linux/arch/x86/mm/kaslr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file implements KASLR memory randomization for x86_64. It randomizes
   4 * the virtual address space of kernel memory regions (physical memory
   5 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
   6 * exploits relying on predictable kernel addresses.
   7 *
   8 * Entropy is generated using the KASLR early boot functions now shared in
   9 * the lib directory (originally written by Kees Cook). Randomization is
  10 * done on PGD & P4D/PUD page table levels to increase possible addresses.
  11 * The physical memory mapping code was adapted to support P4D/PUD level
  12 * virtual addresses. This implementation on the best configuration provides
  13 * 30,000 possible virtual addresses in average for each memory region.
  14 * An additional low memory page is used to ensure each CPU can start with
  15 * a PGD aligned virtual address (for realmode).
  16 *
  17 * The order of each memory region is not changed. The feature looks at
  18 * the available space for the regions based on different configuration
  19 * options and randomizes the base and space between each. The size of the
  20 * physical memory mapping is the available physical memory.
  21 */
  22
  23#include <linux/kernel.h>
  24#include <linux/init.h>
  25#include <linux/random.h>
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/setup.h>
  30#include <asm/kaslr.h>
  31
  32#include "mm_internal.h"
  33
  34#define TB_SHIFT 40
  35
  36/*
  37 * Virtual address start and end range for randomization. The end changes base
  38 * on configuration to have the highest amount of space for randomization.
  39 * It increases the possible random position for each randomized region.
  40 *
  41 * You need to add an if/def entry if you introduce a new memory region
  42 * compatible with KASLR. Your entry must be in logical order with memory
  43 * layout. For example, ESPFIX is before EFI because its virtual address is
  44 * before. You also need to add a BUILD_BUG_ON() in kernel_randomize_memory() to
  45 * ensure that this order is correct and won't be changed.
  46 */
  47static const unsigned long vaddr_start = __PAGE_OFFSET_BASE;
  48
  49#if defined(CONFIG_X86_ESPFIX64)
  50static const unsigned long vaddr_end = ESPFIX_BASE_ADDR;
  51#elif defined(CONFIG_EFI)
  52static const unsigned long vaddr_end = EFI_VA_END;
  53#else
  54static const unsigned long vaddr_end = __START_KERNEL_map;
  55#endif
  56
  57/* Default values */
  58unsigned long page_offset_base = __PAGE_OFFSET_BASE;
  59EXPORT_SYMBOL(page_offset_base);
  60unsigned long vmalloc_base = __VMALLOC_BASE;
  61EXPORT_SYMBOL(vmalloc_base);
  62unsigned long vmemmap_base = __VMEMMAP_BASE;
  63EXPORT_SYMBOL(vmemmap_base);
  64
  65/*
  66 * Memory regions randomized by KASLR (except modules that use a separate logic
  67 * earlier during boot). The list is ordered based on virtual addresses. This
  68 * order is kept after randomization.
  69 */
  70static __initdata struct kaslr_memory_region {
  71        unsigned long *base;
  72        unsigned long size_tb;
  73} kaslr_regions[] = {
  74        { &page_offset_base, 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT) /* Maximum */ },
  75        { &vmalloc_base, VMALLOC_SIZE_TB },
  76        { &vmemmap_base, 1 },
  77};
  78
  79/* Get size in bytes used by the memory region */
  80static inline unsigned long get_padding(struct kaslr_memory_region *region)
  81{
  82        return (region->size_tb << TB_SHIFT);
  83}
  84
  85/*
  86 * Apply no randomization if KASLR was disabled at boot or if KASAN
  87 * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
  88 */
  89static inline bool kaslr_memory_enabled(void)
  90{
  91        return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
  92}
  93
  94/* Initialize base and padding for each memory region randomized with KASLR */
  95void __init kernel_randomize_memory(void)
  96{
  97        size_t i;
  98        unsigned long vaddr = vaddr_start;
  99        unsigned long rand, memory_tb;
 100        struct rnd_state rand_state;
 101        unsigned long remain_entropy;
 102
 103        /*
 104         * All these BUILD_BUG_ON checks ensures the memory layout is
 105         * consistent with the vaddr_start/vaddr_end variables.
 106         */
 107        BUILD_BUG_ON(vaddr_start >= vaddr_end);
 108        BUILD_BUG_ON(IS_ENABLED(CONFIG_X86_ESPFIX64) &&
 109                     vaddr_end >= EFI_VA_END);
 110        BUILD_BUG_ON((IS_ENABLED(CONFIG_X86_ESPFIX64) ||
 111                      IS_ENABLED(CONFIG_EFI)) &&
 112                     vaddr_end >= __START_KERNEL_map);
 113        BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
 114
 115        if (!kaslr_memory_enabled())
 116                return;
 117
 118        /*
 119         * Update Physical memory mapping to available and
 120         * add padding if needed (especially for memory hotplug support).
 121         */
 122        BUG_ON(kaslr_regions[0].base != &page_offset_base);
 123        memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
 124                CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
 125
 126        /* Adapt phyiscal memory region size based on available memory */
 127        if (memory_tb < kaslr_regions[0].size_tb)
 128                kaslr_regions[0].size_tb = memory_tb;
 129
 130        /* Calculate entropy available between regions */
 131        remain_entropy = vaddr_end - vaddr_start;
 132        for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
 133                remain_entropy -= get_padding(&kaslr_regions[i]);
 134
 135        prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
 136
 137        for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
 138                unsigned long entropy;
 139
 140                /*
 141                 * Select a random virtual address using the extra entropy
 142                 * available.
 143                 */
 144                entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
 145                prandom_bytes_state(&rand_state, &rand, sizeof(rand));
 146                if (IS_ENABLED(CONFIG_X86_5LEVEL))
 147                        entropy = (rand % (entropy + 1)) & P4D_MASK;
 148                else
 149                        entropy = (rand % (entropy + 1)) & PUD_MASK;
 150                vaddr += entropy;
 151                *kaslr_regions[i].base = vaddr;
 152
 153                /*
 154                 * Jump the region and add a minimum padding based on
 155                 * randomization alignment.
 156                 */
 157                vaddr += get_padding(&kaslr_regions[i]);
 158                if (IS_ENABLED(CONFIG_X86_5LEVEL))
 159                        vaddr = round_up(vaddr + 1, P4D_SIZE);
 160                else
 161                        vaddr = round_up(vaddr + 1, PUD_SIZE);
 162                remain_entropy -= entropy;
 163        }
 164}
 165
 166static void __meminit init_trampoline_pud(void)
 167{
 168        unsigned long paddr, paddr_next;
 169        pgd_t *pgd;
 170        pud_t *pud_page, *pud_page_tramp;
 171        int i;
 172
 173        pud_page_tramp = alloc_low_page();
 174
 175        paddr = 0;
 176        pgd = pgd_offset_k((unsigned long)__va(paddr));
 177        pud_page = (pud_t *) pgd_page_vaddr(*pgd);
 178
 179        for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 180                pud_t *pud, *pud_tramp;
 181                unsigned long vaddr = (unsigned long)__va(paddr);
 182
 183                pud_tramp = pud_page_tramp + pud_index(paddr);
 184                pud = pud_page + pud_index(vaddr);
 185                paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 186
 187                *pud_tramp = *pud;
 188        }
 189
 190        set_pgd(&trampoline_pgd_entry,
 191                __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
 192}
 193
 194static void __meminit init_trampoline_p4d(void)
 195{
 196        unsigned long paddr, paddr_next;
 197        pgd_t *pgd;
 198        p4d_t *p4d_page, *p4d_page_tramp;
 199        int i;
 200
 201        p4d_page_tramp = alloc_low_page();
 202
 203        paddr = 0;
 204        pgd = pgd_offset_k((unsigned long)__va(paddr));
 205        p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
 206
 207        for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
 208                p4d_t *p4d, *p4d_tramp;
 209                unsigned long vaddr = (unsigned long)__va(paddr);
 210
 211                p4d_tramp = p4d_page_tramp + p4d_index(paddr);
 212                p4d = p4d_page + p4d_index(vaddr);
 213                paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
 214
 215                *p4d_tramp = *p4d;
 216        }
 217
 218        set_pgd(&trampoline_pgd_entry,
 219                __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
 220}
 221
 222/*
 223 * Create PGD aligned trampoline table to allow real mode initialization
 224 * of additional CPUs. Consume only 1 low memory page.
 225 */
 226void __meminit init_trampoline(void)
 227{
 228
 229        if (!kaslr_memory_enabled()) {
 230                init_trampoline_default();
 231                return;
 232        }
 233
 234        if (IS_ENABLED(CONFIG_X86_5LEVEL))
 235                init_trampoline_p4d();
 236        else
 237                init_trampoline_pud();
 238}
 239