linux/crypto/asymmetric_keys/restrict.c
<<
>>
Prefs
   1/* Instantiate a public key crypto key from an X.509 Certificate
   2 *
   3 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public Licence
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the Licence, or (at your option) any later version.
  10 */
  11
  12#define pr_fmt(fmt) "ASYM: "fmt
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/err.h>
  16#include <crypto/public_key.h>
  17#include "asymmetric_keys.h"
  18
  19static bool use_builtin_keys;
  20static struct asymmetric_key_id *ca_keyid;
  21
  22#ifndef MODULE
  23static struct {
  24        struct asymmetric_key_id id;
  25        unsigned char data[10];
  26} cakey;
  27
  28static int __init ca_keys_setup(char *str)
  29{
  30        if (!str)               /* default system keyring */
  31                return 1;
  32
  33        if (strncmp(str, "id:", 3) == 0) {
  34                struct asymmetric_key_id *p = &cakey.id;
  35                size_t hexlen = (strlen(str) - 3) / 2;
  36                int ret;
  37
  38                if (hexlen == 0 || hexlen > sizeof(cakey.data)) {
  39                        pr_err("Missing or invalid ca_keys id\n");
  40                        return 1;
  41                }
  42
  43                ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen);
  44                if (ret < 0)
  45                        pr_err("Unparsable ca_keys id hex string\n");
  46                else
  47                        ca_keyid = p;   /* owner key 'id:xxxxxx' */
  48        } else if (strcmp(str, "builtin") == 0) {
  49                use_builtin_keys = true;
  50        }
  51
  52        return 1;
  53}
  54__setup("ca_keys=", ca_keys_setup);
  55#endif
  56
  57/**
  58 * restrict_link_by_signature - Restrict additions to a ring of public keys
  59 * @dest_keyring: Keyring being linked to.
  60 * @type: The type of key being added.
  61 * @payload: The payload of the new key.
  62 * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
  63 *
  64 * Check the new certificate against the ones in the trust keyring.  If one of
  65 * those is the signing key and validates the new certificate, then mark the
  66 * new certificate as being trusted.
  67 *
  68 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
  69 * matching parent certificate in the trusted list, -EKEYREJECTED if the
  70 * signature check fails or the key is blacklisted and some other error if
  71 * there is a matching certificate but the signature check cannot be performed.
  72 */
  73int restrict_link_by_signature(struct key *dest_keyring,
  74                               const struct key_type *type,
  75                               const union key_payload *payload,
  76                               struct key *trust_keyring)
  77{
  78        const struct public_key_signature *sig;
  79        struct key *key;
  80        int ret;
  81
  82        pr_devel("==>%s()\n", __func__);
  83
  84        if (!trust_keyring)
  85                return -ENOKEY;
  86
  87        if (type != &key_type_asymmetric)
  88                return -EOPNOTSUPP;
  89
  90        sig = payload->data[asym_auth];
  91        if (!sig->auth_ids[0] && !sig->auth_ids[1])
  92                return -ENOKEY;
  93
  94        if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
  95                return -EPERM;
  96
  97        /* See if we have a key that signed this one. */
  98        key = find_asymmetric_key(trust_keyring,
  99                                  sig->auth_ids[0], sig->auth_ids[1],
 100                                  false);
 101        if (IS_ERR(key))
 102                return -ENOKEY;
 103
 104        if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
 105                ret = -ENOKEY;
 106        else
 107                ret = verify_signature(key, sig);
 108        key_put(key);
 109        return ret;
 110}
 111
 112static bool match_either_id(const struct asymmetric_key_ids *pair,
 113                            const struct asymmetric_key_id *single)
 114{
 115        return (asymmetric_key_id_same(pair->id[0], single) ||
 116                asymmetric_key_id_same(pair->id[1], single));
 117}
 118
 119static int key_or_keyring_common(struct key *dest_keyring,
 120                                 const struct key_type *type,
 121                                 const union key_payload *payload,
 122                                 struct key *trusted, bool check_dest)
 123{
 124        const struct public_key_signature *sig;
 125        struct key *key = NULL;
 126        int ret;
 127
 128        pr_devel("==>%s()\n", __func__);
 129
 130        if (!dest_keyring)
 131                return -ENOKEY;
 132        else if (dest_keyring->type != &key_type_keyring)
 133                return -EOPNOTSUPP;
 134
 135        if (!trusted && !check_dest)
 136                return -ENOKEY;
 137
 138        if (type != &key_type_asymmetric)
 139                return -EOPNOTSUPP;
 140
 141        sig = payload->data[asym_auth];
 142        if (!sig->auth_ids[0] && !sig->auth_ids[1])
 143                return -ENOKEY;
 144
 145        if (trusted) {
 146                if (trusted->type == &key_type_keyring) {
 147                        /* See if we have a key that signed this one. */
 148                        key = find_asymmetric_key(trusted, sig->auth_ids[0],
 149                                                  sig->auth_ids[1], false);
 150                        if (IS_ERR(key))
 151                                key = NULL;
 152                } else if (trusted->type == &key_type_asymmetric) {
 153                        const struct asymmetric_key_ids *signer_ids;
 154
 155                        signer_ids = asymmetric_key_ids(trusted);
 156
 157                        /*
 158                         * The auth_ids come from the candidate key (the
 159                         * one that is being considered for addition to
 160                         * dest_keyring) and identify the key that was
 161                         * used to sign.
 162                         *
 163                         * The signer_ids are identifiers for the
 164                         * signing key specified for dest_keyring.
 165                         *
 166                         * The first auth_id is the preferred id, and
 167                         * the second is the fallback. If only one
 168                         * auth_id is present, it may match against
 169                         * either signer_id. If two auth_ids are
 170                         * present, the first auth_id must match one
 171                         * signer_id and the second auth_id must match
 172                         * the second signer_id.
 173                         */
 174                        if (!sig->auth_ids[0] || !sig->auth_ids[1]) {
 175                                const struct asymmetric_key_id *auth_id;
 176
 177                                auth_id = sig->auth_ids[0] ?: sig->auth_ids[1];
 178                                if (match_either_id(signer_ids, auth_id))
 179                                        key = __key_get(trusted);
 180
 181                        } else if (asymmetric_key_id_same(signer_ids->id[1],
 182                                                          sig->auth_ids[1]) &&
 183                                   match_either_id(signer_ids,
 184                                                   sig->auth_ids[0])) {
 185                                key = __key_get(trusted);
 186                        }
 187                } else {
 188                        return -EOPNOTSUPP;
 189                }
 190        }
 191
 192        if (check_dest && !key) {
 193                /* See if the destination has a key that signed this one. */
 194                key = find_asymmetric_key(dest_keyring, sig->auth_ids[0],
 195                                          sig->auth_ids[1], false);
 196                if (IS_ERR(key))
 197                        key = NULL;
 198        }
 199
 200        if (!key)
 201                return -ENOKEY;
 202
 203        ret = key_validate(key);
 204        if (ret == 0)
 205                ret = verify_signature(key, sig);
 206
 207        key_put(key);
 208        return ret;
 209}
 210
 211/**
 212 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public
 213 * keys using the restrict_key information stored in the ring.
 214 * @dest_keyring: Keyring being linked to.
 215 * @type: The type of key being added.
 216 * @payload: The payload of the new key.
 217 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
 218 *
 219 * Check the new certificate only against the key or keys passed in the data
 220 * parameter. If one of those is the signing key and validates the new
 221 * certificate, then mark the new certificate as being ok to link.
 222 *
 223 * Returns 0 if the new certificate was accepted, -ENOKEY if we
 224 * couldn't find a matching parent certificate in the trusted list,
 225 * -EKEYREJECTED if the signature check fails, and some other error if
 226 * there is a matching certificate but the signature check cannot be
 227 * performed.
 228 */
 229int restrict_link_by_key_or_keyring(struct key *dest_keyring,
 230                                    const struct key_type *type,
 231                                    const union key_payload *payload,
 232                                    struct key *trusted)
 233{
 234        return key_or_keyring_common(dest_keyring, type, payload, trusted,
 235                                     false);
 236}
 237
 238/**
 239 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of
 240 * public keys using the restrict_key information stored in the ring.
 241 * @dest_keyring: Keyring being linked to.
 242 * @type: The type of key being added.
 243 * @payload: The payload of the new key.
 244 * @trusted: A key or ring of keys that can be used to vouch for the new cert.
 245 *
 246 * Check the new certificate only against the key or keys passed in the data
 247 * parameter. If one of those is the signing key and validates the new
 248 * certificate, then mark the new certificate as being ok to link.
 249 *
 250 * Returns 0 if the new certificate was accepted, -ENOKEY if we
 251 * couldn't find a matching parent certificate in the trusted list,
 252 * -EKEYREJECTED if the signature check fails, and some other error if
 253 * there is a matching certificate but the signature check cannot be
 254 * performed.
 255 */
 256int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring,
 257                                          const struct key_type *type,
 258                                          const union key_payload *payload,
 259                                          struct key *trusted)
 260{
 261        return key_or_keyring_common(dest_keyring, type, payload, trusted,
 262                                     true);
 263}
 264