linux/drivers/edac/sb_edac.c
<<
>>
Prefs
   1/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
   2 *
   3 * This driver supports the memory controllers found on the Intel
   4 * processor family Sandy Bridge.
   5 *
   6 * This file may be distributed under the terms of the
   7 * GNU General Public License version 2 only.
   8 *
   9 * Copyright (c) 2011 by:
  10 *       Mauro Carvalho Chehab
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/pci_ids.h>
  17#include <linux/slab.h>
  18#include <linux/delay.h>
  19#include <linux/edac.h>
  20#include <linux/mmzone.h>
  21#include <linux/smp.h>
  22#include <linux/bitmap.h>
  23#include <linux/math64.h>
  24#include <linux/mod_devicetable.h>
  25#include <asm/cpu_device_id.h>
  26#include <asm/intel-family.h>
  27#include <asm/processor.h>
  28#include <asm/mce.h>
  29
  30#include "edac_module.h"
  31
  32/* Static vars */
  33static LIST_HEAD(sbridge_edac_list);
  34
  35/*
  36 * Alter this version for the module when modifications are made
  37 */
  38#define SBRIDGE_REVISION    " Ver: 1.1.2 "
  39#define EDAC_MOD_STR      "sbridge_edac"
  40
  41/*
  42 * Debug macros
  43 */
  44#define sbridge_printk(level, fmt, arg...)                      \
  45        edac_printk(level, "sbridge", fmt, ##arg)
  46
  47#define sbridge_mc_printk(mci, level, fmt, arg...)              \
  48        edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  49
  50/*
  51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  52 */
  53#define GET_BITFIELD(v, lo, hi) \
  54        (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  55
  56/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  57static const u32 sbridge_dram_rule[] = {
  58        0x80, 0x88, 0x90, 0x98, 0xa0,
  59        0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  60};
  61
  62static const u32 ibridge_dram_rule[] = {
  63        0x60, 0x68, 0x70, 0x78, 0x80,
  64        0x88, 0x90, 0x98, 0xa0, 0xa8,
  65        0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  66        0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  67};
  68
  69static const u32 knl_dram_rule[] = {
  70        0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  71        0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  72        0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  73        0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  74        0x100, 0x108, 0x110, 0x118,   /* 20-23 */
  75};
  76
  77#define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
  78#define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
  79
  80static char *show_dram_attr(u32 attr)
  81{
  82        switch (attr) {
  83                case 0:
  84                        return "DRAM";
  85                case 1:
  86                        return "MMCFG";
  87                case 2:
  88                        return "NXM";
  89                default:
  90                        return "unknown";
  91        }
  92}
  93
  94static const u32 sbridge_interleave_list[] = {
  95        0x84, 0x8c, 0x94, 0x9c, 0xa4,
  96        0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  97};
  98
  99static const u32 ibridge_interleave_list[] = {
 100        0x64, 0x6c, 0x74, 0x7c, 0x84,
 101        0x8c, 0x94, 0x9c, 0xa4, 0xac,
 102        0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
 103        0xdc, 0xe4, 0xec, 0xf4, 0xfc,
 104};
 105
 106static const u32 knl_interleave_list[] = {
 107        0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
 108        0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
 109        0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
 110        0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
 111        0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
 112};
 113
 114struct interleave_pkg {
 115        unsigned char start;
 116        unsigned char end;
 117};
 118
 119static const struct interleave_pkg sbridge_interleave_pkg[] = {
 120        { 0, 2 },
 121        { 3, 5 },
 122        { 8, 10 },
 123        { 11, 13 },
 124        { 16, 18 },
 125        { 19, 21 },
 126        { 24, 26 },
 127        { 27, 29 },
 128};
 129
 130static const struct interleave_pkg ibridge_interleave_pkg[] = {
 131        { 0, 3 },
 132        { 4, 7 },
 133        { 8, 11 },
 134        { 12, 15 },
 135        { 16, 19 },
 136        { 20, 23 },
 137        { 24, 27 },
 138        { 28, 31 },
 139};
 140
 141static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
 142                          int interleave)
 143{
 144        return GET_BITFIELD(reg, table[interleave].start,
 145                            table[interleave].end);
 146}
 147
 148/* Devices 12 Function 7 */
 149
 150#define TOLM            0x80
 151#define TOHM            0x84
 152#define HASWELL_TOLM    0xd0
 153#define HASWELL_TOHM_0  0xd4
 154#define HASWELL_TOHM_1  0xd8
 155#define KNL_TOLM        0xd0
 156#define KNL_TOHM_0      0xd4
 157#define KNL_TOHM_1      0xd8
 158
 159#define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
 160#define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
 161
 162/* Device 13 Function 6 */
 163
 164#define SAD_TARGET      0xf0
 165
 166#define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
 167
 168#define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
 169
 170#define SAD_CONTROL     0xf4
 171
 172/* Device 14 function 0 */
 173
 174static const u32 tad_dram_rule[] = {
 175        0x40, 0x44, 0x48, 0x4c,
 176        0x50, 0x54, 0x58, 0x5c,
 177        0x60, 0x64, 0x68, 0x6c,
 178};
 179#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
 180
 181#define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
 182#define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
 183#define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
 184#define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
 185#define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
 186#define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
 187#define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
 188
 189/* Device 15, function 0 */
 190
 191#define MCMTR                   0x7c
 192#define KNL_MCMTR               0x624
 193
 194#define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
 195#define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
 196#define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
 197
 198/* Device 15, function 1 */
 199
 200#define RASENABLES              0xac
 201#define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
 202
 203/* Device 15, functions 2-5 */
 204
 205static const int mtr_regs[] = {
 206        0x80, 0x84, 0x88,
 207};
 208
 209static const int knl_mtr_reg = 0xb60;
 210
 211#define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
 212#define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
 213#define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
 214#define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
 215#define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
 216
 217static const u32 tad_ch_nilv_offset[] = {
 218        0x90, 0x94, 0x98, 0x9c,
 219        0xa0, 0xa4, 0xa8, 0xac,
 220        0xb0, 0xb4, 0xb8, 0xbc,
 221};
 222#define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
 223#define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
 224
 225static const u32 rir_way_limit[] = {
 226        0x108, 0x10c, 0x110, 0x114, 0x118,
 227};
 228#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
 229
 230#define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
 231#define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
 232
 233#define MAX_RIR_WAY     8
 234
 235static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
 236        { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
 237        { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
 238        { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
 239        { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
 240        { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
 241};
 242
 243#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
 244        GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
 245
 246#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
 247        GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
 248
 249/* Device 16, functions 2-7 */
 250
 251/*
 252 * FIXME: Implement the error count reads directly
 253 */
 254
 255static const u32 correrrcnt[] = {
 256        0x104, 0x108, 0x10c, 0x110,
 257};
 258
 259#define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
 260#define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
 261#define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
 262#define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
 263
 264static const u32 correrrthrsld[] = {
 265        0x11c, 0x120, 0x124, 0x128,
 266};
 267
 268#define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
 269#define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
 270
 271
 272/* Device 17, function 0 */
 273
 274#define SB_RANK_CFG_A           0x0328
 275
 276#define IB_RANK_CFG_A           0x0320
 277
 278/*
 279 * sbridge structs
 280 */
 281
 282#define NUM_CHANNELS            4       /* Max channels per MC */
 283#define MAX_DIMMS               3       /* Max DIMMS per channel */
 284#define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
 285#define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
 286#define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
 287#define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
 288
 289enum type {
 290        SANDY_BRIDGE,
 291        IVY_BRIDGE,
 292        HASWELL,
 293        BROADWELL,
 294        KNIGHTS_LANDING,
 295};
 296
 297enum domain {
 298        IMC0 = 0,
 299        IMC1,
 300        SOCK,
 301};
 302
 303enum mirroring_mode {
 304        NON_MIRRORING,
 305        ADDR_RANGE_MIRRORING,
 306        FULL_MIRRORING,
 307};
 308
 309struct sbridge_pvt;
 310struct sbridge_info {
 311        enum type       type;
 312        u32             mcmtr;
 313        u32             rankcfgr;
 314        u64             (*get_tolm)(struct sbridge_pvt *pvt);
 315        u64             (*get_tohm)(struct sbridge_pvt *pvt);
 316        u64             (*rir_limit)(u32 reg);
 317        u64             (*sad_limit)(u32 reg);
 318        u32             (*interleave_mode)(u32 reg);
 319        u32             (*dram_attr)(u32 reg);
 320        const u32       *dram_rule;
 321        const u32       *interleave_list;
 322        const struct interleave_pkg *interleave_pkg;
 323        u8              max_sad;
 324        u8              max_interleave;
 325        u8              (*get_node_id)(struct sbridge_pvt *pvt);
 326        enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
 327        enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
 328        struct pci_dev  *pci_vtd;
 329};
 330
 331struct sbridge_channel {
 332        u32             ranks;
 333        u32             dimms;
 334};
 335
 336struct pci_id_descr {
 337        int                     dev_id;
 338        int                     optional;
 339        enum domain             dom;
 340};
 341
 342struct pci_id_table {
 343        const struct pci_id_descr       *descr;
 344        int                             n_devs_per_imc;
 345        int                             n_devs_per_sock;
 346        int                             n_imcs_per_sock;
 347        enum type                       type;
 348};
 349
 350struct sbridge_dev {
 351        struct list_head        list;
 352        u8                      bus, mc;
 353        u8                      node_id, source_id;
 354        struct pci_dev          **pdev;
 355        enum domain             dom;
 356        int                     n_devs;
 357        int                     i_devs;
 358        struct mem_ctl_info     *mci;
 359};
 360
 361struct knl_pvt {
 362        struct pci_dev          *pci_cha[KNL_MAX_CHAS];
 363        struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
 364        struct pci_dev          *pci_mc0;
 365        struct pci_dev          *pci_mc1;
 366        struct pci_dev          *pci_mc0_misc;
 367        struct pci_dev          *pci_mc1_misc;
 368        struct pci_dev          *pci_mc_info; /* tolm, tohm */
 369};
 370
 371struct sbridge_pvt {
 372        /* Devices per socket */
 373        struct pci_dev          *pci_ddrio;
 374        struct pci_dev          *pci_sad0, *pci_sad1;
 375        struct pci_dev          *pci_br0, *pci_br1;
 376        /* Devices per memory controller */
 377        struct pci_dev          *pci_ha, *pci_ta, *pci_ras;
 378        struct pci_dev          *pci_tad[NUM_CHANNELS];
 379
 380        struct sbridge_dev      *sbridge_dev;
 381
 382        struct sbridge_info     info;
 383        struct sbridge_channel  channel[NUM_CHANNELS];
 384
 385        /* Memory type detection */
 386        bool                    is_cur_addr_mirrored, is_lockstep, is_close_pg;
 387        bool                    is_chan_hash;
 388        enum mirroring_mode     mirror_mode;
 389
 390        /* Memory description */
 391        u64                     tolm, tohm;
 392        struct knl_pvt knl;
 393};
 394
 395#define PCI_DESCR(device_id, opt, domain)       \
 396        .dev_id = (device_id),          \
 397        .optional = opt,        \
 398        .dom = domain
 399
 400static const struct pci_id_descr pci_dev_descr_sbridge[] = {
 401                /* Processor Home Agent */
 402        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
 403
 404                /* Memory controller */
 405        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
 406        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
 407        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
 408        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
 409        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
 410        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
 411        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
 412
 413                /* System Address Decoder */
 414        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
 415        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
 416
 417                /* Broadcast Registers */
 418        { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
 419};
 420
 421#define PCI_ID_TABLE_ENTRY(A, N, M, T) {        \
 422        .descr = A,                     \
 423        .n_devs_per_imc = N,    \
 424        .n_devs_per_sock = ARRAY_SIZE(A),       \
 425        .n_imcs_per_sock = M,   \
 426        .type = T                       \
 427}
 428
 429static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
 430        PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
 431        {0,}                    /* 0 terminated list. */
 432};
 433
 434/* This changes depending if 1HA or 2HA:
 435 * 1HA:
 436 *      0x0eb8 (17.0) is DDRIO0
 437 * 2HA:
 438 *      0x0ebc (17.4) is DDRIO0
 439 */
 440#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
 441#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
 442
 443/* pci ids */
 444#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
 445#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
 446#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
 447#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
 448#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
 449#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
 450#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
 451#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
 452#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
 453#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
 454#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
 455#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
 456#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
 457#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
 458#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
 459#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
 460#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
 461
 462static const struct pci_id_descr pci_dev_descr_ibridge[] = {
 463                /* Processor Home Agent */
 464        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
 465
 466                /* Memory controller */
 467        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
 468        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
 469        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
 470        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
 471        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
 472        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
 473
 474                /* Optional, mode 2HA */
 475        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
 476        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
 477        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
 478        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
 479        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
 480        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
 481        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
 482
 483        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
 484        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
 485
 486                /* System Address Decoder */
 487        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
 488
 489                /* Broadcast Registers */
 490        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
 491        { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
 492
 493};
 494
 495static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
 496        PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
 497        {0,}                    /* 0 terminated list. */
 498};
 499
 500/* Haswell support */
 501/* EN processor:
 502 *      - 1 IMC
 503 *      - 3 DDR3 channels, 2 DPC per channel
 504 * EP processor:
 505 *      - 1 or 2 IMC
 506 *      - 4 DDR4 channels, 3 DPC per channel
 507 * EP 4S processor:
 508 *      - 2 IMC
 509 *      - 4 DDR4 channels, 3 DPC per channel
 510 * EX processor:
 511 *      - 2 IMC
 512 *      - each IMC interfaces with a SMI 2 channel
 513 *      - each SMI channel interfaces with a scalable memory buffer
 514 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 515 */
 516#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
 517#define HASWELL_HASYSDEFEATURE2 0x84
 518#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
 519#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
 520#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
 521#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
 522#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM  0x2f71
 523#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
 524#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM  0x2f79
 525#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
 526#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
 527#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
 528#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
 529#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
 530#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
 531#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
 532#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
 533#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
 534#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
 535#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
 536#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
 537#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
 538#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
 539static const struct pci_id_descr pci_dev_descr_haswell[] = {
 540        /* first item must be the HA */
 541        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
 542        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
 543
 544        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
 545        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
 546        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
 547        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
 548        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
 549        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
 550
 551        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
 552        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
 553        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
 554        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
 555        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
 556        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
 557
 558        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
 559        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
 560        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
 561        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
 562        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
 563        { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
 564};
 565
 566static const struct pci_id_table pci_dev_descr_haswell_table[] = {
 567        PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
 568        {0,}                    /* 0 terminated list. */
 569};
 570
 571/* Knight's Landing Support */
 572/*
 573 * KNL's memory channels are swizzled between memory controllers.
 574 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
 575 */
 576#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
 577
 578/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
 579#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
 580/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
 581#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
 582/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
 583#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
 584/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
 585#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
 586/* SAD target - 1-29-1 (1 of these) */
 587#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
 588/* Caching / Home Agent */
 589#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
 590/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
 591#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
 592
 593/*
 594 * KNL differs from SB, IB, and Haswell in that it has multiple
 595 * instances of the same device with the same device ID, so we handle that
 596 * by creating as many copies in the table as we expect to find.
 597 * (Like device ID must be grouped together.)
 598 */
 599
 600static const struct pci_id_descr pci_dev_descr_knl[] = {
 601        [0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
 602        [2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
 603        [8]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
 604        [9]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
 605        [10]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
 606        [11]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
 607        [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
 608};
 609
 610static const struct pci_id_table pci_dev_descr_knl_table[] = {
 611        PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
 612        {0,}
 613};
 614
 615/*
 616 * Broadwell support
 617 *
 618 * DE processor:
 619 *      - 1 IMC
 620 *      - 2 DDR3 channels, 2 DPC per channel
 621 * EP processor:
 622 *      - 1 or 2 IMC
 623 *      - 4 DDR4 channels, 3 DPC per channel
 624 * EP 4S processor:
 625 *      - 2 IMC
 626 *      - 4 DDR4 channels, 3 DPC per channel
 627 * EX processor:
 628 *      - 2 IMC
 629 *      - each IMC interfaces with a SMI 2 channel
 630 *      - each SMI channel interfaces with a scalable memory buffer
 631 *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 632 */
 633#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
 634#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
 635#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
 636#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
 637#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM        0x6f71
 638#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
 639#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM        0x6f79
 640#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
 641#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
 642#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
 643#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
 644#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
 645#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
 646#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
 647#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
 648#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
 649#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
 650#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
 651
 652static const struct pci_id_descr pci_dev_descr_broadwell[] = {
 653        /* first item must be the HA */
 654        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
 655        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
 656
 657        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
 658        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
 659        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
 660        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
 661        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
 662        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
 663
 664        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
 665        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
 666        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
 667        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
 668        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
 669        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
 670
 671        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
 672        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
 673        { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
 674};
 675
 676static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
 677        PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
 678        {0,}                    /* 0 terminated list. */
 679};
 680
 681
 682/****************************************************************************
 683                        Ancillary status routines
 684 ****************************************************************************/
 685
 686static inline int numrank(enum type type, u32 mtr)
 687{
 688        int ranks = (1 << RANK_CNT_BITS(mtr));
 689        int max = 4;
 690
 691        if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
 692                max = 8;
 693
 694        if (ranks > max) {
 695                edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
 696                         ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
 697                return -EINVAL;
 698        }
 699
 700        return ranks;
 701}
 702
 703static inline int numrow(u32 mtr)
 704{
 705        int rows = (RANK_WIDTH_BITS(mtr) + 12);
 706
 707        if (rows < 13 || rows > 18) {
 708                edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
 709                         rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
 710                return -EINVAL;
 711        }
 712
 713        return 1 << rows;
 714}
 715
 716static inline int numcol(u32 mtr)
 717{
 718        int cols = (COL_WIDTH_BITS(mtr) + 10);
 719
 720        if (cols > 12) {
 721                edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
 722                         cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
 723                return -EINVAL;
 724        }
 725
 726        return 1 << cols;
 727}
 728
 729static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
 730                                           struct sbridge_dev *prev)
 731{
 732        struct sbridge_dev *sbridge_dev;
 733
 734        /*
 735         * If we have devices scattered across several busses that pertain
 736         * to the same memory controller, we'll lump them all together.
 737         */
 738        if (multi_bus) {
 739                return list_first_entry_or_null(&sbridge_edac_list,
 740                                struct sbridge_dev, list);
 741        }
 742
 743        sbridge_dev = list_entry(prev ? prev->list.next
 744                                      : sbridge_edac_list.next, struct sbridge_dev, list);
 745
 746        list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
 747                if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
 748                        return sbridge_dev;
 749        }
 750
 751        return NULL;
 752}
 753
 754static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
 755                                             const struct pci_id_table *table)
 756{
 757        struct sbridge_dev *sbridge_dev;
 758
 759        sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
 760        if (!sbridge_dev)
 761                return NULL;
 762
 763        sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
 764                                    sizeof(*sbridge_dev->pdev),
 765                                    GFP_KERNEL);
 766        if (!sbridge_dev->pdev) {
 767                kfree(sbridge_dev);
 768                return NULL;
 769        }
 770
 771        sbridge_dev->bus = bus;
 772        sbridge_dev->dom = dom;
 773        sbridge_dev->n_devs = table->n_devs_per_imc;
 774        list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
 775
 776        return sbridge_dev;
 777}
 778
 779static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
 780{
 781        list_del(&sbridge_dev->list);
 782        kfree(sbridge_dev->pdev);
 783        kfree(sbridge_dev);
 784}
 785
 786static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
 787{
 788        u32 reg;
 789
 790        /* Address range is 32:28 */
 791        pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
 792        return GET_TOLM(reg);
 793}
 794
 795static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
 796{
 797        u32 reg;
 798
 799        pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
 800        return GET_TOHM(reg);
 801}
 802
 803static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
 804{
 805        u32 reg;
 806
 807        pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
 808
 809        return GET_TOLM(reg);
 810}
 811
 812static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
 813{
 814        u32 reg;
 815
 816        pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
 817
 818        return GET_TOHM(reg);
 819}
 820
 821static u64 rir_limit(u32 reg)
 822{
 823        return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
 824}
 825
 826static u64 sad_limit(u32 reg)
 827{
 828        return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
 829}
 830
 831static u32 interleave_mode(u32 reg)
 832{
 833        return GET_BITFIELD(reg, 1, 1);
 834}
 835
 836static u32 dram_attr(u32 reg)
 837{
 838        return GET_BITFIELD(reg, 2, 3);
 839}
 840
 841static u64 knl_sad_limit(u32 reg)
 842{
 843        return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
 844}
 845
 846static u32 knl_interleave_mode(u32 reg)
 847{
 848        return GET_BITFIELD(reg, 1, 2);
 849}
 850
 851static const char * const knl_intlv_mode[] = {
 852        "[8:6]", "[10:8]", "[14:12]", "[32:30]"
 853};
 854
 855static const char *get_intlv_mode_str(u32 reg, enum type t)
 856{
 857        if (t == KNIGHTS_LANDING)
 858                return knl_intlv_mode[knl_interleave_mode(reg)];
 859        else
 860                return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
 861}
 862
 863static u32 dram_attr_knl(u32 reg)
 864{
 865        return GET_BITFIELD(reg, 3, 4);
 866}
 867
 868
 869static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
 870{
 871        u32 reg;
 872        enum mem_type mtype;
 873
 874        if (pvt->pci_ddrio) {
 875                pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
 876                                      &reg);
 877                if (GET_BITFIELD(reg, 11, 11))
 878                        /* FIXME: Can also be LRDIMM */
 879                        mtype = MEM_RDDR3;
 880                else
 881                        mtype = MEM_DDR3;
 882        } else
 883                mtype = MEM_UNKNOWN;
 884
 885        return mtype;
 886}
 887
 888static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
 889{
 890        u32 reg;
 891        bool registered = false;
 892        enum mem_type mtype = MEM_UNKNOWN;
 893
 894        if (!pvt->pci_ddrio)
 895                goto out;
 896
 897        pci_read_config_dword(pvt->pci_ddrio,
 898                              HASWELL_DDRCRCLKCONTROLS, &reg);
 899        /* Is_Rdimm */
 900        if (GET_BITFIELD(reg, 16, 16))
 901                registered = true;
 902
 903        pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
 904        if (GET_BITFIELD(reg, 14, 14)) {
 905                if (registered)
 906                        mtype = MEM_RDDR4;
 907                else
 908                        mtype = MEM_DDR4;
 909        } else {
 910                if (registered)
 911                        mtype = MEM_RDDR3;
 912                else
 913                        mtype = MEM_DDR3;
 914        }
 915
 916out:
 917        return mtype;
 918}
 919
 920static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
 921{
 922        /* for KNL value is fixed */
 923        return DEV_X16;
 924}
 925
 926static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 927{
 928        /* there's no way to figure out */
 929        return DEV_UNKNOWN;
 930}
 931
 932static enum dev_type __ibridge_get_width(u32 mtr)
 933{
 934        enum dev_type type;
 935
 936        switch (mtr) {
 937        case 3:
 938                type = DEV_UNKNOWN;
 939                break;
 940        case 2:
 941                type = DEV_X16;
 942                break;
 943        case 1:
 944                type = DEV_X8;
 945                break;
 946        case 0:
 947                type = DEV_X4;
 948                break;
 949        }
 950
 951        return type;
 952}
 953
 954static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
 955{
 956        /*
 957         * ddr3_width on the documentation but also valid for DDR4 on
 958         * Haswell
 959         */
 960        return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
 961}
 962
 963static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
 964{
 965        /* ddr3_width on the documentation but also valid for DDR4 */
 966        return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
 967}
 968
 969static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
 970{
 971        /* DDR4 RDIMMS and LRDIMMS are supported */
 972        return MEM_RDDR4;
 973}
 974
 975static u8 get_node_id(struct sbridge_pvt *pvt)
 976{
 977        u32 reg;
 978        pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
 979        return GET_BITFIELD(reg, 0, 2);
 980}
 981
 982static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
 983{
 984        u32 reg;
 985
 986        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 987        return GET_BITFIELD(reg, 0, 3);
 988}
 989
 990static u8 knl_get_node_id(struct sbridge_pvt *pvt)
 991{
 992        u32 reg;
 993
 994        pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
 995        return GET_BITFIELD(reg, 0, 2);
 996}
 997
 998
 999static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1000{
1001        u32 reg;
1002
1003        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1004        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1005}
1006
1007static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1008{
1009        u64 rc;
1010        u32 reg;
1011
1012        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1013        rc = GET_BITFIELD(reg, 26, 31);
1014        pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1015        rc = ((reg << 6) | rc) << 26;
1016
1017        return rc | 0x1ffffff;
1018}
1019
1020static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1021{
1022        u32 reg;
1023
1024        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1025        return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1026}
1027
1028static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1029{
1030        u64 rc;
1031        u32 reg_lo, reg_hi;
1032
1033        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1034        pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1035        rc = ((u64)reg_hi << 32) | reg_lo;
1036        return rc | 0x3ffffff;
1037}
1038
1039
1040static u64 haswell_rir_limit(u32 reg)
1041{
1042        return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1043}
1044
1045static inline u8 sad_pkg_socket(u8 pkg)
1046{
1047        /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1048        return ((pkg >> 3) << 2) | (pkg & 0x3);
1049}
1050
1051static inline u8 sad_pkg_ha(u8 pkg)
1052{
1053        return (pkg >> 2) & 0x1;
1054}
1055
1056static int haswell_chan_hash(int idx, u64 addr)
1057{
1058        int i;
1059
1060        /*
1061         * XOR even bits from 12:26 to bit0 of idx,
1062         *     odd bits from 13:27 to bit1
1063         */
1064        for (i = 12; i < 28; i += 2)
1065                idx ^= (addr >> i) & 3;
1066
1067        return idx;
1068}
1069
1070/* Low bits of TAD limit, and some metadata. */
1071static const u32 knl_tad_dram_limit_lo[] = {
1072        0x400, 0x500, 0x600, 0x700,
1073        0x800, 0x900, 0xa00, 0xb00,
1074};
1075
1076/* Low bits of TAD offset. */
1077static const u32 knl_tad_dram_offset_lo[] = {
1078        0x404, 0x504, 0x604, 0x704,
1079        0x804, 0x904, 0xa04, 0xb04,
1080};
1081
1082/* High 16 bits of TAD limit and offset. */
1083static const u32 knl_tad_dram_hi[] = {
1084        0x408, 0x508, 0x608, 0x708,
1085        0x808, 0x908, 0xa08, 0xb08,
1086};
1087
1088/* Number of ways a tad entry is interleaved. */
1089static const u32 knl_tad_ways[] = {
1090        8, 6, 4, 3, 2, 1,
1091};
1092
1093/*
1094 * Retrieve the n'th Target Address Decode table entry
1095 * from the memory controller's TAD table.
1096 *
1097 * @pvt:        driver private data
1098 * @entry:      which entry you want to retrieve
1099 * @mc:         which memory controller (0 or 1)
1100 * @offset:     output tad range offset
1101 * @limit:      output address of first byte above tad range
1102 * @ways:       output number of interleave ways
1103 *
1104 * The offset value has curious semantics.  It's a sort of running total
1105 * of the sizes of all the memory regions that aren't mapped in this
1106 * tad table.
1107 */
1108static int knl_get_tad(const struct sbridge_pvt *pvt,
1109                const int entry,
1110                const int mc,
1111                u64 *offset,
1112                u64 *limit,
1113                int *ways)
1114{
1115        u32 reg_limit_lo, reg_offset_lo, reg_hi;
1116        struct pci_dev *pci_mc;
1117        int way_id;
1118
1119        switch (mc) {
1120        case 0:
1121                pci_mc = pvt->knl.pci_mc0;
1122                break;
1123        case 1:
1124                pci_mc = pvt->knl.pci_mc1;
1125                break;
1126        default:
1127                WARN_ON(1);
1128                return -EINVAL;
1129        }
1130
1131        pci_read_config_dword(pci_mc,
1132                        knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1133        pci_read_config_dword(pci_mc,
1134                        knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1135        pci_read_config_dword(pci_mc,
1136                        knl_tad_dram_hi[entry], &reg_hi);
1137
1138        /* Is this TAD entry enabled? */
1139        if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1140                return -ENODEV;
1141
1142        way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1143
1144        if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1145                *ways = knl_tad_ways[way_id];
1146        } else {
1147                *ways = 0;
1148                sbridge_printk(KERN_ERR,
1149                                "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1150                                way_id);
1151                return -ENODEV;
1152        }
1153
1154        /*
1155         * The least significant 6 bits of base and limit are truncated.
1156         * For limit, we fill the missing bits with 1s.
1157         */
1158        *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1159                                ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1160        *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1161                                ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1162
1163        return 0;
1164}
1165
1166/* Determine which memory controller is responsible for a given channel. */
1167static int knl_channel_mc(int channel)
1168{
1169        WARN_ON(channel < 0 || channel >= 6);
1170
1171        return channel < 3 ? 1 : 0;
1172}
1173
1174/*
1175 * Get the Nth entry from EDC_ROUTE_TABLE register.
1176 * (This is the per-tile mapping of logical interleave targets to
1177 *  physical EDC modules.)
1178 *
1179 * entry 0: 0:2
1180 *       1: 3:5
1181 *       2: 6:8
1182 *       3: 9:11
1183 *       4: 12:14
1184 *       5: 15:17
1185 *       6: 18:20
1186 *       7: 21:23
1187 * reserved: 24:31
1188 */
1189static u32 knl_get_edc_route(int entry, u32 reg)
1190{
1191        WARN_ON(entry >= KNL_MAX_EDCS);
1192        return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1193}
1194
1195/*
1196 * Get the Nth entry from MC_ROUTE_TABLE register.
1197 * (This is the per-tile mapping of logical interleave targets to
1198 *  physical DRAM channels modules.)
1199 *
1200 * entry 0: mc 0:2   channel 18:19
1201 *       1: mc 3:5   channel 20:21
1202 *       2: mc 6:8   channel 22:23
1203 *       3: mc 9:11  channel 24:25
1204 *       4: mc 12:14 channel 26:27
1205 *       5: mc 15:17 channel 28:29
1206 * reserved: 30:31
1207 *
1208 * Though we have 3 bits to identify the MC, we should only see
1209 * the values 0 or 1.
1210 */
1211
1212static u32 knl_get_mc_route(int entry, u32 reg)
1213{
1214        int mc, chan;
1215
1216        WARN_ON(entry >= KNL_MAX_CHANNELS);
1217
1218        mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1219        chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1220
1221        return knl_channel_remap(mc, chan);
1222}
1223
1224/*
1225 * Render the EDC_ROUTE register in human-readable form.
1226 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1227 */
1228static void knl_show_edc_route(u32 reg, char *s)
1229{
1230        int i;
1231
1232        for (i = 0; i < KNL_MAX_EDCS; i++) {
1233                s[i*2] = knl_get_edc_route(i, reg) + '0';
1234                s[i*2+1] = '-';
1235        }
1236
1237        s[KNL_MAX_EDCS*2 - 1] = '\0';
1238}
1239
1240/*
1241 * Render the MC_ROUTE register in human-readable form.
1242 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1243 */
1244static void knl_show_mc_route(u32 reg, char *s)
1245{
1246        int i;
1247
1248        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1249                s[i*2] = knl_get_mc_route(i, reg) + '0';
1250                s[i*2+1] = '-';
1251        }
1252
1253        s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1254}
1255
1256#define KNL_EDC_ROUTE 0xb8
1257#define KNL_MC_ROUTE 0xb4
1258
1259/* Is this dram rule backed by regular DRAM in flat mode? */
1260#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1261
1262/* Is this dram rule cached? */
1263#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1264
1265/* Is this rule backed by edc ? */
1266#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1267
1268/* Is this rule backed by DRAM, cacheable in EDRAM? */
1269#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1270
1271/* Is this rule mod3? */
1272#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1273
1274/*
1275 * Figure out how big our RAM modules are.
1276 *
1277 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1278 * have to figure this out from the SAD rules, interleave lists, route tables,
1279 * and TAD rules.
1280 *
1281 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1282 * inspect the TAD rules to figure out how large the SAD regions really are.
1283 *
1284 * When we know the real size of a SAD region and how many ways it's
1285 * interleaved, we know the individual contribution of each channel to
1286 * TAD is size/ways.
1287 *
1288 * Finally, we have to check whether each channel participates in each SAD
1289 * region.
1290 *
1291 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1292 * much memory the channel uses, we know the DIMM is at least that large.
1293 * (The BIOS might possibly choose not to map all available memory, in which
1294 * case we will underreport the size of the DIMM.)
1295 *
1296 * In theory, we could try to determine the EDC sizes as well, but that would
1297 * only work in flat mode, not in cache mode.
1298 *
1299 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1300 *            elements)
1301 */
1302static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1303{
1304        u64 sad_base, sad_size, sad_limit = 0;
1305        u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1306        int sad_rule = 0;
1307        int tad_rule = 0;
1308        int intrlv_ways, tad_ways;
1309        u32 first_pkg, pkg;
1310        int i;
1311        u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1312        u32 dram_rule, interleave_reg;
1313        u32 mc_route_reg[KNL_MAX_CHAS];
1314        u32 edc_route_reg[KNL_MAX_CHAS];
1315        int edram_only;
1316        char edc_route_string[KNL_MAX_EDCS*2];
1317        char mc_route_string[KNL_MAX_CHANNELS*2];
1318        int cur_reg_start;
1319        int mc;
1320        int channel;
1321        int way;
1322        int participants[KNL_MAX_CHANNELS];
1323        int participant_count = 0;
1324
1325        for (i = 0; i < KNL_MAX_CHANNELS; i++)
1326                mc_sizes[i] = 0;
1327
1328        /* Read the EDC route table in each CHA. */
1329        cur_reg_start = 0;
1330        for (i = 0; i < KNL_MAX_CHAS; i++) {
1331                pci_read_config_dword(pvt->knl.pci_cha[i],
1332                                KNL_EDC_ROUTE, &edc_route_reg[i]);
1333
1334                if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1335                        knl_show_edc_route(edc_route_reg[i-1],
1336                                        edc_route_string);
1337                        if (cur_reg_start == i-1)
1338                                edac_dbg(0, "edc route table for CHA %d: %s\n",
1339                                        cur_reg_start, edc_route_string);
1340                        else
1341                                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1342                                        cur_reg_start, i-1, edc_route_string);
1343                        cur_reg_start = i;
1344                }
1345        }
1346        knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1347        if (cur_reg_start == i-1)
1348                edac_dbg(0, "edc route table for CHA %d: %s\n",
1349                        cur_reg_start, edc_route_string);
1350        else
1351                edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1352                        cur_reg_start, i-1, edc_route_string);
1353
1354        /* Read the MC route table in each CHA. */
1355        cur_reg_start = 0;
1356        for (i = 0; i < KNL_MAX_CHAS; i++) {
1357                pci_read_config_dword(pvt->knl.pci_cha[i],
1358                        KNL_MC_ROUTE, &mc_route_reg[i]);
1359
1360                if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1361                        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1362                        if (cur_reg_start == i-1)
1363                                edac_dbg(0, "mc route table for CHA %d: %s\n",
1364                                        cur_reg_start, mc_route_string);
1365                        else
1366                                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1367                                        cur_reg_start, i-1, mc_route_string);
1368                        cur_reg_start = i;
1369                }
1370        }
1371        knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1372        if (cur_reg_start == i-1)
1373                edac_dbg(0, "mc route table for CHA %d: %s\n",
1374                        cur_reg_start, mc_route_string);
1375        else
1376                edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1377                        cur_reg_start, i-1, mc_route_string);
1378
1379        /* Process DRAM rules */
1380        for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1381                /* previous limit becomes the new base */
1382                sad_base = sad_limit;
1383
1384                pci_read_config_dword(pvt->pci_sad0,
1385                        pvt->info.dram_rule[sad_rule], &dram_rule);
1386
1387                if (!DRAM_RULE_ENABLE(dram_rule))
1388                        break;
1389
1390                edram_only = KNL_EDRAM_ONLY(dram_rule);
1391
1392                sad_limit = pvt->info.sad_limit(dram_rule)+1;
1393                sad_size = sad_limit - sad_base;
1394
1395                pci_read_config_dword(pvt->pci_sad0,
1396                        pvt->info.interleave_list[sad_rule], &interleave_reg);
1397
1398                /*
1399                 * Find out how many ways this dram rule is interleaved.
1400                 * We stop when we see the first channel again.
1401                 */
1402                first_pkg = sad_pkg(pvt->info.interleave_pkg,
1403                                                interleave_reg, 0);
1404                for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1405                        pkg = sad_pkg(pvt->info.interleave_pkg,
1406                                                interleave_reg, intrlv_ways);
1407
1408                        if ((pkg & 0x8) == 0) {
1409                                /*
1410                                 * 0 bit means memory is non-local,
1411                                 * which KNL doesn't support
1412                                 */
1413                                edac_dbg(0, "Unexpected interleave target %d\n",
1414                                        pkg);
1415                                return -1;
1416                        }
1417
1418                        if (pkg == first_pkg)
1419                                break;
1420                }
1421                if (KNL_MOD3(dram_rule))
1422                        intrlv_ways *= 3;
1423
1424                edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1425                        sad_rule,
1426                        sad_base,
1427                        sad_limit,
1428                        intrlv_ways,
1429                        edram_only ? ", EDRAM" : "");
1430
1431                /*
1432                 * Find out how big the SAD region really is by iterating
1433                 * over TAD tables (SAD regions may contain holes).
1434                 * Each memory controller might have a different TAD table, so
1435                 * we have to look at both.
1436                 *
1437                 * Livespace is the memory that's mapped in this TAD table,
1438                 * deadspace is the holes (this could be the MMIO hole, or it
1439                 * could be memory that's mapped by the other TAD table but
1440                 * not this one).
1441                 */
1442                for (mc = 0; mc < 2; mc++) {
1443                        sad_actual_size[mc] = 0;
1444                        tad_livespace = 0;
1445                        for (tad_rule = 0;
1446                                        tad_rule < ARRAY_SIZE(
1447                                                knl_tad_dram_limit_lo);
1448                                        tad_rule++) {
1449                                if (knl_get_tad(pvt,
1450                                                tad_rule,
1451                                                mc,
1452                                                &tad_deadspace,
1453                                                &tad_limit,
1454                                                &tad_ways))
1455                                        break;
1456
1457                                tad_size = (tad_limit+1) -
1458                                        (tad_livespace + tad_deadspace);
1459                                tad_livespace += tad_size;
1460                                tad_base = (tad_limit+1) - tad_size;
1461
1462                                if (tad_base < sad_base) {
1463                                        if (tad_limit > sad_base)
1464                                                edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1465                                } else if (tad_base < sad_limit) {
1466                                        if (tad_limit+1 > sad_limit) {
1467                                                edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1468                                        } else {
1469                                                /* TAD region is completely inside SAD region */
1470                                                edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1471                                                        tad_rule, tad_base,
1472                                                        tad_limit, tad_size,
1473                                                        mc);
1474                                                sad_actual_size[mc] += tad_size;
1475                                        }
1476                                }
1477                                tad_base = tad_limit+1;
1478                        }
1479                }
1480
1481                for (mc = 0; mc < 2; mc++) {
1482                        edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1483                                mc, sad_actual_size[mc], sad_actual_size[mc]);
1484                }
1485
1486                /* Ignore EDRAM rule */
1487                if (edram_only)
1488                        continue;
1489
1490                /* Figure out which channels participate in interleave. */
1491                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1492                        participants[channel] = 0;
1493
1494                /* For each channel, does at least one CHA have
1495                 * this channel mapped to the given target?
1496                 */
1497                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1498                        for (way = 0; way < intrlv_ways; way++) {
1499                                int target;
1500                                int cha;
1501
1502                                if (KNL_MOD3(dram_rule))
1503                                        target = way;
1504                                else
1505                                        target = 0x7 & sad_pkg(
1506                                pvt->info.interleave_pkg, interleave_reg, way);
1507
1508                                for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1509                                        if (knl_get_mc_route(target,
1510                                                mc_route_reg[cha]) == channel
1511                                                && !participants[channel]) {
1512                                                participant_count++;
1513                                                participants[channel] = 1;
1514                                                break;
1515                                        }
1516                                }
1517                        }
1518                }
1519
1520                if (participant_count != intrlv_ways)
1521                        edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1522                                participant_count, intrlv_ways);
1523
1524                for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1525                        mc = knl_channel_mc(channel);
1526                        if (participants[channel]) {
1527                                edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1528                                        channel,
1529                                        sad_actual_size[mc]/intrlv_ways,
1530                                        sad_rule);
1531                                mc_sizes[channel] +=
1532                                        sad_actual_size[mc]/intrlv_ways;
1533                        }
1534                }
1535        }
1536
1537        return 0;
1538}
1539
1540static void get_source_id(struct mem_ctl_info *mci)
1541{
1542        struct sbridge_pvt *pvt = mci->pvt_info;
1543        u32 reg;
1544
1545        if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1546            pvt->info.type == KNIGHTS_LANDING)
1547                pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1548        else
1549                pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1550
1551        if (pvt->info.type == KNIGHTS_LANDING)
1552                pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1553        else
1554                pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1555}
1556
1557static int __populate_dimms(struct mem_ctl_info *mci,
1558                            u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1559                            enum edac_type mode)
1560{
1561        struct sbridge_pvt *pvt = mci->pvt_info;
1562        int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1563                                                         : NUM_CHANNELS;
1564        unsigned int i, j, banks, ranks, rows, cols, npages;
1565        struct dimm_info *dimm;
1566        enum mem_type mtype;
1567        u64 size;
1568
1569        mtype = pvt->info.get_memory_type(pvt);
1570        if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1571                edac_dbg(0, "Memory is registered\n");
1572        else if (mtype == MEM_UNKNOWN)
1573                edac_dbg(0, "Cannot determine memory type\n");
1574        else
1575                edac_dbg(0, "Memory is unregistered\n");
1576
1577        if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1578                banks = 16;
1579        else
1580                banks = 8;
1581
1582        for (i = 0; i < channels; i++) {
1583                u32 mtr;
1584
1585                int max_dimms_per_channel;
1586
1587                if (pvt->info.type == KNIGHTS_LANDING) {
1588                        max_dimms_per_channel = 1;
1589                        if (!pvt->knl.pci_channel[i])
1590                                continue;
1591                } else {
1592                        max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1593                        if (!pvt->pci_tad[i])
1594                                continue;
1595                }
1596
1597                for (j = 0; j < max_dimms_per_channel; j++) {
1598                        dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1599                        if (pvt->info.type == KNIGHTS_LANDING) {
1600                                pci_read_config_dword(pvt->knl.pci_channel[i],
1601                                        knl_mtr_reg, &mtr);
1602                        } else {
1603                                pci_read_config_dword(pvt->pci_tad[i],
1604                                        mtr_regs[j], &mtr);
1605                        }
1606                        edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1607                        if (IS_DIMM_PRESENT(mtr)) {
1608                                if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1609                                        sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1610                                                       pvt->sbridge_dev->source_id,
1611                                                       pvt->sbridge_dev->dom, i);
1612                                        return -ENODEV;
1613                                }
1614                                pvt->channel[i].dimms++;
1615
1616                                ranks = numrank(pvt->info.type, mtr);
1617
1618                                if (pvt->info.type == KNIGHTS_LANDING) {
1619                                        /* For DDR4, this is fixed. */
1620                                        cols = 1 << 10;
1621                                        rows = knl_mc_sizes[i] /
1622                                                ((u64) cols * ranks * banks * 8);
1623                                } else {
1624                                        rows = numrow(mtr);
1625                                        cols = numcol(mtr);
1626                                }
1627
1628                                size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1629                                npages = MiB_TO_PAGES(size);
1630
1631                                edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1632                                         pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1633                                         size, npages,
1634                                         banks, ranks, rows, cols);
1635
1636                                dimm->nr_pages = npages;
1637                                dimm->grain = 32;
1638                                dimm->dtype = pvt->info.get_width(pvt, mtr);
1639                                dimm->mtype = mtype;
1640                                dimm->edac_mode = mode;
1641                                snprintf(dimm->label, sizeof(dimm->label),
1642                                                 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1643                                                 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1644                        }
1645                }
1646        }
1647
1648        return 0;
1649}
1650
1651static int get_dimm_config(struct mem_ctl_info *mci)
1652{
1653        struct sbridge_pvt *pvt = mci->pvt_info;
1654        u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1655        enum edac_type mode;
1656        u32 reg;
1657
1658        pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1659        edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1660                 pvt->sbridge_dev->mc,
1661                 pvt->sbridge_dev->node_id,
1662                 pvt->sbridge_dev->source_id);
1663
1664        /* KNL doesn't support mirroring or lockstep,
1665         * and is always closed page
1666         */
1667        if (pvt->info.type == KNIGHTS_LANDING) {
1668                mode = EDAC_S4ECD4ED;
1669                pvt->mirror_mode = NON_MIRRORING;
1670                pvt->is_cur_addr_mirrored = false;
1671
1672                if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1673                        return -1;
1674                if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1675                        edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1676                        return -ENODEV;
1677                }
1678        } else {
1679                if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1680                        if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1681                                edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1682                                return -ENODEV;
1683                        }
1684                        pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1685                        if (GET_BITFIELD(reg, 28, 28)) {
1686                                pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1687                                edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1688                                goto next;
1689                        }
1690                }
1691                if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1692                        edac_dbg(0, "Failed to read RASENABLES register\n");
1693                        return -ENODEV;
1694                }
1695                if (IS_MIRROR_ENABLED(reg)) {
1696                        pvt->mirror_mode = FULL_MIRRORING;
1697                        edac_dbg(0, "Full memory mirroring is enabled\n");
1698                } else {
1699                        pvt->mirror_mode = NON_MIRRORING;
1700                        edac_dbg(0, "Memory mirroring is disabled\n");
1701                }
1702
1703next:
1704                if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1705                        edac_dbg(0, "Failed to read MCMTR register\n");
1706                        return -ENODEV;
1707                }
1708                if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1709                        edac_dbg(0, "Lockstep is enabled\n");
1710                        mode = EDAC_S8ECD8ED;
1711                        pvt->is_lockstep = true;
1712                } else {
1713                        edac_dbg(0, "Lockstep is disabled\n");
1714                        mode = EDAC_S4ECD4ED;
1715                        pvt->is_lockstep = false;
1716                }
1717                if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1718                        edac_dbg(0, "address map is on closed page mode\n");
1719                        pvt->is_close_pg = true;
1720                } else {
1721                        edac_dbg(0, "address map is on open page mode\n");
1722                        pvt->is_close_pg = false;
1723                }
1724        }
1725
1726        return __populate_dimms(mci, knl_mc_sizes, mode);
1727}
1728
1729static void get_memory_layout(const struct mem_ctl_info *mci)
1730{
1731        struct sbridge_pvt *pvt = mci->pvt_info;
1732        int i, j, k, n_sads, n_tads, sad_interl;
1733        u32 reg;
1734        u64 limit, prv = 0;
1735        u64 tmp_mb;
1736        u32 gb, mb;
1737        u32 rir_way;
1738
1739        /*
1740         * Step 1) Get TOLM/TOHM ranges
1741         */
1742
1743        pvt->tolm = pvt->info.get_tolm(pvt);
1744        tmp_mb = (1 + pvt->tolm) >> 20;
1745
1746        gb = div_u64_rem(tmp_mb, 1024, &mb);
1747        edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1748                gb, (mb*1000)/1024, (u64)pvt->tolm);
1749
1750        /* Address range is already 45:25 */
1751        pvt->tohm = pvt->info.get_tohm(pvt);
1752        tmp_mb = (1 + pvt->tohm) >> 20;
1753
1754        gb = div_u64_rem(tmp_mb, 1024, &mb);
1755        edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1756                gb, (mb*1000)/1024, (u64)pvt->tohm);
1757
1758        /*
1759         * Step 2) Get SAD range and SAD Interleave list
1760         * TAD registers contain the interleave wayness. However, it
1761         * seems simpler to just discover it indirectly, with the
1762         * algorithm bellow.
1763         */
1764        prv = 0;
1765        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1766                /* SAD_LIMIT Address range is 45:26 */
1767                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1768                                      &reg);
1769                limit = pvt->info.sad_limit(reg);
1770
1771                if (!DRAM_RULE_ENABLE(reg))
1772                        continue;
1773
1774                if (limit <= prv)
1775                        break;
1776
1777                tmp_mb = (limit + 1) >> 20;
1778                gb = div_u64_rem(tmp_mb, 1024, &mb);
1779                edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1780                         n_sads,
1781                         show_dram_attr(pvt->info.dram_attr(reg)),
1782                         gb, (mb*1000)/1024,
1783                         ((u64)tmp_mb) << 20L,
1784                         get_intlv_mode_str(reg, pvt->info.type),
1785                         reg);
1786                prv = limit;
1787
1788                pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1789                                      &reg);
1790                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1791                for (j = 0; j < 8; j++) {
1792                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1793                        if (j > 0 && sad_interl == pkg)
1794                                break;
1795
1796                        edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1797                                 n_sads, j, pkg);
1798                }
1799        }
1800
1801        if (pvt->info.type == KNIGHTS_LANDING)
1802                return;
1803
1804        /*
1805         * Step 3) Get TAD range
1806         */
1807        prv = 0;
1808        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1809                pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1810                limit = TAD_LIMIT(reg);
1811                if (limit <= prv)
1812                        break;
1813                tmp_mb = (limit + 1) >> 20;
1814
1815                gb = div_u64_rem(tmp_mb, 1024, &mb);
1816                edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1817                         n_tads, gb, (mb*1000)/1024,
1818                         ((u64)tmp_mb) << 20L,
1819                         (u32)(1 << TAD_SOCK(reg)),
1820                         (u32)TAD_CH(reg) + 1,
1821                         (u32)TAD_TGT0(reg),
1822                         (u32)TAD_TGT1(reg),
1823                         (u32)TAD_TGT2(reg),
1824                         (u32)TAD_TGT3(reg),
1825                         reg);
1826                prv = limit;
1827        }
1828
1829        /*
1830         * Step 4) Get TAD offsets, per each channel
1831         */
1832        for (i = 0; i < NUM_CHANNELS; i++) {
1833                if (!pvt->channel[i].dimms)
1834                        continue;
1835                for (j = 0; j < n_tads; j++) {
1836                        pci_read_config_dword(pvt->pci_tad[i],
1837                                              tad_ch_nilv_offset[j],
1838                                              &reg);
1839                        tmp_mb = TAD_OFFSET(reg) >> 20;
1840                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1841                        edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1842                                 i, j,
1843                                 gb, (mb*1000)/1024,
1844                                 ((u64)tmp_mb) << 20L,
1845                                 reg);
1846                }
1847        }
1848
1849        /*
1850         * Step 6) Get RIR Wayness/Limit, per each channel
1851         */
1852        for (i = 0; i < NUM_CHANNELS; i++) {
1853                if (!pvt->channel[i].dimms)
1854                        continue;
1855                for (j = 0; j < MAX_RIR_RANGES; j++) {
1856                        pci_read_config_dword(pvt->pci_tad[i],
1857                                              rir_way_limit[j],
1858                                              &reg);
1859
1860                        if (!IS_RIR_VALID(reg))
1861                                continue;
1862
1863                        tmp_mb = pvt->info.rir_limit(reg) >> 20;
1864                        rir_way = 1 << RIR_WAY(reg);
1865                        gb = div_u64_rem(tmp_mb, 1024, &mb);
1866                        edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1867                                 i, j,
1868                                 gb, (mb*1000)/1024,
1869                                 ((u64)tmp_mb) << 20L,
1870                                 rir_way,
1871                                 reg);
1872
1873                        for (k = 0; k < rir_way; k++) {
1874                                pci_read_config_dword(pvt->pci_tad[i],
1875                                                      rir_offset[j][k],
1876                                                      &reg);
1877                                tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1878
1879                                gb = div_u64_rem(tmp_mb, 1024, &mb);
1880                                edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1881                                         i, j, k,
1882                                         gb, (mb*1000)/1024,
1883                                         ((u64)tmp_mb) << 20L,
1884                                         (u32)RIR_RNK_TGT(pvt->info.type, reg),
1885                                         reg);
1886                        }
1887                }
1888        }
1889}
1890
1891static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1892{
1893        struct sbridge_dev *sbridge_dev;
1894
1895        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1896                if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1897                        return sbridge_dev->mci;
1898        }
1899        return NULL;
1900}
1901
1902static int get_memory_error_data(struct mem_ctl_info *mci,
1903                                 u64 addr,
1904                                 u8 *socket, u8 *ha,
1905                                 long *channel_mask,
1906                                 u8 *rank,
1907                                 char **area_type, char *msg)
1908{
1909        struct mem_ctl_info     *new_mci;
1910        struct sbridge_pvt *pvt = mci->pvt_info;
1911        struct pci_dev          *pci_ha;
1912        int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1913        int                     sad_interl, idx, base_ch;
1914        int                     interleave_mode, shiftup = 0;
1915        unsigned                sad_interleave[pvt->info.max_interleave];
1916        u32                     reg, dram_rule;
1917        u8                      ch_way, sck_way, pkg, sad_ha = 0;
1918        u32                     tad_offset;
1919        u32                     rir_way;
1920        u32                     mb, gb;
1921        u64                     ch_addr, offset, limit = 0, prv = 0;
1922
1923
1924        /*
1925         * Step 0) Check if the address is at special memory ranges
1926         * The check bellow is probably enough to fill all cases where
1927         * the error is not inside a memory, except for the legacy
1928         * range (e. g. VGA addresses). It is unlikely, however, that the
1929         * memory controller would generate an error on that range.
1930         */
1931        if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1932                sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1933                return -EINVAL;
1934        }
1935        if (addr >= (u64)pvt->tohm) {
1936                sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1937                return -EINVAL;
1938        }
1939
1940        /*
1941         * Step 1) Get socket
1942         */
1943        for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1944                pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1945                                      &reg);
1946
1947                if (!DRAM_RULE_ENABLE(reg))
1948                        continue;
1949
1950                limit = pvt->info.sad_limit(reg);
1951                if (limit <= prv) {
1952                        sprintf(msg, "Can't discover the memory socket");
1953                        return -EINVAL;
1954                }
1955                if  (addr <= limit)
1956                        break;
1957                prv = limit;
1958        }
1959        if (n_sads == pvt->info.max_sad) {
1960                sprintf(msg, "Can't discover the memory socket");
1961                return -EINVAL;
1962        }
1963        dram_rule = reg;
1964        *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1965        interleave_mode = pvt->info.interleave_mode(dram_rule);
1966
1967        pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1968                              &reg);
1969
1970        if (pvt->info.type == SANDY_BRIDGE) {
1971                sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1972                for (sad_way = 0; sad_way < 8; sad_way++) {
1973                        u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1974                        if (sad_way > 0 && sad_interl == pkg)
1975                                break;
1976                        sad_interleave[sad_way] = pkg;
1977                        edac_dbg(0, "SAD interleave #%d: %d\n",
1978                                 sad_way, sad_interleave[sad_way]);
1979                }
1980                edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1981                         pvt->sbridge_dev->mc,
1982                         n_sads,
1983                         addr,
1984                         limit,
1985                         sad_way + 7,
1986                         !interleave_mode ? "" : "XOR[18:16]");
1987                if (interleave_mode)
1988                        idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1989                else
1990                        idx = (addr >> 6) & 7;
1991                switch (sad_way) {
1992                case 1:
1993                        idx = 0;
1994                        break;
1995                case 2:
1996                        idx = idx & 1;
1997                        break;
1998                case 4:
1999                        idx = idx & 3;
2000                        break;
2001                case 8:
2002                        break;
2003                default:
2004                        sprintf(msg, "Can't discover socket interleave");
2005                        return -EINVAL;
2006                }
2007                *socket = sad_interleave[idx];
2008                edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2009                         idx, sad_way, *socket);
2010        } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2011                int bits, a7mode = A7MODE(dram_rule);
2012
2013                if (a7mode) {
2014                        /* A7 mode swaps P9 with P6 */
2015                        bits = GET_BITFIELD(addr, 7, 8) << 1;
2016                        bits |= GET_BITFIELD(addr, 9, 9);
2017                } else
2018                        bits = GET_BITFIELD(addr, 6, 8);
2019
2020                if (interleave_mode == 0) {
2021                        /* interleave mode will XOR {8,7,6} with {18,17,16} */
2022                        idx = GET_BITFIELD(addr, 16, 18);
2023                        idx ^= bits;
2024                } else
2025                        idx = bits;
2026
2027                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2028                *socket = sad_pkg_socket(pkg);
2029                sad_ha = sad_pkg_ha(pkg);
2030
2031                if (a7mode) {
2032                        /* MCChanShiftUpEnable */
2033                        pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2034                        shiftup = GET_BITFIELD(reg, 22, 22);
2035                }
2036
2037                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2038                         idx, *socket, sad_ha, shiftup);
2039        } else {
2040                /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2041                idx = (addr >> 6) & 7;
2042                pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2043                *socket = sad_pkg_socket(pkg);
2044                sad_ha = sad_pkg_ha(pkg);
2045                edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2046                         idx, *socket, sad_ha);
2047        }
2048
2049        *ha = sad_ha;
2050
2051        /*
2052         * Move to the proper node structure, in order to access the
2053         * right PCI registers
2054         */
2055        new_mci = get_mci_for_node_id(*socket, sad_ha);
2056        if (!new_mci) {
2057                sprintf(msg, "Struct for socket #%u wasn't initialized",
2058                        *socket);
2059                return -EINVAL;
2060        }
2061        mci = new_mci;
2062        pvt = mci->pvt_info;
2063
2064        /*
2065         * Step 2) Get memory channel
2066         */
2067        prv = 0;
2068        pci_ha = pvt->pci_ha;
2069        for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2070                pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2071                limit = TAD_LIMIT(reg);
2072                if (limit <= prv) {
2073                        sprintf(msg, "Can't discover the memory channel");
2074                        return -EINVAL;
2075                }
2076                if  (addr <= limit)
2077                        break;
2078                prv = limit;
2079        }
2080        if (n_tads == MAX_TAD) {
2081                sprintf(msg, "Can't discover the memory channel");
2082                return -EINVAL;
2083        }
2084
2085        ch_way = TAD_CH(reg) + 1;
2086        sck_way = TAD_SOCK(reg);
2087
2088        if (ch_way == 3)
2089                idx = addr >> 6;
2090        else {
2091                idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2092                if (pvt->is_chan_hash)
2093                        idx = haswell_chan_hash(idx, addr);
2094        }
2095        idx = idx % ch_way;
2096
2097        /*
2098         * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2099         */
2100        switch (idx) {
2101        case 0:
2102                base_ch = TAD_TGT0(reg);
2103                break;
2104        case 1:
2105                base_ch = TAD_TGT1(reg);
2106                break;
2107        case 2:
2108                base_ch = TAD_TGT2(reg);
2109                break;
2110        case 3:
2111                base_ch = TAD_TGT3(reg);
2112                break;
2113        default:
2114                sprintf(msg, "Can't discover the TAD target");
2115                return -EINVAL;
2116        }
2117        *channel_mask = 1 << base_ch;
2118
2119        pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2120
2121        if (pvt->mirror_mode == FULL_MIRRORING ||
2122            (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2123                *channel_mask |= 1 << ((base_ch + 2) % 4);
2124                switch(ch_way) {
2125                case 2:
2126                case 4:
2127                        sck_xch = (1 << sck_way) * (ch_way >> 1);
2128                        break;
2129                default:
2130                        sprintf(msg, "Invalid mirror set. Can't decode addr");
2131                        return -EINVAL;
2132                }
2133
2134                pvt->is_cur_addr_mirrored = true;
2135        } else {
2136                sck_xch = (1 << sck_way) * ch_way;
2137                pvt->is_cur_addr_mirrored = false;
2138        }
2139
2140        if (pvt->is_lockstep)
2141                *channel_mask |= 1 << ((base_ch + 1) % 4);
2142
2143        offset = TAD_OFFSET(tad_offset);
2144
2145        edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2146                 n_tads,
2147                 addr,
2148                 limit,
2149                 sck_way,
2150                 ch_way,
2151                 offset,
2152                 idx,
2153                 base_ch,
2154                 *channel_mask);
2155
2156        /* Calculate channel address */
2157        /* Remove the TAD offset */
2158
2159        if (offset > addr) {
2160                sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2161                        offset, addr);
2162                return -EINVAL;
2163        }
2164
2165        ch_addr = addr - offset;
2166        ch_addr >>= (6 + shiftup);
2167        ch_addr /= sck_xch;
2168        ch_addr <<= (6 + shiftup);
2169        ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2170
2171        /*
2172         * Step 3) Decode rank
2173         */
2174        for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2175                pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2176
2177                if (!IS_RIR_VALID(reg))
2178                        continue;
2179
2180                limit = pvt->info.rir_limit(reg);
2181                gb = div_u64_rem(limit >> 20, 1024, &mb);
2182                edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2183                         n_rir,
2184                         gb, (mb*1000)/1024,
2185                         limit,
2186                         1 << RIR_WAY(reg));
2187                if  (ch_addr <= limit)
2188                        break;
2189        }
2190        if (n_rir == MAX_RIR_RANGES) {
2191                sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2192                        ch_addr);
2193                return -EINVAL;
2194        }
2195        rir_way = RIR_WAY(reg);
2196
2197        if (pvt->is_close_pg)
2198                idx = (ch_addr >> 6);
2199        else
2200                idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2201        idx %= 1 << rir_way;
2202
2203        pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2204        *rank = RIR_RNK_TGT(pvt->info.type, reg);
2205
2206        edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2207                 n_rir,
2208                 ch_addr,
2209                 limit,
2210                 rir_way,
2211                 idx);
2212
2213        return 0;
2214}
2215
2216/****************************************************************************
2217        Device initialization routines: put/get, init/exit
2218 ****************************************************************************/
2219
2220/*
2221 *      sbridge_put_all_devices 'put' all the devices that we have
2222 *                              reserved via 'get'
2223 */
2224static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2225{
2226        int i;
2227
2228        edac_dbg(0, "\n");
2229        for (i = 0; i < sbridge_dev->n_devs; i++) {
2230                struct pci_dev *pdev = sbridge_dev->pdev[i];
2231                if (!pdev)
2232                        continue;
2233                edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2234                         pdev->bus->number,
2235                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2236                pci_dev_put(pdev);
2237        }
2238}
2239
2240static void sbridge_put_all_devices(void)
2241{
2242        struct sbridge_dev *sbridge_dev, *tmp;
2243
2244        list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2245                sbridge_put_devices(sbridge_dev);
2246                free_sbridge_dev(sbridge_dev);
2247        }
2248}
2249
2250static int sbridge_get_onedevice(struct pci_dev **prev,
2251                                 u8 *num_mc,
2252                                 const struct pci_id_table *table,
2253                                 const unsigned devno,
2254                                 const int multi_bus)
2255{
2256        struct sbridge_dev *sbridge_dev = NULL;
2257        const struct pci_id_descr *dev_descr = &table->descr[devno];
2258        struct pci_dev *pdev = NULL;
2259        u8 bus = 0;
2260        int i = 0;
2261
2262        sbridge_printk(KERN_DEBUG,
2263                "Seeking for: PCI ID %04x:%04x\n",
2264                PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2265
2266        pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2267                              dev_descr->dev_id, *prev);
2268
2269        if (!pdev) {
2270                if (*prev) {
2271                        *prev = pdev;
2272                        return 0;
2273                }
2274
2275                if (dev_descr->optional)
2276                        return 0;
2277
2278                /* if the HA wasn't found */
2279                if (devno == 0)
2280                        return -ENODEV;
2281
2282                sbridge_printk(KERN_INFO,
2283                        "Device not found: %04x:%04x\n",
2284                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2285
2286                /* End of list, leave */
2287                return -ENODEV;
2288        }
2289        bus = pdev->bus->number;
2290
2291next_imc:
2292        sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2293        if (!sbridge_dev) {
2294
2295                if (dev_descr->dom == SOCK)
2296                        goto out_imc;
2297
2298                sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2299                if (!sbridge_dev) {
2300                        pci_dev_put(pdev);
2301                        return -ENOMEM;
2302                }
2303                (*num_mc)++;
2304        }
2305
2306        if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2307                sbridge_printk(KERN_ERR,
2308                        "Duplicated device for %04x:%04x\n",
2309                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2310                pci_dev_put(pdev);
2311                return -ENODEV;
2312        }
2313
2314        sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2315
2316        /* pdev belongs to more than one IMC, do extra gets */
2317        if (++i > 1)
2318                pci_dev_get(pdev);
2319
2320        if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2321                goto next_imc;
2322
2323out_imc:
2324        /* Be sure that the device is enabled */
2325        if (unlikely(pci_enable_device(pdev) < 0)) {
2326                sbridge_printk(KERN_ERR,
2327                        "Couldn't enable %04x:%04x\n",
2328                        PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2329                return -ENODEV;
2330        }
2331
2332        edac_dbg(0, "Detected %04x:%04x\n",
2333                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2334
2335        /*
2336         * As stated on drivers/pci/search.c, the reference count for
2337         * @from is always decremented if it is not %NULL. So, as we need
2338         * to get all devices up to null, we need to do a get for the device
2339         */
2340        pci_dev_get(pdev);
2341
2342        *prev = pdev;
2343
2344        return 0;
2345}
2346
2347/*
2348 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2349 *                           devices we want to reference for this driver.
2350 * @num_mc: pointer to the memory controllers count, to be incremented in case
2351 *          of success.
2352 * @table: model specific table
2353 *
2354 * returns 0 in case of success or error code
2355 */
2356static int sbridge_get_all_devices(u8 *num_mc,
2357                                        const struct pci_id_table *table)
2358{
2359        int i, rc;
2360        struct pci_dev *pdev = NULL;
2361        int allow_dups = 0;
2362        int multi_bus = 0;
2363
2364        if (table->type == KNIGHTS_LANDING)
2365                allow_dups = multi_bus = 1;
2366        while (table && table->descr) {
2367                for (i = 0; i < table->n_devs_per_sock; i++) {
2368                        if (!allow_dups || i == 0 ||
2369                                        table->descr[i].dev_id !=
2370                                                table->descr[i-1].dev_id) {
2371                                pdev = NULL;
2372                        }
2373                        do {
2374                                rc = sbridge_get_onedevice(&pdev, num_mc,
2375                                                           table, i, multi_bus);
2376                                if (rc < 0) {
2377                                        if (i == 0) {
2378                                                i = table->n_devs_per_sock;
2379                                                break;
2380                                        }
2381                                        sbridge_put_all_devices();
2382                                        return -ENODEV;
2383                                }
2384                        } while (pdev && !allow_dups);
2385                }
2386                table++;
2387        }
2388
2389        return 0;
2390}
2391
2392/*
2393 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2394 * the format: XXXa. So we can convert from a device to the corresponding
2395 * channel like this
2396 */
2397#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2398
2399static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2400                                 struct sbridge_dev *sbridge_dev)
2401{
2402        struct sbridge_pvt *pvt = mci->pvt_info;
2403        struct pci_dev *pdev;
2404        u8 saw_chan_mask = 0;
2405        int i;
2406
2407        for (i = 0; i < sbridge_dev->n_devs; i++) {
2408                pdev = sbridge_dev->pdev[i];
2409                if (!pdev)
2410                        continue;
2411
2412                switch (pdev->device) {
2413                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2414                        pvt->pci_sad0 = pdev;
2415                        break;
2416                case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2417                        pvt->pci_sad1 = pdev;
2418                        break;
2419                case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2420                        pvt->pci_br0 = pdev;
2421                        break;
2422                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2423                        pvt->pci_ha = pdev;
2424                        break;
2425                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2426                        pvt->pci_ta = pdev;
2427                        break;
2428                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2429                        pvt->pci_ras = pdev;
2430                        break;
2431                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2432                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2433                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2434                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2435                {
2436                        int id = TAD_DEV_TO_CHAN(pdev->device);
2437                        pvt->pci_tad[id] = pdev;
2438                        saw_chan_mask |= 1 << id;
2439                }
2440                        break;
2441                case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2442                        pvt->pci_ddrio = pdev;
2443                        break;
2444                default:
2445                        goto error;
2446                }
2447
2448                edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2449                         pdev->vendor, pdev->device,
2450                         sbridge_dev->bus,
2451                         pdev);
2452        }
2453
2454        /* Check if everything were registered */
2455        if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2456            !pvt->pci_ras || !pvt->pci_ta)
2457                goto enodev;
2458
2459        if (saw_chan_mask != 0x0f)
2460                goto enodev;
2461        return 0;
2462
2463enodev:
2464        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2465        return -ENODEV;
2466
2467error:
2468        sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2469                       PCI_VENDOR_ID_INTEL, pdev->device);
2470        return -EINVAL;
2471}
2472
2473static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2474                                 struct sbridge_dev *sbridge_dev)
2475{
2476        struct sbridge_pvt *pvt = mci->pvt_info;
2477        struct pci_dev *pdev;
2478        u8 saw_chan_mask = 0;
2479        int i;
2480
2481        for (i = 0; i < sbridge_dev->n_devs; i++) {
2482                pdev = sbridge_dev->pdev[i];
2483                if (!pdev)
2484                        continue;
2485
2486                switch (pdev->device) {
2487                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2488                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2489                        pvt->pci_ha = pdev;
2490                        break;
2491                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2492                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2493                        pvt->pci_ta = pdev;
2494                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2495                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2496                        pvt->pci_ras = pdev;
2497                        break;
2498                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2499                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2500                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2501                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2502                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2503                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2504                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2505                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2506                {
2507                        int id = TAD_DEV_TO_CHAN(pdev->device);
2508                        pvt->pci_tad[id] = pdev;
2509                        saw_chan_mask |= 1 << id;
2510                }
2511                        break;
2512                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2513                        pvt->pci_ddrio = pdev;
2514                        break;
2515                case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2516                        pvt->pci_ddrio = pdev;
2517                        break;
2518                case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2519                        pvt->pci_sad0 = pdev;
2520                        break;
2521                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2522                        pvt->pci_br0 = pdev;
2523                        break;
2524                case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2525                        pvt->pci_br1 = pdev;
2526                        break;
2527                default:
2528                        goto error;
2529                }
2530
2531                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2532                         sbridge_dev->bus,
2533                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2534                         pdev);
2535        }
2536
2537        /* Check if everything were registered */
2538        if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2539            !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2540                goto enodev;
2541
2542        if (saw_chan_mask != 0x0f && /* -EN/-EX */
2543            saw_chan_mask != 0x03)   /* -EP */
2544                goto enodev;
2545        return 0;
2546
2547enodev:
2548        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2549        return -ENODEV;
2550
2551error:
2552        sbridge_printk(KERN_ERR,
2553                       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2554                        pdev->device);
2555        return -EINVAL;
2556}
2557
2558static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2559                                 struct sbridge_dev *sbridge_dev)
2560{
2561        struct sbridge_pvt *pvt = mci->pvt_info;
2562        struct pci_dev *pdev;
2563        u8 saw_chan_mask = 0;
2564        int i;
2565
2566        /* there's only one device per system; not tied to any bus */
2567        if (pvt->info.pci_vtd == NULL)
2568                /* result will be checked later */
2569                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2570                                                   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2571                                                   NULL);
2572
2573        for (i = 0; i < sbridge_dev->n_devs; i++) {
2574                pdev = sbridge_dev->pdev[i];
2575                if (!pdev)
2576                        continue;
2577
2578                switch (pdev->device) {
2579                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2580                        pvt->pci_sad0 = pdev;
2581                        break;
2582                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2583                        pvt->pci_sad1 = pdev;
2584                        break;
2585                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2586                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2587                        pvt->pci_ha = pdev;
2588                        break;
2589                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2590                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2591                        pvt->pci_ta = pdev;
2592                        break;
2593                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2594                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2595                        pvt->pci_ras = pdev;
2596                        break;
2597                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2598                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2599                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2600                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2601                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2602                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2603                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2604                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2605                {
2606                        int id = TAD_DEV_TO_CHAN(pdev->device);
2607                        pvt->pci_tad[id] = pdev;
2608                        saw_chan_mask |= 1 << id;
2609                }
2610                        break;
2611                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2612                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2613                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2614                case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2615                        if (!pvt->pci_ddrio)
2616                                pvt->pci_ddrio = pdev;
2617                        break;
2618                default:
2619                        break;
2620                }
2621
2622                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2623                         sbridge_dev->bus,
2624                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2625                         pdev);
2626        }
2627
2628        /* Check if everything were registered */
2629        if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2630            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2631                goto enodev;
2632
2633        if (saw_chan_mask != 0x0f && /* -EN/-EX */
2634            saw_chan_mask != 0x03)   /* -EP */
2635                goto enodev;
2636        return 0;
2637
2638enodev:
2639        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2640        return -ENODEV;
2641}
2642
2643static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2644                                 struct sbridge_dev *sbridge_dev)
2645{
2646        struct sbridge_pvt *pvt = mci->pvt_info;
2647        struct pci_dev *pdev;
2648        u8 saw_chan_mask = 0;
2649        int i;
2650
2651        /* there's only one device per system; not tied to any bus */
2652        if (pvt->info.pci_vtd == NULL)
2653                /* result will be checked later */
2654                pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2655                                                   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2656                                                   NULL);
2657
2658        for (i = 0; i < sbridge_dev->n_devs; i++) {
2659                pdev = sbridge_dev->pdev[i];
2660                if (!pdev)
2661                        continue;
2662
2663                switch (pdev->device) {
2664                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2665                        pvt->pci_sad0 = pdev;
2666                        break;
2667                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2668                        pvt->pci_sad1 = pdev;
2669                        break;
2670                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2671                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2672                        pvt->pci_ha = pdev;
2673                        break;
2674                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2675                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2676                        pvt->pci_ta = pdev;
2677                        break;
2678                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2679                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2680                        pvt->pci_ras = pdev;
2681                        break;
2682                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2683                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2684                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2685                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2686                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2687                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2688                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2689                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2690                {
2691                        int id = TAD_DEV_TO_CHAN(pdev->device);
2692                        pvt->pci_tad[id] = pdev;
2693                        saw_chan_mask |= 1 << id;
2694                }
2695                        break;
2696                case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2697                        pvt->pci_ddrio = pdev;
2698                        break;
2699                default:
2700                        break;
2701                }
2702
2703                edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2704                         sbridge_dev->bus,
2705                         PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2706                         pdev);
2707        }
2708
2709        /* Check if everything were registered */
2710        if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2711            !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2712                goto enodev;
2713
2714        if (saw_chan_mask != 0x0f && /* -EN/-EX */
2715            saw_chan_mask != 0x03)   /* -EP */
2716                goto enodev;
2717        return 0;
2718
2719enodev:
2720        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2721        return -ENODEV;
2722}
2723
2724static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2725                        struct sbridge_dev *sbridge_dev)
2726{
2727        struct sbridge_pvt *pvt = mci->pvt_info;
2728        struct pci_dev *pdev;
2729        int dev, func;
2730
2731        int i;
2732        int devidx;
2733
2734        for (i = 0; i < sbridge_dev->n_devs; i++) {
2735                pdev = sbridge_dev->pdev[i];
2736                if (!pdev)
2737                        continue;
2738
2739                /* Extract PCI device and function. */
2740                dev = (pdev->devfn >> 3) & 0x1f;
2741                func = pdev->devfn & 0x7;
2742
2743                switch (pdev->device) {
2744                case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2745                        if (dev == 8)
2746                                pvt->knl.pci_mc0 = pdev;
2747                        else if (dev == 9)
2748                                pvt->knl.pci_mc1 = pdev;
2749                        else {
2750                                sbridge_printk(KERN_ERR,
2751                                        "Memory controller in unexpected place! (dev %d, fn %d)\n",
2752                                        dev, func);
2753                                continue;
2754                        }
2755                        break;
2756
2757                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2758                        pvt->pci_sad0 = pdev;
2759                        break;
2760
2761                case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2762                        pvt->pci_sad1 = pdev;
2763                        break;
2764
2765                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2766                        /* There are one of these per tile, and range from
2767                         * 1.14.0 to 1.18.5.
2768                         */
2769                        devidx = ((dev-14)*8)+func;
2770
2771                        if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2772                                sbridge_printk(KERN_ERR,
2773                                        "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2774                                        dev, func);
2775                                continue;
2776                        }
2777
2778                        WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2779
2780                        pvt->knl.pci_cha[devidx] = pdev;
2781                        break;
2782
2783                case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2784                        devidx = -1;
2785
2786                        /*
2787                         *  MC0 channels 0-2 are device 9 function 2-4,
2788                         *  MC1 channels 3-5 are device 8 function 2-4.
2789                         */
2790
2791                        if (dev == 9)
2792                                devidx = func-2;
2793                        else if (dev == 8)
2794                                devidx = 3 + (func-2);
2795
2796                        if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2797                                sbridge_printk(KERN_ERR,
2798                                        "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2799                                        dev, func);
2800                                continue;
2801                        }
2802
2803                        WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2804                        pvt->knl.pci_channel[devidx] = pdev;
2805                        break;
2806
2807                case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2808                        pvt->knl.pci_mc_info = pdev;
2809                        break;
2810
2811                case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2812                        pvt->pci_ta = pdev;
2813                        break;
2814
2815                default:
2816                        sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2817                                pdev->device);
2818                        break;
2819                }
2820        }
2821
2822        if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2823            !pvt->pci_sad0     || !pvt->pci_sad1    ||
2824            !pvt->pci_ta) {
2825                goto enodev;
2826        }
2827
2828        for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2829                if (!pvt->knl.pci_channel[i]) {
2830                        sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2831                        goto enodev;
2832                }
2833        }
2834
2835        for (i = 0; i < KNL_MAX_CHAS; i++) {
2836                if (!pvt->knl.pci_cha[i]) {
2837                        sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2838                        goto enodev;
2839                }
2840        }
2841
2842        return 0;
2843
2844enodev:
2845        sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2846        return -ENODEV;
2847}
2848
2849/****************************************************************************
2850                        Error check routines
2851 ****************************************************************************/
2852
2853/*
2854 * While Sandy Bridge has error count registers, SMI BIOS read values from
2855 * and resets the counters. So, they are not reliable for the OS to read
2856 * from them. So, we have no option but to just trust on whatever MCE is
2857 * telling us about the errors.
2858 */
2859static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2860                                    const struct mce *m)
2861{
2862        struct mem_ctl_info *new_mci;
2863        struct sbridge_pvt *pvt = mci->pvt_info;
2864        enum hw_event_mc_err_type tp_event;
2865        char *type, *optype, msg[256];
2866        bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2867        bool overflow = GET_BITFIELD(m->status, 62, 62);
2868        bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2869        bool recoverable;
2870        u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2871        u32 mscod = GET_BITFIELD(m->status, 16, 31);
2872        u32 errcode = GET_BITFIELD(m->status, 0, 15);
2873        u32 channel = GET_BITFIELD(m->status, 0, 3);
2874        u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2875        long channel_mask, first_channel;
2876        u8  rank, socket, ha;
2877        int rc, dimm;
2878        char *area_type = NULL;
2879
2880        if (pvt->info.type != SANDY_BRIDGE)
2881                recoverable = true;
2882        else
2883                recoverable = GET_BITFIELD(m->status, 56, 56);
2884
2885        if (uncorrected_error) {
2886                if (ripv) {
2887                        type = "FATAL";
2888                        tp_event = HW_EVENT_ERR_FATAL;
2889                } else {
2890                        type = "NON_FATAL";
2891                        tp_event = HW_EVENT_ERR_UNCORRECTED;
2892                }
2893        } else {
2894                type = "CORRECTED";
2895                tp_event = HW_EVENT_ERR_CORRECTED;
2896        }
2897
2898        /*
2899         * According with Table 15-9 of the Intel Architecture spec vol 3A,
2900         * memory errors should fit in this mask:
2901         *      000f 0000 1mmm cccc (binary)
2902         * where:
2903         *      f = Correction Report Filtering Bit. If 1, subsequent errors
2904         *          won't be shown
2905         *      mmm = error type
2906         *      cccc = channel
2907         * If the mask doesn't match, report an error to the parsing logic
2908         */
2909        if (! ((errcode & 0xef80) == 0x80)) {
2910                optype = "Can't parse: it is not a mem";
2911        } else {
2912                switch (optypenum) {
2913                case 0:
2914                        optype = "generic undef request error";
2915                        break;
2916                case 1:
2917                        optype = "memory read error";
2918                        break;
2919                case 2:
2920                        optype = "memory write error";
2921                        break;
2922                case 3:
2923                        optype = "addr/cmd error";
2924                        break;
2925                case 4:
2926                        optype = "memory scrubbing error";
2927                        break;
2928                default:
2929                        optype = "reserved";
2930                        break;
2931                }
2932        }
2933
2934        /* Only decode errors with an valid address (ADDRV) */
2935        if (!GET_BITFIELD(m->status, 58, 58))
2936                return;
2937
2938        if (pvt->info.type == KNIGHTS_LANDING) {
2939                if (channel == 14) {
2940                        edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2941                                overflow ? " OVERFLOW" : "",
2942                                (uncorrected_error && recoverable)
2943                                ? " recoverable" : "",
2944                                mscod, errcode,
2945                                m->bank);
2946                } else {
2947                        char A = *("A");
2948
2949                        /*
2950                         * Reported channel is in range 0-2, so we can't map it
2951                         * back to mc. To figure out mc we check machine check
2952                         * bank register that reported this error.
2953                         * bank15 means mc0 and bank16 means mc1.
2954                         */
2955                        channel = knl_channel_remap(m->bank == 16, channel);
2956                        channel_mask = 1 << channel;
2957
2958                        snprintf(msg, sizeof(msg),
2959                                "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2960                                overflow ? " OVERFLOW" : "",
2961                                (uncorrected_error && recoverable)
2962                                ? " recoverable" : " ",
2963                                mscod, errcode, channel, A + channel);
2964                        edac_mc_handle_error(tp_event, mci, core_err_cnt,
2965                                m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2966                                channel, 0, -1,
2967                                optype, msg);
2968                }
2969                return;
2970        } else {
2971                rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2972                                &channel_mask, &rank, &area_type, msg);
2973        }
2974
2975        if (rc < 0)
2976                goto err_parsing;
2977        new_mci = get_mci_for_node_id(socket, ha);
2978        if (!new_mci) {
2979                strcpy(msg, "Error: socket got corrupted!");
2980                goto err_parsing;
2981        }
2982        mci = new_mci;
2983        pvt = mci->pvt_info;
2984
2985        first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2986
2987        if (rank < 4)
2988                dimm = 0;
2989        else if (rank < 8)
2990                dimm = 1;
2991        else
2992                dimm = 2;
2993
2994
2995        /*
2996         * FIXME: On some memory configurations (mirror, lockstep), the
2997         * Memory Controller can't point the error to a single DIMM. The
2998         * EDAC core should be handling the channel mask, in order to point
2999         * to the group of dimm's where the error may be happening.
3000         */
3001        if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3002                channel = first_channel;
3003
3004        snprintf(msg, sizeof(msg),
3005                 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3006                 overflow ? " OVERFLOW" : "",
3007                 (uncorrected_error && recoverable) ? " recoverable" : "",
3008                 area_type,
3009                 mscod, errcode,
3010                 socket, ha,
3011                 channel_mask,
3012                 rank);
3013
3014        edac_dbg(0, "%s\n", msg);
3015
3016        /* FIXME: need support for channel mask */
3017
3018        if (channel == CHANNEL_UNSPECIFIED)
3019                channel = -1;
3020
3021        /* Call the helper to output message */
3022        edac_mc_handle_error(tp_event, mci, core_err_cnt,
3023                             m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3024                             channel, dimm, -1,
3025                             optype, msg);
3026        return;
3027err_parsing:
3028        edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3029                             -1, -1, -1,
3030                             msg, "");
3031
3032}
3033
3034/*
3035 * Check that logging is enabled and that this is the right type
3036 * of error for us to handle.
3037 */
3038static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3039                                   void *data)
3040{
3041        struct mce *mce = (struct mce *)data;
3042        struct mem_ctl_info *mci;
3043        struct sbridge_pvt *pvt;
3044        char *type;
3045
3046        if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3047                return NOTIFY_DONE;
3048
3049        mci = get_mci_for_node_id(mce->socketid, IMC0);
3050        if (!mci)
3051                return NOTIFY_DONE;
3052        pvt = mci->pvt_info;
3053
3054        /*
3055         * Just let mcelog handle it if the error is
3056         * outside the memory controller. A memory error
3057         * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3058         * bit 12 has an special meaning.
3059         */
3060        if ((mce->status & 0xefff) >> 7 != 1)
3061                return NOTIFY_DONE;
3062
3063        if (mce->mcgstatus & MCG_STATUS_MCIP)
3064                type = "Exception";
3065        else
3066                type = "Event";
3067
3068        sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3069
3070        sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3071                          "Bank %d: %016Lx\n", mce->extcpu, type,
3072                          mce->mcgstatus, mce->bank, mce->status);
3073        sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3074        sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3075        sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3076
3077        sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3078                          "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3079                          mce->time, mce->socketid, mce->apicid);
3080
3081        sbridge_mce_output_error(mci, mce);
3082
3083        /* Advice mcelog that the error were handled */
3084        return NOTIFY_STOP;
3085}
3086
3087static struct notifier_block sbridge_mce_dec = {
3088        .notifier_call  = sbridge_mce_check_error,
3089        .priority       = MCE_PRIO_EDAC,
3090};
3091
3092/****************************************************************************
3093                        EDAC register/unregister logic
3094 ****************************************************************************/
3095
3096static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3097{
3098        struct mem_ctl_info *mci = sbridge_dev->mci;
3099        struct sbridge_pvt *pvt;
3100
3101        if (unlikely(!mci || !mci->pvt_info)) {
3102                edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3103
3104                sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3105                return;
3106        }
3107
3108        pvt = mci->pvt_info;
3109
3110        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3111                 mci, &sbridge_dev->pdev[0]->dev);
3112
3113        /* Remove MC sysfs nodes */
3114        edac_mc_del_mc(mci->pdev);
3115
3116        edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3117        kfree(mci->ctl_name);
3118        edac_mc_free(mci);
3119        sbridge_dev->mci = NULL;
3120}
3121
3122static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3123{
3124        struct mem_ctl_info *mci;
3125        struct edac_mc_layer layers[2];
3126        struct sbridge_pvt *pvt;
3127        struct pci_dev *pdev = sbridge_dev->pdev[0];
3128        int rc;
3129
3130        /* allocate a new MC control structure */
3131        layers[0].type = EDAC_MC_LAYER_CHANNEL;
3132        layers[0].size = type == KNIGHTS_LANDING ?
3133                KNL_MAX_CHANNELS : NUM_CHANNELS;
3134        layers[0].is_virt_csrow = false;
3135        layers[1].type = EDAC_MC_LAYER_SLOT;
3136        layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3137        layers[1].is_virt_csrow = true;
3138        mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3139                            sizeof(*pvt));
3140
3141        if (unlikely(!mci))
3142                return -ENOMEM;
3143
3144        edac_dbg(0, "MC: mci = %p, dev = %p\n",
3145                 mci, &pdev->dev);
3146
3147        pvt = mci->pvt_info;
3148        memset(pvt, 0, sizeof(*pvt));
3149
3150        /* Associate sbridge_dev and mci for future usage */
3151        pvt->sbridge_dev = sbridge_dev;
3152        sbridge_dev->mci = mci;
3153
3154        mci->mtype_cap = type == KNIGHTS_LANDING ?
3155                MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3156        mci->edac_ctl_cap = EDAC_FLAG_NONE;
3157        mci->edac_cap = EDAC_FLAG_NONE;
3158        mci->mod_name = "sb_edac.c";
3159        mci->dev_name = pci_name(pdev);
3160        mci->ctl_page_to_phys = NULL;
3161
3162        pvt->info.type = type;
3163        switch (type) {
3164        case IVY_BRIDGE:
3165                pvt->info.rankcfgr = IB_RANK_CFG_A;
3166                pvt->info.get_tolm = ibridge_get_tolm;
3167                pvt->info.get_tohm = ibridge_get_tohm;
3168                pvt->info.dram_rule = ibridge_dram_rule;
3169                pvt->info.get_memory_type = get_memory_type;
3170                pvt->info.get_node_id = get_node_id;
3171                pvt->info.rir_limit = rir_limit;
3172                pvt->info.sad_limit = sad_limit;
3173                pvt->info.interleave_mode = interleave_mode;
3174                pvt->info.dram_attr = dram_attr;
3175                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3176                pvt->info.interleave_list = ibridge_interleave_list;
3177                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3178                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3179                pvt->info.get_width = ibridge_get_width;
3180
3181                /* Store pci devices at mci for faster access */
3182                rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3183                if (unlikely(rc < 0))
3184                        goto fail0;
3185                get_source_id(mci);
3186                mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3187                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3188                break;
3189        case SANDY_BRIDGE:
3190                pvt->info.rankcfgr = SB_RANK_CFG_A;
3191                pvt->info.get_tolm = sbridge_get_tolm;
3192                pvt->info.get_tohm = sbridge_get_tohm;
3193                pvt->info.dram_rule = sbridge_dram_rule;
3194                pvt->info.get_memory_type = get_memory_type;
3195                pvt->info.get_node_id = get_node_id;
3196                pvt->info.rir_limit = rir_limit;
3197                pvt->info.sad_limit = sad_limit;
3198                pvt->info.interleave_mode = interleave_mode;
3199                pvt->info.dram_attr = dram_attr;
3200                pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3201                pvt->info.interleave_list = sbridge_interleave_list;
3202                pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3203                pvt->info.interleave_pkg = sbridge_interleave_pkg;
3204                pvt->info.get_width = sbridge_get_width;
3205
3206                /* Store pci devices at mci for faster access */
3207                rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3208                if (unlikely(rc < 0))
3209                        goto fail0;
3210                get_source_id(mci);
3211                mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3212                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3213                break;
3214        case HASWELL:
3215                /* rankcfgr isn't used */
3216                pvt->info.get_tolm = haswell_get_tolm;
3217                pvt->info.get_tohm = haswell_get_tohm;
3218                pvt->info.dram_rule = ibridge_dram_rule;
3219                pvt->info.get_memory_type = haswell_get_memory_type;
3220                pvt->info.get_node_id = haswell_get_node_id;
3221                pvt->info.rir_limit = haswell_rir_limit;
3222                pvt->info.sad_limit = sad_limit;
3223                pvt->info.interleave_mode = interleave_mode;
3224                pvt->info.dram_attr = dram_attr;
3225                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3226                pvt->info.interleave_list = ibridge_interleave_list;
3227                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3228                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3229                pvt->info.get_width = ibridge_get_width;
3230
3231                /* Store pci devices at mci for faster access */
3232                rc = haswell_mci_bind_devs(mci, sbridge_dev);
3233                if (unlikely(rc < 0))
3234                        goto fail0;
3235                get_source_id(mci);
3236                mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3237                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3238                break;
3239        case BROADWELL:
3240                /* rankcfgr isn't used */
3241                pvt->info.get_tolm = haswell_get_tolm;
3242                pvt->info.get_tohm = haswell_get_tohm;
3243                pvt->info.dram_rule = ibridge_dram_rule;
3244                pvt->info.get_memory_type = haswell_get_memory_type;
3245                pvt->info.get_node_id = haswell_get_node_id;
3246                pvt->info.rir_limit = haswell_rir_limit;
3247                pvt->info.sad_limit = sad_limit;
3248                pvt->info.interleave_mode = interleave_mode;
3249                pvt->info.dram_attr = dram_attr;
3250                pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3251                pvt->info.interleave_list = ibridge_interleave_list;
3252                pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3253                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3254                pvt->info.get_width = broadwell_get_width;
3255
3256                /* Store pci devices at mci for faster access */
3257                rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3258                if (unlikely(rc < 0))
3259                        goto fail0;
3260                get_source_id(mci);
3261                mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3262                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3263                break;
3264        case KNIGHTS_LANDING:
3265                /* pvt->info.rankcfgr == ??? */
3266                pvt->info.get_tolm = knl_get_tolm;
3267                pvt->info.get_tohm = knl_get_tohm;
3268                pvt->info.dram_rule = knl_dram_rule;
3269                pvt->info.get_memory_type = knl_get_memory_type;
3270                pvt->info.get_node_id = knl_get_node_id;
3271                pvt->info.rir_limit = NULL;
3272                pvt->info.sad_limit = knl_sad_limit;
3273                pvt->info.interleave_mode = knl_interleave_mode;
3274                pvt->info.dram_attr = dram_attr_knl;
3275                pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3276                pvt->info.interleave_list = knl_interleave_list;
3277                pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3278                pvt->info.interleave_pkg = ibridge_interleave_pkg;
3279                pvt->info.get_width = knl_get_width;
3280
3281                rc = knl_mci_bind_devs(mci, sbridge_dev);
3282                if (unlikely(rc < 0))
3283                        goto fail0;
3284                get_source_id(mci);
3285                mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3286                        pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3287                break;
3288        }
3289
3290        /* Get dimm basic config and the memory layout */
3291        rc = get_dimm_config(mci);
3292        if (rc < 0) {
3293                edac_dbg(0, "MC: failed to get_dimm_config()\n");
3294                goto fail;
3295        }
3296        get_memory_layout(mci);
3297
3298        /* record ptr to the generic device */
3299        mci->pdev = &pdev->dev;
3300
3301        /* add this new MC control structure to EDAC's list of MCs */
3302        if (unlikely(edac_mc_add_mc(mci))) {
3303                edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3304                rc = -EINVAL;
3305                goto fail;
3306        }
3307
3308        return 0;
3309
3310fail:
3311        kfree(mci->ctl_name);
3312fail0:
3313        edac_mc_free(mci);
3314        sbridge_dev->mci = NULL;
3315        return rc;
3316}
3317
3318#define ICPU(model, table) \
3319        { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3320
3321static const struct x86_cpu_id sbridge_cpuids[] = {
3322        ICPU(INTEL_FAM6_SANDYBRIDGE_X,    pci_dev_descr_sbridge_table),
3323        ICPU(INTEL_FAM6_IVYBRIDGE_X,      pci_dev_descr_ibridge_table),
3324        ICPU(INTEL_FAM6_HASWELL_X,        pci_dev_descr_haswell_table),
3325        ICPU(INTEL_FAM6_BROADWELL_X,      pci_dev_descr_broadwell_table),
3326        ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3327        ICPU(INTEL_FAM6_XEON_PHI_KNL,     pci_dev_descr_knl_table),
3328        ICPU(INTEL_FAM6_XEON_PHI_KNM,     pci_dev_descr_knl_table),
3329        { }
3330};
3331MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3332
3333/*
3334 *      sbridge_probe   Get all devices and register memory controllers
3335 *                      present.
3336 *      return:
3337 *              0 for FOUND a device
3338 *              < 0 for error code
3339 */
3340
3341static int sbridge_probe(const struct x86_cpu_id *id)
3342{
3343        int rc = -ENODEV;
3344        u8 mc, num_mc = 0;
3345        struct sbridge_dev *sbridge_dev;
3346        struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3347
3348        /* get the pci devices we want to reserve for our use */
3349        rc = sbridge_get_all_devices(&num_mc, ptable);
3350
3351        if (unlikely(rc < 0)) {
3352                edac_dbg(0, "couldn't get all devices\n");
3353                goto fail0;
3354        }
3355
3356        mc = 0;
3357
3358        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3359                edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3360                         mc, mc + 1, num_mc);
3361
3362                sbridge_dev->mc = mc++;
3363                rc = sbridge_register_mci(sbridge_dev, ptable->type);
3364                if (unlikely(rc < 0))
3365                        goto fail1;
3366        }
3367
3368        sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3369
3370        return 0;
3371
3372fail1:
3373        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3374                sbridge_unregister_mci(sbridge_dev);
3375
3376        sbridge_put_all_devices();
3377fail0:
3378        return rc;
3379}
3380
3381/*
3382 *      sbridge_remove  cleanup
3383 *
3384 */
3385static void sbridge_remove(void)
3386{
3387        struct sbridge_dev *sbridge_dev;
3388
3389        edac_dbg(0, "\n");
3390
3391        list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3392                sbridge_unregister_mci(sbridge_dev);
3393
3394        /* Release PCI resources */
3395        sbridge_put_all_devices();
3396}
3397
3398/*
3399 *      sbridge_init            Module entry function
3400 *                      Try to initialize this module for its devices
3401 */
3402static int __init sbridge_init(void)
3403{
3404        const struct x86_cpu_id *id;
3405        int rc;
3406
3407        edac_dbg(2, "\n");
3408
3409        id = x86_match_cpu(sbridge_cpuids);
3410        if (!id)
3411                return -ENODEV;
3412
3413        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3414        opstate_init();
3415
3416        rc = sbridge_probe(id);
3417
3418        if (rc >= 0) {
3419                mce_register_decode_chain(&sbridge_mce_dec);
3420                if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3421                        sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3422                return 0;
3423        }
3424
3425        sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3426                      rc);
3427
3428        return rc;
3429}
3430
3431/*
3432 *      sbridge_exit()  Module exit function
3433 *                      Unregister the driver
3434 */
3435static void __exit sbridge_exit(void)
3436{
3437        edac_dbg(2, "\n");
3438        sbridge_remove();
3439        mce_unregister_decode_chain(&sbridge_mce_dec);
3440}
3441
3442module_init(sbridge_init);
3443module_exit(sbridge_exit);
3444
3445module_param(edac_op_state, int, 0444);
3446MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3447
3448MODULE_LICENSE("GPL");
3449MODULE_AUTHOR("Mauro Carvalho Chehab");
3450MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3451MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3452                   SBRIDGE_REVISION);
3453