1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <linux/device.h>
15#include <linux/interrupt.h>
16#include <crypto/internal/hash.h>
17
18#include "common.h"
19#include "core.h"
20#include "sha.h"
21
22
23#define SHA_PADDING 64
24#define SHA_PADDING_MASK (SHA_PADDING - 1)
25
26static LIST_HEAD(ahash_algs);
27
28static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
30};
31
32static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
35};
36
37static void qce_ahash_done(void *data)
38{
39 struct crypto_async_request *async_req = data;
40 struct ahash_request *req = ahash_request_cast(async_req);
41 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
43 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44 struct qce_device *qce = tmpl->qce;
45 struct qce_result_dump *result = qce->dma.result_buf;
46 unsigned int digestsize = crypto_ahash_digestsize(ahash);
47 int error;
48 u32 status;
49
50 error = qce_dma_terminate_all(&qce->dma);
51 if (error)
52 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
53
54 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
55 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
56
57 memcpy(rctx->digest, result->auth_iv, digestsize);
58 if (req->result)
59 memcpy(req->result, result->auth_iv, digestsize);
60
61 rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
62 rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
63
64 error = qce_check_status(qce, &status);
65 if (error < 0)
66 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
67
68 req->src = rctx->src_orig;
69 req->nbytes = rctx->nbytes_orig;
70 rctx->last_blk = false;
71 rctx->first_blk = false;
72
73 qce->async_req_done(tmpl->qce, error);
74}
75
76static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
77{
78 struct ahash_request *req = ahash_request_cast(async_req);
79 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
80 struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
81 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
82 struct qce_device *qce = tmpl->qce;
83 unsigned long flags = rctx->flags;
84 int ret;
85
86 if (IS_SHA_HMAC(flags)) {
87 rctx->authkey = ctx->authkey;
88 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
89 } else if (IS_CMAC(flags)) {
90 rctx->authkey = ctx->authkey;
91 rctx->authklen = AES_KEYSIZE_128;
92 }
93
94 rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
95 if (rctx->src_nents < 0) {
96 dev_err(qce->dev, "Invalid numbers of src SG.\n");
97 return rctx->src_nents;
98 }
99
100 ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
101 if (ret < 0)
102 return ret;
103
104 sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
105
106 ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
107 if (ret < 0)
108 goto error_unmap_src;
109
110 ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
111 &rctx->result_sg, 1, qce_ahash_done, async_req);
112 if (ret)
113 goto error_unmap_dst;
114
115 qce_dma_issue_pending(&qce->dma);
116
117 ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
118 if (ret)
119 goto error_terminate;
120
121 return 0;
122
123error_terminate:
124 qce_dma_terminate_all(&qce->dma);
125error_unmap_dst:
126 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
127error_unmap_src:
128 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
129 return ret;
130}
131
132static int qce_ahash_init(struct ahash_request *req)
133{
134 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
135 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
136 const u32 *std_iv = tmpl->std_iv;
137
138 memset(rctx, 0, sizeof(*rctx));
139 rctx->first_blk = true;
140 rctx->last_blk = false;
141 rctx->flags = tmpl->alg_flags;
142 memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
143
144 return 0;
145}
146
147static int qce_ahash_export(struct ahash_request *req, void *out)
148{
149 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
150 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151 unsigned long flags = rctx->flags;
152 unsigned int digestsize = crypto_ahash_digestsize(ahash);
153 unsigned int blocksize =
154 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
155
156 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
157 struct sha1_state *out_state = out;
158
159 out_state->count = rctx->count;
160 qce_cpu_to_be32p_array((__be32 *)out_state->state,
161 rctx->digest, digestsize);
162 memcpy(out_state->buffer, rctx->buf, blocksize);
163 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
164 struct sha256_state *out_state = out;
165
166 out_state->count = rctx->count;
167 qce_cpu_to_be32p_array((__be32 *)out_state->state,
168 rctx->digest, digestsize);
169 memcpy(out_state->buf, rctx->buf, blocksize);
170 } else {
171 return -EINVAL;
172 }
173
174 return 0;
175}
176
177static int qce_import_common(struct ahash_request *req, u64 in_count,
178 const u32 *state, const u8 *buffer, bool hmac)
179{
180 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
181 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
182 unsigned int digestsize = crypto_ahash_digestsize(ahash);
183 unsigned int blocksize;
184 u64 count = in_count;
185
186 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
187 rctx->count = in_count;
188 memcpy(rctx->buf, buffer, blocksize);
189
190 if (in_count <= blocksize) {
191 rctx->first_blk = 1;
192 } else {
193 rctx->first_blk = 0;
194
195
196
197
198
199 if (hmac)
200 count += SHA_PADDING;
201 }
202
203 rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
204 rctx->byte_count[1] = (__force __be32)(count >> 32);
205 qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
206 digestsize);
207 rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
208
209 return 0;
210}
211
212static int qce_ahash_import(struct ahash_request *req, const void *in)
213{
214 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
215 unsigned long flags = rctx->flags;
216 bool hmac = IS_SHA_HMAC(flags);
217 int ret = -EINVAL;
218
219 if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220 const struct sha1_state *state = in;
221
222 ret = qce_import_common(req, state->count, state->state,
223 state->buffer, hmac);
224 } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225 const struct sha256_state *state = in;
226
227 ret = qce_import_common(req, state->count, state->state,
228 state->buf, hmac);
229 }
230
231 return ret;
232}
233
234static int qce_ahash_update(struct ahash_request *req)
235{
236 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239 struct qce_device *qce = tmpl->qce;
240 struct scatterlist *sg_last, *sg;
241 unsigned int total, len;
242 unsigned int hash_later;
243 unsigned int nbytes;
244 unsigned int blocksize;
245
246 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247 rctx->count += req->nbytes;
248
249
250 total = req->nbytes + rctx->buflen;
251
252 if (total <= blocksize) {
253 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254 0, req->nbytes, 0);
255 rctx->buflen += req->nbytes;
256 return 0;
257 }
258
259
260 rctx->src_orig = req->src;
261 rctx->nbytes_orig = req->nbytes;
262
263
264
265
266
267 if (rctx->buflen)
268 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
269
270
271 hash_later = total % blocksize;
272 if (hash_later) {
273 unsigned int src_offset = req->nbytes - hash_later;
274 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275 hash_later, 0);
276 }
277
278
279 nbytes = total - hash_later;
280
281 len = rctx->buflen;
282 sg = sg_last = req->src;
283
284 while (len < nbytes && sg) {
285 if (len + sg_dma_len(sg) > nbytes)
286 break;
287 len += sg_dma_len(sg);
288 sg_last = sg;
289 sg = sg_next(sg);
290 }
291
292 if (!sg_last)
293 return -EINVAL;
294
295 sg_mark_end(sg_last);
296
297 if (rctx->buflen) {
298 sg_init_table(rctx->sg, 2);
299 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
300 sg_chain(rctx->sg, 2, req->src);
301 req->src = rctx->sg;
302 }
303
304 req->nbytes = nbytes;
305 rctx->buflen = hash_later;
306
307 return qce->async_req_enqueue(tmpl->qce, &req->base);
308}
309
310static int qce_ahash_final(struct ahash_request *req)
311{
312 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
313 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
314 struct qce_device *qce = tmpl->qce;
315
316 if (!rctx->buflen)
317 return 0;
318
319 rctx->last_blk = true;
320
321 rctx->src_orig = req->src;
322 rctx->nbytes_orig = req->nbytes;
323
324 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
325 sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
326
327 req->src = rctx->sg;
328 req->nbytes = rctx->buflen;
329
330 return qce->async_req_enqueue(tmpl->qce, &req->base);
331}
332
333static int qce_ahash_digest(struct ahash_request *req)
334{
335 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
336 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
337 struct qce_device *qce = tmpl->qce;
338 int ret;
339
340 ret = qce_ahash_init(req);
341 if (ret)
342 return ret;
343
344 rctx->src_orig = req->src;
345 rctx->nbytes_orig = req->nbytes;
346 rctx->first_blk = true;
347 rctx->last_blk = true;
348
349 return qce->async_req_enqueue(tmpl->qce, &req->base);
350}
351
352struct qce_ahash_result {
353 struct completion completion;
354 int error;
355};
356
357static void qce_digest_complete(struct crypto_async_request *req, int error)
358{
359 struct qce_ahash_result *result = req->data;
360
361 if (error == -EINPROGRESS)
362 return;
363
364 result->error = error;
365 complete(&result->completion);
366}
367
368static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
369 unsigned int keylen)
370{
371 unsigned int digestsize = crypto_ahash_digestsize(tfm);
372 struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
373 struct qce_ahash_result result;
374 struct ahash_request *req;
375 struct scatterlist sg;
376 unsigned int blocksize;
377 struct crypto_ahash *ahash_tfm;
378 u8 *buf;
379 int ret;
380 const char *alg_name;
381
382 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
383 memset(ctx->authkey, 0, sizeof(ctx->authkey));
384
385 if (keylen <= blocksize) {
386 memcpy(ctx->authkey, key, keylen);
387 return 0;
388 }
389
390 if (digestsize == SHA1_DIGEST_SIZE)
391 alg_name = "sha1-qce";
392 else if (digestsize == SHA256_DIGEST_SIZE)
393 alg_name = "sha256-qce";
394 else
395 return -EINVAL;
396
397 ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
398 CRYPTO_ALG_TYPE_AHASH_MASK);
399 if (IS_ERR(ahash_tfm))
400 return PTR_ERR(ahash_tfm);
401
402 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
403 if (!req) {
404 ret = -ENOMEM;
405 goto err_free_ahash;
406 }
407
408 init_completion(&result.completion);
409 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
410 qce_digest_complete, &result);
411 crypto_ahash_clear_flags(ahash_tfm, ~0);
412
413 buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
414 if (!buf) {
415 ret = -ENOMEM;
416 goto err_free_req;
417 }
418
419 memcpy(buf, key, keylen);
420 sg_init_one(&sg, buf, keylen);
421 ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
422
423 ret = crypto_ahash_digest(req);
424 if (ret == -EINPROGRESS || ret == -EBUSY) {
425 ret = wait_for_completion_interruptible(&result.completion);
426 if (!ret)
427 ret = result.error;
428 }
429
430 if (ret)
431 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
432
433 kfree(buf);
434err_free_req:
435 ahash_request_free(req);
436err_free_ahash:
437 crypto_free_ahash(ahash_tfm);
438 return ret;
439}
440
441static int qce_ahash_cra_init(struct crypto_tfm *tfm)
442{
443 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
444 struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
445
446 crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
447 memset(ctx, 0, sizeof(*ctx));
448 return 0;
449}
450
451struct qce_ahash_def {
452 unsigned long flags;
453 const char *name;
454 const char *drv_name;
455 unsigned int digestsize;
456 unsigned int blocksize;
457 unsigned int statesize;
458 const u32 *std_iv;
459};
460
461static const struct qce_ahash_def ahash_def[] = {
462 {
463 .flags = QCE_HASH_SHA1,
464 .name = "sha1",
465 .drv_name = "sha1-qce",
466 .digestsize = SHA1_DIGEST_SIZE,
467 .blocksize = SHA1_BLOCK_SIZE,
468 .statesize = sizeof(struct sha1_state),
469 .std_iv = std_iv_sha1,
470 },
471 {
472 .flags = QCE_HASH_SHA256,
473 .name = "sha256",
474 .drv_name = "sha256-qce",
475 .digestsize = SHA256_DIGEST_SIZE,
476 .blocksize = SHA256_BLOCK_SIZE,
477 .statesize = sizeof(struct sha256_state),
478 .std_iv = std_iv_sha256,
479 },
480 {
481 .flags = QCE_HASH_SHA1_HMAC,
482 .name = "hmac(sha1)",
483 .drv_name = "hmac-sha1-qce",
484 .digestsize = SHA1_DIGEST_SIZE,
485 .blocksize = SHA1_BLOCK_SIZE,
486 .statesize = sizeof(struct sha1_state),
487 .std_iv = std_iv_sha1,
488 },
489 {
490 .flags = QCE_HASH_SHA256_HMAC,
491 .name = "hmac(sha256)",
492 .drv_name = "hmac-sha256-qce",
493 .digestsize = SHA256_DIGEST_SIZE,
494 .blocksize = SHA256_BLOCK_SIZE,
495 .statesize = sizeof(struct sha256_state),
496 .std_iv = std_iv_sha256,
497 },
498};
499
500static int qce_ahash_register_one(const struct qce_ahash_def *def,
501 struct qce_device *qce)
502{
503 struct qce_alg_template *tmpl;
504 struct ahash_alg *alg;
505 struct crypto_alg *base;
506 int ret;
507
508 tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
509 if (!tmpl)
510 return -ENOMEM;
511
512 tmpl->std_iv = def->std_iv;
513
514 alg = &tmpl->alg.ahash;
515 alg->init = qce_ahash_init;
516 alg->update = qce_ahash_update;
517 alg->final = qce_ahash_final;
518 alg->digest = qce_ahash_digest;
519 alg->export = qce_ahash_export;
520 alg->import = qce_ahash_import;
521 if (IS_SHA_HMAC(def->flags))
522 alg->setkey = qce_ahash_hmac_setkey;
523 alg->halg.digestsize = def->digestsize;
524 alg->halg.statesize = def->statesize;
525
526 base = &alg->halg.base;
527 base->cra_blocksize = def->blocksize;
528 base->cra_priority = 300;
529 base->cra_flags = CRYPTO_ALG_ASYNC;
530 base->cra_ctxsize = sizeof(struct qce_sha_ctx);
531 base->cra_alignmask = 0;
532 base->cra_module = THIS_MODULE;
533 base->cra_init = qce_ahash_cra_init;
534 INIT_LIST_HEAD(&base->cra_list);
535
536 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
537 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
538 def->drv_name);
539
540 INIT_LIST_HEAD(&tmpl->entry);
541 tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
542 tmpl->alg_flags = def->flags;
543 tmpl->qce = qce;
544
545 ret = crypto_register_ahash(alg);
546 if (ret) {
547 kfree(tmpl);
548 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
549 return ret;
550 }
551
552 list_add_tail(&tmpl->entry, &ahash_algs);
553 dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
554 return 0;
555}
556
557static void qce_ahash_unregister(struct qce_device *qce)
558{
559 struct qce_alg_template *tmpl, *n;
560
561 list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
562 crypto_unregister_ahash(&tmpl->alg.ahash);
563 list_del(&tmpl->entry);
564 kfree(tmpl);
565 }
566}
567
568static int qce_ahash_register(struct qce_device *qce)
569{
570 int ret, i;
571
572 for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
573 ret = qce_ahash_register_one(&ahash_def[i], qce);
574 if (ret)
575 goto err;
576 }
577
578 return 0;
579err:
580 qce_ahash_unregister(qce);
581 return ret;
582}
583
584const struct qce_algo_ops ahash_ops = {
585 .type = CRYPTO_ALG_TYPE_AHASH,
586 .register_algs = qce_ahash_register,
587 .unregister_algs = qce_ahash_unregister,
588 .async_req_handle = qce_ahash_async_req_handle,
589};
590