linux/drivers/crypto/atmel-sha.c
<<
>>
Prefs
   1/*
   2 * Cryptographic API.
   3 *
   4 * Support for ATMEL SHA1/SHA256 HW acceleration.
   5 *
   6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   7 * Author: Nicolas Royer <nicolas@eukrea.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as published
  11 * by the Free Software Foundation.
  12 *
  13 * Some ideas are from omap-sham.c drivers.
  14 */
  15
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/err.h>
  21#include <linux/clk.h>
  22#include <linux/io.h>
  23#include <linux/hw_random.h>
  24#include <linux/platform_device.h>
  25
  26#include <linux/device.h>
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/irq.h>
  31#include <linux/scatterlist.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/of_device.h>
  34#include <linux/delay.h>
  35#include <linux/crypto.h>
  36#include <linux/cryptohash.h>
  37#include <crypto/scatterwalk.h>
  38#include <crypto/algapi.h>
  39#include <crypto/sha.h>
  40#include <crypto/hash.h>
  41#include <crypto/internal/hash.h>
  42#include <linux/platform_data/crypto-atmel.h>
  43#include "atmel-sha-regs.h"
  44#include "atmel-authenc.h"
  45
  46/* SHA flags */
  47#define SHA_FLAGS_BUSY                  BIT(0)
  48#define SHA_FLAGS_FINAL                 BIT(1)
  49#define SHA_FLAGS_DMA_ACTIVE    BIT(2)
  50#define SHA_FLAGS_OUTPUT_READY  BIT(3)
  51#define SHA_FLAGS_INIT                  BIT(4)
  52#define SHA_FLAGS_CPU                   BIT(5)
  53#define SHA_FLAGS_DMA_READY             BIT(6)
  54#define SHA_FLAGS_DUMP_REG      BIT(7)
  55
  56/* bits[11:8] are reserved. */
  57
  58#define SHA_FLAGS_FINUP         BIT(16)
  59#define SHA_FLAGS_SG            BIT(17)
  60#define SHA_FLAGS_ERROR         BIT(23)
  61#define SHA_FLAGS_PAD           BIT(24)
  62#define SHA_FLAGS_RESTORE       BIT(25)
  63#define SHA_FLAGS_IDATAR0       BIT(26)
  64#define SHA_FLAGS_WAIT_DATARDY  BIT(27)
  65
  66#define SHA_OP_INIT     0
  67#define SHA_OP_UPDATE   1
  68#define SHA_OP_FINAL    2
  69#define SHA_OP_DIGEST   3
  70
  71#define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
  72
  73#define ATMEL_SHA_DMA_THRESHOLD         56
  74
  75struct atmel_sha_caps {
  76        bool    has_dma;
  77        bool    has_dualbuff;
  78        bool    has_sha224;
  79        bool    has_sha_384_512;
  80        bool    has_uihv;
  81        bool    has_hmac;
  82};
  83
  84struct atmel_sha_dev;
  85
  86/*
  87 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  88 * tested by the ahash_prepare_alg() function.
  89 */
  90struct atmel_sha_reqctx {
  91        struct atmel_sha_dev    *dd;
  92        unsigned long   flags;
  93        unsigned long   op;
  94
  95        u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  96        u64     digcnt[2];
  97        size_t  bufcnt;
  98        size_t  buflen;
  99        dma_addr_t      dma_addr;
 100
 101        /* walk state */
 102        struct scatterlist      *sg;
 103        unsigned int    offset; /* offset in current sg */
 104        unsigned int    total;  /* total request */
 105
 106        size_t block_size;
 107        size_t hash_size;
 108
 109        u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 110};
 111
 112typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 113
 114struct atmel_sha_ctx {
 115        struct atmel_sha_dev    *dd;
 116        atmel_sha_fn_t          start;
 117
 118        unsigned long           flags;
 119};
 120
 121#define ATMEL_SHA_QUEUE_LENGTH  50
 122
 123struct atmel_sha_dma {
 124        struct dma_chan                 *chan;
 125        struct dma_slave_config dma_conf;
 126        struct scatterlist      *sg;
 127        int                     nents;
 128        unsigned int            last_sg_length;
 129};
 130
 131struct atmel_sha_dev {
 132        struct list_head        list;
 133        unsigned long           phys_base;
 134        struct device           *dev;
 135        struct clk                      *iclk;
 136        int                                     irq;
 137        void __iomem            *io_base;
 138
 139        spinlock_t              lock;
 140        int                     err;
 141        struct tasklet_struct   done_task;
 142        struct tasklet_struct   queue_task;
 143
 144        unsigned long           flags;
 145        struct crypto_queue     queue;
 146        struct ahash_request    *req;
 147        bool                    is_async;
 148        bool                    force_complete;
 149        atmel_sha_fn_t          resume;
 150        atmel_sha_fn_t          cpu_transfer_complete;
 151
 152        struct atmel_sha_dma    dma_lch_in;
 153
 154        struct atmel_sha_caps   caps;
 155
 156        struct scatterlist      tmp;
 157
 158        u32     hw_version;
 159};
 160
 161struct atmel_sha_drv {
 162        struct list_head        dev_list;
 163        spinlock_t              lock;
 164};
 165
 166static struct atmel_sha_drv atmel_sha = {
 167        .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 168        .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 169};
 170
 171#ifdef VERBOSE_DEBUG
 172static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 173{
 174        switch (offset) {
 175        case SHA_CR:
 176                return "CR";
 177
 178        case SHA_MR:
 179                return "MR";
 180
 181        case SHA_IER:
 182                return "IER";
 183
 184        case SHA_IDR:
 185                return "IDR";
 186
 187        case SHA_IMR:
 188                return "IMR";
 189
 190        case SHA_ISR:
 191                return "ISR";
 192
 193        case SHA_MSR:
 194                return "MSR";
 195
 196        case SHA_BCR:
 197                return "BCR";
 198
 199        case SHA_REG_DIN(0):
 200        case SHA_REG_DIN(1):
 201        case SHA_REG_DIN(2):
 202        case SHA_REG_DIN(3):
 203        case SHA_REG_DIN(4):
 204        case SHA_REG_DIN(5):
 205        case SHA_REG_DIN(6):
 206        case SHA_REG_DIN(7):
 207        case SHA_REG_DIN(8):
 208        case SHA_REG_DIN(9):
 209        case SHA_REG_DIN(10):
 210        case SHA_REG_DIN(11):
 211        case SHA_REG_DIN(12):
 212        case SHA_REG_DIN(13):
 213        case SHA_REG_DIN(14):
 214        case SHA_REG_DIN(15):
 215                snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 216                break;
 217
 218        case SHA_REG_DIGEST(0):
 219        case SHA_REG_DIGEST(1):
 220        case SHA_REG_DIGEST(2):
 221        case SHA_REG_DIGEST(3):
 222        case SHA_REG_DIGEST(4):
 223        case SHA_REG_DIGEST(5):
 224        case SHA_REG_DIGEST(6):
 225        case SHA_REG_DIGEST(7):
 226        case SHA_REG_DIGEST(8):
 227        case SHA_REG_DIGEST(9):
 228        case SHA_REG_DIGEST(10):
 229        case SHA_REG_DIGEST(11):
 230        case SHA_REG_DIGEST(12):
 231        case SHA_REG_DIGEST(13):
 232        case SHA_REG_DIGEST(14):
 233        case SHA_REG_DIGEST(15):
 234                if (wr)
 235                        snprintf(tmp, sz, "IDATAR[%u]",
 236                                 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 237                else
 238                        snprintf(tmp, sz, "ODATAR[%u]",
 239                                 (offset - SHA_REG_DIGEST(0)) >> 2);
 240                break;
 241
 242        case SHA_HW_VERSION:
 243                return "HWVER";
 244
 245        default:
 246                snprintf(tmp, sz, "0x%02x", offset);
 247                break;
 248        }
 249
 250        return tmp;
 251}
 252
 253#endif /* VERBOSE_DEBUG */
 254
 255static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 256{
 257        u32 value = readl_relaxed(dd->io_base + offset);
 258
 259#ifdef VERBOSE_DEBUG
 260        if (dd->flags & SHA_FLAGS_DUMP_REG) {
 261                char tmp[16];
 262
 263                dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 264                         atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 265        }
 266#endif /* VERBOSE_DEBUG */
 267
 268        return value;
 269}
 270
 271static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 272                                        u32 offset, u32 value)
 273{
 274#ifdef VERBOSE_DEBUG
 275        if (dd->flags & SHA_FLAGS_DUMP_REG) {
 276                char tmp[16];
 277
 278                dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 279                         atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 280        }
 281#endif /* VERBOSE_DEBUG */
 282
 283        writel_relaxed(value, dd->io_base + offset);
 284}
 285
 286static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 287{
 288        struct ahash_request *req = dd->req;
 289
 290        dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 291                       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 292                       SHA_FLAGS_DUMP_REG);
 293
 294        clk_disable(dd->iclk);
 295
 296        if ((dd->is_async || dd->force_complete) && req->base.complete)
 297                req->base.complete(&req->base, err);
 298
 299        /* handle new request */
 300        tasklet_schedule(&dd->queue_task);
 301
 302        return err;
 303}
 304
 305static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 306{
 307        size_t count;
 308
 309        while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 310                count = min(ctx->sg->length - ctx->offset, ctx->total);
 311                count = min(count, ctx->buflen - ctx->bufcnt);
 312
 313                if (count <= 0) {
 314                        /*
 315                        * Check if count <= 0 because the buffer is full or
 316                        * because the sg length is 0. In the latest case,
 317                        * check if there is another sg in the list, a 0 length
 318                        * sg doesn't necessarily mean the end of the sg list.
 319                        */
 320                        if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 321                                ctx->sg = sg_next(ctx->sg);
 322                                continue;
 323                        } else {
 324                                break;
 325                        }
 326                }
 327
 328                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 329                        ctx->offset, count, 0);
 330
 331                ctx->bufcnt += count;
 332                ctx->offset += count;
 333                ctx->total -= count;
 334
 335                if (ctx->offset == ctx->sg->length) {
 336                        ctx->sg = sg_next(ctx->sg);
 337                        if (ctx->sg)
 338                                ctx->offset = 0;
 339                        else
 340                                ctx->total = 0;
 341                }
 342        }
 343
 344        return 0;
 345}
 346
 347/*
 348 * The purpose of this padding is to ensure that the padded message is a
 349 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 350 * The bit "1" is appended at the end of the message followed by
 351 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 352 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 353 * is appended.
 354 *
 355 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 356 *  - if message length < 56 bytes then padlen = 56 - message length
 357 *  - else padlen = 64 + 56 - message length
 358 *
 359 * For SHA384/SHA512, padlen is calculated as followed:
 360 *  - if message length < 112 bytes then padlen = 112 - message length
 361 *  - else padlen = 128 + 112 - message length
 362 */
 363static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 364{
 365        unsigned int index, padlen;
 366        u64 bits[2];
 367        u64 size[2];
 368
 369        size[0] = ctx->digcnt[0];
 370        size[1] = ctx->digcnt[1];
 371
 372        size[0] += ctx->bufcnt;
 373        if (size[0] < ctx->bufcnt)
 374                size[1]++;
 375
 376        size[0] += length;
 377        if (size[0]  < length)
 378                size[1]++;
 379
 380        bits[1] = cpu_to_be64(size[0] << 3);
 381        bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 382
 383        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 384        case SHA_FLAGS_SHA384:
 385        case SHA_FLAGS_SHA512:
 386                index = ctx->bufcnt & 0x7f;
 387                padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 388                *(ctx->buffer + ctx->bufcnt) = 0x80;
 389                memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 390                memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 391                ctx->bufcnt += padlen + 16;
 392                ctx->flags |= SHA_FLAGS_PAD;
 393                break;
 394
 395        default:
 396                index = ctx->bufcnt & 0x3f;
 397                padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 398                *(ctx->buffer + ctx->bufcnt) = 0x80;
 399                memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 400                memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 401                ctx->bufcnt += padlen + 8;
 402                ctx->flags |= SHA_FLAGS_PAD;
 403                break;
 404        }
 405}
 406
 407static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 408{
 409        struct atmel_sha_dev *dd = NULL;
 410        struct atmel_sha_dev *tmp;
 411
 412        spin_lock_bh(&atmel_sha.lock);
 413        if (!tctx->dd) {
 414                list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 415                        dd = tmp;
 416                        break;
 417                }
 418                tctx->dd = dd;
 419        } else {
 420                dd = tctx->dd;
 421        }
 422
 423        spin_unlock_bh(&atmel_sha.lock);
 424
 425        return dd;
 426}
 427
 428static int atmel_sha_init(struct ahash_request *req)
 429{
 430        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 431        struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 432        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 433        struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 434
 435        ctx->dd = dd;
 436
 437        ctx->flags = 0;
 438
 439        dev_dbg(dd->dev, "init: digest size: %d\n",
 440                crypto_ahash_digestsize(tfm));
 441
 442        switch (crypto_ahash_digestsize(tfm)) {
 443        case SHA1_DIGEST_SIZE:
 444                ctx->flags |= SHA_FLAGS_SHA1;
 445                ctx->block_size = SHA1_BLOCK_SIZE;
 446                break;
 447        case SHA224_DIGEST_SIZE:
 448                ctx->flags |= SHA_FLAGS_SHA224;
 449                ctx->block_size = SHA224_BLOCK_SIZE;
 450                break;
 451        case SHA256_DIGEST_SIZE:
 452                ctx->flags |= SHA_FLAGS_SHA256;
 453                ctx->block_size = SHA256_BLOCK_SIZE;
 454                break;
 455        case SHA384_DIGEST_SIZE:
 456                ctx->flags |= SHA_FLAGS_SHA384;
 457                ctx->block_size = SHA384_BLOCK_SIZE;
 458                break;
 459        case SHA512_DIGEST_SIZE:
 460                ctx->flags |= SHA_FLAGS_SHA512;
 461                ctx->block_size = SHA512_BLOCK_SIZE;
 462                break;
 463        default:
 464                return -EINVAL;
 465                break;
 466        }
 467
 468        ctx->bufcnt = 0;
 469        ctx->digcnt[0] = 0;
 470        ctx->digcnt[1] = 0;
 471        ctx->buflen = SHA_BUFFER_LEN;
 472
 473        return 0;
 474}
 475
 476static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 477{
 478        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 479        u32 valmr = SHA_MR_MODE_AUTO;
 480        unsigned int i, hashsize = 0;
 481
 482        if (likely(dma)) {
 483                if (!dd->caps.has_dma)
 484                        atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 485                valmr = SHA_MR_MODE_PDC;
 486                if (dd->caps.has_dualbuff)
 487                        valmr |= SHA_MR_DUALBUFF;
 488        } else {
 489                atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 490        }
 491
 492        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 493        case SHA_FLAGS_SHA1:
 494                valmr |= SHA_MR_ALGO_SHA1;
 495                hashsize = SHA1_DIGEST_SIZE;
 496                break;
 497
 498        case SHA_FLAGS_SHA224:
 499                valmr |= SHA_MR_ALGO_SHA224;
 500                hashsize = SHA256_DIGEST_SIZE;
 501                break;
 502
 503        case SHA_FLAGS_SHA256:
 504                valmr |= SHA_MR_ALGO_SHA256;
 505                hashsize = SHA256_DIGEST_SIZE;
 506                break;
 507
 508        case SHA_FLAGS_SHA384:
 509                valmr |= SHA_MR_ALGO_SHA384;
 510                hashsize = SHA512_DIGEST_SIZE;
 511                break;
 512
 513        case SHA_FLAGS_SHA512:
 514                valmr |= SHA_MR_ALGO_SHA512;
 515                hashsize = SHA512_DIGEST_SIZE;
 516                break;
 517
 518        default:
 519                break;
 520        }
 521
 522        /* Setting CR_FIRST only for the first iteration */
 523        if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 524                atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 525        } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 526                const u32 *hash = (const u32 *)ctx->digest;
 527
 528                /*
 529                 * Restore the hardware context: update the User Initialize
 530                 * Hash Value (UIHV) with the value saved when the latest
 531                 * 'update' operation completed on this very same crypto
 532                 * request.
 533                 */
 534                ctx->flags &= ~SHA_FLAGS_RESTORE;
 535                atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 536                for (i = 0; i < hashsize / sizeof(u32); ++i)
 537                        atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 538                atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 539                valmr |= SHA_MR_UIHV;
 540        }
 541        /*
 542         * WARNING: If the UIHV feature is not available, the hardware CANNOT
 543         * process concurrent requests: the internal registers used to store
 544         * the hash/digest are still set to the partial digest output values
 545         * computed during the latest round.
 546         */
 547
 548        atmel_sha_write(dd, SHA_MR, valmr);
 549}
 550
 551static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 552                                                atmel_sha_fn_t resume)
 553{
 554        u32 isr = atmel_sha_read(dd, SHA_ISR);
 555
 556        if (unlikely(isr & SHA_INT_DATARDY))
 557                return resume(dd);
 558
 559        dd->resume = resume;
 560        atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 561        return -EINPROGRESS;
 562}
 563
 564static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 565                              size_t length, int final)
 566{
 567        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 568        int count, len32;
 569        const u32 *buffer = (const u32 *)buf;
 570
 571        dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 572                ctx->digcnt[1], ctx->digcnt[0], length, final);
 573
 574        atmel_sha_write_ctrl(dd, 0);
 575
 576        /* should be non-zero before next lines to disable clocks later */
 577        ctx->digcnt[0] += length;
 578        if (ctx->digcnt[0] < length)
 579                ctx->digcnt[1]++;
 580
 581        if (final)
 582                dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 583
 584        len32 = DIV_ROUND_UP(length, sizeof(u32));
 585
 586        dd->flags |= SHA_FLAGS_CPU;
 587
 588        for (count = 0; count < len32; count++)
 589                atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 590
 591        return -EINPROGRESS;
 592}
 593
 594static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 595                size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 596{
 597        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 598        int len32;
 599
 600        dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 601                ctx->digcnt[1], ctx->digcnt[0], length1, final);
 602
 603        len32 = DIV_ROUND_UP(length1, sizeof(u32));
 604        atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 605        atmel_sha_write(dd, SHA_TPR, dma_addr1);
 606        atmel_sha_write(dd, SHA_TCR, len32);
 607
 608        len32 = DIV_ROUND_UP(length2, sizeof(u32));
 609        atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 610        atmel_sha_write(dd, SHA_TNCR, len32);
 611
 612        atmel_sha_write_ctrl(dd, 1);
 613
 614        /* should be non-zero before next lines to disable clocks later */
 615        ctx->digcnt[0] += length1;
 616        if (ctx->digcnt[0] < length1)
 617                ctx->digcnt[1]++;
 618
 619        if (final)
 620                dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 621
 622        dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 623
 624        /* Start DMA transfer */
 625        atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 626
 627        return -EINPROGRESS;
 628}
 629
 630static void atmel_sha_dma_callback(void *data)
 631{
 632        struct atmel_sha_dev *dd = data;
 633
 634        dd->is_async = true;
 635
 636        /* dma_lch_in - completed - wait DATRDY */
 637        atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 638}
 639
 640static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 641                size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 642{
 643        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 644        struct dma_async_tx_descriptor  *in_desc;
 645        struct scatterlist sg[2];
 646
 647        dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 648                ctx->digcnt[1], ctx->digcnt[0], length1, final);
 649
 650        dd->dma_lch_in.dma_conf.src_maxburst = 16;
 651        dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 652
 653        dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 654
 655        if (length2) {
 656                sg_init_table(sg, 2);
 657                sg_dma_address(&sg[0]) = dma_addr1;
 658                sg_dma_len(&sg[0]) = length1;
 659                sg_dma_address(&sg[1]) = dma_addr2;
 660                sg_dma_len(&sg[1]) = length2;
 661                in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 662                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 663        } else {
 664                sg_init_table(sg, 1);
 665                sg_dma_address(&sg[0]) = dma_addr1;
 666                sg_dma_len(&sg[0]) = length1;
 667                in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 668                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 669        }
 670        if (!in_desc)
 671                return atmel_sha_complete(dd, -EINVAL);
 672
 673        in_desc->callback = atmel_sha_dma_callback;
 674        in_desc->callback_param = dd;
 675
 676        atmel_sha_write_ctrl(dd, 1);
 677
 678        /* should be non-zero before next lines to disable clocks later */
 679        ctx->digcnt[0] += length1;
 680        if (ctx->digcnt[0] < length1)
 681                ctx->digcnt[1]++;
 682
 683        if (final)
 684                dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 685
 686        dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 687
 688        /* Start DMA transfer */
 689        dmaengine_submit(in_desc);
 690        dma_async_issue_pending(dd->dma_lch_in.chan);
 691
 692        return -EINPROGRESS;
 693}
 694
 695static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 696                size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 697{
 698        if (dd->caps.has_dma)
 699                return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 700                                dma_addr2, length2, final);
 701        else
 702                return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 703                                dma_addr2, length2, final);
 704}
 705
 706static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 707{
 708        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 709        int bufcnt;
 710
 711        atmel_sha_append_sg(ctx);
 712        atmel_sha_fill_padding(ctx, 0);
 713        bufcnt = ctx->bufcnt;
 714        ctx->bufcnt = 0;
 715
 716        return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 717}
 718
 719static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 720                                        struct atmel_sha_reqctx *ctx,
 721                                        size_t length, int final)
 722{
 723        ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 724                                ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 725        if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 726                dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 727                                ctx->block_size);
 728                return atmel_sha_complete(dd, -EINVAL);
 729        }
 730
 731        ctx->flags &= ~SHA_FLAGS_SG;
 732
 733        /* next call does not fail... so no unmap in the case of error */
 734        return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 735}
 736
 737static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 738{
 739        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 740        unsigned int final;
 741        size_t count;
 742
 743        atmel_sha_append_sg(ctx);
 744
 745        final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 746
 747        dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 748                 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 749
 750        if (final)
 751                atmel_sha_fill_padding(ctx, 0);
 752
 753        if (final || (ctx->bufcnt == ctx->buflen)) {
 754                count = ctx->bufcnt;
 755                ctx->bufcnt = 0;
 756                return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 757        }
 758
 759        return 0;
 760}
 761
 762static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 763{
 764        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 765        unsigned int length, final, tail;
 766        struct scatterlist *sg;
 767        unsigned int count;
 768
 769        if (!ctx->total)
 770                return 0;
 771
 772        if (ctx->bufcnt || ctx->offset)
 773                return atmel_sha_update_dma_slow(dd);
 774
 775        dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 776                ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 777
 778        sg = ctx->sg;
 779
 780        if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 781                return atmel_sha_update_dma_slow(dd);
 782
 783        if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 784                /* size is not ctx->block_size aligned */
 785                return atmel_sha_update_dma_slow(dd);
 786
 787        length = min(ctx->total, sg->length);
 788
 789        if (sg_is_last(sg)) {
 790                if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 791                        /* not last sg must be ctx->block_size aligned */
 792                        tail = length & (ctx->block_size - 1);
 793                        length -= tail;
 794                }
 795        }
 796
 797        ctx->total -= length;
 798        ctx->offset = length; /* offset where to start slow */
 799
 800        final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 801
 802        /* Add padding */
 803        if (final) {
 804                tail = length & (ctx->block_size - 1);
 805                length -= tail;
 806                ctx->total += tail;
 807                ctx->offset = length; /* offset where to start slow */
 808
 809                sg = ctx->sg;
 810                atmel_sha_append_sg(ctx);
 811
 812                atmel_sha_fill_padding(ctx, length);
 813
 814                ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 815                        ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 816                if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 817                        dev_err(dd->dev, "dma %zu bytes error\n",
 818                                ctx->buflen + ctx->block_size);
 819                        return atmel_sha_complete(dd, -EINVAL);
 820                }
 821
 822                if (length == 0) {
 823                        ctx->flags &= ~SHA_FLAGS_SG;
 824                        count = ctx->bufcnt;
 825                        ctx->bufcnt = 0;
 826                        return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 827                                        0, final);
 828                } else {
 829                        ctx->sg = sg;
 830                        if (!dma_map_sg(dd->dev, ctx->sg, 1,
 831                                DMA_TO_DEVICE)) {
 832                                        dev_err(dd->dev, "dma_map_sg  error\n");
 833                                        return atmel_sha_complete(dd, -EINVAL);
 834                        }
 835
 836                        ctx->flags |= SHA_FLAGS_SG;
 837
 838                        count = ctx->bufcnt;
 839                        ctx->bufcnt = 0;
 840                        return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 841                                        length, ctx->dma_addr, count, final);
 842                }
 843        }
 844
 845        if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 846                dev_err(dd->dev, "dma_map_sg  error\n");
 847                return atmel_sha_complete(dd, -EINVAL);
 848        }
 849
 850        ctx->flags |= SHA_FLAGS_SG;
 851
 852        /* next call does not fail... so no unmap in the case of error */
 853        return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 854                                                                0, final);
 855}
 856
 857static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 858{
 859        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 860
 861        if (ctx->flags & SHA_FLAGS_SG) {
 862                dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 863                if (ctx->sg->length == ctx->offset) {
 864                        ctx->sg = sg_next(ctx->sg);
 865                        if (ctx->sg)
 866                                ctx->offset = 0;
 867                }
 868                if (ctx->flags & SHA_FLAGS_PAD) {
 869                        dma_unmap_single(dd->dev, ctx->dma_addr,
 870                                ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 871                }
 872        } else {
 873                dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 874                                                ctx->block_size, DMA_TO_DEVICE);
 875        }
 876
 877        return 0;
 878}
 879
 880static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 881{
 882        struct ahash_request *req = dd->req;
 883        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 884        int err;
 885
 886        dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 887                ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 888
 889        if (ctx->flags & SHA_FLAGS_CPU)
 890                err = atmel_sha_update_cpu(dd);
 891        else
 892                err = atmel_sha_update_dma_start(dd);
 893
 894        /* wait for dma completion before can take more data */
 895        dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 896                        err, ctx->digcnt[1], ctx->digcnt[0]);
 897
 898        return err;
 899}
 900
 901static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 902{
 903        struct ahash_request *req = dd->req;
 904        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 905        int err = 0;
 906        int count;
 907
 908        if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 909                atmel_sha_fill_padding(ctx, 0);
 910                count = ctx->bufcnt;
 911                ctx->bufcnt = 0;
 912                err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 913        }
 914        /* faster to handle last block with cpu */
 915        else {
 916                atmel_sha_fill_padding(ctx, 0);
 917                count = ctx->bufcnt;
 918                ctx->bufcnt = 0;
 919                err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 920        }
 921
 922        dev_dbg(dd->dev, "final_req: err: %d\n", err);
 923
 924        return err;
 925}
 926
 927static void atmel_sha_copy_hash(struct ahash_request *req)
 928{
 929        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 930        u32 *hash = (u32 *)ctx->digest;
 931        unsigned int i, hashsize;
 932
 933        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 934        case SHA_FLAGS_SHA1:
 935                hashsize = SHA1_DIGEST_SIZE;
 936                break;
 937
 938        case SHA_FLAGS_SHA224:
 939        case SHA_FLAGS_SHA256:
 940                hashsize = SHA256_DIGEST_SIZE;
 941                break;
 942
 943        case SHA_FLAGS_SHA384:
 944        case SHA_FLAGS_SHA512:
 945                hashsize = SHA512_DIGEST_SIZE;
 946                break;
 947
 948        default:
 949                /* Should not happen... */
 950                return;
 951        }
 952
 953        for (i = 0; i < hashsize / sizeof(u32); ++i)
 954                hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 955        ctx->flags |= SHA_FLAGS_RESTORE;
 956}
 957
 958static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 959{
 960        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 961
 962        if (!req->result)
 963                return;
 964
 965        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 966        default:
 967        case SHA_FLAGS_SHA1:
 968                memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 969                break;
 970
 971        case SHA_FLAGS_SHA224:
 972                memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 973                break;
 974
 975        case SHA_FLAGS_SHA256:
 976                memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 977                break;
 978
 979        case SHA_FLAGS_SHA384:
 980                memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 981                break;
 982
 983        case SHA_FLAGS_SHA512:
 984                memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 985                break;
 986        }
 987}
 988
 989static int atmel_sha_finish(struct ahash_request *req)
 990{
 991        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 992        struct atmel_sha_dev *dd = ctx->dd;
 993
 994        if (ctx->digcnt[0] || ctx->digcnt[1])
 995                atmel_sha_copy_ready_hash(req);
 996
 997        dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 998                ctx->digcnt[0], ctx->bufcnt);
 999
1000        return 0;
1001}
1002
1003static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004{
1005        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006        struct atmel_sha_dev *dd = ctx->dd;
1007
1008        if (!err) {
1009                atmel_sha_copy_hash(req);
1010                if (SHA_FLAGS_FINAL & dd->flags)
1011                        err = atmel_sha_finish(req);
1012        } else {
1013                ctx->flags |= SHA_FLAGS_ERROR;
1014        }
1015
1016        /* atomic operation is not needed here */
1017        (void)atmel_sha_complete(dd, err);
1018}
1019
1020static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021{
1022        int err;
1023
1024        err = clk_enable(dd->iclk);
1025        if (err)
1026                return err;
1027
1028        if (!(SHA_FLAGS_INIT & dd->flags)) {
1029                atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030                dd->flags |= SHA_FLAGS_INIT;
1031                dd->err = 0;
1032        }
1033
1034        return 0;
1035}
1036
1037static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038{
1039        return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040}
1041
1042static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043{
1044        atmel_sha_hw_init(dd);
1045
1046        dd->hw_version = atmel_sha_get_version(dd);
1047
1048        dev_info(dd->dev,
1049                        "version: 0x%x\n", dd->hw_version);
1050
1051        clk_disable(dd->iclk);
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055                                  struct ahash_request *req)
1056{
1057        struct crypto_async_request *async_req, *backlog;
1058        struct atmel_sha_ctx *ctx;
1059        unsigned long flags;
1060        bool start_async;
1061        int err = 0, ret = 0;
1062
1063        spin_lock_irqsave(&dd->lock, flags);
1064        if (req)
1065                ret = ahash_enqueue_request(&dd->queue, req);
1066
1067        if (SHA_FLAGS_BUSY & dd->flags) {
1068                spin_unlock_irqrestore(&dd->lock, flags);
1069                return ret;
1070        }
1071
1072        backlog = crypto_get_backlog(&dd->queue);
1073        async_req = crypto_dequeue_request(&dd->queue);
1074        if (async_req)
1075                dd->flags |= SHA_FLAGS_BUSY;
1076
1077        spin_unlock_irqrestore(&dd->lock, flags);
1078
1079        if (!async_req)
1080                return ret;
1081
1082        if (backlog)
1083                backlog->complete(backlog, -EINPROGRESS);
1084
1085        ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087        dd->req = ahash_request_cast(async_req);
1088        start_async = (dd->req != req);
1089        dd->is_async = start_async;
1090        dd->force_complete = false;
1091
1092        /* WARNING: ctx->start() MAY change dd->is_async. */
1093        err = ctx->start(dd);
1094        return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101        struct ahash_request *req = dd->req;
1102        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103        int err;
1104
1105        dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106                                                ctx->op, req->nbytes);
1107
1108        err = atmel_sha_hw_init(dd);
1109        if (err)
1110                return atmel_sha_complete(dd, err);
1111
1112        /*
1113         * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114         *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115         *                its job later in the done_task.
1116         *                This is the main path.
1117         *
1118         * 0: the SHA driver can continue its job then release the hardware
1119         *    later, if needed, with atmel_sha_finish_req().
1120         *    This is the alternate path.
1121         *
1122         * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123         *      been called, hence the hardware has been released.
1124         *      The SHA driver must stop its job without calling
1125         *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126         *      called a second time.
1127         *
1128         * Please note that currently, atmel_sha_final_req() never returns 0.
1129         */
1130
1131        dd->resume = atmel_sha_done;
1132        if (ctx->op == SHA_OP_UPDATE) {
1133                err = atmel_sha_update_req(dd);
1134                if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135                        /* no final() after finup() */
1136                        err = atmel_sha_final_req(dd);
1137        } else if (ctx->op == SHA_OP_FINAL) {
1138                err = atmel_sha_final_req(dd);
1139        }
1140
1141        if (!err)
1142                /* done_task will not finish it, so do it here */
1143                atmel_sha_finish_req(req, err);
1144
1145        dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147        return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153        struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154        struct atmel_sha_dev *dd = tctx->dd;
1155
1156        ctx->op = op;
1157
1158        return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165        if (!req->nbytes)
1166                return 0;
1167
1168        ctx->total = req->nbytes;
1169        ctx->sg = req->src;
1170        ctx->offset = 0;
1171
1172        if (ctx->flags & SHA_FLAGS_FINUP) {
1173                if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174                        /* faster to use CPU for short transfers */
1175                        ctx->flags |= SHA_FLAGS_CPU;
1176        } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177                atmel_sha_append_sg(ctx);
1178                return 0;
1179        }
1180        return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187        ctx->flags |= SHA_FLAGS_FINUP;
1188
1189        if (ctx->flags & SHA_FLAGS_ERROR)
1190                return 0; /* uncompleted hash is not needed */
1191
1192        if (ctx->flags & SHA_FLAGS_PAD)
1193                /* copy ready hash (+ finalize hmac) */
1194                return atmel_sha_finish(req);
1195
1196        return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202        int err1, err2;
1203
1204        ctx->flags |= SHA_FLAGS_FINUP;
1205
1206        err1 = atmel_sha_update(req);
1207        if (err1 == -EINPROGRESS ||
1208            (err1 == -EBUSY && (ahash_request_flags(req) &
1209                                CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210                return err1;
1211
1212        /*
1213         * final() has to be always called to cleanup resources
1214         * even if udpate() failed, except EINPROGRESS
1215         */
1216        err2 = atmel_sha_final(req);
1217
1218        return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223        return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229        const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231        memcpy(out, ctx, sizeof(*ctx));
1232        return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239        memcpy(ctx, in, sizeof(*ctx));
1240        return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245        struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248                                 sizeof(struct atmel_sha_reqctx));
1249        ctx->start = atmel_sha_start;
1250
1251        return 0;
1252}
1253
1254static struct ahash_alg sha_1_256_algs[] = {
1255{
1256        .init           = atmel_sha_init,
1257        .update         = atmel_sha_update,
1258        .final          = atmel_sha_final,
1259        .finup          = atmel_sha_finup,
1260        .digest         = atmel_sha_digest,
1261        .export         = atmel_sha_export,
1262        .import         = atmel_sha_import,
1263        .halg = {
1264                .digestsize     = SHA1_DIGEST_SIZE,
1265                .statesize      = sizeof(struct atmel_sha_reqctx),
1266                .base   = {
1267                        .cra_name               = "sha1",
1268                        .cra_driver_name        = "atmel-sha1",
1269                        .cra_priority           = 100,
1270                        .cra_flags              = CRYPTO_ALG_ASYNC,
1271                        .cra_blocksize          = SHA1_BLOCK_SIZE,
1272                        .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1273                        .cra_alignmask          = 0,
1274                        .cra_module             = THIS_MODULE,
1275                        .cra_init               = atmel_sha_cra_init,
1276                }
1277        }
1278},
1279{
1280        .init           = atmel_sha_init,
1281        .update         = atmel_sha_update,
1282        .final          = atmel_sha_final,
1283        .finup          = atmel_sha_finup,
1284        .digest         = atmel_sha_digest,
1285        .export         = atmel_sha_export,
1286        .import         = atmel_sha_import,
1287        .halg = {
1288                .digestsize     = SHA256_DIGEST_SIZE,
1289                .statesize      = sizeof(struct atmel_sha_reqctx),
1290                .base   = {
1291                        .cra_name               = "sha256",
1292                        .cra_driver_name        = "atmel-sha256",
1293                        .cra_priority           = 100,
1294                        .cra_flags              = CRYPTO_ALG_ASYNC,
1295                        .cra_blocksize          = SHA256_BLOCK_SIZE,
1296                        .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1297                        .cra_alignmask          = 0,
1298                        .cra_module             = THIS_MODULE,
1299                        .cra_init               = atmel_sha_cra_init,
1300                }
1301        }
1302},
1303};
1304
1305static struct ahash_alg sha_224_alg = {
1306        .init           = atmel_sha_init,
1307        .update         = atmel_sha_update,
1308        .final          = atmel_sha_final,
1309        .finup          = atmel_sha_finup,
1310        .digest         = atmel_sha_digest,
1311        .export         = atmel_sha_export,
1312        .import         = atmel_sha_import,
1313        .halg = {
1314                .digestsize     = SHA224_DIGEST_SIZE,
1315                .statesize      = sizeof(struct atmel_sha_reqctx),
1316                .base   = {
1317                        .cra_name               = "sha224",
1318                        .cra_driver_name        = "atmel-sha224",
1319                        .cra_priority           = 100,
1320                        .cra_flags              = CRYPTO_ALG_ASYNC,
1321                        .cra_blocksize          = SHA224_BLOCK_SIZE,
1322                        .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1323                        .cra_alignmask          = 0,
1324                        .cra_module             = THIS_MODULE,
1325                        .cra_init               = atmel_sha_cra_init,
1326                }
1327        }
1328};
1329
1330static struct ahash_alg sha_384_512_algs[] = {
1331{
1332        .init           = atmel_sha_init,
1333        .update         = atmel_sha_update,
1334        .final          = atmel_sha_final,
1335        .finup          = atmel_sha_finup,
1336        .digest         = atmel_sha_digest,
1337        .export         = atmel_sha_export,
1338        .import         = atmel_sha_import,
1339        .halg = {
1340                .digestsize     = SHA384_DIGEST_SIZE,
1341                .statesize      = sizeof(struct atmel_sha_reqctx),
1342                .base   = {
1343                        .cra_name               = "sha384",
1344                        .cra_driver_name        = "atmel-sha384",
1345                        .cra_priority           = 100,
1346                        .cra_flags              = CRYPTO_ALG_ASYNC,
1347                        .cra_blocksize          = SHA384_BLOCK_SIZE,
1348                        .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1349                        .cra_alignmask          = 0x3,
1350                        .cra_module             = THIS_MODULE,
1351                        .cra_init               = atmel_sha_cra_init,
1352                }
1353        }
1354},
1355{
1356        .init           = atmel_sha_init,
1357        .update         = atmel_sha_update,
1358        .final          = atmel_sha_final,
1359        .finup          = atmel_sha_finup,
1360        .digest         = atmel_sha_digest,
1361        .export         = atmel_sha_export,
1362        .import         = atmel_sha_import,
1363        .halg = {
1364                .digestsize     = SHA512_DIGEST_SIZE,
1365                .statesize      = sizeof(struct atmel_sha_reqctx),
1366                .base   = {
1367                        .cra_name               = "sha512",
1368                        .cra_driver_name        = "atmel-sha512",
1369                        .cra_priority           = 100,
1370                        .cra_flags              = CRYPTO_ALG_ASYNC,
1371                        .cra_blocksize          = SHA512_BLOCK_SIZE,
1372                        .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1373                        .cra_alignmask          = 0x3,
1374                        .cra_module             = THIS_MODULE,
1375                        .cra_init               = atmel_sha_cra_init,
1376                }
1377        }
1378},
1379};
1380
1381static void atmel_sha_queue_task(unsigned long data)
1382{
1383        struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1384
1385        atmel_sha_handle_queue(dd, NULL);
1386}
1387
1388static int atmel_sha_done(struct atmel_sha_dev *dd)
1389{
1390        int err = 0;
1391
1392        if (SHA_FLAGS_CPU & dd->flags) {
1393                if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1394                        dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1395                        goto finish;
1396                }
1397        } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1398                if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1399                        dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1400                        atmel_sha_update_dma_stop(dd);
1401                        if (dd->err) {
1402                                err = dd->err;
1403                                goto finish;
1404                        }
1405                }
1406                if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1407                        /* hash or semi-hash ready */
1408                        dd->flags &= ~(SHA_FLAGS_DMA_READY |
1409                                                SHA_FLAGS_OUTPUT_READY);
1410                        err = atmel_sha_update_dma_start(dd);
1411                        if (err != -EINPROGRESS)
1412                                goto finish;
1413                }
1414        }
1415        return err;
1416
1417finish:
1418        /* finish curent request */
1419        atmel_sha_finish_req(dd->req, err);
1420
1421        return err;
1422}
1423
1424static void atmel_sha_done_task(unsigned long data)
1425{
1426        struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1427
1428        dd->is_async = true;
1429        (void)dd->resume(dd);
1430}
1431
1432static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1433{
1434        struct atmel_sha_dev *sha_dd = dev_id;
1435        u32 reg;
1436
1437        reg = atmel_sha_read(sha_dd, SHA_ISR);
1438        if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1439                atmel_sha_write(sha_dd, SHA_IDR, reg);
1440                if (SHA_FLAGS_BUSY & sha_dd->flags) {
1441                        sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1442                        if (!(SHA_FLAGS_CPU & sha_dd->flags))
1443                                sha_dd->flags |= SHA_FLAGS_DMA_READY;
1444                        tasklet_schedule(&sha_dd->done_task);
1445                } else {
1446                        dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1447                }
1448                return IRQ_HANDLED;
1449        }
1450
1451        return IRQ_NONE;
1452}
1453
1454
1455/* DMA transfer functions */
1456
1457static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1458                                        struct scatterlist *sg,
1459                                        size_t len)
1460{
1461        struct atmel_sha_dma *dma = &dd->dma_lch_in;
1462        struct ahash_request *req = dd->req;
1463        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1464        size_t bs = ctx->block_size;
1465        int nents;
1466
1467        for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1468                if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1469                        return false;
1470
1471                /*
1472                 * This is the last sg, the only one that is allowed to
1473                 * have an unaligned length.
1474                 */
1475                if (len <= sg->length) {
1476                        dma->nents = nents + 1;
1477                        dma->last_sg_length = sg->length;
1478                        sg->length = ALIGN(len, sizeof(u32));
1479                        return true;
1480                }
1481
1482                /* All other sg lengths MUST be aligned to the block size. */
1483                if (!IS_ALIGNED(sg->length, bs))
1484                        return false;
1485
1486                len -= sg->length;
1487        }
1488
1489        return false;
1490}
1491
1492static void atmel_sha_dma_callback2(void *data)
1493{
1494        struct atmel_sha_dev *dd = data;
1495        struct atmel_sha_dma *dma = &dd->dma_lch_in;
1496        struct scatterlist *sg;
1497        int nents;
1498
1499        dmaengine_terminate_all(dma->chan);
1500        dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1501
1502        sg = dma->sg;
1503        for (nents = 0; nents < dma->nents - 1; ++nents)
1504                sg = sg_next(sg);
1505        sg->length = dma->last_sg_length;
1506
1507        dd->is_async = true;
1508        (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1509}
1510
1511static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1512                               struct scatterlist *src,
1513                               size_t len,
1514                               atmel_sha_fn_t resume)
1515{
1516        struct atmel_sha_dma *dma = &dd->dma_lch_in;
1517        struct dma_slave_config *config = &dma->dma_conf;
1518        struct dma_chan *chan = dma->chan;
1519        struct dma_async_tx_descriptor *desc;
1520        dma_cookie_t cookie;
1521        unsigned int sg_len;
1522        int err;
1523
1524        dd->resume = resume;
1525
1526        /*
1527         * dma->nents has already been initialized by
1528         * atmel_sha_dma_check_aligned().
1529         */
1530        dma->sg = src;
1531        sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1532        if (!sg_len) {
1533                err = -ENOMEM;
1534                goto exit;
1535        }
1536
1537        config->src_maxburst = 16;
1538        config->dst_maxburst = 16;
1539        err = dmaengine_slave_config(chan, config);
1540        if (err)
1541                goto unmap_sg;
1542
1543        desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1544                                       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1545        if (!desc) {
1546                err = -ENOMEM;
1547                goto unmap_sg;
1548        }
1549
1550        desc->callback = atmel_sha_dma_callback2;
1551        desc->callback_param = dd;
1552        cookie = dmaengine_submit(desc);
1553        err = dma_submit_error(cookie);
1554        if (err)
1555                goto unmap_sg;
1556
1557        dma_async_issue_pending(chan);
1558
1559        return -EINPROGRESS;
1560
1561unmap_sg:
1562        dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1563exit:
1564        return atmel_sha_complete(dd, err);
1565}
1566
1567
1568/* CPU transfer functions */
1569
1570static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1571{
1572        struct ahash_request *req = dd->req;
1573        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1574        const u32 *words = (const u32 *)ctx->buffer;
1575        size_t i, num_words;
1576        u32 isr, din, din_inc;
1577
1578        din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1579        for (;;) {
1580                /* Write data into the Input Data Registers. */
1581                num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1582                for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1583                        atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1584
1585                ctx->offset += ctx->bufcnt;
1586                ctx->total -= ctx->bufcnt;
1587
1588                if (!ctx->total)
1589                        break;
1590
1591                /*
1592                 * Prepare next block:
1593                 * Fill ctx->buffer now with the next data to be written into
1594                 * IDATARx: it gives time for the SHA hardware to process
1595                 * the current data so the SHA_INT_DATARDY flag might be set
1596                 * in SHA_ISR when polling this register at the beginning of
1597                 * the next loop.
1598                 */
1599                ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1600                scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1601                                         ctx->offset, ctx->bufcnt, 0);
1602
1603                /* Wait for hardware to be ready again. */
1604                isr = atmel_sha_read(dd, SHA_ISR);
1605                if (!(isr & SHA_INT_DATARDY)) {
1606                        /* Not ready yet. */
1607                        dd->resume = atmel_sha_cpu_transfer;
1608                        atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1609                        return -EINPROGRESS;
1610                }
1611        }
1612
1613        if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1614                return dd->cpu_transfer_complete(dd);
1615
1616        return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1617}
1618
1619static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1620                               struct scatterlist *sg,
1621                               unsigned int len,
1622                               bool idatar0_only,
1623                               bool wait_data_ready,
1624                               atmel_sha_fn_t resume)
1625{
1626        struct ahash_request *req = dd->req;
1627        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1628
1629        if (!len)
1630                return resume(dd);
1631
1632        ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1633
1634        if (idatar0_only)
1635                ctx->flags |= SHA_FLAGS_IDATAR0;
1636
1637        if (wait_data_ready)
1638                ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1639
1640        ctx->sg = sg;
1641        ctx->total = len;
1642        ctx->offset = 0;
1643
1644        /* Prepare the first block to be written. */
1645        ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1646        scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1647                                 ctx->offset, ctx->bufcnt, 0);
1648
1649        dd->cpu_transfer_complete = resume;
1650        return atmel_sha_cpu_transfer(dd);
1651}
1652
1653static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1654                              const void *data, unsigned int datalen,
1655                              bool auto_padding,
1656                              atmel_sha_fn_t resume)
1657{
1658        struct ahash_request *req = dd->req;
1659        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1660        u32 msglen = (auto_padding) ? datalen : 0;
1661        u32 mr = SHA_MR_MODE_AUTO;
1662
1663        if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1664                return atmel_sha_complete(dd, -EINVAL);
1665
1666        mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1667        atmel_sha_write(dd, SHA_MR, mr);
1668        atmel_sha_write(dd, SHA_MSR, msglen);
1669        atmel_sha_write(dd, SHA_BCR, msglen);
1670        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1671
1672        sg_init_one(&dd->tmp, data, datalen);
1673        return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1674}
1675
1676
1677/* hmac functions */
1678
1679struct atmel_sha_hmac_key {
1680        bool                    valid;
1681        unsigned int            keylen;
1682        u8                      buffer[SHA512_BLOCK_SIZE];
1683        u8                      *keydup;
1684};
1685
1686static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1687{
1688        memset(hkey, 0, sizeof(*hkey));
1689}
1690
1691static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1692{
1693        kfree(hkey->keydup);
1694        memset(hkey, 0, sizeof(*hkey));
1695}
1696
1697static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1698                                         const u8 *key,
1699                                         unsigned int keylen)
1700{
1701        atmel_sha_hmac_key_release(hkey);
1702
1703        if (keylen > sizeof(hkey->buffer)) {
1704                hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1705                if (!hkey->keydup)
1706                        return -ENOMEM;
1707
1708        } else {
1709                memcpy(hkey->buffer, key, keylen);
1710        }
1711
1712        hkey->valid = true;
1713        hkey->keylen = keylen;
1714        return 0;
1715}
1716
1717static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1718                                          const u8 **key,
1719                                          unsigned int *keylen)
1720{
1721        if (!hkey->valid)
1722                return false;
1723
1724        *keylen = hkey->keylen;
1725        *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1726        return true;
1727}
1728
1729
1730struct atmel_sha_hmac_ctx {
1731        struct atmel_sha_ctx    base;
1732
1733        struct atmel_sha_hmac_key       hkey;
1734        u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1735        u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1736        atmel_sha_fn_t          resume;
1737};
1738
1739static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1740                                atmel_sha_fn_t resume);
1741static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742                                      const u8 *key, unsigned int keylen);
1743static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1744static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1745static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1746static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1747
1748static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1749static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1750static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1751static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1752
1753static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1754                                atmel_sha_fn_t resume)
1755{
1756        struct ahash_request *req = dd->req;
1757        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1758        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1759        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1760        unsigned int keylen;
1761        const u8 *key;
1762        size_t bs;
1763
1764        hmac->resume = resume;
1765        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1766        case SHA_FLAGS_SHA1:
1767                ctx->block_size = SHA1_BLOCK_SIZE;
1768                ctx->hash_size = SHA1_DIGEST_SIZE;
1769                break;
1770
1771        case SHA_FLAGS_SHA224:
1772                ctx->block_size = SHA224_BLOCK_SIZE;
1773                ctx->hash_size = SHA256_DIGEST_SIZE;
1774                break;
1775
1776        case SHA_FLAGS_SHA256:
1777                ctx->block_size = SHA256_BLOCK_SIZE;
1778                ctx->hash_size = SHA256_DIGEST_SIZE;
1779                break;
1780
1781        case SHA_FLAGS_SHA384:
1782                ctx->block_size = SHA384_BLOCK_SIZE;
1783                ctx->hash_size = SHA512_DIGEST_SIZE;
1784                break;
1785
1786        case SHA_FLAGS_SHA512:
1787                ctx->block_size = SHA512_BLOCK_SIZE;
1788                ctx->hash_size = SHA512_DIGEST_SIZE;
1789                break;
1790
1791        default:
1792                return atmel_sha_complete(dd, -EINVAL);
1793        }
1794        bs = ctx->block_size;
1795
1796        if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1797                return resume(dd);
1798
1799        /* Compute K' from K. */
1800        if (unlikely(keylen > bs))
1801                return atmel_sha_hmac_prehash_key(dd, key, keylen);
1802
1803        /* Prepare ipad. */
1804        memcpy((u8 *)hmac->ipad, key, keylen);
1805        memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1806        return atmel_sha_hmac_compute_ipad_hash(dd);
1807}
1808
1809static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1810                                      const u8 *key, unsigned int keylen)
1811{
1812        return atmel_sha_cpu_hash(dd, key, keylen, true,
1813                                  atmel_sha_hmac_prehash_key_done);
1814}
1815
1816static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1817{
1818        struct ahash_request *req = dd->req;
1819        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1820        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1821        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1822        size_t ds = crypto_ahash_digestsize(tfm);
1823        size_t bs = ctx->block_size;
1824        size_t i, num_words = ds / sizeof(u32);
1825
1826        /* Prepare ipad. */
1827        for (i = 0; i < num_words; ++i)
1828                hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1829        memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1830        return atmel_sha_hmac_compute_ipad_hash(dd);
1831}
1832
1833static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1834{
1835        struct ahash_request *req = dd->req;
1836        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1837        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1838        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1839        size_t bs = ctx->block_size;
1840        size_t i, num_words = bs / sizeof(u32);
1841
1842        memcpy(hmac->opad, hmac->ipad, bs);
1843        for (i = 0; i < num_words; ++i) {
1844                hmac->ipad[i] ^= 0x36363636;
1845                hmac->opad[i] ^= 0x5c5c5c5c;
1846        }
1847
1848        return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1849                                  atmel_sha_hmac_compute_opad_hash);
1850}
1851
1852static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1853{
1854        struct ahash_request *req = dd->req;
1855        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1856        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1857        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1858        size_t bs = ctx->block_size;
1859        size_t hs = ctx->hash_size;
1860        size_t i, num_words = hs / sizeof(u32);
1861
1862        for (i = 0; i < num_words; ++i)
1863                hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1864        return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1865                                  atmel_sha_hmac_setup_done);
1866}
1867
1868static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1869{
1870        struct ahash_request *req = dd->req;
1871        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1872        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1873        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874        size_t hs = ctx->hash_size;
1875        size_t i, num_words = hs / sizeof(u32);
1876
1877        for (i = 0; i < num_words; ++i)
1878                hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1879        atmel_sha_hmac_key_release(&hmac->hkey);
1880        return hmac->resume(dd);
1881}
1882
1883static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1884{
1885        struct ahash_request *req = dd->req;
1886        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1887        int err;
1888
1889        err = atmel_sha_hw_init(dd);
1890        if (err)
1891                return atmel_sha_complete(dd, err);
1892
1893        switch (ctx->op) {
1894        case SHA_OP_INIT:
1895                err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1896                break;
1897
1898        case SHA_OP_UPDATE:
1899                dd->resume = atmel_sha_done;
1900                err = atmel_sha_update_req(dd);
1901                break;
1902
1903        case SHA_OP_FINAL:
1904                dd->resume = atmel_sha_hmac_final;
1905                err = atmel_sha_final_req(dd);
1906                break;
1907
1908        case SHA_OP_DIGEST:
1909                err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1910                break;
1911
1912        default:
1913                return atmel_sha_complete(dd, -EINVAL);
1914        }
1915
1916        return err;
1917}
1918
1919static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1920                                 unsigned int keylen)
1921{
1922        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1923
1924        if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1925                crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1926                return -EINVAL;
1927        }
1928
1929        return 0;
1930}
1931
1932static int atmel_sha_hmac_init(struct ahash_request *req)
1933{
1934        int err;
1935
1936        err = atmel_sha_init(req);
1937        if (err)
1938                return err;
1939
1940        return atmel_sha_enqueue(req, SHA_OP_INIT);
1941}
1942
1943static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1944{
1945        struct ahash_request *req = dd->req;
1946        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1947        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1948        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1949        size_t bs = ctx->block_size;
1950        size_t hs = ctx->hash_size;
1951
1952        ctx->bufcnt = 0;
1953        ctx->digcnt[0] = bs;
1954        ctx->digcnt[1] = 0;
1955        ctx->flags |= SHA_FLAGS_RESTORE;
1956        memcpy(ctx->digest, hmac->ipad, hs);
1957        return atmel_sha_complete(dd, 0);
1958}
1959
1960static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1961{
1962        struct ahash_request *req = dd->req;
1963        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1964        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1965        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1966        u32 *digest = (u32 *)ctx->digest;
1967        size_t ds = crypto_ahash_digestsize(tfm);
1968        size_t bs = ctx->block_size;
1969        size_t hs = ctx->hash_size;
1970        size_t i, num_words;
1971        u32 mr;
1972
1973        /* Save d = SHA((K' + ipad) | msg). */
1974        num_words = ds / sizeof(u32);
1975        for (i = 0; i < num_words; ++i)
1976                digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1977
1978        /* Restore context to finish computing SHA((K' + opad) | d). */
1979        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1980        num_words = hs / sizeof(u32);
1981        for (i = 0; i < num_words; ++i)
1982                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1983
1984        mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1985        mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1986        atmel_sha_write(dd, SHA_MR, mr);
1987        atmel_sha_write(dd, SHA_MSR, bs + ds);
1988        atmel_sha_write(dd, SHA_BCR, ds);
1989        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1990
1991        sg_init_one(&dd->tmp, digest, ds);
1992        return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1993                                   atmel_sha_hmac_final_done);
1994}
1995
1996static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1997{
1998        /*
1999         * req->result might not be sizeof(u32) aligned, so copy the
2000         * digest into ctx->digest[] before memcpy() the data into
2001         * req->result.
2002         */
2003        atmel_sha_copy_hash(dd->req);
2004        atmel_sha_copy_ready_hash(dd->req);
2005        return atmel_sha_complete(dd, 0);
2006}
2007
2008static int atmel_sha_hmac_digest(struct ahash_request *req)
2009{
2010        int err;
2011
2012        err = atmel_sha_init(req);
2013        if (err)
2014                return err;
2015
2016        return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2017}
2018
2019static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2020{
2021        struct ahash_request *req = dd->req;
2022        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2023        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2024        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2025        size_t hs = ctx->hash_size;
2026        size_t i, num_words = hs / sizeof(u32);
2027        bool use_dma = false;
2028        u32 mr;
2029
2030        /* Special case for empty message. */
2031        if (!req->nbytes)
2032                return atmel_sha_complete(dd, -EINVAL); // TODO:
2033
2034        /* Check DMA threshold and alignment. */
2035        if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2036            atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2037                use_dma = true;
2038
2039        /* Write both initial hash values to compute a HMAC. */
2040        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2041        for (i = 0; i < num_words; ++i)
2042                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2043
2044        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2045        for (i = 0; i < num_words; ++i)
2046                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2047
2048        /* Write the Mode, Message Size, Bytes Count then Control Registers. */
2049        mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2050        mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2051        if (use_dma)
2052                mr |= SHA_MR_MODE_IDATAR0;
2053        else
2054                mr |= SHA_MR_MODE_AUTO;
2055        atmel_sha_write(dd, SHA_MR, mr);
2056
2057        atmel_sha_write(dd, SHA_MSR, req->nbytes);
2058        atmel_sha_write(dd, SHA_BCR, req->nbytes);
2059
2060        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2061
2062        /* Process data. */
2063        if (use_dma)
2064                return atmel_sha_dma_start(dd, req->src, req->nbytes,
2065                                           atmel_sha_hmac_final_done);
2066
2067        return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2068                                   atmel_sha_hmac_final_done);
2069}
2070
2071static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2072{
2073        struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2074
2075        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2076                                 sizeof(struct atmel_sha_reqctx));
2077        hmac->base.start = atmel_sha_hmac_start;
2078        atmel_sha_hmac_key_init(&hmac->hkey);
2079
2080        return 0;
2081}
2082
2083static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2084{
2085        struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2086
2087        atmel_sha_hmac_key_release(&hmac->hkey);
2088}
2089
2090static struct ahash_alg sha_hmac_algs[] = {
2091{
2092        .init           = atmel_sha_hmac_init,
2093        .update         = atmel_sha_update,
2094        .final          = atmel_sha_final,
2095        .digest         = atmel_sha_hmac_digest,
2096        .setkey         = atmel_sha_hmac_setkey,
2097        .export         = atmel_sha_export,
2098        .import         = atmel_sha_import,
2099        .halg = {
2100                .digestsize     = SHA1_DIGEST_SIZE,
2101                .statesize      = sizeof(struct atmel_sha_reqctx),
2102                .base   = {
2103                        .cra_name               = "hmac(sha1)",
2104                        .cra_driver_name        = "atmel-hmac-sha1",
2105                        .cra_priority           = 100,
2106                        .cra_flags              = CRYPTO_ALG_ASYNC,
2107                        .cra_blocksize          = SHA1_BLOCK_SIZE,
2108                        .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2109                        .cra_alignmask          = 0,
2110                        .cra_module             = THIS_MODULE,
2111                        .cra_init               = atmel_sha_hmac_cra_init,
2112                        .cra_exit               = atmel_sha_hmac_cra_exit,
2113                }
2114        }
2115},
2116{
2117        .init           = atmel_sha_hmac_init,
2118        .update         = atmel_sha_update,
2119        .final          = atmel_sha_final,
2120        .digest         = atmel_sha_hmac_digest,
2121        .setkey         = atmel_sha_hmac_setkey,
2122        .export         = atmel_sha_export,
2123        .import         = atmel_sha_import,
2124        .halg = {
2125                .digestsize     = SHA224_DIGEST_SIZE,
2126                .statesize      = sizeof(struct atmel_sha_reqctx),
2127                .base   = {
2128                        .cra_name               = "hmac(sha224)",
2129                        .cra_driver_name        = "atmel-hmac-sha224",
2130                        .cra_priority           = 100,
2131                        .cra_flags              = CRYPTO_ALG_ASYNC,
2132                        .cra_blocksize          = SHA224_BLOCK_SIZE,
2133                        .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2134                        .cra_alignmask          = 0,
2135                        .cra_module             = THIS_MODULE,
2136                        .cra_init               = atmel_sha_hmac_cra_init,
2137                        .cra_exit               = atmel_sha_hmac_cra_exit,
2138                }
2139        }
2140},
2141{
2142        .init           = atmel_sha_hmac_init,
2143        .update         = atmel_sha_update,
2144        .final          = atmel_sha_final,
2145        .digest         = atmel_sha_hmac_digest,
2146        .setkey         = atmel_sha_hmac_setkey,
2147        .export         = atmel_sha_export,
2148        .import         = atmel_sha_import,
2149        .halg = {
2150                .digestsize     = SHA256_DIGEST_SIZE,
2151                .statesize      = sizeof(struct atmel_sha_reqctx),
2152                .base   = {
2153                        .cra_name               = "hmac(sha256)",
2154                        .cra_driver_name        = "atmel-hmac-sha256",
2155                        .cra_priority           = 100,
2156                        .cra_flags              = CRYPTO_ALG_ASYNC,
2157                        .cra_blocksize          = SHA256_BLOCK_SIZE,
2158                        .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2159                        .cra_alignmask          = 0,
2160                        .cra_module             = THIS_MODULE,
2161                        .cra_init               = atmel_sha_hmac_cra_init,
2162                        .cra_exit               = atmel_sha_hmac_cra_exit,
2163                }
2164        }
2165},
2166{
2167        .init           = atmel_sha_hmac_init,
2168        .update         = atmel_sha_update,
2169        .final          = atmel_sha_final,
2170        .digest         = atmel_sha_hmac_digest,
2171        .setkey         = atmel_sha_hmac_setkey,
2172        .export         = atmel_sha_export,
2173        .import         = atmel_sha_import,
2174        .halg = {
2175                .digestsize     = SHA384_DIGEST_SIZE,
2176                .statesize      = sizeof(struct atmel_sha_reqctx),
2177                .base   = {
2178                        .cra_name               = "hmac(sha384)",
2179                        .cra_driver_name        = "atmel-hmac-sha384",
2180                        .cra_priority           = 100,
2181                        .cra_flags              = CRYPTO_ALG_ASYNC,
2182                        .cra_blocksize          = SHA384_BLOCK_SIZE,
2183                        .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2184                        .cra_alignmask          = 0,
2185                        .cra_module             = THIS_MODULE,
2186                        .cra_init               = atmel_sha_hmac_cra_init,
2187                        .cra_exit               = atmel_sha_hmac_cra_exit,
2188                }
2189        }
2190},
2191{
2192        .init           = atmel_sha_hmac_init,
2193        .update         = atmel_sha_update,
2194        .final          = atmel_sha_final,
2195        .digest         = atmel_sha_hmac_digest,
2196        .setkey         = atmel_sha_hmac_setkey,
2197        .export         = atmel_sha_export,
2198        .import         = atmel_sha_import,
2199        .halg = {
2200                .digestsize     = SHA512_DIGEST_SIZE,
2201                .statesize      = sizeof(struct atmel_sha_reqctx),
2202                .base   = {
2203                        .cra_name               = "hmac(sha512)",
2204                        .cra_driver_name        = "atmel-hmac-sha512",
2205                        .cra_priority           = 100,
2206                        .cra_flags              = CRYPTO_ALG_ASYNC,
2207                        .cra_blocksize          = SHA512_BLOCK_SIZE,
2208                        .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2209                        .cra_alignmask          = 0,
2210                        .cra_module             = THIS_MODULE,
2211                        .cra_init               = atmel_sha_hmac_cra_init,
2212                        .cra_exit               = atmel_sha_hmac_cra_exit,
2213                }
2214        }
2215},
2216};
2217
2218#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2219/* authenc functions */
2220
2221static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2222static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2223static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2224
2225
2226struct atmel_sha_authenc_ctx {
2227        struct crypto_ahash     *tfm;
2228};
2229
2230struct atmel_sha_authenc_reqctx {
2231        struct atmel_sha_reqctx base;
2232
2233        atmel_aes_authenc_fn_t  cb;
2234        struct atmel_aes_dev    *aes_dev;
2235
2236        /* _init() parameters. */
2237        struct scatterlist      *assoc;
2238        u32                     assoclen;
2239        u32                     textlen;
2240
2241        /* _final() parameters. */
2242        u32                     *digest;
2243        unsigned int            digestlen;
2244};
2245
2246static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2247                                       int err)
2248{
2249        struct ahash_request *req = areq->data;
2250        struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2251
2252        authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2253}
2254
2255static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2256{
2257        struct ahash_request *req = dd->req;
2258        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2259        int err;
2260
2261        /*
2262         * Force atmel_sha_complete() to call req->base.complete(), ie
2263         * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2264         */
2265        dd->force_complete = true;
2266
2267        err = atmel_sha_hw_init(dd);
2268        return authctx->cb(authctx->aes_dev, err, dd->is_async);
2269}
2270
2271bool atmel_sha_authenc_is_ready(void)
2272{
2273        struct atmel_sha_ctx dummy;
2274
2275        dummy.dd = NULL;
2276        return (atmel_sha_find_dev(&dummy) != NULL);
2277}
2278EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2279
2280unsigned int atmel_sha_authenc_get_reqsize(void)
2281{
2282        return sizeof(struct atmel_sha_authenc_reqctx);
2283}
2284EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2285
2286struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2287{
2288        struct atmel_sha_authenc_ctx *auth;
2289        struct crypto_ahash *tfm;
2290        struct atmel_sha_ctx *tctx;
2291        const char *name;
2292        int err = -EINVAL;
2293
2294        switch (mode & SHA_FLAGS_MODE_MASK) {
2295        case SHA_FLAGS_HMAC_SHA1:
2296                name = "atmel-hmac-sha1";
2297                break;
2298
2299        case SHA_FLAGS_HMAC_SHA224:
2300                name = "atmel-hmac-sha224";
2301                break;
2302
2303        case SHA_FLAGS_HMAC_SHA256:
2304                name = "atmel-hmac-sha256";
2305                break;
2306
2307        case SHA_FLAGS_HMAC_SHA384:
2308                name = "atmel-hmac-sha384";
2309                break;
2310
2311        case SHA_FLAGS_HMAC_SHA512:
2312                name = "atmel-hmac-sha512";
2313                break;
2314
2315        default:
2316                goto error;
2317        }
2318
2319        tfm = crypto_alloc_ahash(name,
2320                                 CRYPTO_ALG_TYPE_AHASH,
2321                                 CRYPTO_ALG_TYPE_AHASH_MASK);
2322        if (IS_ERR(tfm)) {
2323                err = PTR_ERR(tfm);
2324                goto error;
2325        }
2326        tctx = crypto_ahash_ctx(tfm);
2327        tctx->start = atmel_sha_authenc_start;
2328        tctx->flags = mode;
2329
2330        auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2331        if (!auth) {
2332                err = -ENOMEM;
2333                goto err_free_ahash;
2334        }
2335        auth->tfm = tfm;
2336
2337        return auth;
2338
2339err_free_ahash:
2340        crypto_free_ahash(tfm);
2341error:
2342        return ERR_PTR(err);
2343}
2344EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2345
2346void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2347{
2348        if (auth)
2349                crypto_free_ahash(auth->tfm);
2350        kfree(auth);
2351}
2352EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2353
2354int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2355                             const u8 *key, unsigned int keylen,
2356                             u32 *flags)
2357{
2358        struct crypto_ahash *tfm = auth->tfm;
2359        int err;
2360
2361        crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2362        crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2363        err = crypto_ahash_setkey(tfm, key, keylen);
2364        *flags = crypto_ahash_get_flags(tfm);
2365
2366        return err;
2367}
2368EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2369
2370int atmel_sha_authenc_schedule(struct ahash_request *req,
2371                               struct atmel_sha_authenc_ctx *auth,
2372                               atmel_aes_authenc_fn_t cb,
2373                               struct atmel_aes_dev *aes_dev)
2374{
2375        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2376        struct atmel_sha_reqctx *ctx = &authctx->base;
2377        struct crypto_ahash *tfm = auth->tfm;
2378        struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2379        struct atmel_sha_dev *dd;
2380
2381        /* Reset request context (MUST be done first). */
2382        memset(authctx, 0, sizeof(*authctx));
2383
2384        /* Get SHA device. */
2385        dd = atmel_sha_find_dev(tctx);
2386        if (!dd)
2387                return cb(aes_dev, -ENODEV, false);
2388
2389        /* Init request context. */
2390        ctx->dd = dd;
2391        ctx->buflen = SHA_BUFFER_LEN;
2392        authctx->cb = cb;
2393        authctx->aes_dev = aes_dev;
2394        ahash_request_set_tfm(req, tfm);
2395        ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2396
2397        return atmel_sha_handle_queue(dd, req);
2398}
2399EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2400
2401int atmel_sha_authenc_init(struct ahash_request *req,
2402                           struct scatterlist *assoc, unsigned int assoclen,
2403                           unsigned int textlen,
2404                           atmel_aes_authenc_fn_t cb,
2405                           struct atmel_aes_dev *aes_dev)
2406{
2407        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2408        struct atmel_sha_reqctx *ctx = &authctx->base;
2409        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2410        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2411        struct atmel_sha_dev *dd = ctx->dd;
2412
2413        if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2414                return atmel_sha_complete(dd, -EINVAL);
2415
2416        authctx->cb = cb;
2417        authctx->aes_dev = aes_dev;
2418        authctx->assoc = assoc;
2419        authctx->assoclen = assoclen;
2420        authctx->textlen = textlen;
2421
2422        ctx->flags = hmac->base.flags;
2423        return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2424}
2425EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2426
2427static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2428{
2429        struct ahash_request *req = dd->req;
2430        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2431        struct atmel_sha_reqctx *ctx = &authctx->base;
2432        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2434        size_t hs = ctx->hash_size;
2435        size_t i, num_words = hs / sizeof(u32);
2436        u32 mr, msg_size;
2437
2438        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2439        for (i = 0; i < num_words; ++i)
2440                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2441
2442        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2443        for (i = 0; i < num_words; ++i)
2444                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2445
2446        mr = (SHA_MR_MODE_IDATAR0 |
2447              SHA_MR_HMAC |
2448              SHA_MR_DUALBUFF);
2449        mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2450        atmel_sha_write(dd, SHA_MR, mr);
2451
2452        msg_size = authctx->assoclen + authctx->textlen;
2453        atmel_sha_write(dd, SHA_MSR, msg_size);
2454        atmel_sha_write(dd, SHA_BCR, msg_size);
2455
2456        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2457
2458        /* Process assoc data. */
2459        return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2460                                   true, false,
2461                                   atmel_sha_authenc_init_done);
2462}
2463
2464static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2465{
2466        struct ahash_request *req = dd->req;
2467        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2468
2469        return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2470}
2471
2472int atmel_sha_authenc_final(struct ahash_request *req,
2473                            u32 *digest, unsigned int digestlen,
2474                            atmel_aes_authenc_fn_t cb,
2475                            struct atmel_aes_dev *aes_dev)
2476{
2477        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2478        struct atmel_sha_reqctx *ctx = &authctx->base;
2479        struct atmel_sha_dev *dd = ctx->dd;
2480
2481        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2482        case SHA_FLAGS_SHA1:
2483                authctx->digestlen = SHA1_DIGEST_SIZE;
2484                break;
2485
2486        case SHA_FLAGS_SHA224:
2487                authctx->digestlen = SHA224_DIGEST_SIZE;
2488                break;
2489
2490        case SHA_FLAGS_SHA256:
2491                authctx->digestlen = SHA256_DIGEST_SIZE;
2492                break;
2493
2494        case SHA_FLAGS_SHA384:
2495                authctx->digestlen = SHA384_DIGEST_SIZE;
2496                break;
2497
2498        case SHA_FLAGS_SHA512:
2499                authctx->digestlen = SHA512_DIGEST_SIZE;
2500                break;
2501
2502        default:
2503                return atmel_sha_complete(dd, -EINVAL);
2504        }
2505        if (authctx->digestlen > digestlen)
2506                authctx->digestlen = digestlen;
2507
2508        authctx->cb = cb;
2509        authctx->aes_dev = aes_dev;
2510        authctx->digest = digest;
2511        return atmel_sha_wait_for_data_ready(dd,
2512                                             atmel_sha_authenc_final_done);
2513}
2514EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2515
2516static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2517{
2518        struct ahash_request *req = dd->req;
2519        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2520        size_t i, num_words = authctx->digestlen / sizeof(u32);
2521
2522        for (i = 0; i < num_words; ++i)
2523                authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2524
2525        return atmel_sha_complete(dd, 0);
2526}
2527
2528void atmel_sha_authenc_abort(struct ahash_request *req)
2529{
2530        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2531        struct atmel_sha_reqctx *ctx = &authctx->base;
2532        struct atmel_sha_dev *dd = ctx->dd;
2533
2534        /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2535        dd->is_async = false;
2536        dd->force_complete = false;
2537        (void)atmel_sha_complete(dd, 0);
2538}
2539EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2540
2541#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2542
2543
2544static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2545{
2546        int i;
2547
2548        if (dd->caps.has_hmac)
2549                for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2550                        crypto_unregister_ahash(&sha_hmac_algs[i]);
2551
2552        for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2553                crypto_unregister_ahash(&sha_1_256_algs[i]);
2554
2555        if (dd->caps.has_sha224)
2556                crypto_unregister_ahash(&sha_224_alg);
2557
2558        if (dd->caps.has_sha_384_512) {
2559                for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2560                        crypto_unregister_ahash(&sha_384_512_algs[i]);
2561        }
2562}
2563
2564static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2565{
2566        int err, i, j;
2567
2568        for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2569                err = crypto_register_ahash(&sha_1_256_algs[i]);
2570                if (err)
2571                        goto err_sha_1_256_algs;
2572        }
2573
2574        if (dd->caps.has_sha224) {
2575                err = crypto_register_ahash(&sha_224_alg);
2576                if (err)
2577                        goto err_sha_224_algs;
2578        }
2579
2580        if (dd->caps.has_sha_384_512) {
2581                for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2582                        err = crypto_register_ahash(&sha_384_512_algs[i]);
2583                        if (err)
2584                                goto err_sha_384_512_algs;
2585                }
2586        }
2587
2588        if (dd->caps.has_hmac) {
2589                for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2590                        err = crypto_register_ahash(&sha_hmac_algs[i]);
2591                        if (err)
2592                                goto err_sha_hmac_algs;
2593                }
2594        }
2595
2596        return 0;
2597
2598        /*i = ARRAY_SIZE(sha_hmac_algs);*/
2599err_sha_hmac_algs:
2600        for (j = 0; j < i; j++)
2601                crypto_unregister_ahash(&sha_hmac_algs[j]);
2602        i = ARRAY_SIZE(sha_384_512_algs);
2603err_sha_384_512_algs:
2604        for (j = 0; j < i; j++)
2605                crypto_unregister_ahash(&sha_384_512_algs[j]);
2606        crypto_unregister_ahash(&sha_224_alg);
2607err_sha_224_algs:
2608        i = ARRAY_SIZE(sha_1_256_algs);
2609err_sha_1_256_algs:
2610        for (j = 0; j < i; j++)
2611                crypto_unregister_ahash(&sha_1_256_algs[j]);
2612
2613        return err;
2614}
2615
2616static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2617{
2618        struct at_dma_slave     *sl = slave;
2619
2620        if (sl && sl->dma_dev == chan->device->dev) {
2621                chan->private = sl;
2622                return true;
2623        } else {
2624                return false;
2625        }
2626}
2627
2628static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2629                                struct crypto_platform_data *pdata)
2630{
2631        int err = -ENOMEM;
2632        dma_cap_mask_t mask_in;
2633
2634        /* Try to grab DMA channel */
2635        dma_cap_zero(mask_in);
2636        dma_cap_set(DMA_SLAVE, mask_in);
2637
2638        dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2639                        atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2640        if (!dd->dma_lch_in.chan) {
2641                dev_warn(dd->dev, "no DMA channel available\n");
2642                return err;
2643        }
2644
2645        dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2646        dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2647                SHA_REG_DIN(0);
2648        dd->dma_lch_in.dma_conf.src_maxburst = 1;
2649        dd->dma_lch_in.dma_conf.src_addr_width =
2650                DMA_SLAVE_BUSWIDTH_4_BYTES;
2651        dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2652        dd->dma_lch_in.dma_conf.dst_addr_width =
2653                DMA_SLAVE_BUSWIDTH_4_BYTES;
2654        dd->dma_lch_in.dma_conf.device_fc = false;
2655
2656        return 0;
2657}
2658
2659static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2660{
2661        dma_release_channel(dd->dma_lch_in.chan);
2662}
2663
2664static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2665{
2666
2667        dd->caps.has_dma = 0;
2668        dd->caps.has_dualbuff = 0;
2669        dd->caps.has_sha224 = 0;
2670        dd->caps.has_sha_384_512 = 0;
2671        dd->caps.has_uihv = 0;
2672        dd->caps.has_hmac = 0;
2673
2674        /* keep only major version number */
2675        switch (dd->hw_version & 0xff0) {
2676        case 0x510:
2677                dd->caps.has_dma = 1;
2678                dd->caps.has_dualbuff = 1;
2679                dd->caps.has_sha224 = 1;
2680                dd->caps.has_sha_384_512 = 1;
2681                dd->caps.has_uihv = 1;
2682                dd->caps.has_hmac = 1;
2683                break;
2684        case 0x420:
2685                dd->caps.has_dma = 1;
2686                dd->caps.has_dualbuff = 1;
2687                dd->caps.has_sha224 = 1;
2688                dd->caps.has_sha_384_512 = 1;
2689                dd->caps.has_uihv = 1;
2690                break;
2691        case 0x410:
2692                dd->caps.has_dma = 1;
2693                dd->caps.has_dualbuff = 1;
2694                dd->caps.has_sha224 = 1;
2695                dd->caps.has_sha_384_512 = 1;
2696                break;
2697        case 0x400:
2698                dd->caps.has_dma = 1;
2699                dd->caps.has_dualbuff = 1;
2700                dd->caps.has_sha224 = 1;
2701                break;
2702        case 0x320:
2703                break;
2704        default:
2705                dev_warn(dd->dev,
2706                                "Unmanaged sha version, set minimum capabilities\n");
2707                break;
2708        }
2709}
2710
2711#if defined(CONFIG_OF)
2712static const struct of_device_id atmel_sha_dt_ids[] = {
2713        { .compatible = "atmel,at91sam9g46-sha" },
2714        { /* sentinel */ }
2715};
2716
2717MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2718
2719static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2720{
2721        struct device_node *np = pdev->dev.of_node;
2722        struct crypto_platform_data *pdata;
2723
2724        if (!np) {
2725                dev_err(&pdev->dev, "device node not found\n");
2726                return ERR_PTR(-EINVAL);
2727        }
2728
2729        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2730        if (!pdata) {
2731                dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2732                return ERR_PTR(-ENOMEM);
2733        }
2734
2735        pdata->dma_slave = devm_kzalloc(&pdev->dev,
2736                                        sizeof(*(pdata->dma_slave)),
2737                                        GFP_KERNEL);
2738        if (!pdata->dma_slave) {
2739                dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2740                return ERR_PTR(-ENOMEM);
2741        }
2742
2743        return pdata;
2744}
2745#else /* CONFIG_OF */
2746static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2747{
2748        return ERR_PTR(-EINVAL);
2749}
2750#endif
2751
2752static int atmel_sha_probe(struct platform_device *pdev)
2753{
2754        struct atmel_sha_dev *sha_dd;
2755        struct crypto_platform_data     *pdata;
2756        struct device *dev = &pdev->dev;
2757        struct resource *sha_res;
2758        int err;
2759
2760        sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2761        if (sha_dd == NULL) {
2762                dev_err(dev, "unable to alloc data struct.\n");
2763                err = -ENOMEM;
2764                goto sha_dd_err;
2765        }
2766
2767        sha_dd->dev = dev;
2768
2769        platform_set_drvdata(pdev, sha_dd);
2770
2771        INIT_LIST_HEAD(&sha_dd->list);
2772        spin_lock_init(&sha_dd->lock);
2773
2774        tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2775                                        (unsigned long)sha_dd);
2776        tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2777                                        (unsigned long)sha_dd);
2778
2779        crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2780
2781        sha_dd->irq = -1;
2782
2783        /* Get the base address */
2784        sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2785        if (!sha_res) {
2786                dev_err(dev, "no MEM resource info\n");
2787                err = -ENODEV;
2788                goto res_err;
2789        }
2790        sha_dd->phys_base = sha_res->start;
2791
2792        /* Get the IRQ */
2793        sha_dd->irq = platform_get_irq(pdev,  0);
2794        if (sha_dd->irq < 0) {
2795                dev_err(dev, "no IRQ resource info\n");
2796                err = sha_dd->irq;
2797                goto res_err;
2798        }
2799
2800        err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2801                               IRQF_SHARED, "atmel-sha", sha_dd);
2802        if (err) {
2803                dev_err(dev, "unable to request sha irq.\n");
2804                goto res_err;
2805        }
2806
2807        /* Initializing the clock */
2808        sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2809        if (IS_ERR(sha_dd->iclk)) {
2810                dev_err(dev, "clock initialization failed.\n");
2811                err = PTR_ERR(sha_dd->iclk);
2812                goto res_err;
2813        }
2814
2815        sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2816        if (IS_ERR(sha_dd->io_base)) {
2817                dev_err(dev, "can't ioremap\n");
2818                err = PTR_ERR(sha_dd->io_base);
2819                goto res_err;
2820        }
2821
2822        err = clk_prepare(sha_dd->iclk);
2823        if (err)
2824                goto res_err;
2825
2826        atmel_sha_hw_version_init(sha_dd);
2827
2828        atmel_sha_get_cap(sha_dd);
2829
2830        if (sha_dd->caps.has_dma) {
2831                pdata = pdev->dev.platform_data;
2832                if (!pdata) {
2833                        pdata = atmel_sha_of_init(pdev);
2834                        if (IS_ERR(pdata)) {
2835                                dev_err(&pdev->dev, "platform data not available\n");
2836                                err = PTR_ERR(pdata);
2837                                goto iclk_unprepare;
2838                        }
2839                }
2840                if (!pdata->dma_slave) {
2841                        err = -ENXIO;
2842                        goto iclk_unprepare;
2843                }
2844                err = atmel_sha_dma_init(sha_dd, pdata);
2845                if (err)
2846                        goto err_sha_dma;
2847
2848                dev_info(dev, "using %s for DMA transfers\n",
2849                                dma_chan_name(sha_dd->dma_lch_in.chan));
2850        }
2851
2852        spin_lock(&atmel_sha.lock);
2853        list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2854        spin_unlock(&atmel_sha.lock);
2855
2856        err = atmel_sha_register_algs(sha_dd);
2857        if (err)
2858                goto err_algs;
2859
2860        dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2861                        sha_dd->caps.has_sha224 ? "/SHA224" : "",
2862                        sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2863
2864        return 0;
2865
2866err_algs:
2867        spin_lock(&atmel_sha.lock);
2868        list_del(&sha_dd->list);
2869        spin_unlock(&atmel_sha.lock);
2870        if (sha_dd->caps.has_dma)
2871                atmel_sha_dma_cleanup(sha_dd);
2872err_sha_dma:
2873iclk_unprepare:
2874        clk_unprepare(sha_dd->iclk);
2875res_err:
2876        tasklet_kill(&sha_dd->queue_task);
2877        tasklet_kill(&sha_dd->done_task);
2878sha_dd_err:
2879        dev_err(dev, "initialization failed.\n");
2880
2881        return err;
2882}
2883
2884static int atmel_sha_remove(struct platform_device *pdev)
2885{
2886        struct atmel_sha_dev *sha_dd;
2887
2888        sha_dd = platform_get_drvdata(pdev);
2889        if (!sha_dd)
2890                return -ENODEV;
2891        spin_lock(&atmel_sha.lock);
2892        list_del(&sha_dd->list);
2893        spin_unlock(&atmel_sha.lock);
2894
2895        atmel_sha_unregister_algs(sha_dd);
2896
2897        tasklet_kill(&sha_dd->queue_task);
2898        tasklet_kill(&sha_dd->done_task);
2899
2900        if (sha_dd->caps.has_dma)
2901                atmel_sha_dma_cleanup(sha_dd);
2902
2903        clk_unprepare(sha_dd->iclk);
2904
2905        return 0;
2906}
2907
2908static struct platform_driver atmel_sha_driver = {
2909        .probe          = atmel_sha_probe,
2910        .remove         = atmel_sha_remove,
2911        .driver         = {
2912                .name   = "atmel_sha",
2913                .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2914        },
2915};
2916
2917module_platform_driver(atmel_sha_driver);
2918
2919MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2920MODULE_LICENSE("GPL v2");
2921MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2922