linux/drivers/gpu/drm/i915/intel_ringbuffer.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _INTEL_RINGBUFFER_H_
   3#define _INTEL_RINGBUFFER_H_
   4
   5#include <linux/hashtable.h>
   6#include "i915_gem_batch_pool.h"
   7#include "i915_gem_request.h"
   8#include "i915_gem_timeline.h"
   9#include "i915_selftest.h"
  10
  11#define I915_CMD_HASH_ORDER 9
  12
  13/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  14 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  15 * to give some inclination as to some of the magic values used in the various
  16 * workarounds!
  17 */
  18#define CACHELINE_BYTES 64
  19#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  20
  21struct intel_hw_status_page {
  22        struct i915_vma *vma;
  23        u32 *page_addr;
  24        u32 ggtt_offset;
  25};
  26
  27#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  28#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  29
  30#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  31#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  32
  33#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
  34#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  35
  36#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  37#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  38
  39#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  40#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  41
  42#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  43#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  44
  45/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  46 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  47 */
  48#define gen8_semaphore_seqno_size sizeof(uint64_t)
  49#define GEN8_SEMAPHORE_OFFSET(__from, __to)                          \
  50        (((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
  51#define GEN8_SIGNAL_OFFSET(__ring, to)                       \
  52        (dev_priv->semaphore->node.start + \
  53         GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  54#define GEN8_WAIT_OFFSET(__ring, from)                       \
  55        (dev_priv->semaphore->node.start + \
  56         GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  57
  58enum intel_engine_hangcheck_action {
  59        ENGINE_IDLE = 0,
  60        ENGINE_WAIT,
  61        ENGINE_ACTIVE_SEQNO,
  62        ENGINE_ACTIVE_HEAD,
  63        ENGINE_ACTIVE_SUBUNITS,
  64        ENGINE_WAIT_KICK,
  65        ENGINE_DEAD,
  66};
  67
  68static inline const char *
  69hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  70{
  71        switch (a) {
  72        case ENGINE_IDLE:
  73                return "idle";
  74        case ENGINE_WAIT:
  75                return "wait";
  76        case ENGINE_ACTIVE_SEQNO:
  77                return "active seqno";
  78        case ENGINE_ACTIVE_HEAD:
  79                return "active head";
  80        case ENGINE_ACTIVE_SUBUNITS:
  81                return "active subunits";
  82        case ENGINE_WAIT_KICK:
  83                return "wait kick";
  84        case ENGINE_DEAD:
  85                return "dead";
  86        }
  87
  88        return "unknown";
  89}
  90
  91#define I915_MAX_SLICES 3
  92#define I915_MAX_SUBSLICES 3
  93
  94#define instdone_slice_mask(dev_priv__) \
  95        (INTEL_GEN(dev_priv__) == 7 ? \
  96         1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  97
  98#define instdone_subslice_mask(dev_priv__) \
  99        (INTEL_GEN(dev_priv__) == 7 ? \
 100         1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
 101
 102#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
 103        for ((slice__) = 0, (subslice__) = 0; \
 104             (slice__) < I915_MAX_SLICES; \
 105             (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
 106               (slice__) += ((subslice__) == 0)) \
 107                for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
 108                            (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
 109
 110struct intel_instdone {
 111        u32 instdone;
 112        /* The following exist only in the RCS engine */
 113        u32 slice_common;
 114        u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 115        u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 116};
 117
 118struct intel_engine_hangcheck {
 119        u64 acthd;
 120        u32 seqno;
 121        enum intel_engine_hangcheck_action action;
 122        unsigned long action_timestamp;
 123        int deadlock;
 124        struct intel_instdone instdone;
 125        struct drm_i915_gem_request *active_request;
 126        bool stalled;
 127};
 128
 129struct intel_ring {
 130        struct i915_vma *vma;
 131        void *vaddr;
 132
 133        struct list_head request_list;
 134
 135        u32 head;
 136        u32 tail;
 137        u32 emit;
 138
 139        u32 space;
 140        u32 size;
 141        u32 effective_size;
 142};
 143
 144struct i915_gem_context;
 145struct drm_i915_reg_table;
 146
 147/*
 148 * we use a single page to load ctx workarounds so all of these
 149 * values are referred in terms of dwords
 150 *
 151 * struct i915_wa_ctx_bb:
 152 *  offset: specifies batch starting position, also helpful in case
 153 *    if we want to have multiple batches at different offsets based on
 154 *    some criteria. It is not a requirement at the moment but provides
 155 *    an option for future use.
 156 *  size: size of the batch in DWORDS
 157 */
 158struct i915_ctx_workarounds {
 159        struct i915_wa_ctx_bb {
 160                u32 offset;
 161                u32 size;
 162        } indirect_ctx, per_ctx;
 163        struct i915_vma *vma;
 164};
 165
 166struct drm_i915_gem_request;
 167struct intel_render_state;
 168
 169/*
 170 * Engine IDs definitions.
 171 * Keep instances of the same type engine together.
 172 */
 173enum intel_engine_id {
 174        RCS = 0,
 175        BCS,
 176        VCS,
 177        VCS2,
 178#define _VCS(n) (VCS + (n))
 179        VECS
 180};
 181
 182struct i915_priolist {
 183        struct rb_node node;
 184        struct list_head requests;
 185        int priority;
 186};
 187
 188#define INTEL_ENGINE_CS_MAX_NAME 8
 189
 190struct intel_engine_cs {
 191        struct drm_i915_private *i915;
 192        char name[INTEL_ENGINE_CS_MAX_NAME];
 193        enum intel_engine_id id;
 194        unsigned int uabi_id;
 195        unsigned int hw_id;
 196        unsigned int guc_id;
 197
 198        u8 class;
 199        u8 instance;
 200        u32 context_size;
 201        u32 mmio_base;
 202        unsigned int irq_shift;
 203
 204        struct intel_ring *buffer;
 205        struct intel_timeline *timeline;
 206
 207        struct intel_render_state *render_state;
 208
 209        atomic_t irq_count;
 210        unsigned long irq_posted;
 211#define ENGINE_IRQ_BREADCRUMB 0
 212#define ENGINE_IRQ_EXECLIST 1
 213
 214        /* Rather than have every client wait upon all user interrupts,
 215         * with the herd waking after every interrupt and each doing the
 216         * heavyweight seqno dance, we delegate the task (of being the
 217         * bottom-half of the user interrupt) to the first client. After
 218         * every interrupt, we wake up one client, who does the heavyweight
 219         * coherent seqno read and either goes back to sleep (if incomplete),
 220         * or wakes up all the completed clients in parallel, before then
 221         * transferring the bottom-half status to the next client in the queue.
 222         *
 223         * Compared to walking the entire list of waiters in a single dedicated
 224         * bottom-half, we reduce the latency of the first waiter by avoiding
 225         * a context switch, but incur additional coherent seqno reads when
 226         * following the chain of request breadcrumbs. Since it is most likely
 227         * that we have a single client waiting on each seqno, then reducing
 228         * the overhead of waking that client is much preferred.
 229         */
 230        struct intel_breadcrumbs {
 231                spinlock_t irq_lock; /* protects irq_*; irqsafe */
 232                struct intel_wait *irq_wait; /* oldest waiter by retirement */
 233
 234                spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
 235                struct rb_root waiters; /* sorted by retirement, priority */
 236                struct rb_root signals; /* sorted by retirement */
 237                struct task_struct *signaler; /* used for fence signalling */
 238                struct drm_i915_gem_request __rcu *first_signal;
 239                struct timer_list fake_irq; /* used after a missed interrupt */
 240                struct timer_list hangcheck; /* detect missed interrupts */
 241
 242                unsigned int hangcheck_interrupts;
 243
 244                bool irq_armed : 1;
 245                bool irq_enabled : 1;
 246                I915_SELFTEST_DECLARE(bool mock : 1);
 247        } breadcrumbs;
 248
 249        /*
 250         * A pool of objects to use as shadow copies of client batch buffers
 251         * when the command parser is enabled. Prevents the client from
 252         * modifying the batch contents after software parsing.
 253         */
 254        struct i915_gem_batch_pool batch_pool;
 255
 256        struct intel_hw_status_page status_page;
 257        struct i915_ctx_workarounds wa_ctx;
 258        struct i915_vma *scratch;
 259
 260        u32             irq_keep_mask; /* always keep these interrupts */
 261        u32             irq_enable_mask; /* bitmask to enable ring interrupt */
 262        void            (*irq_enable)(struct intel_engine_cs *engine);
 263        void            (*irq_disable)(struct intel_engine_cs *engine);
 264
 265        int             (*init_hw)(struct intel_engine_cs *engine);
 266        void            (*reset_hw)(struct intel_engine_cs *engine,
 267                                    struct drm_i915_gem_request *req);
 268
 269        void            (*set_default_submission)(struct intel_engine_cs *engine);
 270
 271        struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
 272                                          struct i915_gem_context *ctx);
 273        void            (*context_unpin)(struct intel_engine_cs *engine,
 274                                         struct i915_gem_context *ctx);
 275        int             (*request_alloc)(struct drm_i915_gem_request *req);
 276        int             (*init_context)(struct drm_i915_gem_request *req);
 277
 278        int             (*emit_flush)(struct drm_i915_gem_request *request,
 279                                      u32 mode);
 280#define EMIT_INVALIDATE BIT(0)
 281#define EMIT_FLUSH      BIT(1)
 282#define EMIT_BARRIER    (EMIT_INVALIDATE | EMIT_FLUSH)
 283        int             (*emit_bb_start)(struct drm_i915_gem_request *req,
 284                                         u64 offset, u32 length,
 285                                         unsigned int dispatch_flags);
 286#define I915_DISPATCH_SECURE BIT(0)
 287#define I915_DISPATCH_PINNED BIT(1)
 288#define I915_DISPATCH_RS     BIT(2)
 289        void            (*emit_breadcrumb)(struct drm_i915_gem_request *req,
 290                                           u32 *cs);
 291        int             emit_breadcrumb_sz;
 292
 293        /* Pass the request to the hardware queue (e.g. directly into
 294         * the legacy ringbuffer or to the end of an execlist).
 295         *
 296         * This is called from an atomic context with irqs disabled; must
 297         * be irq safe.
 298         */
 299        void            (*submit_request)(struct drm_i915_gem_request *req);
 300
 301        /* Call when the priority on a request has changed and it and its
 302         * dependencies may need rescheduling. Note the request itself may
 303         * not be ready to run!
 304         *
 305         * Called under the struct_mutex.
 306         */
 307        void            (*schedule)(struct drm_i915_gem_request *request,
 308                                    int priority);
 309
 310        /* Some chipsets are not quite as coherent as advertised and need
 311         * an expensive kick to force a true read of the up-to-date seqno.
 312         * However, the up-to-date seqno is not always required and the last
 313         * seen value is good enough. Note that the seqno will always be
 314         * monotonic, even if not coherent.
 315         */
 316        void            (*irq_seqno_barrier)(struct intel_engine_cs *engine);
 317        void            (*cleanup)(struct intel_engine_cs *engine);
 318
 319        /* GEN8 signal/wait table - never trust comments!
 320         *        signal to     signal to    signal to   signal to      signal to
 321         *          RCS            VCS          BCS        VECS          VCS2
 322         *      --------------------------------------------------------------------
 323         *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
 324         *      |-------------------------------------------------------------------
 325         *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
 326         *      |-------------------------------------------------------------------
 327         *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
 328         *      |-------------------------------------------------------------------
 329         * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
 330         *      |-------------------------------------------------------------------
 331         * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
 332         *      |-------------------------------------------------------------------
 333         *
 334         * Generalization:
 335         *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
 336         *  ie. transpose of g(x, y)
 337         *
 338         *       sync from      sync from    sync from    sync from     sync from
 339         *          RCS            VCS          BCS        VECS          VCS2
 340         *      --------------------------------------------------------------------
 341         *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
 342         *      |-------------------------------------------------------------------
 343         *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
 344         *      |-------------------------------------------------------------------
 345         *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
 346         *      |-------------------------------------------------------------------
 347         * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
 348         *      |-------------------------------------------------------------------
 349         * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
 350         *      |-------------------------------------------------------------------
 351         *
 352         * Generalization:
 353         *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
 354         *  ie. transpose of f(x, y)
 355         */
 356        struct {
 357                union {
 358#define GEN6_SEMAPHORE_LAST     VECS_HW
 359#define GEN6_NUM_SEMAPHORES     (GEN6_SEMAPHORE_LAST + 1)
 360#define GEN6_SEMAPHORES_MASK    GENMASK(GEN6_SEMAPHORE_LAST, 0)
 361                        struct {
 362                                /* our mbox written by others */
 363                                u32             wait[GEN6_NUM_SEMAPHORES];
 364                                /* mboxes this ring signals to */
 365                                i915_reg_t      signal[GEN6_NUM_SEMAPHORES];
 366                        } mbox;
 367                        u64             signal_ggtt[I915_NUM_ENGINES];
 368                };
 369
 370                /* AKA wait() */
 371                int     (*sync_to)(struct drm_i915_gem_request *req,
 372                                   struct drm_i915_gem_request *signal);
 373                u32     *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
 374        } semaphore;
 375
 376        /* Execlists */
 377        struct tasklet_struct irq_tasklet;
 378        struct i915_priolist default_priolist;
 379        bool no_priolist;
 380        struct execlist_port {
 381                struct drm_i915_gem_request *request_count;
 382#define EXECLIST_COUNT_BITS 2
 383#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 384#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 385#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
 386#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
 387#define port_set(p, packed) ((p)->request_count = (packed))
 388#define port_isset(p) ((p)->request_count)
 389#define port_index(p, e) ((p) - (e)->execlist_port)
 390                GEM_DEBUG_DECL(u32 context_id);
 391        } execlist_port[2];
 392        struct rb_root execlist_queue;
 393        struct rb_node *execlist_first;
 394        unsigned int fw_domains;
 395
 396        /* Contexts are pinned whilst they are active on the GPU. The last
 397         * context executed remains active whilst the GPU is idle - the
 398         * switch away and write to the context object only occurs on the
 399         * next execution.  Contexts are only unpinned on retirement of the
 400         * following request ensuring that we can always write to the object
 401         * on the context switch even after idling. Across suspend, we switch
 402         * to the kernel context and trash it as the save may not happen
 403         * before the hardware is powered down.
 404         */
 405        struct i915_gem_context *last_retired_context;
 406
 407        /* We track the current MI_SET_CONTEXT in order to eliminate
 408         * redudant context switches. This presumes that requests are not
 409         * reordered! Or when they are the tracking is updated along with
 410         * the emission of individual requests into the legacy command
 411         * stream (ring).
 412         */
 413        struct i915_gem_context *legacy_active_context;
 414
 415        /* status_notifier: list of callbacks for context-switch changes */
 416        struct atomic_notifier_head context_status_notifier;
 417
 418        struct intel_engine_hangcheck hangcheck;
 419
 420        bool needs_cmd_parser;
 421
 422        /*
 423         * Table of commands the command parser needs to know about
 424         * for this engine.
 425         */
 426        DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
 427
 428        /*
 429         * Table of registers allowed in commands that read/write registers.
 430         */
 431        const struct drm_i915_reg_table *reg_tables;
 432        int reg_table_count;
 433
 434        /*
 435         * Returns the bitmask for the length field of the specified command.
 436         * Return 0 for an unrecognized/invalid command.
 437         *
 438         * If the command parser finds an entry for a command in the engine's
 439         * cmd_tables, it gets the command's length based on the table entry.
 440         * If not, it calls this function to determine the per-engine length
 441         * field encoding for the command (i.e. different opcode ranges use
 442         * certain bits to encode the command length in the header).
 443         */
 444        u32 (*get_cmd_length_mask)(u32 cmd_header);
 445};
 446
 447static inline unsigned int
 448intel_engine_flag(const struct intel_engine_cs *engine)
 449{
 450        return BIT(engine->id);
 451}
 452
 453static inline u32
 454intel_read_status_page(struct intel_engine_cs *engine, int reg)
 455{
 456        /* Ensure that the compiler doesn't optimize away the load. */
 457        return READ_ONCE(engine->status_page.page_addr[reg]);
 458}
 459
 460static inline void
 461intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
 462{
 463        /* Writing into the status page should be done sparingly. Since
 464         * we do when we are uncertain of the device state, we take a bit
 465         * of extra paranoia to try and ensure that the HWS takes the value
 466         * we give and that it doesn't end up trapped inside the CPU!
 467         */
 468        if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
 469                mb();
 470                clflush(&engine->status_page.page_addr[reg]);
 471                engine->status_page.page_addr[reg] = value;
 472                clflush(&engine->status_page.page_addr[reg]);
 473                mb();
 474        } else {
 475                WRITE_ONCE(engine->status_page.page_addr[reg], value);
 476        }
 477}
 478
 479/*
 480 * Reads a dword out of the status page, which is written to from the command
 481 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 482 * MI_STORE_DATA_IMM.
 483 *
 484 * The following dwords have a reserved meaning:
 485 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 486 * 0x04: ring 0 head pointer
 487 * 0x05: ring 1 head pointer (915-class)
 488 * 0x06: ring 2 head pointer (915-class)
 489 * 0x10-0x1b: Context status DWords (GM45)
 490 * 0x1f: Last written status offset. (GM45)
 491 * 0x20-0x2f: Reserved (Gen6+)
 492 *
 493 * The area from dword 0x30 to 0x3ff is available for driver usage.
 494 */
 495#define I915_GEM_HWS_INDEX              0x30
 496#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 497#define I915_GEM_HWS_SCRATCH_INDEX      0x40
 498#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 499
 500struct intel_ring *
 501intel_engine_create_ring(struct intel_engine_cs *engine, int size);
 502int intel_ring_pin(struct intel_ring *ring,
 503                   struct drm_i915_private *i915,
 504                   unsigned int offset_bias);
 505void intel_ring_reset(struct intel_ring *ring, u32 tail);
 506unsigned int intel_ring_update_space(struct intel_ring *ring);
 507void intel_ring_unpin(struct intel_ring *ring);
 508void intel_ring_free(struct intel_ring *ring);
 509
 510void intel_engine_stop(struct intel_engine_cs *engine);
 511void intel_engine_cleanup(struct intel_engine_cs *engine);
 512
 513void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
 514
 515int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
 516
 517u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
 518                                   unsigned int n);
 519
 520static inline void
 521intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
 522{
 523        /* Dummy function.
 524         *
 525         * This serves as a placeholder in the code so that the reader
 526         * can compare against the preceding intel_ring_begin() and
 527         * check that the number of dwords emitted matches the space
 528         * reserved for the command packet (i.e. the value passed to
 529         * intel_ring_begin()).
 530         */
 531        GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
 532}
 533
 534static inline u32
 535intel_ring_wrap(const struct intel_ring *ring, u32 pos)
 536{
 537        return pos & (ring->size - 1);
 538}
 539
 540static inline u32
 541intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
 542{
 543        /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
 544        u32 offset = addr - req->ring->vaddr;
 545        GEM_BUG_ON(offset > req->ring->size);
 546        return intel_ring_wrap(req->ring, offset);
 547}
 548
 549static inline void
 550assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
 551{
 552        /* We could combine these into a single tail operation, but keeping
 553         * them as seperate tests will help identify the cause should one
 554         * ever fire.
 555         */
 556        GEM_BUG_ON(!IS_ALIGNED(tail, 8));
 557        GEM_BUG_ON(tail >= ring->size);
 558
 559        /*
 560         * "Ring Buffer Use"
 561         *      Gen2 BSpec "1. Programming Environment" / 1.4.4.6
 562         *      Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
 563         *      Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
 564         * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
 565         * same cacheline, the Head Pointer must not be greater than the Tail
 566         * Pointer."
 567         *
 568         * We use ring->head as the last known location of the actual RING_HEAD,
 569         * it may have advanced but in the worst case it is equally the same
 570         * as ring->head and so we should never program RING_TAIL to advance
 571         * into the same cacheline as ring->head.
 572         */
 573#define cacheline(a) round_down(a, CACHELINE_BYTES)
 574        GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
 575                   tail < ring->head);
 576#undef cacheline
 577}
 578
 579static inline unsigned int
 580intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
 581{
 582        /* Whilst writes to the tail are strictly order, there is no
 583         * serialisation between readers and the writers. The tail may be
 584         * read by i915_gem_request_retire() just as it is being updated
 585         * by execlists, as although the breadcrumb is complete, the context
 586         * switch hasn't been seen.
 587         */
 588        assert_ring_tail_valid(ring, tail);
 589        ring->tail = tail;
 590        return tail;
 591}
 592
 593void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
 594
 595void intel_engine_setup_common(struct intel_engine_cs *engine);
 596int intel_engine_init_common(struct intel_engine_cs *engine);
 597int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
 598void intel_engine_cleanup_common(struct intel_engine_cs *engine);
 599
 600int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
 601int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
 602int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
 603int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
 604
 605u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
 606u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
 607
 608static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
 609{
 610        return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
 611}
 612
 613static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
 614{
 615        /* We are only peeking at the tail of the submit queue (and not the
 616         * queue itself) in order to gain a hint as to the current active
 617         * state of the engine. Callers are not expected to be taking
 618         * engine->timeline->lock, nor are they expected to be concerned
 619         * wtih serialising this hint with anything, so document it as
 620         * a hint and nothing more.
 621         */
 622        return READ_ONCE(engine->timeline->seqno);
 623}
 624
 625int init_workarounds_ring(struct intel_engine_cs *engine);
 626int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
 627
 628void intel_engine_get_instdone(struct intel_engine_cs *engine,
 629                               struct intel_instdone *instdone);
 630
 631/*
 632 * Arbitrary size for largest possible 'add request' sequence. The code paths
 633 * are complex and variable. Empirical measurement shows that the worst case
 634 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 635 * we need to allocate double the largest single packet within that emission
 636 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 637 */
 638#define MIN_SPACE_FOR_ADD_REQUEST 336
 639
 640static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
 641{
 642        return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
 643}
 644
 645/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
 646int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
 647
 648static inline void intel_wait_init(struct intel_wait *wait,
 649                                   struct drm_i915_gem_request *rq)
 650{
 651        wait->tsk = current;
 652        wait->request = rq;
 653}
 654
 655static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
 656{
 657        wait->tsk = current;
 658        wait->seqno = seqno;
 659}
 660
 661static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
 662{
 663        return wait->seqno;
 664}
 665
 666static inline bool
 667intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
 668{
 669        wait->seqno = seqno;
 670        return intel_wait_has_seqno(wait);
 671}
 672
 673static inline bool
 674intel_wait_update_request(struct intel_wait *wait,
 675                          const struct drm_i915_gem_request *rq)
 676{
 677        return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
 678}
 679
 680static inline bool
 681intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
 682{
 683        return wait->seqno == seqno;
 684}
 685
 686static inline bool
 687intel_wait_check_request(const struct intel_wait *wait,
 688                         const struct drm_i915_gem_request *rq)
 689{
 690        return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
 691}
 692
 693static inline bool intel_wait_complete(const struct intel_wait *wait)
 694{
 695        return RB_EMPTY_NODE(&wait->node);
 696}
 697
 698bool intel_engine_add_wait(struct intel_engine_cs *engine,
 699                           struct intel_wait *wait);
 700void intel_engine_remove_wait(struct intel_engine_cs *engine,
 701                              struct intel_wait *wait);
 702void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
 703                                   bool wakeup);
 704void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
 705
 706static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
 707{
 708        return READ_ONCE(engine->breadcrumbs.irq_wait);
 709}
 710
 711unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
 712#define ENGINE_WAKEUP_WAITER BIT(0)
 713#define ENGINE_WAKEUP_ASLEEP BIT(1)
 714
 715void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 716void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 717
 718void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
 719void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
 720bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
 721
 722static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
 723{
 724        memset(batch, 0, 6 * sizeof(u32));
 725
 726        batch[0] = GFX_OP_PIPE_CONTROL(6);
 727        batch[1] = flags;
 728        batch[2] = offset;
 729
 730        return batch + 6;
 731}
 732
 733bool intel_engine_is_idle(struct intel_engine_cs *engine);
 734bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
 735
 736void intel_engines_mark_idle(struct drm_i915_private *i915);
 737void intel_engines_reset_default_submission(struct drm_i915_private *i915);
 738
 739static inline bool
 740__intel_engine_can_store_dword(unsigned int gen, unsigned int class)
 741{
 742        if (gen <= 2)
 743                return false; /* uses physical not virtual addresses */
 744
 745        if (gen == 6 && class == VIDEO_DECODE_CLASS)
 746                return false; /* b0rked */
 747
 748        return true;
 749}
 750
 751#endif /* _INTEL_RINGBUFFER_H_ */
 752