linux/drivers/gpu/drm/nouveau/nvkm/engine/gr/ctxnv40.c
<<
>>
Prefs
   1/*
   2 * Copyright 2009 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24
  25/* NVIDIA context programs handle a number of other conditions which are
  26 * not implemented in our versions.  It's not clear why NVIDIA context
  27 * programs have this code, nor whether it's strictly necessary for
  28 * correct operation.  We'll implement additional handling if/when we
  29 * discover it's necessary.
  30 *
  31 * - On context save, NVIDIA set 0x400314 bit 0 to 1 if the "3D state"
  32 *   flag is set, this gets saved into the context.
  33 * - On context save, the context program for all cards load nsource
  34 *   into a flag register and check for ILLEGAL_MTHD.  If it's set,
  35 *   opcode 0x60000d is called before resuming normal operation.
  36 * - Some context programs check more conditions than the above.  NV44
  37 *   checks: ((nsource & 0x0857) || (0x400718 & 0x0100) || (intr & 0x0001))
  38 *   and calls 0x60000d before resuming normal operation.
  39 * - At the very beginning of NVIDIA's context programs, flag 9 is checked
  40 *   and if true 0x800001 is called with count=0, pos=0, the flag is cleared
  41 *   and then the ctxprog is aborted.  It looks like a complicated NOP,
  42 *   its purpose is unknown.
  43 * - In the section of code that loads the per-vs state, NVIDIA check
  44 *   flag 10.  If it's set, they only transfer the small 0x300 byte block
  45 *   of state + the state for a single vs as opposed to the state for
  46 *   all vs units.  It doesn't seem likely that it'll occur in normal
  47 *   operation, especially seeing as it appears NVIDIA may have screwed
  48 *   up the ctxprogs for some cards and have an invalid instruction
  49 *   rather than a cp_lsr(ctx, dwords_for_1_vs_unit) instruction.
  50 * - There's a number of places where context offset 0 (where we place
  51 *   the PRAMIN offset of the context) is loaded into either 0x408000,
  52 *   0x408004 or 0x408008.  Not sure what's up there either.
  53 * - The ctxprogs for some cards save 0x400a00 again during the cleanup
  54 *   path for auto-loadctx.
  55 */
  56
  57#define CP_FLAG_CLEAR                 0
  58#define CP_FLAG_SET                   1
  59#define CP_FLAG_SWAP_DIRECTION        ((0 * 32) + 0)
  60#define CP_FLAG_SWAP_DIRECTION_LOAD   0
  61#define CP_FLAG_SWAP_DIRECTION_SAVE   1
  62#define CP_FLAG_USER_SAVE             ((0 * 32) + 5)
  63#define CP_FLAG_USER_SAVE_NOT_PENDING 0
  64#define CP_FLAG_USER_SAVE_PENDING     1
  65#define CP_FLAG_USER_LOAD             ((0 * 32) + 6)
  66#define CP_FLAG_USER_LOAD_NOT_PENDING 0
  67#define CP_FLAG_USER_LOAD_PENDING     1
  68#define CP_FLAG_STATUS                ((3 * 32) + 0)
  69#define CP_FLAG_STATUS_IDLE           0
  70#define CP_FLAG_STATUS_BUSY           1
  71#define CP_FLAG_AUTO_SAVE             ((3 * 32) + 4)
  72#define CP_FLAG_AUTO_SAVE_NOT_PENDING 0
  73#define CP_FLAG_AUTO_SAVE_PENDING     1
  74#define CP_FLAG_AUTO_LOAD             ((3 * 32) + 5)
  75#define CP_FLAG_AUTO_LOAD_NOT_PENDING 0
  76#define CP_FLAG_AUTO_LOAD_PENDING     1
  77#define CP_FLAG_UNK54                 ((3 * 32) + 6)
  78#define CP_FLAG_UNK54_CLEAR           0
  79#define CP_FLAG_UNK54_SET             1
  80#define CP_FLAG_ALWAYS                ((3 * 32) + 8)
  81#define CP_FLAG_ALWAYS_FALSE          0
  82#define CP_FLAG_ALWAYS_TRUE           1
  83#define CP_FLAG_UNK57                 ((3 * 32) + 9)
  84#define CP_FLAG_UNK57_CLEAR           0
  85#define CP_FLAG_UNK57_SET             1
  86
  87#define CP_CTX                   0x00100000
  88#define CP_CTX_COUNT             0x000fc000
  89#define CP_CTX_COUNT_SHIFT               14
  90#define CP_CTX_REG               0x00003fff
  91#define CP_LOAD_SR               0x00200000
  92#define CP_LOAD_SR_VALUE         0x000fffff
  93#define CP_BRA                   0x00400000
  94#define CP_BRA_IP                0x0000ff00
  95#define CP_BRA_IP_SHIFT                   8
  96#define CP_BRA_IF_CLEAR          0x00000080
  97#define CP_BRA_FLAG              0x0000007f
  98#define CP_WAIT                  0x00500000
  99#define CP_WAIT_SET              0x00000080
 100#define CP_WAIT_FLAG             0x0000007f
 101#define CP_SET                   0x00700000
 102#define CP_SET_1                 0x00000080
 103#define CP_SET_FLAG              0x0000007f
 104#define CP_NEXT_TO_SWAP          0x00600007
 105#define CP_NEXT_TO_CURRENT       0x00600009
 106#define CP_SET_CONTEXT_POINTER   0x0060000a
 107#define CP_END                   0x0060000e
 108#define CP_LOAD_MAGIC_UNK01      0x00800001 /* unknown */
 109#define CP_LOAD_MAGIC_NV44TCL    0x00800029 /* per-vs state (0x4497) */
 110#define CP_LOAD_MAGIC_NV40TCL    0x00800041 /* per-vs state (0x4097) */
 111
 112#include "ctxnv40.h"
 113#include "nv40.h"
 114
 115/* TODO:
 116 *  - get vs count from 0x1540
 117 */
 118
 119static int
 120nv40_gr_vs_count(struct nvkm_device *device)
 121{
 122
 123        switch (device->chipset) {
 124        case 0x47:
 125        case 0x49:
 126        case 0x4b:
 127                return 8;
 128        case 0x40:
 129                return 6;
 130        case 0x41:
 131        case 0x42:
 132                return 5;
 133        case 0x43:
 134        case 0x44:
 135        case 0x46:
 136        case 0x4a:
 137                return 3;
 138        case 0x4c:
 139        case 0x4e:
 140        case 0x67:
 141        default:
 142                return 1;
 143        }
 144}
 145
 146
 147enum cp_label {
 148        cp_check_load = 1,
 149        cp_setup_auto_load,
 150        cp_setup_load,
 151        cp_setup_save,
 152        cp_swap_state,
 153        cp_swap_state3d_3_is_save,
 154        cp_prepare_exit,
 155        cp_exit,
 156};
 157
 158static void
 159nv40_gr_construct_general(struct nvkm_grctx *ctx)
 160{
 161        struct nvkm_device *device = ctx->device;
 162        int i;
 163
 164        cp_ctx(ctx, 0x4000a4, 1);
 165        gr_def(ctx, 0x4000a4, 0x00000008);
 166        cp_ctx(ctx, 0x400144, 58);
 167        gr_def(ctx, 0x400144, 0x00000001);
 168        cp_ctx(ctx, 0x400314, 1);
 169        gr_def(ctx, 0x400314, 0x00000000);
 170        cp_ctx(ctx, 0x400400, 10);
 171        cp_ctx(ctx, 0x400480, 10);
 172        cp_ctx(ctx, 0x400500, 19);
 173        gr_def(ctx, 0x400514, 0x00040000);
 174        gr_def(ctx, 0x400524, 0x55555555);
 175        gr_def(ctx, 0x400528, 0x55555555);
 176        gr_def(ctx, 0x40052c, 0x55555555);
 177        gr_def(ctx, 0x400530, 0x55555555);
 178        cp_ctx(ctx, 0x400560, 6);
 179        gr_def(ctx, 0x400568, 0x0000ffff);
 180        gr_def(ctx, 0x40056c, 0x0000ffff);
 181        cp_ctx(ctx, 0x40057c, 5);
 182        cp_ctx(ctx, 0x400710, 3);
 183        gr_def(ctx, 0x400710, 0x20010001);
 184        gr_def(ctx, 0x400714, 0x0f73ef00);
 185        cp_ctx(ctx, 0x400724, 1);
 186        gr_def(ctx, 0x400724, 0x02008821);
 187        cp_ctx(ctx, 0x400770, 3);
 188        if (device->chipset == 0x40) {
 189                cp_ctx(ctx, 0x400814, 4);
 190                cp_ctx(ctx, 0x400828, 5);
 191                cp_ctx(ctx, 0x400840, 5);
 192                gr_def(ctx, 0x400850, 0x00000040);
 193                cp_ctx(ctx, 0x400858, 4);
 194                gr_def(ctx, 0x400858, 0x00000040);
 195                gr_def(ctx, 0x40085c, 0x00000040);
 196                gr_def(ctx, 0x400864, 0x80000000);
 197                cp_ctx(ctx, 0x40086c, 9);
 198                gr_def(ctx, 0x40086c, 0x80000000);
 199                gr_def(ctx, 0x400870, 0x80000000);
 200                gr_def(ctx, 0x400874, 0x80000000);
 201                gr_def(ctx, 0x400878, 0x80000000);
 202                gr_def(ctx, 0x400888, 0x00000040);
 203                gr_def(ctx, 0x40088c, 0x80000000);
 204                cp_ctx(ctx, 0x4009c0, 8);
 205                gr_def(ctx, 0x4009cc, 0x80000000);
 206                gr_def(ctx, 0x4009dc, 0x80000000);
 207        } else {
 208                cp_ctx(ctx, 0x400840, 20);
 209                if (nv44_gr_class(ctx->device)) {
 210                        for (i = 0; i < 8; i++)
 211                                gr_def(ctx, 0x400860 + (i * 4), 0x00000001);
 212                }
 213                gr_def(ctx, 0x400880, 0x00000040);
 214                gr_def(ctx, 0x400884, 0x00000040);
 215                gr_def(ctx, 0x400888, 0x00000040);
 216                cp_ctx(ctx, 0x400894, 11);
 217                gr_def(ctx, 0x400894, 0x00000040);
 218                if (!nv44_gr_class(ctx->device)) {
 219                        for (i = 0; i < 8; i++)
 220                                gr_def(ctx, 0x4008a0 + (i * 4), 0x80000000);
 221                }
 222                cp_ctx(ctx, 0x4008e0, 2);
 223                cp_ctx(ctx, 0x4008f8, 2);
 224                if (device->chipset == 0x4c ||
 225                    (device->chipset & 0xf0) == 0x60)
 226                        cp_ctx(ctx, 0x4009f8, 1);
 227        }
 228        cp_ctx(ctx, 0x400a00, 73);
 229        gr_def(ctx, 0x400b0c, 0x0b0b0b0c);
 230        cp_ctx(ctx, 0x401000, 4);
 231        cp_ctx(ctx, 0x405004, 1);
 232        switch (device->chipset) {
 233        case 0x47:
 234        case 0x49:
 235        case 0x4b:
 236                cp_ctx(ctx, 0x403448, 1);
 237                gr_def(ctx, 0x403448, 0x00001010);
 238                break;
 239        default:
 240                cp_ctx(ctx, 0x403440, 1);
 241                switch (device->chipset) {
 242                case 0x40:
 243                        gr_def(ctx, 0x403440, 0x00000010);
 244                        break;
 245                case 0x44:
 246                case 0x46:
 247                case 0x4a:
 248                        gr_def(ctx, 0x403440, 0x00003010);
 249                        break;
 250                case 0x41:
 251                case 0x42:
 252                case 0x43:
 253                case 0x4c:
 254                case 0x4e:
 255                case 0x67:
 256                default:
 257                        gr_def(ctx, 0x403440, 0x00001010);
 258                        break;
 259                }
 260                break;
 261        }
 262}
 263
 264static void
 265nv40_gr_construct_state3d(struct nvkm_grctx *ctx)
 266{
 267        struct nvkm_device *device = ctx->device;
 268        int i;
 269
 270        if (device->chipset == 0x40) {
 271                cp_ctx(ctx, 0x401880, 51);
 272                gr_def(ctx, 0x401940, 0x00000100);
 273        } else
 274        if (device->chipset == 0x46 || device->chipset == 0x47 ||
 275            device->chipset == 0x49 || device->chipset == 0x4b) {
 276                cp_ctx(ctx, 0x401880, 32);
 277                for (i = 0; i < 16; i++)
 278                        gr_def(ctx, 0x401880 + (i * 4), 0x00000111);
 279                if (device->chipset == 0x46)
 280                        cp_ctx(ctx, 0x401900, 16);
 281                cp_ctx(ctx, 0x401940, 3);
 282        }
 283        cp_ctx(ctx, 0x40194c, 18);
 284        gr_def(ctx, 0x401954, 0x00000111);
 285        gr_def(ctx, 0x401958, 0x00080060);
 286        gr_def(ctx, 0x401974, 0x00000080);
 287        gr_def(ctx, 0x401978, 0xffff0000);
 288        gr_def(ctx, 0x40197c, 0x00000001);
 289        gr_def(ctx, 0x401990, 0x46400000);
 290        if (device->chipset == 0x40) {
 291                cp_ctx(ctx, 0x4019a0, 2);
 292                cp_ctx(ctx, 0x4019ac, 5);
 293        } else {
 294                cp_ctx(ctx, 0x4019a0, 1);
 295                cp_ctx(ctx, 0x4019b4, 3);
 296        }
 297        gr_def(ctx, 0x4019bc, 0xffff0000);
 298        switch (device->chipset) {
 299        case 0x46:
 300        case 0x47:
 301        case 0x49:
 302        case 0x4b:
 303                cp_ctx(ctx, 0x4019c0, 18);
 304                for (i = 0; i < 16; i++)
 305                        gr_def(ctx, 0x4019c0 + (i * 4), 0x88888888);
 306                break;
 307        }
 308        cp_ctx(ctx, 0x401a08, 8);
 309        gr_def(ctx, 0x401a10, 0x0fff0000);
 310        gr_def(ctx, 0x401a14, 0x0fff0000);
 311        gr_def(ctx, 0x401a1c, 0x00011100);
 312        cp_ctx(ctx, 0x401a2c, 4);
 313        cp_ctx(ctx, 0x401a44, 26);
 314        for (i = 0; i < 16; i++)
 315                gr_def(ctx, 0x401a44 + (i * 4), 0x07ff0000);
 316        gr_def(ctx, 0x401a8c, 0x4b7fffff);
 317        if (device->chipset == 0x40) {
 318                cp_ctx(ctx, 0x401ab8, 3);
 319        } else {
 320                cp_ctx(ctx, 0x401ab8, 1);
 321                cp_ctx(ctx, 0x401ac0, 1);
 322        }
 323        cp_ctx(ctx, 0x401ad0, 8);
 324        gr_def(ctx, 0x401ad0, 0x30201000);
 325        gr_def(ctx, 0x401ad4, 0x70605040);
 326        gr_def(ctx, 0x401ad8, 0xb8a89888);
 327        gr_def(ctx, 0x401adc, 0xf8e8d8c8);
 328        cp_ctx(ctx, 0x401b10, device->chipset == 0x40 ? 2 : 1);
 329        gr_def(ctx, 0x401b10, 0x40100000);
 330        cp_ctx(ctx, 0x401b18, device->chipset == 0x40 ? 6 : 5);
 331        gr_def(ctx, 0x401b28, device->chipset == 0x40 ?
 332                              0x00000004 : 0x00000000);
 333        cp_ctx(ctx, 0x401b30, 25);
 334        gr_def(ctx, 0x401b34, 0x0000ffff);
 335        gr_def(ctx, 0x401b68, 0x435185d6);
 336        gr_def(ctx, 0x401b6c, 0x2155b699);
 337        gr_def(ctx, 0x401b70, 0xfedcba98);
 338        gr_def(ctx, 0x401b74, 0x00000098);
 339        gr_def(ctx, 0x401b84, 0xffffffff);
 340        gr_def(ctx, 0x401b88, 0x00ff7000);
 341        gr_def(ctx, 0x401b8c, 0x0000ffff);
 342        if (device->chipset != 0x44 && device->chipset != 0x4a &&
 343            device->chipset != 0x4e)
 344                cp_ctx(ctx, 0x401b94, 1);
 345        cp_ctx(ctx, 0x401b98, 8);
 346        gr_def(ctx, 0x401b9c, 0x00ff0000);
 347        cp_ctx(ctx, 0x401bc0, 9);
 348        gr_def(ctx, 0x401be0, 0x00ffff00);
 349        cp_ctx(ctx, 0x401c00, 192);
 350        for (i = 0; i < 16; i++) { /* fragment texture units */
 351                gr_def(ctx, 0x401c40 + (i * 4), 0x00018488);
 352                gr_def(ctx, 0x401c80 + (i * 4), 0x00028202);
 353                gr_def(ctx, 0x401d00 + (i * 4), 0x0000aae4);
 354                gr_def(ctx, 0x401d40 + (i * 4), 0x01012000);
 355                gr_def(ctx, 0x401d80 + (i * 4), 0x00080008);
 356                gr_def(ctx, 0x401e00 + (i * 4), 0x00100008);
 357        }
 358        for (i = 0; i < 4; i++) { /* vertex texture units */
 359                gr_def(ctx, 0x401e90 + (i * 4), 0x0001bc80);
 360                gr_def(ctx, 0x401ea0 + (i * 4), 0x00000202);
 361                gr_def(ctx, 0x401ec0 + (i * 4), 0x00000008);
 362                gr_def(ctx, 0x401ee0 + (i * 4), 0x00080008);
 363        }
 364        cp_ctx(ctx, 0x400f5c, 3);
 365        gr_def(ctx, 0x400f5c, 0x00000002);
 366        cp_ctx(ctx, 0x400f84, 1);
 367}
 368
 369static void
 370nv40_gr_construct_state3d_2(struct nvkm_grctx *ctx)
 371{
 372        struct nvkm_device *device = ctx->device;
 373        int i;
 374
 375        cp_ctx(ctx, 0x402000, 1);
 376        cp_ctx(ctx, 0x402404, device->chipset == 0x40 ? 1 : 2);
 377        switch (device->chipset) {
 378        case 0x40:
 379                gr_def(ctx, 0x402404, 0x00000001);
 380                break;
 381        case 0x4c:
 382        case 0x4e:
 383        case 0x67:
 384                gr_def(ctx, 0x402404, 0x00000020);
 385                break;
 386        case 0x46:
 387        case 0x49:
 388        case 0x4b:
 389                gr_def(ctx, 0x402404, 0x00000421);
 390                break;
 391        default:
 392                gr_def(ctx, 0x402404, 0x00000021);
 393        }
 394        if (device->chipset != 0x40)
 395                gr_def(ctx, 0x402408, 0x030c30c3);
 396        switch (device->chipset) {
 397        case 0x44:
 398        case 0x46:
 399        case 0x4a:
 400        case 0x4c:
 401        case 0x4e:
 402        case 0x67:
 403                cp_ctx(ctx, 0x402440, 1);
 404                gr_def(ctx, 0x402440, 0x00011001);
 405                break;
 406        default:
 407                break;
 408        }
 409        cp_ctx(ctx, 0x402480, device->chipset == 0x40 ? 8 : 9);
 410        gr_def(ctx, 0x402488, 0x3e020200);
 411        gr_def(ctx, 0x40248c, 0x00ffffff);
 412        switch (device->chipset) {
 413        case 0x40:
 414                gr_def(ctx, 0x402490, 0x60103f00);
 415                break;
 416        case 0x47:
 417                gr_def(ctx, 0x402490, 0x40103f00);
 418                break;
 419        case 0x41:
 420        case 0x42:
 421        case 0x49:
 422        case 0x4b:
 423                gr_def(ctx, 0x402490, 0x20103f00);
 424                break;
 425        default:
 426                gr_def(ctx, 0x402490, 0x0c103f00);
 427                break;
 428        }
 429        gr_def(ctx, 0x40249c, device->chipset <= 0x43 ?
 430                              0x00020000 : 0x00040000);
 431        cp_ctx(ctx, 0x402500, 31);
 432        gr_def(ctx, 0x402530, 0x00008100);
 433        if (device->chipset == 0x40)
 434                cp_ctx(ctx, 0x40257c, 6);
 435        cp_ctx(ctx, 0x402594, 16);
 436        cp_ctx(ctx, 0x402800, 17);
 437        gr_def(ctx, 0x402800, 0x00000001);
 438        switch (device->chipset) {
 439        case 0x47:
 440        case 0x49:
 441        case 0x4b:
 442                cp_ctx(ctx, 0x402864, 1);
 443                gr_def(ctx, 0x402864, 0x00001001);
 444                cp_ctx(ctx, 0x402870, 3);
 445                gr_def(ctx, 0x402878, 0x00000003);
 446                if (device->chipset != 0x47) { /* belong at end!! */
 447                        cp_ctx(ctx, 0x402900, 1);
 448                        cp_ctx(ctx, 0x402940, 1);
 449                        cp_ctx(ctx, 0x402980, 1);
 450                        cp_ctx(ctx, 0x4029c0, 1);
 451                        cp_ctx(ctx, 0x402a00, 1);
 452                        cp_ctx(ctx, 0x402a40, 1);
 453                        cp_ctx(ctx, 0x402a80, 1);
 454                        cp_ctx(ctx, 0x402ac0, 1);
 455                }
 456                break;
 457        case 0x40:
 458                cp_ctx(ctx, 0x402844, 1);
 459                gr_def(ctx, 0x402844, 0x00000001);
 460                cp_ctx(ctx, 0x402850, 1);
 461                break;
 462        default:
 463                cp_ctx(ctx, 0x402844, 1);
 464                gr_def(ctx, 0x402844, 0x00001001);
 465                cp_ctx(ctx, 0x402850, 2);
 466                gr_def(ctx, 0x402854, 0x00000003);
 467                break;
 468        }
 469
 470        cp_ctx(ctx, 0x402c00, 4);
 471        gr_def(ctx, 0x402c00, device->chipset == 0x40 ?
 472                              0x80800001 : 0x00888001);
 473        switch (device->chipset) {
 474        case 0x47:
 475        case 0x49:
 476        case 0x4b:
 477                cp_ctx(ctx, 0x402c20, 40);
 478                for (i = 0; i < 32; i++)
 479                        gr_def(ctx, 0x402c40 + (i * 4), 0xffffffff);
 480                cp_ctx(ctx, 0x4030b8, 13);
 481                gr_def(ctx, 0x4030dc, 0x00000005);
 482                gr_def(ctx, 0x4030e8, 0x0000ffff);
 483                break;
 484        default:
 485                cp_ctx(ctx, 0x402c10, 4);
 486                if (device->chipset == 0x40)
 487                        cp_ctx(ctx, 0x402c20, 36);
 488                else
 489                if (device->chipset <= 0x42)
 490                        cp_ctx(ctx, 0x402c20, 24);
 491                else
 492                if (device->chipset <= 0x4a)
 493                        cp_ctx(ctx, 0x402c20, 16);
 494                else
 495                        cp_ctx(ctx, 0x402c20, 8);
 496                cp_ctx(ctx, 0x402cb0, device->chipset == 0x40 ? 12 : 13);
 497                gr_def(ctx, 0x402cd4, 0x00000005);
 498                if (device->chipset != 0x40)
 499                        gr_def(ctx, 0x402ce0, 0x0000ffff);
 500                break;
 501        }
 502
 503        cp_ctx(ctx, 0x403400, device->chipset == 0x40 ? 4 : 3);
 504        cp_ctx(ctx, 0x403410, device->chipset == 0x40 ? 4 : 3);
 505        cp_ctx(ctx, 0x403420, nv40_gr_vs_count(ctx->device));
 506        for (i = 0; i < nv40_gr_vs_count(ctx->device); i++)
 507                gr_def(ctx, 0x403420 + (i * 4), 0x00005555);
 508
 509        if (device->chipset != 0x40) {
 510                cp_ctx(ctx, 0x403600, 1);
 511                gr_def(ctx, 0x403600, 0x00000001);
 512        }
 513        cp_ctx(ctx, 0x403800, 1);
 514
 515        cp_ctx(ctx, 0x403c18, 1);
 516        gr_def(ctx, 0x403c18, 0x00000001);
 517        switch (device->chipset) {
 518        case 0x46:
 519        case 0x47:
 520        case 0x49:
 521        case 0x4b:
 522                cp_ctx(ctx, 0x405018, 1);
 523                gr_def(ctx, 0x405018, 0x08e00001);
 524                cp_ctx(ctx, 0x405c24, 1);
 525                gr_def(ctx, 0x405c24, 0x000e3000);
 526                break;
 527        }
 528        if (device->chipset != 0x4e)
 529                cp_ctx(ctx, 0x405800, 11);
 530        cp_ctx(ctx, 0x407000, 1);
 531}
 532
 533static void
 534nv40_gr_construct_state3d_3(struct nvkm_grctx *ctx)
 535{
 536        int len = nv44_gr_class(ctx->device) ? 0x0084 : 0x0684;
 537
 538        cp_out (ctx, 0x300000);
 539        cp_lsr (ctx, len - 4);
 540        cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_swap_state3d_3_is_save);
 541        cp_lsr (ctx, len);
 542        cp_name(ctx, cp_swap_state3d_3_is_save);
 543        cp_out (ctx, 0x800001);
 544
 545        ctx->ctxvals_pos += len;
 546}
 547
 548static void
 549nv40_gr_construct_shader(struct nvkm_grctx *ctx)
 550{
 551        struct nvkm_device *device = ctx->device;
 552        struct nvkm_gpuobj *obj = ctx->data;
 553        int vs, vs_nr, vs_len, vs_nr_b0, vs_nr_b1, b0_offset, b1_offset;
 554        int offset, i;
 555
 556        vs_nr    = nv40_gr_vs_count(ctx->device);
 557        vs_nr_b0 = 363;
 558        vs_nr_b1 = device->chipset == 0x40 ? 128 : 64;
 559        if (device->chipset == 0x40) {
 560                b0_offset = 0x2200/4; /* 33a0 */
 561                b1_offset = 0x55a0/4; /* 1500 */
 562                vs_len = 0x6aa0/4;
 563        } else
 564        if (device->chipset == 0x41 || device->chipset == 0x42) {
 565                b0_offset = 0x2200/4; /* 2200 */
 566                b1_offset = 0x4400/4; /* 0b00 */
 567                vs_len = 0x4f00/4;
 568        } else {
 569                b0_offset = 0x1d40/4; /* 2200 */
 570                b1_offset = 0x3f40/4; /* 0b00 : 0a40 */
 571                vs_len = nv44_gr_class(device) ? 0x4980/4 : 0x4a40/4;
 572        }
 573
 574        cp_lsr(ctx, vs_len * vs_nr + 0x300/4);
 575        cp_out(ctx, nv44_gr_class(device) ? 0x800029 : 0x800041);
 576
 577        offset = ctx->ctxvals_pos;
 578        ctx->ctxvals_pos += (0x0300/4 + (vs_nr * vs_len));
 579
 580        if (ctx->mode != NVKM_GRCTX_VALS)
 581                return;
 582
 583        offset += 0x0280/4;
 584        for (i = 0; i < 16; i++, offset += 2)
 585                nvkm_wo32(obj, offset * 4, 0x3f800000);
 586
 587        for (vs = 0; vs < vs_nr; vs++, offset += vs_len) {
 588                for (i = 0; i < vs_nr_b0 * 6; i += 6)
 589                        nvkm_wo32(obj, (offset + b0_offset + i) * 4, 0x00000001);
 590                for (i = 0; i < vs_nr_b1 * 4; i += 4)
 591                        nvkm_wo32(obj, (offset + b1_offset + i) * 4, 0x3f800000);
 592        }
 593}
 594
 595static void
 596nv40_grctx_generate(struct nvkm_grctx *ctx)
 597{
 598        /* decide whether we're loading/unloading the context */
 599        cp_bra (ctx, AUTO_SAVE, PENDING, cp_setup_save);
 600        cp_bra (ctx, USER_SAVE, PENDING, cp_setup_save);
 601
 602        cp_name(ctx, cp_check_load);
 603        cp_bra (ctx, AUTO_LOAD, PENDING, cp_setup_auto_load);
 604        cp_bra (ctx, USER_LOAD, PENDING, cp_setup_load);
 605        cp_bra (ctx, ALWAYS, TRUE, cp_exit);
 606
 607        /* setup for context load */
 608        cp_name(ctx, cp_setup_auto_load);
 609        cp_wait(ctx, STATUS, IDLE);
 610        cp_out (ctx, CP_NEXT_TO_SWAP);
 611        cp_name(ctx, cp_setup_load);
 612        cp_wait(ctx, STATUS, IDLE);
 613        cp_set (ctx, SWAP_DIRECTION, LOAD);
 614        cp_out (ctx, 0x00910880); /* ?? */
 615        cp_out (ctx, 0x00901ffe); /* ?? */
 616        cp_out (ctx, 0x01940000); /* ?? */
 617        cp_lsr (ctx, 0x20);
 618        cp_out (ctx, 0x0060000b); /* ?? */
 619        cp_wait(ctx, UNK57, CLEAR);
 620        cp_out (ctx, 0x0060000c); /* ?? */
 621        cp_bra (ctx, ALWAYS, TRUE, cp_swap_state);
 622
 623        /* setup for context save */
 624        cp_name(ctx, cp_setup_save);
 625        cp_set (ctx, SWAP_DIRECTION, SAVE);
 626
 627        /* general PGRAPH state */
 628        cp_name(ctx, cp_swap_state);
 629        cp_pos (ctx, 0x00020/4);
 630        nv40_gr_construct_general(ctx);
 631        cp_wait(ctx, STATUS, IDLE);
 632
 633        /* 3D state, block 1 */
 634        cp_bra (ctx, UNK54, CLEAR, cp_prepare_exit);
 635        nv40_gr_construct_state3d(ctx);
 636        cp_wait(ctx, STATUS, IDLE);
 637
 638        /* 3D state, block 2 */
 639        nv40_gr_construct_state3d_2(ctx);
 640
 641        /* Some other block of "random" state */
 642        nv40_gr_construct_state3d_3(ctx);
 643
 644        /* Per-vertex shader state */
 645        cp_pos (ctx, ctx->ctxvals_pos);
 646        nv40_gr_construct_shader(ctx);
 647
 648        /* pre-exit state updates */
 649        cp_name(ctx, cp_prepare_exit);
 650        cp_bra (ctx, SWAP_DIRECTION, SAVE, cp_check_load);
 651        cp_bra (ctx, USER_SAVE, PENDING, cp_exit);
 652        cp_out (ctx, CP_NEXT_TO_CURRENT);
 653
 654        cp_name(ctx, cp_exit);
 655        cp_set (ctx, USER_SAVE, NOT_PENDING);
 656        cp_set (ctx, USER_LOAD, NOT_PENDING);
 657        cp_out (ctx, CP_END);
 658}
 659
 660void
 661nv40_grctx_fill(struct nvkm_device *device, struct nvkm_gpuobj *mem)
 662{
 663        nv40_grctx_generate(&(struct nvkm_grctx) {
 664                             .device = device,
 665                             .mode = NVKM_GRCTX_VALS,
 666                             .data = mem,
 667                           });
 668}
 669
 670int
 671nv40_grctx_init(struct nvkm_device *device, u32 *size)
 672{
 673        u32 *ctxprog = kmalloc(256 * 4, GFP_KERNEL), i;
 674        struct nvkm_grctx ctx = {
 675                .device = device,
 676                .mode = NVKM_GRCTX_PROG,
 677                .ucode = ctxprog,
 678                .ctxprog_max = 256,
 679        };
 680
 681        if (!ctxprog)
 682                return -ENOMEM;
 683
 684        nv40_grctx_generate(&ctx);
 685
 686        nvkm_wr32(device, 0x400324, 0);
 687        for (i = 0; i < ctx.ctxprog_len; i++)
 688                nvkm_wr32(device, 0x400328, ctxprog[i]);
 689        *size = ctx.ctxvals_pos * 4;
 690
 691        kfree(ctxprog);
 692        return 0;
 693}
 694