linux/drivers/clk/bcm/clk-kona.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013 Broadcom Corporation
   3 * Copyright 2013 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#ifndef _CLK_KONA_H
  16#define _CLK_KONA_H
  17
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/spinlock.h>
  21#include <linux/slab.h>
  22#include <linux/device.h>
  23#include <linux/of.h>
  24#include <linux/clk-provider.h>
  25
  26#define BILLION         1000000000
  27
  28/* The common clock framework uses u8 to represent a parent index */
  29#define PARENT_COUNT_MAX        ((u32)U8_MAX)
  30
  31#define BAD_CLK_INDEX           U8_MAX  /* Can't ever be valid */
  32#define BAD_CLK_NAME            ((const char *)-1)
  33
  34#define BAD_SCALED_DIV_VALUE    U64_MAX
  35
  36/*
  37 * Utility macros for object flag management.  If possible, flags
  38 * should be defined such that 0 is the desired default value.
  39 */
  40#define FLAG(type, flag)                BCM_CLK_ ## type ## _FLAGS_ ## flag
  41#define FLAG_SET(obj, type, flag)       ((obj)->flags |= FLAG(type, flag))
  42#define FLAG_CLEAR(obj, type, flag)     ((obj)->flags &= ~(FLAG(type, flag)))
  43#define FLAG_FLIP(obj, type, flag)      ((obj)->flags ^= FLAG(type, flag))
  44#define FLAG_TEST(obj, type, flag)      (!!((obj)->flags & FLAG(type, flag)))
  45
  46/* CCU field state tests */
  47
  48#define ccu_policy_exists(ccu_policy)   ((ccu_policy)->enable.offset != 0)
  49
  50/* Clock field state tests */
  51
  52#define policy_exists(policy)           ((policy)->offset != 0)
  53
  54#define gate_exists(gate)               FLAG_TEST(gate, GATE, EXISTS)
  55#define gate_is_enabled(gate)           FLAG_TEST(gate, GATE, ENABLED)
  56#define gate_is_hw_controllable(gate)   FLAG_TEST(gate, GATE, HW)
  57#define gate_is_sw_controllable(gate)   FLAG_TEST(gate, GATE, SW)
  58#define gate_is_sw_managed(gate)        FLAG_TEST(gate, GATE, SW_MANAGED)
  59#define gate_is_no_disable(gate)        FLAG_TEST(gate, GATE, NO_DISABLE)
  60
  61#define gate_flip_enabled(gate)         FLAG_FLIP(gate, GATE, ENABLED)
  62
  63#define hyst_exists(hyst)               ((hyst)->offset != 0)
  64
  65#define divider_exists(div)             FLAG_TEST(div, DIV, EXISTS)
  66#define divider_is_fixed(div)           FLAG_TEST(div, DIV, FIXED)
  67#define divider_has_fraction(div)       (!divider_is_fixed(div) && \
  68                                                (div)->u.s.frac_width > 0)
  69
  70#define selector_exists(sel)            ((sel)->width != 0)
  71#define trigger_exists(trig)            FLAG_TEST(trig, TRIG, EXISTS)
  72
  73#define policy_lvm_en_exists(enable)    ((enable)->offset != 0)
  74#define policy_ctl_exists(control)      ((control)->offset != 0)
  75
  76/* Clock type, used to tell common block what it's part of */
  77enum bcm_clk_type {
  78        bcm_clk_none,           /* undefined clock type */
  79        bcm_clk_bus,
  80        bcm_clk_core,
  81        bcm_clk_peri
  82};
  83
  84/*
  85 * CCU policy control for clocks.  Clocks can be enabled or disabled
  86 * based on the CCU policy in effect.  One bit in each policy mask
  87 * register (one per CCU policy) represents whether the clock is
  88 * enabled when that policy is effect or not.  The CCU policy engine
  89 * must be stopped to update these bits, and must be restarted again
  90 * afterward.
  91 */
  92struct bcm_clk_policy {
  93        u32 offset;             /* first policy mask register offset */
  94        u32 bit;                /* bit used in all mask registers */
  95};
  96
  97/* Policy initialization macro */
  98
  99#define POLICY(_offset, _bit)                                           \
 100        {                                                               \
 101                .offset = (_offset),                                    \
 102                .bit = (_bit),                                          \
 103        }
 104
 105/*
 106 * Gating control and status is managed by a 32-bit gate register.
 107 *
 108 * There are several types of gating available:
 109 * - (no gate)
 110 *     A clock with no gate is assumed to be always enabled.
 111 * - hardware-only gating (auto-gating)
 112 *     Enabling or disabling clocks with this type of gate is
 113 *     managed automatically by the hardware.  Such clocks can be
 114 *     considered by the software to be enabled.  The current status
 115 *     of auto-gated clocks can be read from the gate status bit.
 116 * - software-only gating
 117 *     Auto-gating is not available for this type of clock.
 118 *     Instead, software manages whether it's enabled by setting or
 119 *     clearing the enable bit.  The current gate status of a gate
 120 *     under software control can be read from the gate status bit.
 121 *     To ensure a change to the gating status is complete, the
 122 *     status bit can be polled to verify that the gate has entered
 123 *     the desired state.
 124 * - selectable hardware or software gating
 125 *     Gating for this type of clock can be configured to be either
 126 *     under software or hardware control.  Which type is in use is
 127 *     determined by the hw_sw_sel bit of the gate register.
 128 */
 129struct bcm_clk_gate {
 130        u32 offset;             /* gate register offset */
 131        u32 status_bit;         /* 0: gate is disabled; 0: gatge is enabled */
 132        u32 en_bit;             /* 0: disable; 1: enable */
 133        u32 hw_sw_sel_bit;      /* 0: hardware gating; 1: software gating */
 134        u32 flags;              /* BCM_CLK_GATE_FLAGS_* below */
 135};
 136
 137/*
 138 * Gate flags:
 139 *   HW         means this gate can be auto-gated
 140 *   SW         means the state of this gate can be software controlled
 141 *   NO_DISABLE means this gate is (only) enabled if under software control
 142 *   SW_MANAGED means the status of this gate is under software control
 143 *   ENABLED    means this software-managed gate is *supposed* to be enabled
 144 */
 145#define BCM_CLK_GATE_FLAGS_EXISTS       ((u32)1 << 0)   /* Gate is valid */
 146#define BCM_CLK_GATE_FLAGS_HW           ((u32)1 << 1)   /* Can auto-gate */
 147#define BCM_CLK_GATE_FLAGS_SW           ((u32)1 << 2)   /* Software control */
 148#define BCM_CLK_GATE_FLAGS_NO_DISABLE   ((u32)1 << 3)   /* HW or enabled */
 149#define BCM_CLK_GATE_FLAGS_SW_MANAGED   ((u32)1 << 4)   /* SW now in control */
 150#define BCM_CLK_GATE_FLAGS_ENABLED      ((u32)1 << 5)   /* If SW_MANAGED */
 151
 152/*
 153 * Gate initialization macros.
 154 *
 155 * Any gate initially under software control will be enabled.
 156 */
 157
 158/* A hardware/software gate initially under software control */
 159#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)       \
 160        {                                                               \
 161                .offset = (_offset),                                    \
 162                .status_bit = (_status_bit),                            \
 163                .en_bit = (_en_bit),                                    \
 164                .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
 165                .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
 166                        FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|     \
 167                        FLAG(GATE, EXISTS),                             \
 168        }
 169
 170/* A hardware/software gate initially under hardware control */
 171#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)  \
 172        {                                                               \
 173                .offset = (_offset),                                    \
 174                .status_bit = (_status_bit),                            \
 175                .en_bit = (_en_bit),                                    \
 176                .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
 177                .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
 178                        FLAG(GATE, EXISTS),                             \
 179        }
 180
 181/* A hardware-or-enabled gate (enabled if not under hardware control) */
 182#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)   \
 183        {                                                               \
 184                .offset = (_offset),                                    \
 185                .status_bit = (_status_bit),                            \
 186                .en_bit = (_en_bit),                                    \
 187                .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
 188                .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
 189                        FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),      \
 190        }
 191
 192/* A software-only gate */
 193#define SW_ONLY_GATE(_offset, _status_bit, _en_bit)                     \
 194        {                                                               \
 195                .offset = (_offset),                                    \
 196                .status_bit = (_status_bit),                            \
 197                .en_bit = (_en_bit),                                    \
 198                .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|         \
 199                        FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),         \
 200        }
 201
 202/* A hardware-only gate */
 203#define HW_ONLY_GATE(_offset, _status_bit)                              \
 204        {                                                               \
 205                .offset = (_offset),                                    \
 206                .status_bit = (_status_bit),                            \
 207                .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),             \
 208        }
 209
 210/* Gate hysteresis for clocks */
 211struct bcm_clk_hyst {
 212        u32 offset;             /* hyst register offset (normally CLKGATE) */
 213        u32 en_bit;             /* bit used to enable hysteresis */
 214        u32 val_bit;            /* if enabled: 0 = low delay; 1 = high delay */
 215};
 216
 217/* Hysteresis initialization macro */
 218
 219#define HYST(_offset, _en_bit, _val_bit)                                \
 220        {                                                               \
 221                .offset = (_offset),                                    \
 222                .en_bit = (_en_bit),                                    \
 223                .val_bit = (_val_bit),                                  \
 224        }
 225
 226/*
 227 * Each clock can have zero, one, or two dividers which change the
 228 * output rate of the clock.  Each divider can be either fixed or
 229 * variable.  If there are two dividers, they are the "pre-divider"
 230 * and the "regular" or "downstream" divider.  If there is only one,
 231 * there is no pre-divider.
 232 *
 233 * A fixed divider is any non-zero (positive) value, and it
 234 * indicates how the input rate is affected by the divider.
 235 *
 236 * The value of a variable divider is maintained in a sub-field of a
 237 * 32-bit divider register.  The position of the field in the
 238 * register is defined by its offset and width.  The value recorded
 239 * in this field is always 1 less than the value it represents.
 240 *
 241 * In addition, a variable divider can indicate that some subset
 242 * of its bits represent a "fractional" part of the divider.  Such
 243 * bits comprise the low-order portion of the divider field, and can
 244 * be viewed as representing the portion of the divider that lies to
 245 * the right of the decimal point.  Most variable dividers have zero
 246 * fractional bits.  Variable dividers with non-zero fraction width
 247 * still record a value 1 less than the value they represent; the
 248 * added 1 does *not* affect the low-order bit in this case, it
 249 * affects the bits above the fractional part only.  (Often in this
 250 * code a divider field value is distinguished from the value it
 251 * represents by referring to the latter as a "divisor".)
 252 *
 253 * In order to avoid dealing with fractions, divider arithmetic is
 254 * performed using "scaled" values.  A scaled value is one that's
 255 * been left-shifted by the fractional width of a divider.  Dividing
 256 * a scaled value by a scaled divisor produces the desired quotient
 257 * without loss of precision and without any other special handling
 258 * for fractions.
 259 *
 260 * The recorded value of a variable divider can be modified.  To
 261 * modify either divider (or both), a clock must be enabled (i.e.,
 262 * using its gate).  In addition, a trigger register (described
 263 * below) must be used to commit the change, and polled to verify
 264 * the change is complete.
 265 */
 266struct bcm_clk_div {
 267        union {
 268                struct {        /* variable divider */
 269                        u32 offset;     /* divider register offset */
 270                        u32 shift;      /* field shift */
 271                        u32 width;      /* field width */
 272                        u32 frac_width; /* field fraction width */
 273
 274                        u64 scaled_div; /* scaled divider value */
 275                } s;
 276                u32 fixed;      /* non-zero fixed divider value */
 277        } u;
 278        u32 flags;              /* BCM_CLK_DIV_FLAGS_* below */
 279};
 280
 281/*
 282 * Divider flags:
 283 *   EXISTS means this divider exists
 284 *   FIXED means it is a fixed-rate divider
 285 */
 286#define BCM_CLK_DIV_FLAGS_EXISTS        ((u32)1 << 0)   /* Divider is valid */
 287#define BCM_CLK_DIV_FLAGS_FIXED         ((u32)1 << 1)   /* Fixed-value */
 288
 289/* Divider initialization macros */
 290
 291/* A fixed (non-zero) divider */
 292#define FIXED_DIVIDER(_value)                                           \
 293        {                                                               \
 294                .u.fixed = (_value),                                    \
 295                .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),            \
 296        }
 297
 298/* A divider with an integral divisor */
 299#define DIVIDER(_offset, _shift, _width)                                \
 300        {                                                               \
 301                .u.s.offset = (_offset),                                \
 302                .u.s.shift = (_shift),                                  \
 303                .u.s.width = (_width),                                  \
 304                .u.s.scaled_div = BAD_SCALED_DIV_VALUE,                 \
 305                .flags = FLAG(DIV, EXISTS),                             \
 306        }
 307
 308/* A divider whose divisor has an integer and fractional part */
 309#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)              \
 310        {                                                               \
 311                .u.s.offset = (_offset),                                \
 312                .u.s.shift = (_shift),                                  \
 313                .u.s.width = (_width),                                  \
 314                .u.s.frac_width = (_frac_width),                        \
 315                .u.s.scaled_div = BAD_SCALED_DIV_VALUE,                 \
 316                .flags = FLAG(DIV, EXISTS),                             \
 317        }
 318
 319/*
 320 * Clocks may have multiple "parent" clocks.  If there is more than
 321 * one, a selector must be specified to define which of the parent
 322 * clocks is currently in use.  The selected clock is indicated in a
 323 * sub-field of a 32-bit selector register.  The range of
 324 * representable selector values typically exceeds the number of
 325 * available parent clocks.  Occasionally the reset value of a
 326 * selector field is explicitly set to a (specific) value that does
 327 * not correspond to a defined input clock.
 328 *
 329 * We register all known parent clocks with the common clock code
 330 * using a packed array (i.e., no empty slots) of (parent) clock
 331 * names, and refer to them later using indexes into that array.
 332 * We maintain an array of selector values indexed by common clock
 333 * index values in order to map between these common clock indexes
 334 * and the selector values used by the hardware.
 335 *
 336 * Like dividers, a selector can be modified, but to do so a clock
 337 * must be enabled, and a trigger must be used to commit the change.
 338 */
 339struct bcm_clk_sel {
 340        u32 offset;             /* selector register offset */
 341        u32 shift;              /* field shift */
 342        u32 width;              /* field width */
 343
 344        u32 parent_count;       /* number of entries in parent_sel[] */
 345        u32 *parent_sel;        /* array of parent selector values */
 346        u8 clk_index;           /* current selected index in parent_sel[] */
 347};
 348
 349/* Selector initialization macro */
 350#define SELECTOR(_offset, _shift, _width)                               \
 351        {                                                               \
 352                .offset = (_offset),                                    \
 353                .shift = (_shift),                                      \
 354                .width = (_width),                                      \
 355                .clk_index = BAD_CLK_INDEX,                             \
 356        }
 357
 358/*
 359 * Making changes to a variable divider or a selector for a clock
 360 * requires the use of a trigger.  A trigger is defined by a single
 361 * bit within a register.  To signal a change, a 1 is written into
 362 * that bit.  To determine when the change has been completed, that
 363 * trigger bit is polled; the read value will be 1 while the change
 364 * is in progress, and 0 when it is complete.
 365 *
 366 * Occasionally a clock will have more than one trigger.  In this
 367 * case, the "pre-trigger" will be used when changing a clock's
 368 * selector and/or its pre-divider.
 369 */
 370struct bcm_clk_trig {
 371        u32 offset;             /* trigger register offset */
 372        u32 bit;                /* trigger bit */
 373        u32 flags;              /* BCM_CLK_TRIG_FLAGS_* below */
 374};
 375
 376/*
 377 * Trigger flags:
 378 *   EXISTS means this trigger exists
 379 */
 380#define BCM_CLK_TRIG_FLAGS_EXISTS       ((u32)1 << 0)   /* Trigger is valid */
 381
 382/* Trigger initialization macro */
 383#define TRIGGER(_offset, _bit)                                          \
 384        {                                                               \
 385                .offset = (_offset),                                    \
 386                .bit = (_bit),                                          \
 387                .flags = FLAG(TRIG, EXISTS),                            \
 388        }
 389
 390struct peri_clk_data {
 391        struct bcm_clk_policy policy;
 392        struct bcm_clk_gate gate;
 393        struct bcm_clk_hyst hyst;
 394        struct bcm_clk_trig pre_trig;
 395        struct bcm_clk_div pre_div;
 396        struct bcm_clk_trig trig;
 397        struct bcm_clk_div div;
 398        struct bcm_clk_sel sel;
 399        const char *clocks[];   /* must be last; use CLOCKS() to declare */
 400};
 401#define CLOCKS(...)     { __VA_ARGS__, NULL, }
 402#define NO_CLOCKS       { NULL, }       /* Must use of no parent clocks */
 403
 404struct kona_clk {
 405        struct clk_hw hw;
 406        struct clk_init_data init_data; /* includes name of this clock */
 407        struct ccu_data *ccu;   /* ccu this clock is associated with */
 408        enum bcm_clk_type type;
 409        union {
 410                void *data;
 411                struct peri_clk_data *peri;
 412        } u;
 413};
 414#define to_kona_clk(_hw) \
 415        container_of(_hw, struct kona_clk, hw)
 416
 417/* Initialization macro for an entry in a CCU's kona_clks[] array. */
 418#define KONA_CLK(_ccu_name, _clk_name, _type)                           \
 419        {                                                               \
 420                .init_data      = {                                     \
 421                        .name = #_clk_name,                             \
 422                        .ops = &kona_ ## _type ## _clk_ops,             \
 423                },                                                      \
 424                .ccu            = &_ccu_name ## _ccu_data,              \
 425                .type           = bcm_clk_ ## _type,                    \
 426                .u.data         = &_clk_name ## _data,                  \
 427        }
 428#define LAST_KONA_CLK   { .type = bcm_clk_none }
 429
 430/*
 431 * CCU policy control.  To enable software update of the policy
 432 * tables the CCU policy engine must be stopped by setting the
 433 * software update enable bit (LVM_EN).  After an update the engine
 434 * is restarted using the GO bit and either the GO_ATL or GO_AC bit.
 435 */
 436struct bcm_lvm_en {
 437        u32 offset;             /* LVM_EN register offset */
 438        u32 bit;                /* POLICY_CONFIG_EN bit in register */
 439};
 440
 441/* Policy enable initialization macro */
 442#define CCU_LVM_EN(_offset, _bit)                                       \
 443        {                                                               \
 444                .offset = (_offset),                                    \
 445                .bit = (_bit),                                          \
 446        }
 447
 448struct bcm_policy_ctl {
 449        u32 offset;             /* POLICY_CTL register offset */
 450        u32 go_bit;
 451        u32 atl_bit;            /* GO, GO_ATL, and GO_AC bits */
 452        u32 ac_bit;
 453};
 454
 455/* Policy control initialization macro */
 456#define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit)             \
 457        {                                                               \
 458                .offset = (_offset),                                    \
 459                .go_bit = (_go_bit),                                    \
 460                .ac_bit = (_ac_bit),                                    \
 461                .atl_bit = (_atl_bit),                                  \
 462        }
 463
 464struct ccu_policy {
 465        struct bcm_lvm_en enable;
 466        struct bcm_policy_ctl control;
 467};
 468
 469/*
 470 * Each CCU defines a mapped area of memory containing registers
 471 * used to manage clocks implemented by the CCU.  Access to memory
 472 * within the CCU's space is serialized by a spinlock.  Before any
 473 * (other) address can be written, a special access "password" value
 474 * must be written to its WR_ACCESS register (located at the base
 475 * address of the range).  We keep track of the name of each CCU as
 476 * it is set up, and maintain them in a list.
 477 */
 478struct ccu_data {
 479        void __iomem *base;     /* base of mapped address space */
 480        spinlock_t lock;        /* serialization lock */
 481        bool write_enabled;     /* write access is currently enabled */
 482        struct ccu_policy policy;
 483        struct device_node *node;
 484        size_t clk_num;
 485        const char *name;
 486        u32 range;              /* byte range of address space */
 487        struct kona_clk kona_clks[];    /* must be last */
 488};
 489
 490/* Initialization for common fields in a Kona ccu_data structure */
 491#define KONA_CCU_COMMON(_prefix, _name, _ccuname)                           \
 492        .name           = #_name "_ccu",                                    \
 493        .lock           = __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock),    \
 494        .clk_num        = _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT
 495
 496/* Exported globals */
 497
 498extern struct clk_ops kona_peri_clk_ops;
 499
 500/* Externally visible functions */
 501
 502extern u64 scaled_div_max(struct bcm_clk_div *div);
 503extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
 504                                u32 billionths);
 505
 506extern void __init kona_dt_ccu_setup(struct ccu_data *ccu,
 507                                struct device_node *node);
 508extern bool __init kona_ccu_init(struct ccu_data *ccu);
 509
 510#endif /* _CLK_KONA_H */
 511