#define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
 101#define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
 102
 103/* AVIC GATAG is encoded using VM and VCPU IDs */
 104#define AVIC_VCPU_ID_BITS               8
 105#define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
 106
 107#define AVIC_VM_ID_BITS                 24
 108#define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
 109#define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
 110
 111#define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 112                                                (y & AVIC_VCPU_ID_MASK))
 113#define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 114#define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
 115
 116static bool erratum_383_found __read_mostly;
 117
 118static const u32 host_save_user_msrs[] = {
 119#ifdef CONFIG_X86_64
 120        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 121        MSR_FS_BASE,
 122#endif
 123        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 124        MSR_TSC_AUX,
 125};
 126
 127#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 128
 129struct kvm_vcpu;
 130
 131struct nested_state {
 132        struct vmcb *hsave;
 133        u64 hsave_msr;
 134        u64 vm_cr_msr;
 135        u64 vmcb;
 136
 137        /* These are the merged vectors */
 138        u32 *msrpm;
 139
 140        /* gpa pointers to the real vectors */
 141        u64 vmcb_msrpm;
 142        u64 vmcb_iopm;
 143
 144        /* A VMEXIT is required but not yet emulated */
 145        bool exit_required;
 146
 147        /* cache for intercepts of the guest */
 148        u32 intercept_cr;
 149        u32 intercept_dr;
 150        u32 intercept_exceptions;
 151        u64 intercept;
 152
 153        /* Nested Paging related state */
 154        u64 nested_cr3;
 155};
 156
 157#define MSRPM_OFFSETS   16
 158static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 159
 160/*
 161 * Set osvw_len to higher value when updated Revision Guides
 162 * are published and we know what the new status bits are
 163 */
 164static uint64_t osvw_len = 4, osvw_status;
 165
 166struct vcpu_svm {
 167        struct kvm_vcpu vcpu;
 168        struct vmcb *vmcb;
 169        unsigned long vmcb_pa;
 170        struct svm_cpu_data *svm_data;
 171        uint64_t asid_generation;
 172        uint64_t sysenter_esp;
 173        uint64_t sysenter_eip;
 174        uint64_t tsc_aux;
 175
 176        u64 next_rip;
 177
 178        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 179        struct {
 180                u16 fs;
 181                u16 gs;
 182                u16 ldt;
 183                u64 gs_base;
 184        } host;
 185
 186        u32 *msrpm;
 187
 188        ulong nmi_iret_rip;
 189
 190        struct nested_state nested;
 191
 192        bool nmi_singlestep;
 193        u64 nmi_singlestep_guest_rflags;
 194
 195        unsigned int3_injected;
 196        unsigned long int3_rip;
 197
 198        /* cached guest cpuid flags for faster access */
 199        bool nrips_enabled      : 1;
 200
 201        u32 ldr_reg;
 202        struct page *avic_backing_page;
 203        u64 *avic_physical_id_cache;
 204        bool avic_is_running;
 205
 206        /*
 207         * Per-vcpu list of struct amd_svm_iommu_ir:
 208         * This is used mainly to store interrupt remapping information used
 209         * when update the vcpu affinity. This avoids the need to scan for
 210         * IRTE and try to match ga_tag in the IOMMU driver.
 211         */
 212        struct list_head ir_list;
 213        spinlock_t ir_list_lock;
 214};
 215
 216/*
 217 * This is a wrapper of struct amd_iommu_ir_data.
 218 */
 219struct amd_svm_iommu_ir {
 220        struct list_head node;  /* Used by SVM for per-vcpu ir_list */
 221        void *data;             /* Storing pointer to struct amd_ir_data */
 222};
 223
 224#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
 225#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
 226
 227#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
 228#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
 229#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
 230#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
 231
 232static DEFINE_PER_CPU(u64, current_tsc_ratio);
 233#define TSC_RATIO_DEFAULT       0x0100000000ULL
 234
 235#define MSR_INVALID                     0xffffffffU
 236
 237static const struct svm_direct_access_msrs {
 238        u32 index;   /* Index of the MSR */
 239        bool always; /* True if intercept is always on */
 240} direct_access_msrs[] = {
 241        { .index = MSR_STAR,                            .always = true  },
 242        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 243#ifdef CONFIG_X86_64
 244        { .index = MSR_GS_BASE,                         .always = true  },
 245        { .index = MSR_FS_BASE,                         .always = true  },
 246        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 247        { .index = MSR_LSTAR,                           .always = true  },
 248        { .index = MSR_CSTAR,                           .always = true  },
 249        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 250#endif
 251        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 252        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 253        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 254        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 255        { .index = MSR_INVALID,                         .always = false },
 256};
 257
 258/* enable NPT for AMD64 and X86 with PAE */
 259#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 260static bool npt_enabled = true;
 261#else
 262static bool npt_enabled;
 263#endif
 264
 265/* allow nested paging (virtualized MMU) for all guests */
 266static int npt = true;
 267module_param(npt, int, S_IRUGO);
 268
 269/* allow nested virtualization in KVM/SVM */
 270static int nested = true;
 271module_param(nested, int, S_IRUGO);
 272
 273/* enable / disable AVIC */
 274static int avic;
 275#ifdef CONFIG_X86_LOCAL_APIC
 276module_param(avic, int, S_IRUGO);
 277#endif
 278
 279/* enable/disable Virtual VMLOAD VMSAVE */
 280static int vls = true;
 281module_param(vls, int, 0444);
 282
 283/* enable/disable Virtual GIF */
 284static int vgif = true;
 285module_param(vgif, int, 0444);
 286
 287static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 288static void svm_flush_tlb(struct kvm_vcpu *vcpu);
 289static void svm_complete_interrupts(struct vcpu_svm *svm);
 290
 291static int nested_svm_exit_handled(struct vcpu_svm *svm);
 292static int nested_svm_intercept(struct vcpu_svm *svm);
 293static int nested_svm_vmexit(struct vcpu_svm *svm);
 294static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 295                                      bool has_error_code, u32 error_code);
 296
 297enum {
 298        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 299                            pause filter count */
 300        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 301        VMCB_ASID,       /* ASID */
 302        VMCB_INTR,       /* int_ctl, int_vector */
 303        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 304        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 305        VMCB_DR,         /* DR6, DR7 */
 306        VMCB_DT,         /* GDT, IDT */
 307        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 308        VMCB_CR2,        /* CR2 only */
 309        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 310        VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 311                          * AVIC PHYSICAL_TABLE pointer,
 312                          * AVIC LOGICAL_TABLE pointer
 313                          */
 314        VMCB_DIRTY_MAX,
 315};
 316
 317/* TPR and CR2 are always written before VMRUN */
 318#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 319
 320#define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
 321
 322static inline void mark_all_dirty(struct vmcb *vmcb)
 323{
 324        vmcb->control.clean = 0;
 325}
 326
 327static inline void mark_all_clean(struct vmcb *vmcb)
 328{
 329        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 330                               & ~VMCB_ALWAYS_DIRTY_MASK;
 331}
 332
 333static inline void mark_dirty(struct vmcb *vmcb, int bit)
 334{
 335        vmcb->control.clean &= ~(1 << bit);
 336}
 337
 338static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 339{
 340        return container_of(vcpu, struct vcpu_svm, vcpu);
 341}
 342
 343static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 344{
 345        svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 346        mark_dirty(svm->vmcb, VMCB_AVIC);
 347}
 348
 349static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 350{
 351        struct vcpu_svm *svm = to_svm(vcpu);
 352        u64 *entry = svm->avic_physical_id_cache;
 353
 354        if (!entry)
 355                return false;
 356
 357        return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 358}
 359
 360static void recalc_intercepts(struct vcpu_svm *svm)
 361{
 362        struct vmcb_control_area *c, *h;
 363        struct nested_state *g;
 364
 365        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 366
 367        if (!is_guest_mode(&svm->vcpu))
 368                return;
 369
 370        c = &svm->vmcb->control;
 371        h = &svm->nested.hsave->control;
 372        g = &svm->nested;
 373
 374        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 375        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 376        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 377        c->intercept = h->intercept | g->intercept;
 378}
 379
 380static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 381{
 382        if (is_guest_mode(&svm->vcpu))
 383                return svm->nested.hsave;
 384        else
 385                return svm->vmcb;
 386}
 387
 388static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 389{
 390        struct vmcb *vmcb = get_host_vmcb(svm);
 391
 392        vmcb->control.intercept_cr |= (1U << bit);
 393
 394        recalc_intercepts(svm);
 395}
 396
 397static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 398{
 399        struct vmcb *vmcb = get_host_vmcb(svm);
 400
 401        vmcb->control.intercept_cr &= ~(1U << bit);
 402
 403        recalc_intercepts(svm);
 404}
 405
 406static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 407{
 408        struct vmcb *vmcb = get_host_vmcb(svm);
 409
 410        return vmcb->control.intercept_cr & (1U << bit);
 411}
 412
 413static inline void set_dr_intercepts(struct vcpu_svm *svm)
 414{
 415        struct vmcb *vmcb = get_host_vmcb(svm);
 416
 417        vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 418                | (1 << INTERCEPT_DR1_READ)
 419                | (1 << INTERCEPT_DR2_READ)
 420                | (1 << INTERCEPT_DR3_READ)
 421                | (1 << INTERCEPT_DR4_READ)
 422                | (1 << INTERCEPT_DR5_READ)
 423                | (1 << INTERCEPT_DR6_READ)
 424                | (1 << INTERCEPT_DR7_READ)
 425                | (1 << INTERCEPT_DR0_WRITE)
 426                | (1 << INTERCEPT_DR1_WRITE)
 427                | (1 << INTERCEPT_DR2_WRITE)
 428                | (1 << INTERCEPT_DR3_WRITE)
 429                | (1 << INTERCEPT_DR4_WRITE)
 430                | (1 << INTERCEPT_DR5_WRITE)
 431                | (1 << INTERCEPT_DR6_WRITE)
 432                | (1 << INTERCEPT_DR7_WRITE);
 433
 434        recalc_intercepts(svm);
 435}
 436
 437static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 438{
 439        struct vmcb *vmcb = get_host_vmcb(svm);
 440
 441        vmcb->control.intercept_dr = 0;
 442
 443        recalc_intercepts(svm);
 444}
 445
 446static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 447{
 448        struct vmcb *vmcb = get_host_vmcb(svm);
 449
 450        vmcb->control.intercept_exceptions |= (1U << bit);
 451
 452        recalc_intercepts(svm);
 453}
 454
 455static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 456{
 457        struct vmcb *vmcb = get_host_vmcb(svm);
 458
 459        vmcb->control.intercept_exceptions &= ~(1U << bit);
 460
 461        recalc_intercepts(svm);
 462}
 463
 464static inline void set_intercept(struct vcpu_svm *svm, int bit)
 465{
 466        struct vmcb *vmcb = get_host_vmcb(svm);
 467
 468        vmcb->control.intercept |= (1ULL << bit);
 469
 470        recalc_intercepts(svm);
 471}
 472
 473static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 474{
 475        struct vmcb *vmcb = get_host_vmcb(svm);
 476
 477        vmcb->control.intercept &= ~(1ULL << bit);
 478
 479        recalc_intercepts(svm);
 480}
 481
 482static inline bool vgif_enabled(struct vcpu_svm *svm)
 483{
 484        return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
 485}
 486
 487static inline void enable_gif(struct vcpu_svm *svm)
 488{
 489        if (vgif_enabled(svm))
 490                svm->vmcb->control.int_ctl |= V_GIF_MASK;
 491        else
 492                svm->vcpu.arch.hflags |= HF_GIF_MASK;
 493}
 494
 495static inline void disable_gif(struct vcpu_svm *svm)
 496{
 497        if (vgif_enabled(svm))
 498                svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
 499        else
 500                svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 501}
 502
 503static inline bool gif_set(struct vcpu_svm *svm)
 504{
 505        if (vgif_enabled(svm))
 506                return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
 507        else
 508                return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 509}
 510
 511static unsigned long iopm_base;
 512
 513struct kvm_ldttss_desc {
 514        u16 limit0;
 515        u16 base0;
 516        unsigned base1:8, type:5, dpl:2, p:1;
 517        unsigned limit1:4, zero0:3, g:1, base2:8;
 518        u32 base3;
 519        u32 zero1;
 520} __attribute__((packed));
 521
 522struct svm_cpu_data {
 523        int cpu;
 524
 525        u64 asid_generation;
 526        u32 max_asid;
 527        u32 next_asid;
 528        struct kvm_ldttss_desc *tss_desc;
 529
 530        struct page *save_area;
 531};
 532
 533static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 534
 535struct svm_init_data {
 536        int cpu;
 537        int r;
 538};
 539
 540static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 541
 542#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 543#define MSRS_RANGE_SIZE 2048
 544#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 545
 546static u32 svm_msrpm_offset(u32 msr)
 547{
 548        u32 offset;
 549        int i;
 550
 551        for (i = 0; i < NUM_MSR_MAPS; i++) {
 552                if (msr < msrpm_ranges[i] ||
 553                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 554                        continue;
 555
 556                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 557                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 558
 559                /* Now we have the u8 offset - but need the u32 offset */
 560                return offset / 4;
 561        }
 562
 563        /* MSR not in any range */
 564        return MSR_INVALID;
 565}
 566
 567#define MAX_INST_SIZE 15
 568
 569static inline void clgi(void)
 570{
 571        asm volatile (__ex(SVM_CLGI));
 572}
 573
 574static inline void stgi(void)
 575{
 576        asm volatile (__ex(SVM_STGI));
 577}
 578
 579static inline void invlpga(unsigned long addr, u32 asid)
 580{
 581        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 582}
 583
 584static int get_npt_level(struct kvm_vcpu *vcpu)
 585{
 586#ifdef CONFIG_X86_64
 587        return PT64_ROOT_4LEVEL;
 588#else
 589        return PT32E_ROOT_LEVEL;
 590#endif
 591}
 592
 593static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 594{
 595        vcpu->arch.efer = efer;
 596        if (!npt_enabled && !(efer & EFER_LMA))
 597                efer &= ~EFER_LME;
 598
 599        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 600        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 601}
 602
 603static int is_external_interrupt(u32 info)
 604{
 605        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 606        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 607}
 608
 609static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 610{
 611        struct vcpu_svm *svm = to_svm(vcpu);
 612        u32 ret = 0;
 613
 614        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 615                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 616        return ret;
 617}
 618
 619static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 620{
 621        struct vcpu_svm *svm = to_svm(vcpu);
 622
 623        if (mask == 0)
 624                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 625        else
 626                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 627
 628}
 629
 630static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 631{
 632        struct vcpu_svm *svm = to_svm(vcpu);
 633
 634        if (svm->vmcb->control.next_rip != 0) {
 635                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 636                svm->next_rip = svm->vmcb->control.next_rip;
 637        }
 638
 639        if (!svm->next_rip) {
 640                if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 641                                EMULATE_DONE)
 642                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 643                return;
 644        }
 645        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 646                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 647                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 648
 649        kvm_rip_write(vcpu, svm->next_rip);
 650        svm_set_interrupt_shadow(vcpu, 0);
 651}
 652
 653static void svm_queue_exception(struct kvm_vcpu *vcpu)
 654{
 655        struct vcpu_svm *svm = to_svm(vcpu);
 656        unsigned nr = vcpu->arch.exception.nr;
 657        bool has_error_code = vcpu->arch.exception.has_error_code;
 658        bool reinject = vcpu->arch.exception.injected;
 659        u32 error_code = vcpu->arch.exception.error_code;
 660
 661        /*
 662         * If we are within a nested VM we'd better #VMEXIT and let the guest
 663         * handle the exception
 664         */
 665        if (!reinject &&
 666            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 667                return;
 668
 669        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 670                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 671
 672                /*
 673                 * For guest debugging where we have to reinject #BP if some
 674                 * INT3 is guest-owned:
 675                 * Emulate nRIP by moving RIP forward. Will fail if injection
 676                 * raises a fault that is not intercepted. Still better than
 677                 * failing in all cases.
 678                 */
 679                skip_emulated_instruction(&svm->vcpu);
 680                rip = kvm_rip_read(&svm->vcpu);
 681                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 682                svm->int3_injected = rip - old_rip;
 683        }
 684
 685        svm->vmcb->control.event_inj = nr
 686                | SVM_EVTINJ_VALID
 687                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 688                | SVM_EVTINJ_TYPE_EXEPT;
 689        svm->vmcb->control.event_inj_err = error_code;
 690}
 691
 692static void svm_init_erratum_383(void)
 693{
 694        u32 low, high;
 695        int err;
 696        u64 val;
 697
 698        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 699                return;
 700
 701        /* Use _safe variants to not break nested virtualization */
 702        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 703        if (err)
 704                return;
 705
 706        val |= (1ULL << 47);
 707
 708        low  = lower_32_bits(val);
 709        high = upper_32_bits(val);
 710
 711        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 712
 713        erratum_383_found = true;
 714}
 715
 716static void svm_init_osvw(struct kvm_vcpu *vcpu)
 717{
 718        /*
 719         * Guests should see errata 400 and 415 as fixed (assuming that
 720         * HLT and IO instructions are intercepted).
 721         */
 722        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 723        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 724
 725        /*
 726         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 727         * all osvw.status bits inside that length, including bit 0 (which is
 728         * reserved for erratum 298), are valid. However, if host processor's
 729         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 730         * be conservative here and therefore we tell the guest that erratum 298
 731         * is present (because we really don't know).
 732         */
 733        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 734                vcpu->arch.osvw.status |= 1;
 735}
 736
 737static int has_svm(void)
 738{
 739        const char *msg;
 740
 741        if (!cpu_has_svm(&msg)) {
 742                printk(KERN_INFO "has_svm: %s\n", msg);
 743                return 0;
 744        }
 745
 746        return 1;
 747}
 748
 749static void svm_hardware_disable(void)
 750{
 751        /* Make sure we clean up behind us */
 752        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 753                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 754
 755        cpu_svm_disable();
 756
 757        amd_pmu_disable_virt();
 758}
 759
 760static int svm_hardware_enable(void)
 761{
 762
 763        struct svm_cpu_data *sd;
 764        uint64_t efer;
 765        struct desc_struct *gdt;
 766        int me = raw_smp_processor_id();
 767
 768        rdmsrl(MSR_EFER, efer);
 769        if (efer & EFER_SVME)
 770                return -EBUSY;
 771
 772        if (!has_svm()) {
 773                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 774                return -EINVAL;
 775        }
 776        sd = per_cpu(svm_data, me);
 777        if (!sd) {
 778                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 779                return -EINVAL;
 780        }
 781
 782        sd->asid_generation = 1;
 783        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 784        sd->next_asid = sd->max_asid + 1;
 785
 786        gdt = get_current_gdt_rw();
 787        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 788
 789        wrmsrl(MSR_EFER, efer | EFER_SVME);
 790
 791        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 792
 793        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 794                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 795                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 796        }
 797
 798
 799        /*
 800         * Get OSVW bits.
 801         *
 802         * Note that it is possible to have a system with mixed processor
 803         * revisions and therefore different OSVW bits. If bits are not the same
 804         * on different processors then choose the worst case (i.e. if erratum
 805         * is present on one processor and not on another then assume that the
 806         * erratum is present everywhere).
 807         */
 808        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 809                uint64_t len, status = 0;
 810                int err;
 811
 812                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 813                if (!err)
 814                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 815                                                      &err);
 816
 817                if (err)
 818                        osvw_status = osvw_len = 0;
 819                else {
 820                        if (len < osvw_len)
 821                                osvw_len = len;
 822                        osvw_status |= status;
 823                        osvw_status &= (1ULL << osvw_len) - 1;
 824                }
 825        } else
 826                osvw_status = osvw_len = 0;
 827
 828        svm_init_erratum_383();
 829
 830        amd_pmu_enable_virt();
 831
 832        return 0;
 833}
 834
 835static void svm_cpu_uninit(int cpu)
 836{
 837        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 838
 839        if (!sd)
 840                return;
 841
 842        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 843        __free_page(sd->save_area);
 844        kfree(sd);
 845}
 846
 847static int svm_cpu_init(int cpu)
 848{
 849        struct svm_cpu_data *sd;
 850        int r;
 851
 852        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 853        if (!sd)
 854                return -ENOMEM;
 855        sd->cpu = cpu;
 856        sd->save_area = alloc_page(GFP_KERNEL);
 857        r = -ENOMEM;
 858        if (!sd->save_area)
 859                goto err_1;
 860
 861        per_cpu(svm_data, cpu) = sd;
 862
 863        return 0;
 864
 865err_1:
 866        kfree(sd);
 867        return r;
 868
 869}
 870
 871static bool valid_msr_intercept(u32 index)
 872{
 873        int i;
 874
 875        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 876                if (direct_access_msrs[i].index == index)
 877                        return true;
 878
 879        return false;
 880}
 881
 882static void set_msr_interception(u32 *msrpm, unsigned msr,
 883                                 int read, int write)
 884{
 885        u8 bit_read, bit_write;
 886        unsigned long tmp;
 887        u32 offset;
 888
 889        /*
 890         * If this warning triggers extend the direct_access_msrs list at the
 891         * beginning of the file
 892         */
 893        WARN_ON(!valid_msr_intercept(msr));
 894
 895        offset    = svm_msrpm_offset(msr);
 896        bit_read  = 2 * (msr & 0x0f);
 897        bit_write = 2 * (msr & 0x0f) + 1;
 898        tmp       = msrpm[offset];
 899
 900        BUG_ON(offset == MSR_INVALID);
 901
 902        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 903        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 904
 905        msrpm[offset] = tmp;
 906}
 907
 908static void svm_vcpu_init_msrpm(u32 *msrpm)
 909{
 910        int i;
 911
 912        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 913
 914        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 915                if (!direct_access_msrs[i].always)
 916                        continue;
 917
 918                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 919        }
 920}
 921
 922static void add_msr_offset(u32 offset)
 923{
 924        int i;
 925
 926        for (i = 0; i < MSRPM_OFFSETS; ++i) {
 927
 928                /* Offset already in list? */
 929                if (msrpm_offsets[i] == offset)
 930                        return;
 931
 932                /* Slot used by another offset? */
 933                if (msrpm_offsets[i] != MSR_INVALID)
 934                        continue;
 935
 936                /* Add offset to list */
 937                msrpm_offsets[i] = offset;
 938
 939                return;
 940        }
 941
 942        /*
 943         * If this BUG triggers the msrpm_offsets table has an overflow. Just
 944         * increase MSRPM_OFFSETS in this case.
 945         */
 946        BUG();
 947}
 948
 949static void init_msrpm_offsets(void)
 950{
 951        int i;
 952
 953        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 954
 955        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 956                u32 offset;
 957
 958                offset = svm_msrpm_offset(direct_access_msrs[i].index);
 959                BUG_ON(offset == MSR_INVALID);
 960
 961                add_msr_offset(offset);
 962        }
 963}
 964
 965static void svm_enable_lbrv(struct vcpu_svm *svm)
 966{
 967        u32 *msrpm = svm->msrpm;
 968
 969        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
 970        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 971        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 972        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 973        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 974}
 975
 976static void svm_disable_lbrv(struct vcpu_svm *svm)
 977{
 978        u32 *msrpm = svm->msrpm;
 979
 980        svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
 981        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 982        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 983        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 984        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 985}
 986
 987static void disable_nmi_singlestep(struct vcpu_svm *svm)
 988{
 989        svm->nmi_singlestep = false;
 990
 991        if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
 992                /* Clear our flags if they were not set by the guest */
 993                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
 994                        svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
 995                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
 996                        svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
 997        }
 998}
 999
1000/* Note:
1001 * This hash table is used to map VM_ID to a struct kvm_arch,
1002 * when handling AMD IOMMU GALOG notification to schedule in
1003 * a particular vCPU.
1004 */
1005#define SVM_VM_DATA_HASH_BITS   8
1006static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1007static u32 next_vm_id = 0;
1008static bool next_vm_id_wrapped = 0;
1009static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1010
1011/* Note:
1012 * This function is called from IOMMU driver to notify
1013 * SVM to schedule in a particular vCPU of a particular VM.
1014 */
1015static int avic_ga_log_notifier(u32 ga_tag)
1016{
1017        unsigned long flags;
1018        struct kvm_arch *ka = NULL;
1019        struct kvm_vcpu *vcpu = NULL;
1020        u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1021        u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1022
1023        pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1024
1025        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1026        hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1027                struct kvm *kvm = container_of(ka, struct kvm, arch);
1028                struct kvm_arch *vm_data = &kvm->arch;
1029
1030                if (vm_data->avic_vm_id != vm_id)
1031                        continue;
1032                vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1033                break;
1034        }
1035        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1036
1037        if (!vcpu)
1038                return 0;
1039
1040        /* Note:
1041         * At this point, the IOMMU should have already set the pending
1042         * bit in the vAPIC backing page. So, we just need to schedule
1043         * in the vcpu.
1044         */
1045        if (vcpu->mode == OUTSIDE_GUEST_MODE)
1046                kvm_vcpu_wake_up(vcpu);
1047
1048        return 0;
1049}
1050
1051static __init int svm_hardware_setup(void)
1052{
1053        int cpu;
1054        struct page *iopm_pages;
1055        void *iopm_va;
1056        int r;
1057
1058        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1059
1060        if (!iopm_pages)
1061                return -ENOMEM;
1062
1063        iopm_va = page_address(iopm_pages);
1064        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1065        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1066
1067        init_msrpm_offsets();
1068
1069        if (boot_cpu_has(X86_FEATURE_NX))
1070                kvm_enable_efer_bits(EFER_NX);
1071
1072        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1073                kvm_enable_efer_bits(EFER_FFXSR);
1074
1075        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1076                kvm_has_tsc_control = true;
1077                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1078                kvm_tsc_scaling_ratio_frac_bits = 32;
1079        }
1080
1081        if (nested) {
1082                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1083                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1084        }
1085
1086        for_each_possible_cpu(cpu) {
1087                r = svm_cpu_init(cpu);
1088                if (r)
1089                        goto err;
1090        }
1091
1092        if (!boot_cpu_has(X86_FEATURE_NPT))
1093                npt_enabled = false;
1094
1095        if (npt_enabled && !npt) {
1096                printk(KERN_INFO "kvm: Nested Paging disabled\n");
1097                npt_enabled = false;
1098        }
1099
1100        if (npt_enabled) {
1101                printk(KERN_INFO "kvm: Nested Paging enabled\n");
1102                kvm_enable_tdp();
1103        } else
1104                kvm_disable_tdp();
1105
1106        if (avic) {
1107                if (!npt_enabled ||
1108                    !boot_cpu_has(X86_FEATURE_AVIC) ||
1109                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1110                        avic = false;
1111                } else {
1112                        pr_info("AVIC enabled\n");
1113
1114                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1115                }
1116        }
1117
1118        if (vls) {
1119                if (!npt_enabled ||
1120                    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1121                    !IS_ENABLED(CONFIG_X86_64)) {
1122                        vls = false;
1123                } else {
1124                        pr_info("Virtual VMLOAD VMSAVE supported\n");
1125                }
1126        }
1127
1128        if (vgif) {
1129                if (!boot_cpu_has(X86_FEATURE_VGIF))
1130                        vgif = false;
1131                else
1132                        pr_info("Virtual GIF supported\n");
1133        }
1134
1135        return 0;
1136
1137err:
1138        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1139        iopm_base = 0;
1140        return r;
1141}
1142
1143static __exit void svm_hardware_unsetup(void)
1144{
1145        int cpu;
1146
1147        for_each_possible_cpu(cpu)
1148                svm_cpu_uninit(cpu);
1149
1150        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1151        iopm_base = 0;
1152}
1153
1154static void init_seg(struct vmcb_seg *seg)
1155{
1156        seg->selector = 0;
1157        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1158                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1159        seg->limit = 0xffff;
1160        seg->base = 0;
1161}
1162
1163static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1164{
1165        seg->selector = 0;
1166        seg->attrib = SVM_SELECTOR_P_MASK | type;
1167        seg->limit = 0xffff;
1168        seg->base = 0;
1169}
1170
1171static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1172{
1173        struct vcpu_svm *svm = to_svm(vcpu);
1174        u64 g_tsc_offset = 0;
1175
1176        if (is_guest_mode(vcpu)) {
1177                g_tsc_offset = svm->vmcb->control.tsc_offset -
1178                               svm->nested.hsave->control.tsc_offset;
1179                svm->nested.hsave->control.tsc_offset = offset;
1180        } else
1181                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1182                                           svm->vmcb->control.tsc_offset,
1183                                           offset);
1184
1185        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1186
1187        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1188}
1189
1190static void avic_init_vmcb(struct vcpu_svm *svm)
1191{
1192        struct vmcb *vmcb = svm->vmcb;
1193        struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1194        phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1195        phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1196        phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1197
1198        vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1199        vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1200        vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1201        vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1202        vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1203}
1204
1205static void init_vmcb(struct vcpu_svm *svm)
1206{
1207        struct vmcb_control_area *control = &svm->vmcb->control;
1208        struct vmcb_save_area *save = &svm->vmcb->save;
1209
1210        svm->vcpu.arch.hflags = 0;
1211
1212        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1213        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1214        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1215        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1216        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1217        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1218        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1219                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1220
1221        set_dr_intercepts(svm);
1222
1223        set_exception_intercept(svm, PF_VECTOR);
1224        set_exception_intercept(svm, UD_VECTOR);
1225        set_exception_intercept(svm, MC_VECTOR);
1226        set_exception_intercept(svm, AC_VECTOR);
1227        set_exception_intercept(svm, DB_VECTOR);
1228
1229        set_intercept(svm, INTERCEPT_INTR);
1230        set_intercept(svm, INTERCEPT_NMI);
1231        set_intercept(svm, INTERCEPT_SMI);
1232        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1233        set_intercept(svm, INTERCEPT_RDPMC);
1234        set_intercept(svm, INTERCEPT_CPUID);
1235        set_intercept(svm, INTERCEPT_INVD);
1236        set_intercept(svm, INTERCEPT_HLT);
1237        set_intercept(svm, INTERCEPT_INVLPG);
1238        set_intercept(svm, INTERCEPT_INVLPGA);
1239        set_intercept(svm, INTERCEPT_IOIO_PROT);
1240        set_intercept(svm, INTERCEPT_MSR_PROT);
1241        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1242        set_intercept(svm, INTERCEPT_SHUTDOWN);
1243        set_intercept(svm, INTERCEPT_VMRUN);
1244        set_intercept(svm, INTERCEPT_VMMCALL);
1245        set_intercept(svm, INTERCEPT_VMLOAD);
1246        set_intercept(svm, INTERCEPT_VMSAVE);
1247        set_intercept(svm, INTERCEPT_STGI);
1248        set_intercept(svm, INTERCEPT_CLGI);
1249        set_intercept(svm, INTERCEPT_SKINIT);
1250        set_intercept(svm, INTERCEPT_WBINVD);
1251        set_intercept(svm, INTERCEPT_XSETBV);
1252
1253        if (!kvm_mwait_in_guest()) {
1254                set_intercept(svm, INTERCEPT_MONITOR);
1255                set_intercept(svm, INTERCEPT_MWAIT);
1256        }
1257
1258        control->iopm_base_pa = __sme_set(iopm_base);
1259        control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1260        control->int_ctl = V_INTR_MASKING_MASK;
1261
1262        init_seg(&save->es);
1263        init_seg(&save->ss);
1264        init_seg(&save->ds);
1265        init_seg(&save->fs);
1266        init_seg(&save->gs);
1267
1268        save->cs.selector = 0xf000;
1269        save->cs.base = 0xffff0000;
1270        /* Executable/Readable Code Segment */
1271        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1272                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1273        save->cs.limit = 0xffff;
1274
1275        save->gdtr.limit = 0xffff;
1276        save->idtr.limit = 0xffff;
1277
1278        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1279        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1280
1281        svm_set_efer(&svm->vcpu, 0);
1282        save->dr6 = 0xffff0ff0;
1283        kvm_set_rflags(&svm->vcpu, 2);
1284        save->rip = 0x0000fff0;
1285        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1286
1287        /*
1288         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1289         * It also updates the guest-visible cr0 value.
1290         */
1291        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1292        kvm_mmu_reset_context(&svm->vcpu);
1293
1294        save->cr4 = X86_CR4_PAE;
1295        /* rdx = ?? */
1296
1297        if (npt_enabled) {
1298                /* Setup VMCB for Nested Paging */
1299                control->nested_ctl = 1;
1300                clr_intercept(svm, INTERCEPT_INVLPG);
1301                clr_exception_intercept(svm, PF_VECTOR);
1302                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1303                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1304                save->g_pat = svm->vcpu.arch.pat;
1305                save->cr3 = 0;
1306                save->cr4 = 0;
1307        }
1308        svm->asid_generation = 0;
1309
1310        svm->nested.vmcb = 0;
1311        svm->vcpu.arch.hflags = 0;
1312
1313        if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1314                control->pause_filter_count = 3000;
1315                set_intercept(svm, INTERCEPT_PAUSE);
1316        }
1317
1318        if (kvm_vcpu_apicv_active(&svm->vcpu))
1319                avic_init_vmcb(svm);
1320
1321        /*
1322         * If hardware supports Virtual VMLOAD VMSAVE then enable it
1323         * in VMCB and clear intercepts to avoid #VMEXIT.
1324         */
1325        if (vls) {
1326                clr_intercept(svm, INTERCEPT_VMLOAD);
1327                clr_intercept(svm, INTERCEPT_VMSAVE);
1328                svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1329        }
1330
1331        if (vgif) {
1332                clr_intercept(svm, INTERCEPT_STGI);
1333                clr_intercept(svm, INTERCEPT_CLGI);
1334                svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1335        }
1336
1337        mark_all_dirty(svm->vmcb);
1338
1339        enable_gif(svm);
1340
1341}
1342
1343static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1344                                       unsigned int index)
1345{
1346        u64 *avic_physical_id_table;
1347        struct kvm_arch *vm_data = &vcpu->kvm->arch;
1348
1349        if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1350                return NULL;
1351
1352        avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1353
1354        return &avic_physical_id_table[index];
1355}
1356
1357/**
1358 * Note:
1359 * AVIC hardware walks the nested page table to check permissions,
1360 * but does not use the SPA address specified in the leaf page
1361 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1362 * field of the VMCB. Therefore, we set up the
1363 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1364 */
1365static int avic_init_access_page(struct kvm_vcpu *vcpu)
1366{
1367        struct kvm *kvm = vcpu->kvm;
1368        int ret;
1369
1370        if (kvm->arch.apic_access_page_done)
1371                return 0;
1372
1373        ret = x86_set_memory_region(kvm,
1374                                    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1375                                    APIC_DEFAULT_PHYS_BASE,
1376                                    PAGE_SIZE);
1377        if (ret)
1378                return ret;
1379
1380        kvm->arch.apic_access_page_done = true;
1381        return 0;
1382}
1383
1384static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1385{
1386        int ret;
1387        u64 *entry, new_entry;
1388        int id = vcpu->vcpu_id;
1389        struct vcpu_svm *svm = to_svm(vcpu);
1390
1391        ret = avic_init_access_page(vcpu);
1392        if (ret)
1393                return ret;
1394
1395        if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1396                return -EINVAL;
1397
1398        if (!svm->vcpu.arch.apic->regs)
1399                return -EINVAL;
1400
1401        svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1402
1403        /* Setting AVIC backing page address in the phy APIC ID table */
1404        entry = avic_get_physical_id_entry(vcpu, id);
1405        if (!entry)
1406                return -EINVAL;
1407
1408        new_entry = READ_ONCE(*entry);
1409        new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1410                              AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1411                              AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1412        WRITE_ONCE(*entry, new_entry);
1413
1414        svm->avic_physical_id_cache = entry;
1415
1416        return 0;
1417}
1418
1419static void avic_vm_destroy(struct kvm *kvm)
1420{
1421        unsigned long flags;
1422        struct kvm_arch *vm_data = &kvm->arch;
1423
1424        if (!avic)
1425                return;
1426
1427        if (vm_data->avic_logical_id_table_page)
1428                __free_page(vm_data->avic_logical_id_table_page);
1429        if (vm_data->avic_physical_id_table_page)
1430                __free_page(vm_data->avic_physical_id_table_page);
1431
1432        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1433        hash_del(&vm_data->hnode);
1434        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1435}
1436
1437static int avic_vm_init(struct kvm *kvm)
1438{
1439        unsigned long flags;
1440        int err = -ENOMEM;
1441        struct kvm_arch *vm_data = &kvm->arch;
1442        struct page *p_page;
1443        struct page *l_page;
1444        struct kvm_arch *ka;
1445        u32 vm_id;
1446
1447        if (!avic)
1448                return 0;
1449
1450        /* Allocating physical APIC ID table (4KB) */
1451        p_page = alloc_page(GFP_KERNEL);
1452        if (!p_page)
1453                goto free_avic;
1454
1455        vm_data->avic_physical_id_table_page = p_page;
1456        clear_page(page_address(p_page));
1457
1458        /* Allocating logical APIC ID table (4KB) */
1459        l_page = alloc_page(GFP_KERNEL);
1460        if (!l_page)
1461                goto free_avic;
1462
1463        vm_data->avic_logical_id_table_page = l_page;
1464        clear_page(page_address(l_page));
1465
1466        spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1467 again:
1468        vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1469        if (vm_id == 0) { /* id is 1-based, zero is not okay */
1470                next_vm_id_wrapped = 1;
1471                goto again;
1472        }
1473        /* Is it still in use? Only possible if wrapped at least once */
1474        if (next_vm_id_wrapped) {
1475                hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1476                        struct kvm *k2 = container_of(ka, struct kvm, arch);
1477                        struct kvm_arch *vd2 = &k2->arch;
1478                        if (vd2->avic_vm_id == vm_id)
1479                                goto again;
1480                }
1481        }
1482        vm_data->avic_vm_id = vm_id;
1483        hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1484        spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1485
1486        return 0;
1487
1488free_avic:
1489        avic_vm_destroy(kvm);
1490        return err;
1491}
1492
1493static inline int
1494avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1495{
1496        int ret = 0;
1497        unsigned long flags;
1498        struct amd_svm_iommu_ir *ir;
1499        struct vcpu_svm *svm = to_svm(vcpu);
1500
1501        if (!kvm_arch_has_assigned_device(vcpu->kvm))
1502                return 0;
1503
1504        /*
1505         * Here, we go through the per-vcpu ir_list to update all existing
1506         * interrupt remapping table entry targeting this vcpu.
1507         */
1508        spin_lock_irqsave(&svm->ir_list_lock, flags);
1509
1510        if (list_empty(&svm->ir_list))
1511                goto out;
1512
1513        list_for_each_entry(ir, &svm->ir_list, node) {
1514                ret = amd_iommu_update_ga(cpu, r, ir->data);
1515                if (ret)
1516                        break;
1517        }
1518out:
1519        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1520        return ret;
1521}
1522
1523static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1524{
1525        u64 entry;
1526        /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1527        int h_physical_id = kvm_cpu_get_apicid(cpu);
1528        struct vcpu_svm *svm = to_svm(vcpu);
1529
1530        if (!kvm_vcpu_apicv_active(vcpu))
1531                return;
1532
1533        if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1534                return;
1535
1536        entry = READ_ONCE(*(svm->avic_physical_id_cache));
1537        WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1538
1539        entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1540        entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1541
1542        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1543        if (svm->avic_is_running)
1544                entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1545
1546        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1547        avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1548                                        svm->avic_is_running);
1549}
1550
1551static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1552{
1553        u64 entry;
1554        struct vcpu_svm *svm = to_svm(vcpu);
1555
1556        if (!kvm_vcpu_apicv_active(vcpu))
1557                return;
1558
1559        entry = READ_ONCE(*(svm->avic_physical_id_cache));
1560        if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1561                avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1562
1563        entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1564        WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1565}
1566
1567/**
1568 * This function is called during VCPU halt/unhalt.
1569 */
1570static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1571{
1572        struct vcpu_svm *svm = to_svm(vcpu);
1573
1574        svm->avic_is_running = is_run;
1575        if (is_run)
1576                avic_vcpu_load(vcpu, vcpu->cpu);
1577        else
1578                avic_vcpu_put(vcpu);
1579}
1580
1581static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1582{
1583        struct vcpu_svm *svm = to_svm(vcpu);
1584        u32 dummy;
1585        u32 eax = 1;
1586
1587        if (!init_event) {
1588                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1589                                           MSR_IA32_APICBASE_ENABLE;
1590                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1591                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1592        }
1593        init_vmcb(svm);
1594
1595        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1596        kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1597
1598        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1599                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1600}
1601
1602static int avic_init_vcpu(struct vcpu_svm *svm)
1603{
1604        int ret;
1605
1606        if (!kvm_vcpu_apicv_active(&svm->vcpu))
1607                return 0;
1608
1609        ret = avic_init_backing_page(&svm->vcpu);
1610        if (ret)
1611                return ret;
1612
1613        INIT_LIST_HEAD(&svm->ir_list);
1614        spin_lock_init(&svm->ir_list_lock);
1615
1616        return ret;
1617}
1618
1619static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1620{
1621        struct vcpu_svm *svm;
1622        struct page *page;
1623        struct page *msrpm_pages;
1624        struct page *hsave_page;
1625        struct page *nested_msrpm_pages;
1626        int err;
1627
1628        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1629        if (!svm) {
1630                err = -ENOMEM;
1631                goto out;
1632        }
1633
1634        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1635        if (err)
1636                goto free_svm;
1637
1638        err = -ENOMEM;
1639        page = alloc_page(GFP_KERNEL);
1640        if (!page)
1641                goto uninit;
1642
1643        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1644        if (!msrpm_pages)
1645                goto free_page1;
1646
1647        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1648        if (!nested_msrpm_pages)
1649                goto free_page2;
1650
1651        hsave_page = alloc_page(GFP_KERNEL);
1652        if (!hsave_page)
1653                goto free_page3;
1654
1655        err = avic_init_vcpu(svm);
1656        if (err)
1657                goto free_page4;
1658
1659        /* We initialize this flag to true to make sure that the is_running
1660         * bit would be set the first time the vcpu is loaded.
1661         */
1662        svm->avic_is_running = true;
1663
1664        svm->nested.hsave = page_address(hsave_page);
1665
1666        svm->msrpm = page_address(msrpm_pages);
1667        svm_vcpu_init_msrpm(svm->msrpm);
1668
1669        svm->nested.msrpm = page_address(nested_msrpm_pages);
1670        svm_vcpu_init_msrpm(svm->nested.msrpm);
1671
1672        svm->vmcb = page_address(page);
1673        clear_page(svm->vmcb);
1674        svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1675        svm->asid_generation = 0;
1676        init_vmcb(svm);
1677
1678        svm_init_osvw(&svm->vcpu);
1679
1680        return &svm->vcpu;
1681
1682free_page4:
1683        __free_page(hsave_page);
1684free_page3:
1685        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1686free_page2:
1687        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1688free_page1:
1689        __free_page(page);
1690uninit:
1691        kvm_vcpu_uninit(&svm->vcpu);
1692free_svm:
1693        kmem_cache_free(kvm_vcpu_cache, svm);
1694out:
1695        return ERR_PTR(err);
1696}
1697
1698static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1699{
1700        struct vcpu_svm *svm = to_svm(vcpu);
1701
1702        __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1703        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1704        __free_page(virt_to_page(svm->nested.hsave));
1705        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1706        kvm_vcpu_uninit(vcpu);
1707        kmem_cache_free(kvm_vcpu_cache, svm);
1708}
1709
1710static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1711{
1712        struct vcpu_svm *svm = to_svm(vcpu);
1713        int i;
1714
1715        if (unlikely(cpu != vcpu->cpu)) {
1716                svm->asid_generation = 0;
1717                mark_all_dirty(svm->vmcb);
1718        }
1719
1720#ifdef CONFIG_X86_64
1721        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1722#endif
1723        savesegment(fs, svm->host.fs);
1724        savesegment(gs, svm->host.gs);
1725        svm->host.ldt = kvm_read_ldt();
1726
1727        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1728                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1729
1730        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1731                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1732                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1733                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
1734                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1735                }
1736        }
1737        /* This assumes that the kernel never uses MSR_TSC_AUX */
1738        if (static_cpu_has(X86_FEATURE_RDTSCP))
1739                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1740
1741        avic_vcpu_load(vcpu, cpu);
1742}
1743
1744static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1745{
1746        struct vcpu_svm *svm = to_svm(vcpu);
1747        int i;
1748
1749        avic_vcpu_put(vcpu);
1750
1751        ++vcpu->stat.host_state_reload;
1752        kvm_load_ldt(svm->host.ldt);
1753#ifdef CONFIG_X86_64
1754        loadsegment(fs, svm->host.fs);
1755        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1756        load_gs_index(svm->host.gs);
1757#else
1758#ifdef CONFIG_X86_32_LAZY_GS
1759        loadsegment(gs, svm->host.gs);
1760#endif
1761#endif
1762        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1763                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1764}
1765
1766static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1767{
1768        avic_set_running(vcpu, false);
1769}
1770
1771static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1772{
1773        avic_set_running(vcpu, true);
1774}
1775
1776static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1777{
1778        struct vcpu_svm *svm = to_svm(vcpu);
1779        unsigned long rflags = svm->vmcb->save.rflags;
1780
1781        if (svm->nmi_singlestep) {
1782                /* Hide our flags if they were not set by the guest */
1783                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1784                        rflags &= ~X86_EFLAGS_TF;
1785                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1786                        rflags &= ~X86_EFLAGS_RF;
1787        }
1788        return rflags;
1789}
1790
1791static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1792{
1793        if (to_svm(vcpu)->nmi_singlestep)
1794                rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1795
1796       /*
1797        * Any change of EFLAGS.VM is accompanied by a reload of SS
1798        * (caused by either a task switch or an inter-privilege IRET),
1799        * so we do not need to update the CPL here.
1800        */
1801        to_svm(vcpu)->vmcb->save.rflags = rflags;
1802}
1803
1804static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1805{
1806        switch (reg) {
1807        case VCPU_EXREG_PDPTR:
1808                BUG_ON(!npt_enabled);
1809                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1810                break;
1811        default:
1812                BUG();
1813        }
1814}
1815
1816static void svm_set_vintr(struct vcpu_svm *svm)
1817{
1818        set_intercept(svm, INTERCEPT_VINTR);
1819}
1820
1821static void svm_clear_vintr(struct vcpu_svm *svm)
1822{
1823        clr_intercept(svm, INTERCEPT_VINTR);
1824}
1825
1826static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1827{
1828        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1829
1830        switch (seg) {
1831        case VCPU_SREG_CS: return &save->cs;
1832        case VCPU_SREG_DS: return &save->ds;
1833        case VCPU_SREG_ES: return &save->es;
1834        case VCPU_SREG_FS: return &save->fs;
1835        case VCPU_SREG_GS: return &save->gs;
1836        case VCPU_SREG_SS: return &save->ss;
1837        case VCPU_SREG_TR: return &save->tr;
1838        case VCPU_SREG_LDTR: return &save->ldtr;
1839        }
1840        BUG();
1841        return NULL;
1842}
1843
1844static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1845{
1846        struct vmcb_seg *s = svm_seg(vcpu, seg);
1847
1848        return s->base;
1849}
1850
1851static void svm_get_segment(struct kvm_vcpu *vcpu,
1852                            struct kvm_segment *var, int seg)
1853{
1854        struct vmcb_seg *s = svm_seg(vcpu, seg);
1855
1856        var->base = s->base;
1857        var->limit = s->limit;
1858        var->selector = s->selector;
1859        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1860        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1861        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1862        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1863        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1864        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1865        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1866
1867        /*
1868         * AMD CPUs circa 2014 track the G bit for all segments except CS.
1869         * However, the SVM spec states that the G bit is not observed by the
1870         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1871         * So let's synthesize a legal G bit for all segments, this helps
1872         * running KVM nested. It also helps cross-vendor migration, because
1873         * Intel's vmentry has a check on the 'G' bit.
1874         */
1875        var->g = s->limit > 0xfffff;
1876
1877        /*
1878         * AMD's VMCB does not have an explicit unusable field, so emulate it
1879         * for cross vendor migration purposes by "not present"
1880         */
1881        var->unusable = !var->present;
1882
1883        switch (seg) {
1884        case VCPU_SREG_TR:
1885                /*
1886                 * Work around a bug where the busy flag in the tr selector
1887                 * isn't exposed
1888                 */
1889                var->type |= 0x2;
1890                break;
1891        case VCPU_SREG_DS:
1892        case VCPU_SREG_ES:
1893        case VCPU_SREG_FS:
1894        case VCPU_SREG_GS:
1895                /*
1896                 * The accessed bit must always be set in the segment
1897                 * descriptor cache, although it can be cleared in the
1898                 * descriptor, the cached bit always remains at 1. Since
1899                 * Intel has a check on this, set it here to support
1900                 * cross-vendor migration.
1901                 */
1902                if (!var->unusable)
1903                        var->type |= 0x1;
1904                break;
1905        case VCPU_SREG_SS:
1906                /*
1907                 * On AMD CPUs sometimes the DB bit in the segment
1908                 * descriptor is left as 1, although the whole segment has
1909                 * been made unusable. Clear it here to pass an Intel VMX
1910                 * entry check when cross vendor migrating.
1911                 */
1912                if (var->unusable)
1913                        var->db = 0;
1914                /* This is symmetric with svm_set_segment() */
1915                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1916                break;
1917        }
1918}
1919
1920static int svm_get_cpl(struct kvm_vcpu *vcpu)
1921{
1922        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1923
1924        return save->cpl;
1925}
1926
1927static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1928{
1929        struct vcpu_svm *svm = to_svm(vcpu);
1930
1931        dt->size = svm->vmcb->save.idtr.limit;
1932        dt->address = svm->vmcb->save.idtr.base;
1933}
1934
1935static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1936{
1937        struct vcpu_svm *svm = to_svm(vcpu);
1938
1939        svm->vmcb->save.idtr.limit = dt->size;
1940        svm->vmcb->save.idtr.base = dt->address ;
1941        mark_dirty(svm->vmcb, VMCB_DT);
1942}
1943
1944static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1945{
1946        struct vcpu_svm *svm = to_svm(vcpu);
1947
1948        dt->size = svm->vmcb->save.gdtr.limit;
1949        dt->address = svm->vmcb->save.gdtr.base;
1950}
1951
1952static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1953{
1954        struct vcpu_svm *svm = to_svm(vcpu);
1955
1956        svm->vmcb->save.gdtr.limit = dt->size;
1957        svm->vmcb->save.gdtr.base = dt->address ;
1958        mark_dirty(svm->vmcb, VMCB_DT);
1959}
1960
1961static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1962{
1963}
1964
1965static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1966{
1967}
1968
1969static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1970{
1971}
1972
1973static void update_cr0_intercept(struct vcpu_svm *svm)
1974{
1975        ulong gcr0 = svm->vcpu.arch.cr0;
1976        u64 *hcr0 = &svm->vmcb->save.cr0;
1977
1978        *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1979                | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1980
1981        mark_dirty(svm->vmcb, VMCB_CR);
1982
1983        if (gcr0 == *hcr0) {
1984                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1985                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1986        } else {
1987                set_cr_intercept(svm, INTERCEPT_CR0_READ);
1988                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1989        }
1990}
1991
1992static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1993{
1994        struct vcpu_svm *svm = to_svm(vcpu);
1995
1996#ifdef CONFIG_X86_64
1997        if (vcpu->arch.efer & EFER_LME) {
1998                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1999                        vcpu->arch.efer |= EFER_LMA;
2000                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2001                }
2002
2003                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2004                        vcpu->arch.efer &= ~EFER_LMA;
2005                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2006                }
2007        }
2008#endif
2009        vcpu->arch.cr0 = cr0;
2010
2011        if (!npt_enabled)
2012                cr0 |= X86_CR0_PG | X86_CR0_WP;
2013
2014        /*
2015         * re-enable caching here because the QEMU bios
2016         * does not do it - this results in some delay at
2017         * reboot
2018         */
2019        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2020                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2021        svm->vmcb->save.cr0 = cr0;
2022        mark_dirty(svm->vmcb, VMCB_CR);
2023        update_cr0_intercept(svm);
2024}
2025
2026static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2027{
2028        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2029        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2030
2031        if (cr4 & X86_CR4_VMXE)
2032                return 1;
2033
2034        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2035                svm_flush_tlb(vcpu);
2036
2037        vcpu->arch.cr4 = cr4;
2038        if (!npt_enabled)
2039                cr4 |= X86_CR4_PAE;
2040        cr4 |= host_cr4_mce;
2041        to_svm(vcpu)->vmcb->save.cr4 = cr4;
2042        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2043        return 0;
2044}
2045
2046static void svm_set_segment(struct kvm_vcpu *vcpu,
2047                            struct kvm_segment *var, int seg)
2048{
2049        struct vcpu_svm *svm = to_svm(vcpu);
2050        struct vmcb_seg *s = svm_seg(vcpu, seg);
2051
2052        s->base = var->base;
2053        s->limit = var->limit;
2054        s->selector = var->selector;
2055        s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2056        s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2057        s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2058        s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2059        s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2060        s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2061        s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2062        s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2063
2064        /*
2065         * This is always accurate, except if SYSRET returned to a segment
2066         * with SS.DPL != 3.  Intel does not have this quirk, and always
2067         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2068         * would entail passing the CPL to userspace and back.
2069         */
2070        if (seg == VCPU_SREG_SS)
2071                /* This is symmetric with svm_get_segment() */
2072                svm->vmcb->save.cpl = (var->dpl & 3);
2073
2074        mark_dirty(svm->vmcb, VMCB_SEG);
2075}
2076
2077static void update_bp_intercept(struct kvm_vcpu *vcpu)
2078{
2079        struct vcpu_svm *svm = to_svm(vcpu);
2080
2081        clr_exception_intercept(svm, BP_VECTOR);
2082
2083        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2084                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2085                        set_exception_intercept(svm, BP_VECTOR);
2086        } else
2087                vcpu->guest_debug = 0;
2088}
2089
2090static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2091{
2092        if (sd->next_asid > sd->max_asid) {
2093                ++sd->asid_generation;
2094                sd->next_asid = 1;
2095                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2096        }
2097
2098        svm->asid_generation = sd->asid_generation;
2099        svm->vmcb->control.asid = sd->next_asid++;
2100
2101        mark_dirty(svm->vmcb, VMCB_ASID);
2102}
2103
2104static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2105{
2106        return to_svm(vcpu)->vmcb->save.dr6;
2107}
2108
2109static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2110{
2111        struct vcpu_svm *svm = to_svm(vcpu);
2112
2113        svm->vmcb->save.dr6 = value;
2114        mark_dirty(svm->vmcb, VMCB_DR);
2115}
2116
2117static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2118{
2119        struct vcpu_svm *svm = to_svm(vcpu);
2120
2121        get_debugreg(vcpu->arch.db[0], 0);
2122        get_debugreg(vcpu->arch.db[1], 1);
2123        get_debugreg(vcpu->arch.db[2], 2);
2124        get_debugreg(vcpu->arch.db[3], 3);
2125        vcpu->arch.dr6 = svm_get_dr6(vcpu);
2126        vcpu->arch.dr7 = svm->vmcb->save.dr7;
2127
2128        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2129        set_dr_intercepts(svm);
2130}
2131
2132static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2133{
2134        struct vcpu_svm *svm = to_svm(vcpu);
2135
2136        svm->vmcb->save.dr7 = value;
2137        mark_dirty(svm->vmcb, VMCB_DR);
2138}
2139
2140static int pf_interception(struct vcpu_svm *svm)
2141{
2142        u64 fault_address = svm->vmcb->control.exit_info_2;
2143        u64 error_code = svm->vmcb->control.exit_info_1;
2144
2145        return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2146                        svm->vmcb->control.insn_bytes,
2147                        svm->vmcb->control.insn_len, !npt_enabled);
2148}
2149
2150static int db_interception(struct vcpu_svm *svm)
2151{
2152        struct kvm_run *kvm_run = svm->vcpu.run;
2153
2154        if (!(svm->vcpu.guest_debug &
2155              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2156                !svm->nmi_singlestep) {
2157                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2158                return 1;
2159        }
2160
2161        if (svm->nmi_singlestep) {
2162                disable_nmi_singlestep(svm);
2163        }
2164
2165        if (svm->vcpu.guest_debug &
2166            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2167                kvm_run->exit_reason = KVM_EXIT_DEBUG;
2168                kvm_run->debug.arch.pc =
2169                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2170                kvm_run->debug.arch.exception = DB_VECTOR;
2171                return 0;
2172        }
2173
2174        return 1;
2175}
2176
2177static int bp_interception(struct vcpu_svm *svm)
2178{
2179        struct kvm_run *kvm_run = svm->vcpu.run;
2180
2181        kvm_run->exit_reason = KVM_EXIT_DEBUG;
2182        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2183        kvm_run->debug.arch.exception = BP_VECTOR;
2184        return 0;
2185}
2186
2187static int ud_interception(struct vcpu_svm *svm)
2188{
2189        int er;
2190
2191        er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2192        if (er != EMULATE_DONE)
2193                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2194        return 1;
2195}
2196
2197static int ac_interception(struct vcpu_svm *svm)
2198{
2199        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2200        return 1;
2201}
2202
2203static bool is_erratum_383(void)
2204{
2205        int err, i;
2206        u64 value;
2207
2208        if (!erratum_383_found)
2209                return false;
2210
2211        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2212        if (err)
2213                return false;
2214
2215        /* Bit 62 may or may not be set for this mce */
2216        value &= ~(1ULL << 62);
2217
2218        if (value != 0xb600000000010015ULL)
2219                return false;
2220
2221        /* Clear MCi_STATUS registers */
2222        for (i = 0; i < 6; ++i)
2223                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2224
2225        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2226        if (!err) {
2227                u32 low, high;
2228
2229                value &= ~(1ULL << 2);
2230                low    = lower_32_bits(value);
2231                high   = upper_32_bits(value);
2232
2233                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2234        }
2235
2236        /* Flush tlb to evict multi-match entries */
2237        __flush_tlb_all();
2238
2239        return true;
2240}
2241
2242static void svm_handle_mce(struct vcpu_svm *svm)
2243{
2244        if (is_erratum_383()) {
2245                /*
2246                 * Erratum 383 triggered. Guest state is corrupt so kill the
2247                 * guest.
2248                 */
2249                pr_err("KVM: Guest triggered AMD Erratum 383\n");
2250
2251                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2252
2253                return;
2254        }
2255
2256        /*
2257         * On an #MC intercept the MCE handler is not called automatically in
2258         * the host. So do it by hand here.
2259         */
2260        asm volatile (
2261                "int $0x12\n");
2262        /* not sure if we ever come back to this point */
2263
2264        return;
2265}
2266
2267static int mc_interception(struct vcpu_svm *svm)
2268{
2269        return 1;
2270}
2271
2272static int shutdown_interception(struct vcpu_svm *svm)
2273{
2274        struct kvm_run *kvm_run = svm->vcpu.run;
2275
2276        /*
2277         * VMCB is undefined after a SHUTDOWN intercept
2278         * so reinitialize it.
2279         */
2280        clear_page(svm->vmcb);
2281        init_vmcb(svm);
2282
2283        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2284        return 0;
2285}
2286
2287static int io_interception(struct vcpu_svm *svm)
2288{
2289        struct kvm_vcpu *vcpu = &svm->vcpu;
2290        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2291        int size, in, string, ret;
2292        unsigned port;
2293
2294        ++svm->vcpu.stat.io_exits;
2295        string = (io_info & SVM_IOIO_STR_MASK) != 0;
2296        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2297        if (string)
2298                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2299
2300        port = io_info >> 16;
2301        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2302        svm->next_rip = svm->vmcb->control.exit_info_2;
2303        ret = kvm_skip_emulated_instruction(&svm->vcpu);
2304
2305        /*
2306         * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2307         * KVM_EXIT_DEBUG here.
2308         */
2309        if (in)
2310                return kvm_fast_pio_in(vcpu, size, port) && ret;
2311        else
2312                return kvm_fast_pio_out(vcpu, size, port) && ret;
2313}
2314
2315static int nmi_interception(struct vcpu_svm *svm)
2316{
2317        return 1;
2318}
2319
2320static int intr_interception(struct vcpu_svm *svm)
2321{
2322        ++svm->vcpu.stat.irq_exits;
2323        return 1;
2324}
2325
2326static int nop_on_interception(struct vcpu_svm *svm)
2327{
2328        return 1;
2329}
2330
2331static int halt_interception(struct vcpu_svm *svm)
2332{
2333        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2334        return kvm_emulate_halt(&svm->vcpu);
2335}
2336
2337static int vmmcall_interception(struct vcpu_svm *svm)
2338{
2339        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2340        return kvm_emulate_hypercall(&svm->vcpu);
2341}
2342
2343static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2344{
2345        struct vcpu_svm *svm = to_svm(vcpu);
2346
2347        return svm->nested.nested_cr3;
2348}
2349
2350static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2351{
2352        struct vcpu_svm *svm = to_svm(vcpu);
2353        u64 cr3 = svm->nested.nested_cr3;
2354        u64 pdpte;
2355        int ret;
2356
2357        ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2358                                       offset_in_page(cr3) + index * 8, 8);
2359        if (ret)
2360                return 0;
2361        return pdpte;
2362}
2363
2364static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2365                                   unsigned long root)
2366{
2367        struct vcpu_svm *svm = to_svm(vcpu);
2368
2369        svm->vmcb->control.nested_cr3 = __sme_set(root);
2370        mark_dirty(svm->vmcb, VMCB_NPT);
2371        svm_flush_tlb(vcpu);
2372}
2373
2374static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2375                                       struct x86_exception *fault)
2376{
2377        struct vcpu_svm *svm = to_svm(vcpu);
2378
2379        if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2380                /*
2381                 * TODO: track the cause of the nested page fault, and
2382                 * correctly fill in the high bits of exit_info_1.
2383                 */
2384                svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2385                svm->vmcb->control.exit_code_hi = 0;
2386                svm->vmcb->control.exit_info_1 = (1ULL << 32);
2387                svm->vmcb->control.exit_info_2 = fault->address;
2388        }
2389
2390        svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2391        svm->vmcb->control.exit_info_1 |= fault->error_code;
2392
2393        /*
2394         * The present bit is always zero for page structure faults on real
2395         * hardware.
2396         */
2397        if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2398                svm->vmcb->control.exit_info_1 &= ~1;
2399
2400        nested_svm_vmexit(svm);
2401}
2402
2403static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2404{
2405        WARN_ON(mmu_is_nested(vcpu));
2406        kvm_init_shadow_mmu(vcpu);
2407        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2408        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2409        vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2410        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2411        vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2412        reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2413        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2414}
2415
2416static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2417{
2418        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2419}
2420
2421static int nested_svm_check_permissions(struct vcpu_svm *svm)
2422{
2423        if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2424            !is_paging(&svm->vcpu)) {
2425                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2426                return 1;
2427        }
2428
2429        if (svm->vmcb->save.cpl) {
2430                kvm_inject_gp(&svm->vcpu, 0);
2431                return 1;
2432        }
2433
2434        return 0;
2435}
2436
2437static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2438                                      bool has_error_code, u32 error_code)
2439{
2440        int vmexit;
2441
2442        if (!is_guest_mode(&svm->vcpu))
2443                return 0;
2444
2445        vmexit = nested_svm_intercept(svm);
2446        if (vmexit != NESTED_EXIT_DONE)
2447                return 0;
2448
2449        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2450        svm->vmcb->control.exit_code_hi = 0;
2451        svm->vmcb->control.exit_info_1 = error_code;
2452
2453        /*
2454         * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2455         * The fix is to add the ancillary datum (CR2 or DR6) to structs
2456         * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2457         * written only when inject_pending_event runs (DR6 would written here
2458         * too).  This should be conditional on a new capability---if the
2459         * capability is disabled, kvm_multiple_exception would write the
2460         * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2461         */
2462        if (svm->vcpu.arch.exception.nested_apf)
2463                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2464        else
2465                svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2466
2467        svm->nested.exit_required = true;
2468        return vmexit;
2469}
2470
2471/* This function returns true if it is save to enable the irq window */
2472static inline bool nested_svm_intr(struct vcpu_svm *svm)
2473{
2474        if (!is_guest_mode(&svm->vcpu))
2475                return true;
2476
2477        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2478                return true;
2479
2480        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2481                return false;
2482
2483        /*
2484         * if vmexit was already requested (by intercepted exception
2485         * for instance) do not overwrite it with "external interrupt"
2486         * vmexit.
2487         */
2488        if (svm->nested.exit_required)
2489                return false;
2490
2491        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2492        svm->vmcb->control.exit_info_1 = 0;
2493        svm->vmcb->control.exit_info_2 = 0;
2494
2495        if (svm->nested.intercept & 1ULL) {
2496                /*
2497                 * The #vmexit can't be emulated here directly because this
2498                 * code path runs with irqs and preemption disabled. A
2499                 * #vmexit emulation might sleep. Only signal request for
2500                 * the #vmexit here.
2501                 */
2502                svm->nested.exit_required = true;
2503                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2504                return false;
2505        }
2506
2507        return true;
2508}
2509
2510/* This function returns true if it is save to enable the nmi window */
2511static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2512{
2513        if (!is_guest_mode(&svm->vcpu))
2514                return true;
2515
2516        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2517                return true;
2518
2519        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2520        svm->nested.exit_required = true;
2521
2522        return false;
2523}
2524
2525static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2526{
2527        struct page *page;
2528
2529        might_sleep();
2530
2531        page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2532        if (is_error_page(page))
2533                goto error;
2534
2535        *_page = page;
2536
2537        return kmap(page);
2538
2539error:
2540        kvm_inject_gp(&svm->vcpu, 0);
2541
2542        return NULL;
2543}
2544
2545static void nested_svm_unmap(struct page *page)
2546{
2547        kunmap(page);
2548        kvm_release_page_dirty(page);
2549}
2550
2551static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2552{
2553        unsigned port, size, iopm_len;
2554        u16 val, mask;
2555        u8 start_bit;
2556        u64 gpa;
2557
2558        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2559                return NESTED_EXIT_HOST;
2560
2561        port = svm->vmcb->control.exit_info_1 >> 16;
2562        size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2563                SVM_IOIO_SIZE_SHIFT;
2564        gpa  = svm->nested.vmcb_iopm + (port / 8);
2565        start_bit = port % 8;
2566        iopm_len = (start_bit + size > 8) ? 2 : 1;
2567        mask = (0xf >> (4 - size)) << start_bit;
2568        val = 0;
2569
2570        if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2571                return NESTED_EXIT_DONE;
2572
2573        return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2574}
2575
2576static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2577{
2578        u32 offset, msr, value;
2579        int write, mask;
2580
2581        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2582                return NESTED_EXIT_HOST;
2583
2584        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2585        offset = svm_msrpm_offset(msr);
2586        write  = svm->vmcb->control.exit_info_1 & 1;
2587        mask   = 1 << ((2 * (msr & 0xf)) + write);
2588
2589        if (offset == MSR_INVALID)
2590                return NESTED_EXIT_DONE;
2591
2592        /* Offset is in 32 bit units but need in 8 bit units */
2593        offset *= 4;
2594
2595        if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2596                return NESTED_EXIT_DONE;
2597
2598        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2599}
2600
2601/* DB exceptions for our internal use must not cause vmexit */
2602static int nested_svm_intercept_db(struct vcpu_svm *svm)
2603{
2604        unsigned long dr6;
2605
2606        /* if we're not singlestepping, it's not ours */
2607        if (!svm->nmi_singlestep)
2608                return NESTED_EXIT_DONE;
2609
2610        /* if it's not a singlestep exception, it's not ours */
2611        if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2612                return NESTED_EXIT_DONE;
2613        if (!(dr6 & DR6_BS))
2614                return NESTED_EXIT_DONE;
2615
2616        /* if the guest is singlestepping, it should get the vmexit */
2617        if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2618                disable_nmi_singlestep(svm);
2619                return NESTED_EXIT_DONE;
2620        }
2621
2622        /* it's ours, the nested hypervisor must not see this one */
2623        return NESTED_EXIT_HOST;
2624}
2625
2626static int nested_svm_exit_special(struct vcpu_svm *svm)
2627{
2628        u32 exit_code = svm->vmcb->control.exit_code;
2629
2630        switch (exit_code) {
2631        case SVM_EXIT_INTR:
2632        case SVM_EXIT_NMI:
2633        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2634                return NESTED_EXIT_HOST;
2635        case SVM_EXIT_NPF:
2636                /* For now we are always handling NPFs when using them */
2637                if (npt_enabled)
2638                        return NESTED_EXIT_HOST;
2639                break;
2640        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2641                /* When we're shadowing, trap PFs, but not async PF */
2642                if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2643                        return NESTED_EXIT_HOST;
2644                break;
2645        default:
2646                break;
2647        }
2648
2649        return NESTED_EXIT_CONTINUE;
2650}
2651
2652/*
2653 * If this function returns true, this #vmexit was already handled
2654 */
2655static int nested_svm_intercept(struct vcpu_svm *svm)
2656{
2657        u32 exit_code = svm->vmcb->control.exit_code;
2658        int vmexit = NESTED_EXIT_HOST;
2659
2660        switch (exit_code) {
2661        case SVM_EXIT_MSR:
2662                vmexit = nested_svm_exit_handled_msr(svm);
2663                break;
2664        case SVM_EXIT_IOIO:
2665                vmexit = nested_svm_intercept_ioio(svm);
2666                break;
2667        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2668                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2669                if (svm->nested.intercept_cr & bit)
2670                        vmexit = NESTED_EXIT_DONE;
2671                break;
2672        }
2673        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2674                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2675                if (svm->nested.intercept_dr & bit)
2676                        vmexit = NESTED_EXIT_DONE;
2677                break;
2678        }
2679        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2680                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2681                if (svm->nested.intercept_exceptions & excp_bits) {
2682                        if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2683                                vmexit = nested_svm_intercept_db(svm);
2684                        else
2685                                vmexit = NESTED_EXIT_DONE;
2686                }
2687                /* async page fault always cause vmexit */
2688                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2689                         svm->vcpu.arch.exception.nested_apf != 0)
2690                        vmexit = NESTED_EXIT_DONE;
2691                break;
2692        }
2693        case SVM_EXIT_ERR: {
2694                vmexit = NESTED_EXIT_DONE;
2695                break;
2696        }
2697        default: {
2698                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2699                if (svm->nested.intercept & exit_bits)
2700                        vmexit = NESTED_EXIT_DONE;
2701        }
2702        }
2703
2704        return vmexit;
2705}
2706
2707static int nested_svm_exit_handled(struct vcpu_svm *svm)
2708{
2709        int vmexit;
2710
2711        vmexit = nested_svm_intercept(svm);
2712
2713        if (vmexit == NESTED_EXIT_DONE)
2714                nested_svm_vmexit(svm);
2715
2716        return vmexit;
2717}
2718
2719static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2720{
2721        struct vmcb_control_area *dst  = &dst_vmcb->control;
2722        struct vmcb_control_area *from = &from_vmcb->control;
2723
2724        dst->intercept_cr         = from->intercept_cr;
2725        dst->intercept_dr         = from->intercept_dr;
2726        dst->intercept_exceptions = from->intercept_exceptions;
2727        dst->intercept            = from->intercept;
2728        dst->iopm_base_pa         = from->iopm_base_pa;
2729        dst->msrpm_base_pa        = from->msrpm_base_pa;
2730        dst->tsc_offset           = from->tsc_offset;
2731        dst->asid                 = from->asid;
2732        dst->tlb_ctl              = from->tlb_ctl;
2733        dst->int_ctl              = from->int_ctl;
2734        dst->int_vector           = from->int_vector;
2735        dst->int_state            = from->int_state;
2736        dst->exit_code            = from->exit_code;
2737        dst->exit_code_hi         = from->exit_code_hi;
2738        dst->exit_info_1          = from->exit_info_1;
2739        dst->exit_info_2          = from->exit_info_2;
2740        dst->exit_int_info        = from->exit_int_info;
2741        dst->exit_int_info_err    = from->exit_int_info_err;
2742        dst->nested_ctl           = from->nested_ctl;
2743        dst->event_inj            = from->event_inj;
2744        dst->event_inj_err        = from->event_inj_err;
2745        dst->nested_cr3           = from->nested_cr3;
2746        dst->virt_ext              = from->virt_ext;
2747}
2748
2749static int nested_svm_vmexit(struct vcpu_svm *svm)
2750{
2751        struct vmcb *nested_vmcb;
2752        struct vmcb *hsave = svm->nested.hsave;
2753        struct vmcb *vmcb = svm->vmcb;
2754        struct page *page;
2755
2756        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2757                                       vmcb->control.exit_info_1,
2758                                       vmcb->control.exit_info_2,
2759                                       vmcb->control.exit_int_info,
2760                                       vmcb->control.exit_int_info_err,
2761                                       KVM_ISA_SVM);
2762
2763        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2764        if (!nested_vmcb)
2765                return 1;
2766
2767        /* Exit Guest-Mode */
2768        leave_guest_mode(&svm->vcpu);
2769        svm->nested.vmcb = 0;
2770
2771        /* Give the current vmcb to the guest */
2772        disable_gif(svm);
2773
2774        nested_vmcb->save.es     = vmcb->save.es;
2775        nested_vmcb->save.cs     = vmcb->save.cs;
2776        nested_vmcb->save.ss     = vmcb->save.ss;
2777        nested_vmcb->save.ds     = vmcb->save.ds;
2778        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2779        nested_vmcb->save.idtr   = vmcb->save.idtr;
2780        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2781        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2782        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2783        nested_vmcb->save.cr2    = vmcb->save.cr2;
2784        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2785        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2786        nested_vmcb->save.rip    = vmcb->save.rip;
2787        nested_vmcb->save.rsp    = vmcb->save.rsp;
2788        nested_vmcb->save.rax    = vmcb->save.rax;
2789        nested_vmcb->save.dr7    = vmcb->save.dr7;
2790        nested_vmcb->save.dr6    = vmcb->save.dr6;
2791        nested_vmcb->save.cpl    = vmcb->save.cpl;
2792
2793        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2794        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2795        nested_vmcb->control.int_state         = vmcb->control.int_state;
2796        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2797        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2798        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2799        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2800        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2801        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2802
2803        if (svm->nrips_enabled)
2804                nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2805
2806        /*
2807         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2808         * to make sure that we do not lose injected events. So check event_inj
2809         * here and copy it to exit_int_info if it is valid.
2810         * Exit_int_info and event_inj can't be both valid because the case
2811         * below only happens on a VMRUN instruction intercept which has
2812         * no valid exit_int_info set.
2813         */
2814        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2815                struct vmcb_control_area *nc = &nested_vmcb->control;
2816
2817                nc->exit_int_info     = vmcb->control.event_inj;
2818                nc->exit_int_info_err = vmcb->control.event_inj_err;
2819        }
2820
2821        nested_vmcb->control.tlb_ctl           = 0;
2822        nested_vmcb->control.event_inj         = 0;
2823        nested_vmcb->control.event_inj_err     = 0;
2824
2825        /* We always set V_INTR_MASKING and remember the old value in hflags */
2826        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2827                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2828
2829        /* Restore the original control entries */
2830        copy_vmcb_control_area(vmcb, hsave);
2831
2832        kvm_clear_exception_queue(&svm->vcpu);
2833        kvm_clear_interrupt_queue(&svm->vcpu);
2834
2835        svm->nested.nested_cr3 = 0;
2836
2837        /* Restore selected save entries */
2838        svm->vmcb->save.es = hsave->save.es;
2839        svm->vmcb->save.cs = hsave->save.cs;
2840        svm->vmcb->save.ss = hsave->save.ss;
2841        svm->vmcb->save.ds = hsave->save.ds;
2842        svm->vmcb->save.gdtr = hsave->save.gdtr;
2843        svm->vmcb->save.idtr = hsave->save.idtr;
2844        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2845        svm_set_efer(&svm->vcpu, hsave->save.efer);
2846        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2847        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2848        if (npt_enabled) {
2849                svm->vmcb->save.cr3 = hsave->save.cr3;
2850                svm->vcpu.arch.cr3 = hsave->save.cr3;
2851        } else {
2852                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2853        }
2854        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2855        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2856        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2857        svm->vmcb->save.dr7 = 0;
2858        svm->vmcb->save.cpl = 0;
2859        svm->vmcb->control.exit_int_info = 0;
2860
2861        mark_all_dirty(svm->vmcb);
2862
2863        nested_svm_unmap(page);
2864
2865        nested_svm_uninit_mmu_context(&svm->vcpu);
2866        kvm_mmu_reset_context(&svm->vcpu);
2867        kvm_mmu_load(&svm->vcpu);
2868
2869        return 0;
2870}
2871
2872static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2873{
2874        /*
2875         * This function merges the msr permission bitmaps of kvm and the
2876         * nested vmcb. It is optimized in that it only merges the parts where
2877         * the kvm msr permission bitmap may contain zero bits
2878         */
2879        int i;
2880
2881        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2882                return true;
2883
2884        for (i = 0; i < MSRPM_OFFSETS; i++) {
2885                u32 value, p;
2886                u64 offset;
2887
2888                if (msrpm_offsets[i] == 0xffffffff)
2889                        break;
2890
2891                p      = msrpm_offsets[i];
2892                offset = svm->nested.vmcb_msrpm + (p * 4);
2893
2894                if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2895                        return false;
2896
2897                svm->nested.msrpm[p] = svm->msrpm[p] | value;
2898        }
2899
2900        svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
2901
2902        return true;
2903}
2904
2905static bool nested_vmcb_checks(struct vmcb *vmcb)
2906{
2907        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2908                return false;
2909
2910        if (vmcb->control.asid == 0)
2911                return false;
2912
2913        if (vmcb->control.nested_ctl && !npt_enabled)
2914                return false;
2915
2916        return true;
2917}
2918
2919static bool nested_svm_vmrun(struct vcpu_svm *svm)
2920{
2921        struct vmcb *nested_vmcb;
2922        struct vmcb *hsave = svm->nested.hsave;
2923        struct vmcb *vmcb = svm->vmcb;
2924        struct page *page;
2925        u64 vmcb_gpa;
2926
2927        vmcb_gpa = svm->vmcb->save.rax;
2928
2929        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2930        if (!nested_vmcb)
2931                return false;
2932
2933        if (!nested_vmcb_checks(nested_vmcb)) {
2934                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2935                nested_vmcb->control.exit_code_hi = 0;
2936                nested_vmcb->control.exit_info_1  = 0;
2937                nested_vmcb->control.exit_info_2  = 0;
2938
2939                nested_svm_unmap(page);
2940
2941                return false;
2942        }
2943
2944        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2945                               nested_vmcb->save.rip,
2946                               nested_vmcb->control.int_ctl,
2947                               nested_vmcb->control.event_inj,
2948                               nested_vmcb->control.nested_ctl);
2949
2950        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2951                                    nested_vmcb->control.intercept_cr >> 16,
2952                                    nested_vmcb->control.intercept_exceptions,
2953                                    nested_vmcb->control.intercept);
2954
2955        /* Clear internal status */
2956        kvm_clear_exception_queue(&svm->vcpu);
2957        kvm_clear_interrupt_queue(&svm->vcpu);
2958
2959        /*
2960         * Save the old vmcb, so we don't need to pick what we save, but can
2961         * restore everything when a VMEXIT occurs
2962         */
2963        hsave->save.es     = vmcb->save.es;
2964        hsave->save.cs     = vmcb->save.cs;
2965        hsave->save.ss     = vmcb->save.ss;
2966        hsave->save.ds     = vmcb->save.ds;
2967        hsave->save.gdtr   = vmcb->save.gdtr;
2968        hsave->save.idtr   = vmcb->save.idtr;
2969        hsave->save.efer   = svm->vcpu.arch.efer;
2970        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2971        hsave->save.cr4    = svm->vcpu.arch.cr4;
2972        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2973        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2974        hsave->save.rsp    = vmcb->save.rsp;
2975        hsave->save.rax    = vmcb->save.rax;
2976        if (npt_enabled)
2977                hsave->save.cr3    = vmcb->save.cr3;
2978        else
2979                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2980
2981        copy_vmcb_control_area(hsave, vmcb);
2982
2983        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2984                svm->vcpu.arch.hflags |= HF_HIF_MASK;
2985        else
2986                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2987
2988        if (nested_vmcb->control.nested_ctl) {
2989                kvm_mmu_unload(&svm->vcpu);
2990                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2991                nested_svm_init_mmu_context(&svm->vcpu);
2992        }
2993
2994        /* Load the nested guest state */
2995        svm->vmcb->save.es = nested_vmcb->save.es;
2996        svm->vmcb->save.cs = nested_vmcb->save.cs;
2997        svm->vmcb->save.ss = nested_vmcb->save.ss;
2998        svm->vmcb->save.ds = nested_vmcb->save.ds;
2999        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3000        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3001        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3002        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3003        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3004        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3005        if (npt_enabled) {
3006                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3007                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3008        } else
3009                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3010
3011        /* Guest paging mode is active - reset mmu */
3012        kvm_mmu_reset_context(&svm->vcpu);
3013
3014        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3015        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3016        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3017        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3018
3019        /* In case we don't even reach vcpu_run, the fields are not updated */
3020        svm->vmcb->save.rax = nested_vmcb->save.rax;
3021        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3022        svm->vmcb->save.rip = nested_vmcb->save.rip;
3023        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3024        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3025        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3026
3027        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3028        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3029
3030        /* cache intercepts */
3031        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3032        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3033        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3034        svm->nested.intercept            = nested_vmcb->control.intercept;
3035
3036        svm_flush_tlb(&svm->vcpu);
3037        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3038        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3039                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3040        else
3041                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3042
3043        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3044                /* We only want the cr8 intercept bits of the guest */
3045                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3046                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3047        }
3048
3049        /* We don't want to see VMMCALLs from a nested guest */
3050        clr_intercept(svm, INTERCEPT_VMMCALL);
3051
3052        svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3053        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3054        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3055        svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3056        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3057        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3058
3059        nested_svm_unmap(page);
3060
3061        /* Enter Guest-Mode */
3062        enter_guest_mode(&svm->vcpu);
3063
3064        /*
3065         * Merge guest and host intercepts - must be called  with vcpu in
3066         * guest-mode to take affect here
3067         */
3068        recalc_intercepts(svm);
3069
3070        svm->nested.vmcb = vmcb_gpa;
3071
3072        enable_gif(svm);
3073
3074        mark_all_dirty(svm->vmcb);
3075
3076        return true;
3077}
3078
3079static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3080{
3081        to_vmcb->save.fs = from_vmcb->save.fs;
3082        to_vmcb->save.gs = from_vmcb->save.gs;
3083        to_vmcb->save.tr = from_vmcb->save.tr;
3084        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3085        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3086        to_vmcb->save.star = from_vmcb->save.star;
3087        to_vmcb->save.lstar = from_vmcb->save.lstar;
3088        to_vmcb->save.cstar = from_vmcb->save.cstar;
3089        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3090        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3091        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3092        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3093}
3094
3095static int vmload_interception(struct vcpu_svm *svm)
3096{
3097        struct vmcb *nested_vmcb;
3098        struct page *page;
3099        int ret;
3100
3101        if (nested_svm_check_permissions(svm))
3102                return 1;
3103
3104        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3105        if (!nested_vmcb)
3106                return 1;
3107
3108        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3109        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3110
3111        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3112        nested_svm_unmap(page);
3113
3114        return ret;
3115}
3116
3117static int vmsave_interception(struct vcpu_svm *svm)
3118{
3119        struct vmcb *nested_vmcb;
3120        struct page *page;
3121        int ret;
3122
3123        if (nested_svm_check_permissions(svm))
3124                return 1;
3125
3126        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3127        if (!nested_vmcb)
3128                return 1;
3129
3130        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3131        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3132
3133        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3134        nested_svm_unmap(page);
3135
3136        return ret;
3137}
3138
3139static int vmrun_interception(struct vcpu_svm *svm)
3140{
3141        if (nested_svm_check_permissions(svm))
3142                return 1;
3143
3144        /* Save rip after vmrun instruction */
3145        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3146
3147        if (!nested_svm_vmrun(svm))
3148                return 1;
3149
3150        if (!nested_svm_vmrun_msrpm(svm))
3151                goto failed;
3152
3153        return 1;
3154
3155failed:
3156
3157        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3158        svm->vmcb->control.exit_code_hi = 0;
3159        svm->vmcb->control.exit_info_1  = 0;
3160        svm->vmcb->control.exit_info_2  = 0;
3161
3162        nested_svm_vmexit(svm);
3163
3164        return 1;
3165}
3166
3167static int stgi_interception(struct vcpu_svm *svm)
3168{
3169        int ret;
3170
3171        if (nested_svm_check_permissions(svm))
3172                return 1;
3173
3174        /*
3175         * If VGIF is enabled, the STGI intercept is only added to
3176         * detect the opening of the NMI window; remove it now.
3177         */
3178        if (vgif_enabled(svm))
3179                clr_intercept(svm, INTERCEPT_STGI);
3180
3181        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3182        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3183        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3184
3185        enable_gif(svm);
3186
3187        return ret;
3188}
3189
3190static int clgi_interception(struct vcpu_svm *svm)
3191{
3192        int ret;
3193
3194        if (nested_svm_check_permissions(svm))
3195                return 1;
3196
3197        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3198        ret = kvm_skip_emulated_instruction(&svm->vcpu);
3199
3200        disable_gif(svm);
3201
3202        /* After a CLGI no interrupts should come */
3203        if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3204                svm_clear_vintr(svm);
3205                svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3206                mark_dirty(svm->vmcb, VMCB_INTR);
3207        }
3208
3209        return ret;
3210}
3211
3212static int invlpga_interception(struct vcpu_svm *svm)
3213{
3214        struct kvm_vcpu *vcpu = &svm->vcpu;
3215
3216        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3217                          kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3218
3219        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3220        kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3221
3222        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3223        return kvm_skip_emulated_instruction(&svm->vcpu);
3224}
3225
3226static int skinit_interception(struct vcpu_svm *svm)
3227{
3228        trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3229
3230        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3231        return 1;
3232}
3233
3234static int wbinvd_interception(struct vcpu_svm *svm)
3235{
3236        return kvm_emulate_wbinvd(&svm->vcpu);
3237}
3238
3239static int xsetbv_interception(struct vcpu_svm *svm)
3240{
3241        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3242        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3243
3244        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3245                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3246                return kvm_skip_emulated_instruction(&svm->vcpu);
3247        }
3248
3249        return 1;
3250}
3251
3252static int task_switch_interception(struct vcpu_svm *svm)
3253{
3254        u16 tss_selector;
3255        int reason;
3256        int int_type = svm->vmcb->control.exit_int_info &
3257                SVM_EXITINTINFO_TYPE_MASK;
3258        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3259        uint32_t type =
3260                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3261        uint32_t idt_v =
3262                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3263        bool has_error_code = false;
3264        u32 error_code = 0;
3265
3266        tss_selector = (u16)svm->vmcb->control.exit_info_1;
3267
3268        if (svm->vmcb->control.exit_info_2 &
3269            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3270                reason = TASK_SWITCH_IRET;
3271        else if (svm->vmcb->control.exit_info_2 &
3272                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3273                reason = TASK_SWITCH_JMP;
3274        else if (idt_v)
3275                reason = TASK_SWITCH_GATE;
3276        else
3277                reason = TASK_SWITCH_CALL;
3278
3279        if (reason == TASK_SWITCH_GATE) {
3280                switch (type) {
3281                case SVM_EXITINTINFO_TYPE_NMI:
3282                        svm->vcpu.arch.nmi_injected = false;
3283                        break;
3284                case SVM_EXITINTINFO_TYPE_EXEPT:
3285                        if (svm->vmcb->control.exit_info_2 &
3286                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3287                                has_error_code = true;
3288                                error_code =
3289                                        (u32)svm->vmcb->control.exit_info_2;
3290                        }
3291                        kvm_clear_exception_queue(&svm->vcpu);
3292                        break;
3293                case SVM_EXITINTINFO_TYPE_INTR:
3294                        kvm_clear_interrupt_queue(&svm->vcpu);
3295                        break;
3296                default:
3297                        break;
3298                }
3299        }
3300
3301        if (reason != TASK_SWITCH_GATE ||
3302            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3303            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3304             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3305                skip_emulated_instruction(&svm->vcpu);
3306
3307        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3308                int_vec = -1;
3309
3310        if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3311                                has_error_code, error_code) == EMULATE_FAIL) {
3312                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3313                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3314                svm->vcpu.run->internal.ndata = 0;
3315                return 0;
3316        }
3317        return 1;
3318}
3319
3320static int cpuid_interception(struct vcpu_svm *svm)
3321{
3322        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3323        return kvm_emulate_cpuid(&svm->vcpu);
3324}
3325
3326static int iret_interception(struct vcpu_svm *svm)
3327{
3328        ++svm->vcpu.stat.nmi_window_exits;
3329        clr_intercept(svm, INTERCEPT_IRET);
3330        svm->vcpu.arch.hflags |= HF_IRET_MASK;
3331        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3332        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3333        return 1;
3334}
3335
3336static int invlpg_interception(struct vcpu_svm *svm)
3337{
3338        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3339                return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3340
3341        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3342        return kvm_skip_emulated_instruction(&svm->vcpu);
3343}
3344
3345static int emulate_on_interception(struct vcpu_svm *svm)
3346{
3347        return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3348}
3349
3350static int rdpmc_interception(struct vcpu_svm *svm)
3351{
3352        int err;
3353
3354        if (!static_cpu_has(X86_FEATURE_NRIPS))
3355                return emulate_on_interception(svm);
3356
3357        err = kvm_rdpmc(&svm->vcpu);
3358        return kvm_complete_insn_gp(&svm->vcpu, err);
3359}
3360
3361static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3362                                            unsigned long val)
3363{
3364        unsigned long cr0 = svm->vcpu.arch.cr0;
3365        bool ret = false;
3366        u64 intercept;
3367
3368        intercept = svm->nested.intercept;
3369
3370        if (!is_guest_mode(&svm->vcpu) ||
3371            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3372                return false;
3373
3374        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3375        val &= ~SVM_CR0_SELECTIVE_MASK;
3376
3377        if (cr0 ^ val) {
3378                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3379                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3380        }
3381
3382        return ret;
3383}
3384
3385#define CR_VALID (1ULL << 63)
3386
3387static int cr_interception(struct vcpu_svm *svm)
3388{
3389        int reg, cr;
3390        unsigned long val;
3391        int err;
3392
3393        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3394                return emulate_on_interception(svm);
3395
3396        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3397                return emulate_on_interception(svm);
3398
3399        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3400        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3401                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3402        else
3403                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3404
3405        err = 0;
3406        if (cr >= 16) { /* mov to cr */
3407                cr -= 16;
3408                val = kvm_register_read(&svm->vcpu, reg);
3409                switch (cr) {
3410                case 0:
3411                        if (!check_selective_cr0_intercepted(svm, val))
3412                                err = kvm_set_cr0(&svm->vcpu, val);
3413                        else
3414                                return 1;
3415
3416                        break;
3417                case 3:
3418                        err = kvm_set_cr3(&svm->vcpu, val);
3419                        break;
3420                case 4:
3421                        err = kvm_set_cr4(&svm->vcpu, val);
3422                        break;
3423                case 8:
3424                        err = kvm_set_cr8(&svm->vcpu, val);
3425                        break;
3426                default:
3427                        WARN(1, "unhandled write to CR%d", cr);
3428                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3429                        return 1;
3430                }
3431        } else { /* mov from cr */
3432                switch (cr) {
3433                case 0:
3434                        val = kvm_read_cr0(&svm->vcpu);
3435                        break;
3436                case 2:
3437                        val = svm->vcpu.arch.cr2;
3438                        break;
3439                case 3:
3440                        val = kvm_read_cr3(&svm->vcpu);
3441                        break;
3442                case 4:
3443                        val = kvm_read_cr4(&svm->vcpu);
3444                        break;
3445                case 8:
3446                        val = kvm_get_cr8(&svm->vcpu);
3447                        break;
3448                default:
3449                        WARN(1, "unhandled read from CR%d", cr);
3450                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3451                        return 1;
3452                }
3453                kvm_register_write(&svm->vcpu, reg, val);
3454        }
3455        return kvm_complete_insn_gp(&svm->vcpu, err);
3456}
3457
3458static int dr_interception(struct vcpu_svm *svm)
3459{
3460        int reg, dr;
3461        unsigned long val;
3462
3463        if (svm->vcpu.guest_debug == 0) {
3464                /*
3465                 * No more DR vmexits; force a reload of the debug registers
3466                 * and reenter on this instruction.  The next vmexit will
3467                 * retrieve the full state of the debug registers.
3468                 */
3469                clr_dr_intercepts(svm);
3470                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3471                return 1;
3472        }
3473
3474        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3475                return emulate_on_interception(svm);
3476
3477        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3478        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3479
3480        if (dr >= 16) { /* mov to DRn */
3481                if (!kvm_require_dr(&svm->vcpu, dr - 16))
3482                        return 1;
3483                val = kvm_register_read(&svm->vcpu, reg);
3484                kvm_set_dr(&svm->vcpu, dr - 16, val);
3485        } else {
3486                if (!kvm_require_dr(&svm->vcpu, dr))
3487                        return 1;
3488                kvm_get_dr(&svm->vcpu, dr, &val);
3489                kvm_register_write(&svm->vcpu, reg, val);
3490        }
3491
3492        return kvm_skip_emulated_instruction(&svm->vcpu);
3493}
3494
3495static int cr8_write_interception(struct vcpu_svm *svm)
3496{
3497        struct kvm_run *kvm_run = svm->vcpu.run;
3498        int r;
3499
3500        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3501        /* instruction emulation calls kvm_set_cr8() */
3502        r = cr_interception(svm);
3503        if (lapic_in_kernel(&svm->vcpu))
3504                return r;
3505        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3506                return r;
3507        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3508        return 0;
3509}
3510
3511static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3512{
3513        struct vcpu_svm *svm = to_svm(vcpu);
3514
3515        switch (msr_info->index) {
3516        case MSR_IA32_TSC: {
3517                msr_info->data = svm->vmcb->control.tsc_offset +
3518                        kvm_scale_tsc(vcpu, rdtsc());
3519
3520                break;
3521        }
3522        case MSR_STAR:
3523                msr_info->data = svm->vmcb->save.star;
3524                break;
3525#ifdef CONFIG_X86_64
3526        case MSR_LSTAR:
3527                msr_info->data = svm->vmcb->save.lstar;
3528                break;
3529        case MSR_CSTAR:
3530                msr_info->data = svm->vmcb->save.cstar;
3531                break;
3532        case MSR_KERNEL_GS_BASE:
3533                msr_info->data = svm->vmcb->save.kernel_gs_base;
3534                break;
3535        case MSR_SYSCALL_MASK:
3536                msr_info->data = svm->vmcb->save.sfmask;
3537                break;
3538#endif
3539        case MSR_IA32_SYSENTER_CS:
3540                msr_info->data = svm->vmcb->save.sysenter_cs;
3541                break;
3542        case MSR_IA32_SYSENTER_EIP:
3543                msr_info->data = svm->sysenter_eip;
3544                break;
3545        case MSR_IA32_SYSENTER_ESP:
3546                msr_info->data = svm->sysenter_esp;
3547                break;
3548        case MSR_TSC_AUX:
3549                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3550                        return 1;
3551                msr_info->data = svm->tsc_aux;
3552                break;
3553        /*
3554         * Nobody will change the following 5 values in the VMCB so we can
3555         * safely return them on rdmsr. They will always be 0 until LBRV is
3556         * implemented.
3557         */
3558        case MSR_IA32_DEBUGCTLMSR:
3559                msr_info->data = svm->vmcb->save.dbgctl;
3560                break;
3561        case MSR_IA32_LASTBRANCHFROMIP:
3562                msr_info->data = svm->vmcb->save.br_from;
3563                break;
3564        case MSR_IA32_LASTBRANCHTOIP:
3565                msr_info->data = svm->vmcb->save.br_to;
3566                break;
3567        case MSR_IA32_LASTINTFROMIP:
3568                msr_info->data = svm->vmcb->save.last_excp_from;
3569                break;
3570        case MSR_IA32_LASTINTTOIP:
3571                msr_info->data = svm->vmcb->save.last_excp_to;
3572                break;
3573        case MSR_VM_HSAVE_PA:
3574                msr_info->data = svm->nested.hsave_msr;
3575                break;
3576        case MSR_VM_CR:
3577                msr_info->data = svm->nested.vm_cr_msr;
3578                break;
3579        case MSR_IA32_UCODE_REV:
3580                msr_info->data = 0x01000065;
3581                break;
3582        case MSR_F15H_IC_CFG: {
3583
3584                int family, model;
3585
3586                family = guest_cpuid_family(vcpu);
3587                model  = guest_cpuid_model(vcpu);
3588
3589                if (family < 0 || model < 0)
3590                        return kvm_get_msr_common(vcpu, msr_info);
3591
3592                msr_info->data = 0;
3593
3594                if (family == 0x15 &&
3595                    (model >= 0x2 && model < 0x20))
3596                        msr_info->data = 0x1E;
3597                }
3598                break;
3599        default:
3600                return kvm_get_msr_common(vcpu, msr_info);
3601        }
3602        return 0;
3603}
3604
3605static int rdmsr_interception(struct vcpu_svm *svm)
3606{
3607        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3608        struct msr_data msr_info;
3609
3610        msr_info.index = ecx;
3611        msr_info.host_initiated = false;
3612        if (svm_get_msr(&svm->vcpu, &msr_info)) {
3613                trace_kvm_msr_read_ex(ecx);
3614                kvm_inject_gp(&svm->vcpu, 0);
3615                return 1;
3616        } else {
3617                trace_kvm_msr_read(ecx, msr_info.data);
3618
3619                kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3620                                   msr_info.data & 0xffffffff);
3621                kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3622                                   msr_info.data >> 32);
3623                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3624                return kvm_skip_emulated_instruction(&svm->vcpu);
3625        }
3626}
3627
3628static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3629{
3630        struct vcpu_svm *svm = to_svm(vcpu);
3631        int svm_dis, chg_mask;
3632
3633        if (data & ~SVM_VM_CR_VALID_MASK)
3634                return 1;
3635
3636        chg_mask = SVM_VM_CR_VALID_MASK;
3637
3638        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3639                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3640
3641        svm->nested.vm_cr_msr &= ~chg_mask;
3642        svm->nested.vm_cr_msr |= (data & chg_mask);
3643
3644        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3645
3646        /* check for svm_disable while efer.svme is set */
3647        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3648                return 1;
3649
3650        return 0;
3651}
3652
3653static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3654{
3655        struct vcpu_svm *svm = to_svm(vcpu);
3656
3657        u32 ecx = msr->index;
3658        u64 data = msr->data;
3659        switch (ecx) {
3660        case MSR_IA32_TSC:
3661                kvm_write_tsc(vcpu, msr);
3662                break;
3663        case MSR_STAR:
3664                svm->vmcb->save.star = data;
3665                break;
3666#ifdef CONFIG_X86_64
3667        case MSR_LSTAR:
3668                svm->vmcb->save.lstar = data;
3669                break;
3670        case MSR_CSTAR:
3671                svm->vmcb->save.cstar = data;
3672                break;
3673        case MSR_KERNEL_GS_BASE:
3674                svm->vmcb->save.kernel_gs_base = data;
3675                break;
3676        case MSR_SYSCALL_MASK:
3677                svm->vmcb->save.sfmask = data;
3678                break;
3679#endif
3680        case MSR_IA32_SYSENTER_CS:
3681                svm->vmcb->save.sysenter_cs = data;
3682                break;
3683        case MSR_IA32_SYSENTER_EIP:
3684                svm->sysenter_eip = data;
3685                svm->vmcb->save.sysenter_eip = data;
3686                break;
3687        case MSR_IA32_SYSENTER_ESP:
3688                svm->sysenter_esp = data;
3689                svm->vmcb->save.sysenter_esp = data;
3690                break;
3691        case MSR_TSC_AUX:
3692                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3693                        return 1;
3694
3695                /*
3696                 * This is rare, so we update the MSR here instead of using
3697                 * direct_access_msrs.  Doing that would require a rdmsr in
3698                 * svm_vcpu_put.
3699                 */
3700                svm->tsc_aux = data;
3701                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3702                break;
3703        case MSR_IA32_DEBUGCTLMSR:
3704                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3705                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3706                                    __func__, data);
3707                        break;
3708                }
3709                if (data & DEBUGCTL_RESERVED_BITS)
3710                        return 1;
3711
3712                svm->vmcb->save.dbgctl = data;
3713                mark_dirty(svm->vmcb, VMCB_LBR);
3714                if (data & (1ULL<<0))
3715                        svm_enable_lbrv(svm);
3716                else
3717                        svm_disable_lbrv(svm);
3718                break;
3719        case MSR_VM_HSAVE_PA:
3720                svm->nested.hsave_msr = data;
3721                break;
3722        case MSR_VM_CR:
3723                return svm_set_vm_cr(vcpu, data);
3724        case MSR_VM_IGNNE:
3725                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3726                break;
3727        case MSR_IA32_APICBASE:
3728                if (kvm_vcpu_apicv_active(vcpu))
3729                        avic_update_vapic_bar(to_svm(vcpu), data);
3730                /* Follow through */
3731        default:
3732                return kvm_set_msr_common(vcpu, msr);
3733        }
3734        return 0;
3735}
3736
3737static int wrmsr_interception(struct vcpu_svm *svm)
3738{
3739        struct msr_data msr;
3740        u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3741        u64 data = kvm_read_edx_eax(&svm->vcpu);
3742
3743        msr.data = data;
3744        msr.index = ecx;
3745        msr.host_initiated = false;
3746
3747        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3748        if (kvm_set_msr(&svm->vcpu, &msr)) {
3749                trace_kvm_msr_write_ex(ecx, data);
3750                kvm_inject_gp(&svm->vcpu, 0);
3751                return 1;
3752        } else {
3753                trace_kvm_msr_write(ecx, data);
3754                return kvm_skip_emulated_instruction(&svm->vcpu);
3755        }
3756}
3757
3758static int msr_interception(struct vcpu_svm *svm)
3759{
3760        if (svm->vmcb->control.exit_info_1)
3761                return wrmsr_interception(svm);
3762        else
3763                return rdmsr_interception(svm);
3764}
3765
3766static int interrupt_window_interception(struct vcpu_svm *svm)
3767{
3768        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3769        svm_clear_vintr(svm);
3770        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3771        mark_dirty(svm->vmcb, VMCB_INTR);
3772        ++svm->vcpu.stat.irq_window_exits;
3773        return 1;
3774}
3775
3776static int pause_interception(struct vcpu_svm *svm)
3777{
3778        struct kvm_vcpu *vcpu = &svm->vcpu;
3779        bool in_kernel = (svm_get_cpl(vcpu) == 0);
3780
3781        kvm_vcpu_on_spin(vcpu, in_kernel);
3782        return 1;
3783}
3784
3785static int nop_interception(struct vcpu_svm *svm)
3786{
3787        return kvm_skip_emulated_instruction(&(svm->vcpu));
3788}
3789
3790static int monitor_interception(struct vcpu_svm *svm)
3791{
3792        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3793        return nop_interception(svm);
3794}
3795
3796static int mwait_interception(struct vcpu_svm *svm)
3797{
3798        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3799        return nop_interception(svm);
3800}
3801
3802enum avic_ipi_failure_cause {
3803        AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3804        AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3805        AVIC_IPI_FAILURE_INVALID_TARGET,
3806        AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3807};
3808
3809static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3810{
3811        u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3812        u32 icrl = svm->vmcb->control.exit_info_1;
3813        u32 id = svm->vmcb->control.exit_info_2 >> 32;
3814        u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3815        struct kvm_lapic *apic = svm->vcpu.arch.apic;
3816
3817        trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3818
3819        switch (id) {
3820        case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3821                /*
3822                 * AVIC hardware handles the generation of
3823                 * IPIs when the specified Message Type is Fixed
3824                 * (also known as fixed delivery mode) and
3825                 * the Trigger Mode is edge-triggered. The hardware
3826                 * also supports self and broadcast delivery modes
3827                 * specified via the Destination Shorthand(DSH)
3828                 * field of the ICRL. Logical and physical APIC ID
3829                 * formats are supported. All other IPI types cause
3830                 * a #VMEXIT, which needs to emulated.
3831                 */
3832                kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3833                kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3834                break;
3835        case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3836                int i;
3837                struct kvm_vcpu *vcpu;
3838                struct kvm *kvm = svm->vcpu.kvm;
3839                struct kvm_lapic *apic = svm->vcpu.arch.apic;
3840
3841                /*
3842                 * At this point, we expect that the AVIC HW has already
3843                 * set the appropriate IRR bits on the valid target
3844                 * vcpus. So, we just need to kick the appropriate vcpu.
3845                 */
3846                kvm_for_each_vcpu(i, vcpu, kvm) {
3847                        bool m = kvm_apic_match_dest(vcpu, apic,
3848                                                     icrl & KVM_APIC_SHORT_MASK,
3849                                                     GET_APIC_DEST_FIELD(icrh),
3850                                                     icrl & KVM_APIC_DEST_MASK);
3851
3852                        if (m && !avic_vcpu_is_running(vcpu))
3853                                kvm_vcpu_wake_up(vcpu);
3854                }
3855                break;
3856        }
3857        case AVIC_IPI_FAILURE_INVALID_TARGET:
3858                break;
3859        case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3860                WARN_ONCE(1, "Invalid backing page\n");
3861                break;
3862        default:
3863                pr_err("Unknown IPI interception\n");
3864        }
3865
3866        return 1;
3867}
3868
3869static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3870{
3871        struct kvm_arch *vm_data = &vcpu->kvm->arch;
3872        int index;
3873        u32 *logical_apic_id_table;
3874        int dlid = GET_APIC_LOGICAL_ID(ldr);
3875
3876        if (!dlid)
3877                return NULL;
3878
3879        if (flat) { /* flat */
3880                index = ffs(dlid) - 1;
3881                if (index > 7)
3882                        return NULL;
3883        } else { /* cluster */
3884                int cluster = (dlid & 0xf0) >> 4;
3885                int apic = ffs(dlid & 0x0f) - 1;
3886
3887                if ((apic < 0) || (apic > 7) ||
3888                    (cluster >= 0xf))
3889                        return NULL;
3890                index = (cluster << 2) + apic;
3891        }
3892
3893        logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3894
3895        return &logical_apic_id_table[index];
3896}
3897
3898static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3899                          bool valid)
3900{
3901        bool flat;
3902        u32 *entry, new_entry;
3903
3904        flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3905        entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3906        if (!entry)
3907                return -EINVAL;
3908
3909        new_entry = READ_ONCE(*entry);
3910        new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3911        new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3912        if (valid)
3913                new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3914        else
3915                new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3916        WRITE_ONCE(*entry, new_entry);
3917
3918        return 0;
3919}
3920
3921static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3922{
3923        int ret;
3924        struct vcpu_svm *svm = to_svm(vcpu);
3925        u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3926
3927        if (!ldr)
3928                return 1;
3929
3930        ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3931        if (ret && svm->ldr_reg) {
3932                avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3933                svm->ldr_reg = 0;
3934        } else {
3935                svm->ldr_reg = ldr;
3936        }
3937        return ret;
3938}
3939
3940static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3941{
3942        u64 *old, *new;
3943        struct vcpu_svm *svm = to_svm(vcpu);
3944        u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3945        u32 id = (apic_id_reg >> 24) & 0xff;
3946
3947        if (vcpu->vcpu_id == id)
3948                return 0;
3949
3950        old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3951        new = avic_get_physical_id_entry(vcpu, id);
3952        if (!new || !old)
3953                return 1;
3954
3955        /* We need to move physical_id_entry to new offset */
3956        *new = *old;
3957        *old = 0ULL;
3958        to_svm(vcpu)->avic_physical_id_cache = new;
3959
3960        /*
3961         * Also update the guest physical APIC ID in the logical
3962         * APIC ID table entry if already setup the LDR.
3963         */
3964        if (svm->ldr_reg)
3965                avic_handle_ldr_update(vcpu);
3966
3967        return 0;
3968}
3969
3970static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3971{
3972        struct vcpu_svm *svm = to_svm(vcpu);
3973        struct kvm_arch *vm_data = &vcpu->kvm->arch;
3974        u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3975        u32 mod = (dfr >> 28) & 0xf;
3976
3977        /*
3978         * We assume that all local APICs are using the same type.
3979         * If this changes, we need to flush the AVIC logical
3980         * APID id table.
3981         */
3982        if (vm_data->ldr_mode == mod)
3983                return 0;
3984
3985        clear_page(page_address(vm_data->avic_logical_id_table_page));
3986        vm_data->ldr_mode = mod;
3987
3988        if (svm->ldr_reg)
3989                avic_handle_ldr_update(vcpu);
3990        return 0;
3991}
3992
3993static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3994{
3995        struct kvm_lapic *apic = svm->vcpu.arch.apic;
3996        u32 offset = svm->vmcb->control.exit_info_1 &
3997                                AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3998
3999        switch (offset) {
4000        case APIC_ID:
4001                if (avic_handle_apic_id_update(&svm->vcpu))
4002                        return 0;
4003                break;
4004        case APIC_LDR:
4005                if (avic_handle_ldr_update(&svm->vcpu))
4006                        return 0;
4007                break;
4008        case APIC_DFR:
4009                avic_handle_dfr_update(&svm->vcpu);
4010                break;
4011        default:
4012                break;
4013        }
4014
4015        kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4016
4017        return 1;
4018}
4019
4020static bool is_avic_unaccelerated_access_trap(u32 offset)
4021{
4022        bool ret = false;
4023
4024        switch (offset) {
4025        case APIC_ID:
4026        case APIC_EOI:
4027        case APIC_RRR:
4028        case APIC_LDR:
4029        case APIC_DFR:
4030        case APIC_SPIV:
4031        case APIC_ESR:
4032        case APIC_ICR:
4033        case APIC_LVTT:
4034        case APIC_LVTTHMR:
4035        case APIC_LVTPC:
4036        case APIC_LVT0:
4037        case APIC_LVT1:
4038        case APIC_LVTERR:
4039        case APIC_TMICT:
4040        case APIC_TDCR:
4041                ret = true;
4042                break;
4043        default:
4044                break;
4045        }
4046        return ret;
4047}
4048
4049static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4050{
4051        int ret = 0;
4052        u32 offset = svm->vmcb->control.exit_info_1 &
4053                     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4054        u32 vector = svm->vmcb->control.exit_info_2 &
4055                     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4056        bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4057                     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4058        bool trap = is_avic_unaccelerated_access_trap(offset);
4059
4060        trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4061                                            trap, write, vector);
4062        if (trap) {
4063                /* Handling Trap */
4064                WARN_ONCE(!write, "svm: Handling trap read.\n");
4065                ret = avic_unaccel_trap_write(svm);
4066        } else {
4067                /* Handling Fault */
4068                ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4069        }
4070
4071        return ret;
4072}
4073
4074static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4075        [SVM_EXIT_READ_CR0]                     = cr_interception,
4076        [SVM_EXIT_READ_CR3]                     = cr_interception,
4077        [SVM_EXIT_READ_CR4]                     = cr_interception,
4078        [SVM_EXIT_READ_CR8]                     = cr_interception,
4079        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
4080        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4081        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4082        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4083        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4084        [SVM_EXIT_READ_DR0]                     = dr_interception,
4085        [SVM_EXIT_READ_DR1]                     = dr_interception,
4086        [SVM_EXIT_READ_DR2]                     = dr_interception,
4087        [SVM_EXIT_READ_DR3]                     = dr_interception,
4088        [SVM_EXIT_READ_DR4]                     = dr_interception,
4089        [SVM_EXIT_READ_DR5]                     = dr_interception,
4090        [SVM_EXIT_READ_DR6]                     = dr_interception,
4091        [SVM_EXIT_READ_DR7]                     = dr_interception,
4092        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4093        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4094        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4095        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4096        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4097        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4098        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4099        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4100        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4101        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4102        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4103        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4104        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4105        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4106        [SVM_EXIT_INTR]                         = intr_interception,
4107        [SVM_EXIT_NMI]                          = nmi_interception,
4108        [SVM_EXIT_SMI]                          = nop_on_interception,
4109        [SVM_EXIT_INIT]                         = nop_on_interception,
4110        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4111        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4112        [SVM_EXIT_CPUID]                        = cpuid_interception,
4113        [SVM_EXIT_IRET]                         = iret_interception,
4114        [SVM_EXIT_INVD]                         = emulate_on_interception,
4115        [SVM_EXIT_PAUSE]                        = pause_interception,
4116        [SVM_EXIT_HLT]                          = halt_interception,
4117        [SVM_EXIT_INVLPG]                       = invlpg_interception,
4118        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4119        [SVM_EXIT_IOIO]                         = io_interception,
4120        [SVM_EXIT_MSR]                          = msr_interception,
4121        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4122        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4123        [SVM_EXIT_VMRUN]                        = vmrun_interception,
4124        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4125        [SVM_EXIT_VMLOAD]                       = vmload_interception,
4126        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4127        [SVM_EXIT_STGI]                         = stgi_interception,
4128        [SVM_EXIT_CLGI]                         = clgi_interception,
4129        [SVM_EXIT_SKINIT]                       = skinit_interception,
4130        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4131        [SVM_EXIT_MONITOR]                      = monitor_interception,
4132        [SVM_EXIT_MWAIT]                        = mwait_interception,
4133        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4134        [SVM_EXIT_NPF]                          = pf_interception,
4135        [SVM_EXIT_RSM]                          = emulate_on_interception,
4136        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4137        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4138};
4139
4140static void dump_vmcb(struct kvm_vcpu *vcpu)
4141{
4142        struct vcpu_svm *svm = to_svm(vcpu);
4143        struct vmcb_control_area *control = &svm->vmcb->control;
4144        struct vmcb_save_area *save = &svm->vmcb->save;
4145
4146        pr_err("VMCB Control Area:\n");
4147        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4148        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4149        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4150        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4151        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4152        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4153        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4154        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4155        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4156        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4157        pr_err("%-20s%d\n", "asid:", control->asid);
4158        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4159        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4160        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4161        pr_err("%-20s%08x\n", "int_state:", control->int_state);
4162        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4163        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4164        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4165        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4166        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4167        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4168        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4169        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4170        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4171        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4172        pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4173        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4174        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4175        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4176        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4177        pr_err("VMCB State Save Area:\n");
4178        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4179               "es:",
4180               save->es.selector, save->es.attrib,
4181               save->es.limit, save->es.base);
4182        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4183               "cs:",
4184               save->cs.selector, save->cs.attrib,
4185               save->cs.limit, save->cs.base);
4186        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4187               "ss:",
4188               save->ss.selector, save->ss.attrib,
4189               save->ss.limit, save->ss.base);
4190        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4191               "ds:",
4192               save->ds.selector, save->ds.attrib,
4193               save->ds.limit, save->ds.base);
4194        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4195               "fs:",
4196               save->fs.selector, save->fs.attrib,
4197               save->fs.limit, save->fs.base);
4198        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4199               "gs:",
4200               save->gs.selector, save->gs.attrib,
4201               save->gs.limit, save->gs.base);
4202        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4203               "gdtr:",
4204               save->gdtr.selector, save->gdtr.attrib,
4205               save->gdtr.limit, save->gdtr.base);
4206        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4207               "ldtr:",
4208               save->ldtr.selector, save->ldtr.attrib,
4209               save->ldtr.limit, save->ldtr.base);
4210        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4211               "idtr:",
4212               save->idtr.selector, save->idtr.attrib,
4213               save->idtr.limit, save->idtr.base);
4214        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4215               "tr:",
4216               save->tr.selector, save->tr.attrib,
4217               save->tr.limit, save->tr.base);
4218        pr_err("cpl:            %d                efer:         %016llx\n",
4219                save->cpl, save->efer);
4220        pr_err("%-15s %016llx %-13s %016llx\n",
4221               "cr0:", save->cr0, "cr2:", save->cr2);
4222        pr_err("%-15s %016llx %-13s %016llx\n",
4223               "cr3:", save->cr3, "cr4:", save->cr4);
4224        pr_err("%-15s %016llx %-13s %016llx\n",
4225               "dr6:", save->dr6, "dr7:", save->dr7);
4226        pr_err("%-15s %016llx %-13s %016llx\n",
4227               "rip:", save->rip, "rflags:", save->rflags);
4228        pr_err("%-15s %016llx %-13s %016llx\n",
4229               "rsp:", save->rsp, "rax:", save->rax);
4230        pr_err("%-15s %016llx %-13s %016llx\n",
4231               "star:", save->star, "lstar:", save->lstar);
4232        pr_err("%-15s %016llx %-13s %016llx\n",
4233               "cstar:", save->cstar, "sfmask:", save->sfmask);
4234        pr_err("%-15s %016llx %-13s %016llx\n",
4235               "kernel_gs_base:", save->kernel_gs_base,
4236               "sysenter_cs:", save->sysenter_cs);
4237        pr_err("%-15s %016llx %-13s %016llx\n",
4238               "sysenter_esp:", save->sysenter_esp,
4239               "sysenter_eip:", save->sysenter_eip);
4240        pr_err("%-15s %016llx %-13s %016llx\n",
4241               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4242        pr_err("%-15s %016llx %-13s %016llx\n",
4243               "br_from:", save->br_from, "br_to:", save->br_to);
4244        pr_err("%-15s %016llx %-13s %016llx\n",
4245               "excp_from:", save->last_excp_from,
4246               "excp_to:", save->last_excp_to);
4247}
4248
4249static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4250{
4251        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4252
4253        *info1 = control->exit_info_1;
4254        *info2 = control->exit_info_2;
4255}
4256
4257static int handle_exit(struct kvm_vcpu *vcpu)
4258{
4259        struct vcpu_svm *svm = to_svm(vcpu);
4260        struct kvm_run *kvm_run = vcpu->run;
4261        u32 exit_code = svm->vmcb->control.exit_code;
4262
4263        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4264
4265        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4266                vcpu->arch.cr0 = svm->vmcb->save.cr0;
4267        if (npt_enabled)
4268                vcpu->arch.cr3 = svm->vmcb->save.cr3;
4269
4270        if (unlikely(svm->nested.exit_required)) {
4271                nested_svm_vmexit(svm);
4272                svm->nested.exit_required = false;
4273
4274                return 1;
4275        }
4276
4277        if (is_guest_mode(vcpu)) {
4278                int vmexit;
4279
4280                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4281                                        svm->vmcb->control.exit_info_1,
4282                                        svm->vmcb->control.exit_info_2,
4283                                        svm->vmcb->control.exit_int_info,
4284                                        svm->vmcb->control.exit_int_info_err,
4285                                        KVM_ISA_SVM);
4286
4287                vmexit = nested_svm_exit_special(svm);
4288
4289                if (vmexit == NESTED_EXIT_CONTINUE)
4290                        vmexit = nested_svm_exit_handled(svm);
4291
4292                if (vmexit == NESTED_EXIT_DONE)
4293                        return 1;
4294        }
4295
4296        svm_complete_interrupts(svm);
4297
4298        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4299                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4300                kvm_run->fail_entry.hardware_entry_failure_reason
4301                        = svm->vmcb->control.exit_code;
4302                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4303                dump_vmcb(vcpu);
4304                return 0;
4305        }
4306
4307        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4308            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4309            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4310            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4311                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4312                       "exit_code 0x%x\n",
4313                       __func__, svm->vmcb->control.exit_int_info,
4314                       exit_code);
4315
4316        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4317            || !svm_exit_handlers[exit_code]) {
4318                WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4319                kvm_queue_exception(vcpu, UD_VECTOR);
4320                return 1;
4321        }
4322
4323        return svm_exit_handlers[exit_code](svm);
4324}
4325
4326static void reload_tss(struct kvm_vcpu *vcpu)
4327{
4328        int cpu = raw_smp_processor_id();
4329
4330        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4331        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4332        load_TR_desc();
4333}
4334
4335static void pre_svm_run(struct vcpu_svm *svm)
4336{
4337        int cpu = raw_smp_processor_id();
4338
4339        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4340
4341        /* FIXME: handle wraparound of asid_generation */
4342        if (svm->asid_generation != sd->asid_generation)
4343                new_asid(svm, sd);
4344}
4345
4346static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4347{
4348        struct vcpu_svm *svm = to_svm(vcpu);
4349
4350        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4351        vcpu->arch.hflags |= HF_NMI_MASK;
4352        set_intercept(svm, INTERCEPT_IRET);
4353        ++vcpu->stat.nmi_injections;
4354}
4355
4356static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4357{
4358        struct vmcb_control_area *control;
4359
4360        /* The following fields are ignored when AVIC is enabled */
4361        control = &svm->vmcb->control;
4362        control->int_vector = irq;
4363        control->int_ctl &= ~V_INTR_PRIO_MASK;
4364        control->int_ctl |= V_IRQ_MASK |
4365                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4366        mark_dirty(svm->vmcb, VMCB_INTR);
4367}
4368
4369static void svm_set_irq(struct kvm_vcpu *vcpu)
4370{
4371        struct vcpu_svm *svm = to_svm(vcpu);
4372
4373        BUG_ON(!(gif_set(svm)));
4374
4375        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4376        ++vcpu->stat.irq_injections;
4377
4378        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4379                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4380}
4381
4382static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4383{
4384        return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4385}
4386
4387static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4388{
4389        struct vcpu_svm *svm = to_svm(vcpu);
4390
4391        if (svm_nested_virtualize_tpr(vcpu) ||
4392            kvm_vcpu_apicv_active(vcpu))
4393                return;
4394
4395        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4396
4397        if (irr == -1)
4398                return;
4399
4400        if (tpr >= irr)
4401                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4402}
4403
4404static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4405{
4406        return;
4407}
4408
4409static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4410{
4411        return avic && irqchip_split(vcpu->kvm);
4412}
4413
4414static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4415{
4416}
4417
4418static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4419{
4420}
4421
4422/* Note: Currently only used by Hyper-V. */
4423static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4424{
4425        struct vcpu_svm *svm = to_svm(vcpu);
4426        struct vmcb *vmcb = svm->vmcb;
4427
4428        if (!kvm_vcpu_apicv_active(&svm->vcpu))
4429                return;
4430
4431        vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4432        mark_dirty(vmcb, VMCB_INTR);
4433}
4434
4435static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4436{
4437        return;
4438}
4439
4440static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4441{
4442        kvm_lapic_set_irr(vec, vcpu->arch.apic);
4443        smp_mb__after_atomic();
4444
4445        if (avic_vcpu_is_running(vcpu))
4446                wrmsrl(SVM_AVIC_DOORBELL,
4447                       kvm_cpu_get_apicid(vcpu->cpu));
4448        else
4449                kvm_vcpu_wake_up(vcpu);
4450}
4451
4452static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4453{
4454        unsigned long flags;
4455        struct amd_svm_iommu_ir *cur;
4456
4457        spin_lock_irqsave(&svm->ir_list_lock, flags);
4458        list_for_each_entry(cur, &svm->ir_list, node) {
4459                if (cur->data != pi->ir_data)
4460                        continue;
4461                list_del(&cur->node);
4462                kfree(cur);
4463                break;
4464        }
4465        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4466}
4467
4468static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4469{
4470        int ret = 0;
4471        unsigned long flags;
4472        struct amd_svm_iommu_ir *ir;
4473
4474        /**
4475         * In some cases, the existing irte is updaed and re-set,
4476         * so we need to check here if it's already been * added
4477         * to the ir_list.
4478         */
4479        if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4480                struct kvm *kvm = svm->vcpu.kvm;
4481                u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4482                struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4483                struct vcpu_svm *prev_svm;
4484
4485                if (!prev_vcpu) {
4486                        ret = -EINVAL;
4487                        goto out;
4488                }
4489
4490                prev_svm = to_svm(prev_vcpu);
4491                svm_ir_list_del(prev_svm, pi);
4492        }
4493
4494        /**
4495         * Allocating new amd_iommu_pi_data, which will get
4496         * add to the per-vcpu ir_list.
4497         */
4498        ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4499        if (!ir) {
4500                ret = -ENOMEM;
4501                goto out;
4502        }
4503        ir->data = pi->ir_data;
4504
4505        spin_lock_irqsave(&svm->ir_list_lock, flags);
4506        list_add(&ir->node, &svm->ir_list);
4507        spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4508out:
4509        return ret;
4510}
4511
4512/**
4513 * Note:
4514 * The HW cannot support posting multicast/broadcast
4515 * interrupts to a vCPU. So, we still use legacy interrupt
4516 * remapping for these kind of interrupts.
4517 *
4518 * For lowest-priority interrupts, we only support
4519 * those with single CPU as the destination, e.g. user
4520 * configures the interrupts via /proc/irq or uses
4521 * irqbalance to make the interrupts single-CPU.
4522 */
4523static int
4524get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4525                 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4526{
4527        struct kvm_lapic_irq irq;
4528        struct kvm_vcpu *vcpu = NULL;
4529
4530        kvm_set_msi_irq(kvm, e, &irq);
4531
4532        if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4533                pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4534                         __func__, irq.vector);
4535                return -1;
4536        }
4537
4538        pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4539                 irq.vector);
4540        *svm = to_svm(vcpu);
4541        vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4542        vcpu_info->vector = irq.vector;
4543
4544        return 0;
4545}
4546
4547/*
4548 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4549 *
4550 * @kvm: kvm
4551 * @host_irq: host irq of the interrupt
4552 * @guest_irq: gsi of the interrupt
4553 * @set: set or unset PI
4554 * returns 0 on success, < 0 on failure
4555 */
4556static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4557                              uint32_t guest_irq, bool set)
4558{
4559        struct kvm_kernel_irq_routing_entry *e;
4560        struct kvm_irq_routing_table *irq_rt;
4561        int idx, ret = -EINVAL;
4562
4563        if (!kvm_arch_has_assigned_device(kvm) ||
4564            !irq_remapping_cap(IRQ_POSTING_CAP))
4565                return 0;
4566
4567        pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4568                 __func__, host_irq, guest_irq, set);
4569
4570        idx = srcu_read_lock(&kvm->irq_srcu);
4571        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4572        WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4573
4574        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4575                struct vcpu_data vcpu_info;
4576                struct vcpu_svm *svm = NULL;
4577
4578                if (e->type != KVM_IRQ_ROUTING_MSI)
4579                        continue;
4580
4581                /**
4582                 * Here, we setup with legacy mode in the following cases:
4583                 * 1. When cannot target interrupt to a specific vcpu.
4584                 * 2. Unsetting posted interrupt.
4585                 * 3. APIC virtialization is disabled for the vcpu.
4586                 */
4587                if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4588                    kvm_vcpu_apicv_active(&svm->vcpu)) {
4589                        struct amd_iommu_pi_data pi;
4590
4591                        /* Try to enable guest_mode in IRTE */
4592                        pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
4593                                            AVIC_HPA_MASK);
4594                        pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4595                                                     svm->vcpu.vcpu_id);
4596                        pi.is_guest_mode = true;
4597                        pi.vcpu_data = &vcpu_info;
4598                        ret = irq_set_vcpu_affinity(host_irq, &pi);
4599
4600                        /**
4601                         * Here, we successfully setting up vcpu affinity in
4602                         * IOMMU guest mode. Now, we need to store the posted
4603                         * interrupt information in a per-vcpu ir_list so that
4604                         * we can reference to them directly when we update vcpu
4605                         * scheduling information in IOMMU irte.
4606                         */
4607                        if (!ret && pi.is_guest_mode)
4608                                svm_ir_list_add(svm, &pi);
4609                } else {
4610                        /* Use legacy mode in IRTE */
4611                        struct amd_iommu_pi_data pi;
4612
4613                        /**
4614                         * Here, pi is used to:
4615                         * - Tell IOMMU to use legacy mode for this interrupt.
4616                         * - Retrieve ga_tag of prior interrupt remapping data.
4617                         */
4618                        pi.is_guest_mode = false;
4619                        ret = irq_set_vcpu_affinity(host_irq, &pi);
4620
4621                        /**
4622                         * Check if the posted interrupt was previously
4623                         * setup with the guest_mode by checking if the ga_tag
4624                         * was cached. If so, we need to clean up the per-vcpu
4625                         * ir_list.
4626                         */
4627                        if (!ret && pi.prev_ga_tag) {
4628                                int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4629                                struct kvm_vcpu *vcpu;
4630
4631                                vcpu = kvm_get_vcpu_by_id(kvm, id);
4632                                if (vcpu)
4633                                        svm_ir_list_del(to_svm(vcpu), &pi);
4634                        }
4635                }
4636
4637                if (!ret && svm) {
4638                        trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4639                                                 host_irq, e->gsi,
4640                                                 vcpu_info.vector,
4641                                                 vcpu_info.pi_desc_addr, set);
4642                }
4643
4644                if (ret < 0) {
4645                        pr_err("%s: failed to update PI IRTE\n", __func__);
4646                        goto out;
4647                }
4648        }
4649
4650        ret = 0;
4651out:
4652        srcu_read_unlock(&kvm->irq_srcu, idx);
4653        return ret;
4654}
4655
4656static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4657{
4658        struct vcpu_svm *svm = to_svm(vcpu);
4659        struct vmcb *vmcb = svm->vmcb;
4660        int ret;
4661        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4662              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4663        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4664
4665        return ret;
4666}
4667
4668static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4669{
4670        struct vcpu_svm *svm = to_svm(vcpu);
4671
4672        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4673}
4674
4675static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4676{
4677        struct vcpu_svm *svm = to_svm(vcpu);
4678
4679        if (masked) {
4680                svm->vcpu.arch.hflags |= HF_NMI_MASK;
4681                set_intercept(svm, INTERCEPT_IRET);
4682        } else {
4683                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4684                clr_intercept(svm, INTERCEPT_IRET);
4685        }
4686}
4687
4688static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4689{
4690        struct vcpu_svm *svm = to_svm(vcpu);
4691        struct vmcb *vmcb = svm->vmcb;
4692        int ret;
4693
4694        if (!gif_set(svm) ||
4695             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4696                return 0;
4697
4698        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4699
4700        if (is_guest_mode(vcpu))
4701                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4702
4703        return ret;
4704}
4705
4706static void enable_irq_window(struct kvm_vcpu *vcpu)
4707{
4708        struct vcpu_svm *svm = to_svm(vcpu);
4709
4710        if (kvm_vcpu_apicv_active(vcpu))
4711                return;
4712
4713        /*
4714         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4715         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4716         * get that intercept, this function will be called again though and
4717         * we'll get the vintr intercept. However, if the vGIF feature is
4718         * enabled, the STGI interception will not occur. Enable the irq
4719         * window under the assumption that the hardware will set the GIF.
4720         */
4721        if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
4722                svm_set_vintr(svm);
4723                svm_inject_irq(svm, 0x0);
4724        }
4725}
4726
4727static void enable_nmi_window(struct kvm_vcpu *vcpu)
4728{
4729        struct vcpu_svm *svm = to_svm(vcpu);
4730
4731        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4732            == HF_NMI_MASK)
4733                return; /* IRET will cause a vm exit */
4734
4735        if (!gif_set(svm)) {
4736                if (vgif_enabled(svm))
4737                        set_intercept(svm, INTERCEPT_STGI);
4738                return; /* STGI will cause a vm exit */
4739        }
4740
4741        if (svm->nested.exit_required)
4742                return; /* we're not going to run the guest yet */
4743
4744        /*
4745         * Something prevents NMI from been injected. Single step over possible
4746         * problem (IRET or exception injection or interrupt shadow)
4747         */
4748        svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4749        svm->nmi_singlestep = true;
4750        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4751}
4752
4753static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4754{
4755        return 0;
4756}
4757
4758static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4759{
4760        struct vcpu_svm *svm = to_svm(vcpu);
4761
4762        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4763                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4764        else
4765                svm->asid_generation--;
4766}
4767
4768static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4769{
4770}
4771
4772static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4773{
4774        struct vcpu_svm *svm = to_svm(vcpu);
4775
4776        if (svm_nested_virtualize_tpr(vcpu))
4777                return;
4778
4779        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4780                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4781                kvm_set_cr8(vcpu, cr8);
4782        }
4783}
4784
4785static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4786{
4787        struct vcpu_svm *svm = to_svm(vcpu);
4788        u64 cr8;
4789
4790        if (svm_nested_virtualize_tpr(vcpu) ||
4791            kvm_vcpu_apicv_active(vcpu))
4792                return;
4793
4794        cr8 = kvm_get_cr8(vcpu);
4795        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4796        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4797}
4798
4799static void svm_complete_interrupts(struct vcpu_svm *svm)
4800{
4801        u8 vector;
4802        int type;
4803        u32 exitintinfo = svm->vmcb->control.exit_int_info;
4804        unsigned int3_injected = svm->int3_injected;
4805
4806        svm->int3_injected = 0;
4807
4808        /*
4809         * If we've made progress since setting HF_IRET_MASK, we've
4810         * executed an IRET and can allow NMI injection.
4811         */
4812        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4813            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4814                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4815                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4816        }
4817
4818        svm->vcpu.arch.nmi_injected = false;
4819        kvm_clear_exception_queue(&svm->vcpu);
4820        kvm_clear_interrupt_queue(&svm->vcpu);
4821
4822        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4823                return;
4824
4825        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4826
4827        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4828        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4829
4830        switch (type) {
4831        case SVM_EXITINTINFO_TYPE_NMI:
4832                svm->vcpu.arch.nmi_injected = true;
4833                break;
4834        case SVM_EXITINTINFO_TYPE_EXEPT:
4835                /*
4836                 * In case of software exceptions, do not reinject the vector,
4837                 * but re-execute the instruction instead. Rewind RIP first
4838                 * if we emulated INT3 before.
4839                 */
4840                if (kvm_exception_is_soft(vector)) {
4841                        if (vector == BP_VECTOR && int3_injected &&
4842                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4843                                kvm_rip_write(&svm->vcpu,
4844                                              kvm_rip_read(&svm->vcpu) -
4845                                              int3_injected);
4846                        break;
4847                }
4848                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4849                        u32 err = svm->vmcb->control.exit_int_info_err;
4850                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
4851
4852                } else
4853                        kvm_requeue_exception(&svm->vcpu, vector);
4854                break;
4855        case SVM_EXITINTINFO_TYPE_INTR:
4856                kvm_queue_interrupt(&svm->vcpu, vector, false);
4857                break;
4858        default:
4859                break;
4860        }
4861}
4862
4863static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4864{
4865        struct vcpu_svm *svm = to_svm(vcpu);
4866        struct vmcb_control_area *control = &svm->vmcb->control;
4867
4868        control->exit_int_info = control->event_inj;
4869        control->exit_int_info_err = control->event_inj_err;
4870        control->event_inj = 0;
4871        svm_complete_interrupts(svm);
4872}
4873
4874static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4875{
4876        struct vcpu_svm *svm = to_svm(vcpu);
4877
4878        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4879        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4880        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4881
4882        /*
4883         * A vmexit emulation is required before the vcpu can be executed
4884         * again.
4885         */
4886        if (unlikely(svm->nested.exit_required))
4887                return;
4888
4889        /*
4890         * Disable singlestep if we're injecting an interrupt/exception.
4891         * We don't want our modified rflags to be pushed on the stack where
4892         * we might not be able to easily reset them if we disabled NMI
4893         * singlestep later.
4894         */
4895        if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4896                /*
4897                 * Event injection happens before external interrupts cause a
4898                 * vmexit and interrupts are disabled here, so smp_send_reschedule
4899                 * is enough to force an immediate vmexit.
4900                 */
4901                disable_nmi_singlestep(svm);
4902                smp_send_reschedule(vcpu->cpu);
4903        }
4904
4905        pre_svm_run(svm);
4906
4907        sync_lapic_to_cr8(vcpu);
4908
4909        svm->vmcb->save.cr2 = vcpu->arch.cr2;
4910
4911        clgi();
4912
4913        local_irq_enable();
4914
4915        asm volatile (
4916                "push %%" _ASM_BP "; \n\t"
4917                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4918                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4919                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4920                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4921                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4922                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4923#ifdef CONFIG_X86_64
4924                "mov %c[r8](%[svm]),  %%r8  \n\t"
4925                "mov %c[r9](%[svm]),  %%r9  \n\t"
4926                "mov %c[r10](%[svm]), %%r10 \n\t"
4927                "mov %c[r11](%[svm]), %%r11 \n\t"
4928                "mov %c[r12](%[svm]), %%r12 \n\t"
4929                "mov %c[r13](%[svm]), %%r13 \n\t"
4930                "mov %c[r14](%[svm]), %%r14 \n\t"
4931                "mov %c[r15](%[svm]), %%r15 \n\t"
4932#endif
4933
4934                /* Enter guest mode */
4935                "push %%" _ASM_AX " \n\t"
4936                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4937                __ex(SVM_VMLOAD) "\n\t"
4938                __ex(SVM_VMRUN) "\n\t"
4939                __ex(SVM_VMSAVE) "\n\t"
4940                "pop %%" _ASM_AX " \n\t"
4941
4942                /* Save guest registers, load host registers */
4943                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4944                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4945                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4946                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4947                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4948                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4949#ifdef CONFIG_X86_64
4950                "mov %%r8,  %c[r8](%[svm]) \n\t"
4951                "mov %%r9,  %c[r9](%[svm]) \n\t"
4952                "mov %%r10, %c[r10](%[svm]) \n\t"
4953                "mov %%r11, %c[r11](%[svm]) \n\t"
4954                "mov %%r12, %c[r12](%[svm]) \n\t"
4955                "mov %%r13, %c[r13](%[svm]) \n\t"
4956                "mov %%r14, %c[r14](%[svm]) \n\t"
4957                "mov %%r15, %c[r15](%[svm]) \n\t"
4958#endif
4959                "pop %%" _ASM_BP
4960                :
4961                : [svm]"a"(svm),
4962                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4963                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4964                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4965                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4966                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4967                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4968                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4969#ifdef CONFIG_X86_64
4970                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4971                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4972                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4973                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4974                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4975                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4976                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4977                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4978#endif
4979                : "cc", "memory"
4980#ifdef CONFIG_X86_64
4981                , "rbx", "rcx", "rdx", "rsi", "rdi"
4982                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4983#else
4984                , "ebx", "ecx", "edx", "esi", "edi"
4985#endif
4986                );
4987
4988#ifdef CONFIG_X86_64
4989        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4990#else
4991        loadsegment(fs, svm->host.fs);
4992#ifndef CONFIG_X86_32_LAZY_GS
4993        loadsegment(gs, svm->host.gs);
4994#endif
4995#endif
4996
4997        reload_tss(vcpu);
4998
4999        local_irq_disable();
5000
5001        vcpu->arch.cr2 = svm->vmcb->save.cr2;
5002        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5003        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5004        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5005
5006        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5007                kvm_before_handle_nmi(&svm->vcpu);
5008
5009        stgi();
5010
5011        /* Any pending NMI will happen here */
5012
5013        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5014                kvm_after_handle_nmi(&svm->vcpu);
5015
5016        sync_cr8_to_lapic(vcpu);
5017
5018        svm->next_rip = 0;
5019
5020        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5021
5022        /* if exit due to PF check for async PF */
5023        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5024                svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5025
5026        if (npt_enabled) {
5027                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5028                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5029        }
5030
5031        /*
5032         * We need to handle MC intercepts here before the vcpu has a chance to
5033         * change the physical cpu
5034         */
5035        if (unlikely(svm->vmcb->control.exit_code ==
5036                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5037                svm_handle_mce(svm);
5038
5039        mark_all_clean(svm->vmcb);
5040}
5041STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5042
5043static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5044{
5045        struct vcpu_svm *svm = to_svm(vcpu);
5046
5047        svm->vmcb->save.cr3 = __sme_set(root);
5048        mark_dirty(svm->vmcb, VMCB_CR);
5049        svm_flush_tlb(vcpu);
5050}
5051
5052static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5053{
5054        struct vcpu_svm *svm = to_svm(vcpu);
5055
5056        svm->vmcb->control.nested_cr3 = __sme_set(root);
5057        mark_dirty(svm->vmcb, VMCB_NPT);
5058
5059        /* Also sync guest cr3 here in case we live migrate */
5060        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5061        mark_dirty(svm->vmcb, VMCB_CR);
5062
5063        svm_flush_tlb(vcpu);
5064}
5065
5066static int is_disabled(void)
5067{
5068        u64 vm_cr;
5069
5070        rdmsrl(MSR_VM_CR, vm_cr);
5071        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5072                return 1;
5073
5074        return 0;
5075}
5076
5077static void
5078svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5079{
5080        /*
5081         * Patch in the VMMCALL instruction:
5082         */
5083        hypercall[0] = 0x0f;
5084        hypercall[1] = 0x01;
5085        hypercall[2] = 0xd9;
5086}
5087
5088static void svm_check_processor_compat(void *rtn)
5089{
5090        *(int *)rtn = 0;
5091}
5092
5093static bool svm_cpu_has_accelerated_tpr(void)
5094{
5095        return false;
5096}
5097
5098static bool svm_has_high_real_mode_segbase(void)
5099{
5100        return true;
5101}
5102
5103static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5104{
5105        return 0;
5106}
5107
5108static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5109{
5110        struct vcpu_svm *svm = to_svm(vcpu);
5111
5112        /* Update nrips enabled cache */
5113        svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5114
5115        if (!kvm_vcpu_apicv_active(vcpu))
5116                return;
5117
5118        guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5119}
5120
5121static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5122{
5123        switch (func) {
5124        case 0x1:
5125                if (avic)
5126                        entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5127                break;
5128        case 0x80000001:
5129                if (nested)
5130                        entry->ecx |= (1 << 2); /* Set SVM bit */
5131                break;
5132        case 0x8000000A:
5133                entry->eax = 1; /* SVM revision 1 */
5134                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5135                                   ASID emulation to nested SVM */
5136                entry->ecx = 0; /* Reserved */
5137                entry->edx = 0; /* Per default do not support any
5138                                   additional features */
5139
5140                /* Support next_rip if host supports it */
5141                if (boot_cpu_has(X86_FEATURE_NRIPS))
5142                        entry->edx |= SVM_FEATURE_NRIP;
5143
5144                /* Support NPT for the guest if enabled */
5145                if (npt_enabled)
5146                        entry->edx |= SVM_FEATURE_NPT;
5147
5148                break;
5149        }
5150}
5151
5152static int svm_get_lpage_level(void)
5153{
5154        return PT_PDPE_LEVEL;
5155}
5156
5157static bool svm_rdtscp_supported(void)
5158{
5159        return boot_cpu_has(X86_FEATURE_RDTSCP);
5160}
5161
5162static bool svm_invpcid_supported(void)
5163{
5164        return false;
5165}
5166
5167static bool svm_mpx_supported(void)
5168{
5169        return false;
5170}
5171
5172static bool svm_xsaves_supported(void)
5173{
5174        return false;
5175}
5176
5177static bool svm_has_wbinvd_exit(void)
5178{
5179        return true;
5180}
5181
5182#define PRE_EX(exit)  { .exit_code = (exit), \
5183                        .stage = X86_ICPT_PRE_EXCEPT, }
5184#define POST_EX(exit) { .exit_code = (exit), \
5185                        .stage = X86_ICPT_POST_EXCEPT, }
5186#define POST_MEM(exit) { .exit_code = (exit), \
5187                        .stage = X86_ICPT_POST_MEMACCESS, }
5188
5189static const struct __x86_intercept {
5190        u32 exit_code;
5191        enum x86_intercept_stage stage;
5192} x86_intercept_map[] = {
5193        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5194        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5195        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5196        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5197        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5198        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5199        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5200        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5201        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5202        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5203        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5204        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5205        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5206        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5207        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5208        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5209        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5210        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5211        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5212        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5213        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5214        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5215        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5216        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5217        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5218        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5219        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5220        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5221        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5222        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5223        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5224        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5225        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5226        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5227        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5228        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5229        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5230        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5231        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5232        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5233        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5234        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5235        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5236        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5237        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5238        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5239};
5240
5241#undef PRE_EX
5242#undef POST_EX
5243#undef POST_MEM
5244
5245static int svm_check_intercept(struct kvm_vcpu *vcpu,
5246                               struct x86_instruction_info *info,
5247                               enum x86_intercept_stage stage)
5248{
5249        struct vcpu_svm *svm = to_svm(vcpu);
5250        int vmexit, ret = X86EMUL_CONTINUE;
5251        struct __x86_intercept icpt_info;
5252        struct vmcb *vmcb = svm->vmcb;
5253
5254        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5255                goto out;
5256
5257        icpt_info = x86_intercept_map[info->intercept];
5258
5259        if (stage != icpt_info.stage)
5260                goto out;
5261
5262        switch (icpt_info.exit_code) {
5263        case SVM_EXIT_READ_CR0:
5264                if (info->intercept == x86_intercept_cr_read)
5265                        icpt_info.exit_code += info->modrm_reg;
5266                break;
5267        case SVM_EXIT_WRITE_CR0: {
5268                unsigned long cr0, val;
5269                u64 intercept;
5270
5271                if (info->intercept == x86_intercept_cr_write)
5272                        icpt_info.exit_code += info->modrm_reg;
5273
5274                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5275                    info->intercept == x86_intercept_clts)
5276                        break;
5277
5278                intercept = svm->nested.intercept;
5279
5280                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5281                        break;
5282
5283                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5284                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5285
5286                if (info->intercept == x86_intercept_lmsw) {
5287                        cr0 &= 0xfUL;
5288                        val &= 0xfUL;
5289                        /* lmsw can't clear PE - catch this here */
5290                        if (cr0 & X86_CR0_PE)
5291                                val |= X86_CR0_PE;
5292                }
5293
5294                if (cr0 ^ val)
5295                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5296
5297                break;
5298        }
5299        case SVM_EXIT_READ_DR0:
5300        case SVM_EXIT_WRITE_DR0:
5301                icpt_info.exit_code += info->modrm_reg;
5302                break;
5303        case SVM_EXIT_MSR:
5304                if (info->intercept == x86_intercept_wrmsr)
5305                        vmcb->control.exit_info_1 = 1;
5306                else
5307                        vmcb->control.exit_info_1 = 0;
5308                break;
5309        case SVM_EXIT_PAUSE:
5310                /*
5311                 * We get this for NOP only, but pause
5312                 * is rep not, check this here
5313                 */
5314                if (info->rep_prefix != REPE_PREFIX)
5315                        goto out;
5316                break;
5317        case SVM_EXIT_IOIO: {
5318                u64 exit_info;
5319                u32 bytes;
5320
5321                if (info->intercept == x86_intercept_in ||
5322                    info->intercept == x86_intercept_ins) {
5323                        exit_info = ((info->src_val & 0xffff) << 16) |
5324                                SVM_IOIO_TYPE_MASK;
5325                        bytes = info->dst_bytes;
5326                } else {
5327                        exit_info = (info->dst_val & 0xffff) << 16;
5328                        bytes = info->src_bytes;
5329                }
5330
5331                if (info->intercept == x86_intercept_outs ||
5332                    info->intercept == x86_intercept_ins)
5333                        exit_info |= SVM_IOIO_STR_MASK;
5334
5335                if (info->rep_prefix)
5336                        exit_info |= SVM_IOIO_REP_MASK;
5337
5338                bytes = min(bytes, 4u);
5339
5340                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5341
5342                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5343
5344                vmcb->control.exit_info_1 = exit_info;
5345                vmcb->control.exit_info_2 = info->next_rip;
5346
5347                break;
5348        }
5349        default:
5350                break;
5351        }
5352
5353        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5354        if (static_cpu_has(X86_FEATURE_NRIPS))
5355                vmcb->control.next_rip  = info->next_rip;
5356        vmcb->control.exit_code = icpt_info.exit_code;
5357        vmexit = nested_svm_exit_handled(svm);
5358
5359        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5360                                           : X86EMUL_CONTINUE;
5361
5362out:
5363        return ret;
5364}
5365
5366static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5367{
5368        local_irq_enable();
5369        /*
5370         * We must have an instruction with interrupts enabled, so
5371         * the timer interrupt isn't delayed by the interrupt shadow.
5372         */
5373        asm("nop");
5374        local_irq_disable();
5375}
5376
5377static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5378{
5379}
5380
5381static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5382{
5383        if (avic_handle_apic_id_update(vcpu) != 0)
5384                return;
5385        if (avic_handle_dfr_update(vcpu) != 0)
5386                return;
5387        avic_handle_ldr_update(vcpu);
5388}
5389
5390static void svm_setup_mce(struct kvm_vcpu *vcpu)
5391{
5392        /* [63:9] are reserved. */
5393        vcpu->arch.mcg_cap &= 0x1ff;
5394}
5395
5396static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5397        .cpu_has_kvm_support = has_svm,
5398        .disabled_by_bios = is_disabled,
5399        .hardware_setup = svm_hardware_setup,
5400        .hardware_unsetup = svm_hardware_unsetup,
5401        .check_processor_compatibility = svm_check_processor_compat,
5402        .hardware_enable = svm_hardware_enable,
5403        .hardware_disable = svm_hardware_disable,
5404        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5405        .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5406
5407        .vcpu_create = svm_create_vcpu,
5408        .vcpu_free = svm_free_vcpu,
5409        .vcpu_reset = svm_vcpu_reset,
5410
5411        .vm_init = avic_vm_init,
5412        .vm_destroy = avic_vm_destroy,
5413
5414        .prepare_guest_switch = svm_prepare_guest_switch,
5415        .vcpu_load = svm_vcpu_load,
5416        .vcpu_put = svm_vcpu_put,
5417        .vcpu_blocking = svm_vcpu_blocking,
5418        .vcpu_unblocking = svm_vcpu_unblocking,
5419
5420        .update_bp_intercept = update_bp_intercept,
5421        .get_msr = svm_get_msr,
5422        .set_msr = svm_set_msr,
5423        .get_segment_base = svm_get_segment_base,
5424        .get_segment = svm_get_segment,
5425        .set_segment = svm_set_segment,
5426        .get_cpl = svm_get_cpl,
5427        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5428        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5429        .decache_cr3 = svm_decache_cr3,
5430        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5431        .set_cr0 = svm_set_cr0,
5432        .set_cr3 = svm_set_cr3,
5433        .set_cr4 = svm_set_cr4,
5434        .set_efer = svm_set_efer,
5435        .get_idt = svm_get_idt,
5436        .set_idt = svm_set_idt,
5437        .get_gdt = svm_get_gdt,
5438        .set_gdt = svm_set_gdt,
5439        .get_dr6 = svm_get_dr6,
5440        .set_dr6 = svm_set_dr6,
5441        .set_dr7 = svm_set_dr7,
5442        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5443        .cache_reg = svm_cache_reg,
5444        .get_rflags = svm_get_rflags,
5445        .set_rflags = svm_set_rflags,
5446
5447        .tlb_flush = svm_flush_tlb,
5448
5449        .run = svm_vcpu_run,
5450        .handle_exit = handle_exit,
5451        .skip_emulated_instruction = skip_emulated_instruction,
5452        .set_interrupt_shadow = svm_set_interrupt_shadow,
5453        .get_interrupt_shadow = svm_get_interrupt_shadow,
5454        .patch_hypercall = svm_patch_hypercall,
5455        .set_irq = svm_set_irq,
5456        .set_nmi = svm_inject_nmi,
5457        .queue_exception = svm_queue_exception,
5458        .cancel_injection = svm_cancel_injection,
5459        .interrupt_allowed = svm_interrupt_allowed,
5460        .nmi_allowed = svm_nmi_allowed,
5461        .get_nmi_mask = svm_get_nmi_mask,
5462        .set_nmi_mask = svm_set_nmi_mask,
5463        .enable_nmi_window = enable_nmi_window,
5464        .enable_irq_window = enable_irq_window,
5465        .update_cr8_intercept = update_cr8_intercept,
5466        .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5467        .get_enable_apicv = svm_get_enable_apicv,
5468        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5469        .load_eoi_exitmap = svm_load_eoi_exitmap,
5470        .hwapic_irr_update = svm_hwapic_irr_update,
5471        .hwapic_isr_update = svm_hwapic_isr_update,
5472        .apicv_post_state_restore = avic_post_state_restore,
5473
5474        .set_tss_addr = svm_set_tss_addr,
5475        .get_tdp_level = get_npt_level,
5476        .get_mt_mask = svm_get_mt_mask,
5477
5478        .get_exit_info = svm_get_exit_info,
5479
5480        .get_lpage_level = svm_get_lpage_level,
5481
5482        .cpuid_update = svm_cpuid_update,
5483
5484        .rdtscp_supported = svm_rdtscp_supported,
5485        .invpcid_supported = svm_invpcid_supported,
5486        .mpx_supported = svm_mpx_supported,
5487        .xsaves_supported = svm_xsaves_supported,
5488
5489        .set_supported_cpuid = svm_set_supported_cpuid,
5490
5491        .has_wbinvd_exit = svm_has_wbinvd_exit,
5492
5493        .write_tsc_offset = svm_write_tsc_offset,
5494
5495        .set_tdp_cr3 = set_tdp_cr3,
5496
5497        .check_intercept = svm_check_intercept,
5498        .handle_external_intr = svm_handle_external_intr,
5499
5500        .sched_in = svm_sched_in,
5501
5502        .pmu_ops = &amd_pmu_ops,
5503        .deliver_posted_interrupt = svm_deliver_avic_intr,
5504        .update_pi_irte = svm_update_pi_irte,
5505        .setup_mce = svm_setup_mce,
5506};
5507
5508static int __init svm_init(void)
5509{
5510        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5511                        __alignof__(struct vcpu_svm), THIS_MODULE);
5512}
5513
5514static void __exit svm_exit(void)
5515{
5516        kvm_exit();
5517}
5518
5519module_init(svm_init)
5520module_exit(svm_exit)
5521