linux/drivers/misc/genwqe/card_utils.c
<<
>>
Prefs
   1/**
   2 * IBM Accelerator Family 'GenWQE'
   3 *
   4 * (C) Copyright IBM Corp. 2013
   5 *
   6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
   7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
   8 * Author: Michael Jung <mijung@gmx.net>
   9 * Author: Michael Ruettger <michael@ibmra.de>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License (version 2 only)
  13 * as published by the Free Software Foundation.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18 * GNU General Public License for more details.
  19 */
  20
  21/*
  22 * Miscelanous functionality used in the other GenWQE driver parts.
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/sched.h>
  28#include <linux/vmalloc.h>
  29#include <linux/page-flags.h>
  30#include <linux/scatterlist.h>
  31#include <linux/hugetlb.h>
  32#include <linux/iommu.h>
  33#include <linux/delay.h>
  34#include <linux/pci.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/ctype.h>
  37#include <linux/module.h>
  38#include <linux/platform_device.h>
  39#include <linux/delay.h>
  40#include <asm/pgtable.h>
  41
  42#include "genwqe_driver.h"
  43#include "card_base.h"
  44#include "card_ddcb.h"
  45
  46/**
  47 * __genwqe_writeq() - Write 64-bit register
  48 * @cd:         genwqe device descriptor
  49 * @byte_offs:  byte offset within BAR
  50 * @val:        64-bit value
  51 *
  52 * Return: 0 if success; < 0 if error
  53 */
  54int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  55{
  56        struct pci_dev *pci_dev = cd->pci_dev;
  57
  58        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  59                return -EIO;
  60
  61        if (cd->mmio == NULL)
  62                return -EIO;
  63
  64        if (pci_channel_offline(pci_dev))
  65                return -EIO;
  66
  67        __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  68        return 0;
  69}
  70
  71/**
  72 * __genwqe_readq() - Read 64-bit register
  73 * @cd:         genwqe device descriptor
  74 * @byte_offs:  offset within BAR
  75 *
  76 * Return: value from register
  77 */
  78u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  79{
  80        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  81                return 0xffffffffffffffffull;
  82
  83        if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  84            (byte_offs == IO_SLC_CFGREG_GFIR))
  85                return 0x000000000000ffffull;
  86
  87        if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  88            (byte_offs == IO_SLC_CFGREG_GFIR))
  89                return 0x00000000ffff0000ull;
  90
  91        if (cd->mmio == NULL)
  92                return 0xffffffffffffffffull;
  93
  94        return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  95}
  96
  97/**
  98 * __genwqe_writel() - Write 32-bit register
  99 * @cd:         genwqe device descriptor
 100 * @byte_offs:  byte offset within BAR
 101 * @val:        32-bit value
 102 *
 103 * Return: 0 if success; < 0 if error
 104 */
 105int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
 106{
 107        struct pci_dev *pci_dev = cd->pci_dev;
 108
 109        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 110                return -EIO;
 111
 112        if (cd->mmio == NULL)
 113                return -EIO;
 114
 115        if (pci_channel_offline(pci_dev))
 116                return -EIO;
 117
 118        __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
 119        return 0;
 120}
 121
 122/**
 123 * __genwqe_readl() - Read 32-bit register
 124 * @cd:         genwqe device descriptor
 125 * @byte_offs:  offset within BAR
 126 *
 127 * Return: Value from register
 128 */
 129u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
 130{
 131        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 132                return 0xffffffff;
 133
 134        if (cd->mmio == NULL)
 135                return 0xffffffff;
 136
 137        return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
 138}
 139
 140/**
 141 * genwqe_read_app_id() - Extract app_id
 142 *
 143 * app_unitcfg need to be filled with valid data first
 144 */
 145int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
 146{
 147        int i, j;
 148        u32 app_id = (u32)cd->app_unitcfg;
 149
 150        memset(app_name, 0, len);
 151        for (i = 0, j = 0; j < min(len, 4); j++) {
 152                char ch = (char)((app_id >> (24 - j*8)) & 0xff);
 153
 154                if (ch == ' ')
 155                        continue;
 156                app_name[i++] = isprint(ch) ? ch : 'X';
 157        }
 158        return i;
 159}
 160
 161/**
 162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
 163 *
 164 * Existing kernel functions seem to use a different polynom,
 165 * therefore we could not use them here.
 166 *
 167 * Genwqe's Polynomial = 0x20044009
 168 */
 169#define CRC32_POLYNOMIAL        0x20044009
 170static u32 crc32_tab[256];      /* crc32 lookup table */
 171
 172void genwqe_init_crc32(void)
 173{
 174        int i, j;
 175        u32 crc;
 176
 177        for (i = 0;  i < 256;  i++) {
 178                crc = i << 24;
 179                for (j = 0;  j < 8;  j++) {
 180                        if (crc & 0x80000000)
 181                                crc = (crc << 1) ^ CRC32_POLYNOMIAL;
 182                        else
 183                                crc = (crc << 1);
 184                }
 185                crc32_tab[i] = crc;
 186        }
 187}
 188
 189/**
 190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
 191 * @buff:       pointer to data buffer
 192 * @len:        length of data for calculation
 193 * @init:       initial crc (0xffffffff at start)
 194 *
 195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
 196
 197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
 198 * result in a crc32 of 0xf33cb7d3.
 199 *
 200 * The existing kernel crc functions did not cover this polynom yet.
 201 *
 202 * Return: crc32 checksum.
 203 */
 204u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
 205{
 206        int i;
 207        u32 crc;
 208
 209        crc = init;
 210        while (len--) {
 211                i = ((crc >> 24) ^ *buff++) & 0xFF;
 212                crc = (crc << 8) ^ crc32_tab[i];
 213        }
 214        return crc;
 215}
 216
 217void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
 218                               dma_addr_t *dma_handle)
 219{
 220        if (get_order(size) > MAX_ORDER)
 221                return NULL;
 222
 223        return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle,
 224                                   GFP_KERNEL);
 225}
 226
 227void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
 228                             void *vaddr, dma_addr_t dma_handle)
 229{
 230        if (vaddr == NULL)
 231                return;
 232
 233        dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
 234}
 235
 236static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
 237                              int num_pages)
 238{
 239        int i;
 240        struct pci_dev *pci_dev = cd->pci_dev;
 241
 242        for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
 243                pci_unmap_page(pci_dev, dma_list[i],
 244                               PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 245                dma_list[i] = 0x0;
 246        }
 247}
 248
 249static int genwqe_map_pages(struct genwqe_dev *cd,
 250                           struct page **page_list, int num_pages,
 251                           dma_addr_t *dma_list)
 252{
 253        int i;
 254        struct pci_dev *pci_dev = cd->pci_dev;
 255
 256        /* establish DMA mapping for requested pages */
 257        for (i = 0; i < num_pages; i++) {
 258                dma_addr_t daddr;
 259
 260                dma_list[i] = 0x0;
 261                daddr = pci_map_page(pci_dev, page_list[i],
 262                                     0,  /* map_offs */
 263                                     PAGE_SIZE,
 264                                     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
 265
 266                if (pci_dma_mapping_error(pci_dev, daddr)) {
 267                        dev_err(&pci_dev->dev,
 268                                "[%s] err: no dma addr daddr=%016llx!\n",
 269                                __func__, (long long)daddr);
 270                        goto err;
 271                }
 272
 273                dma_list[i] = daddr;
 274        }
 275        return 0;
 276
 277 err:
 278        genwqe_unmap_pages(cd, dma_list, num_pages);
 279        return -EIO;
 280}
 281
 282static int genwqe_sgl_size(int num_pages)
 283{
 284        int len, num_tlb = num_pages / 7;
 285
 286        len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
 287        return roundup(len, PAGE_SIZE);
 288}
 289
 290/**
 291 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
 292 *
 293 * Allocates memory for sgl and overlapping pages. Pages which might
 294 * overlap other user-space memory blocks are being cached for DMAs,
 295 * such that we do not run into syncronization issues. Data is copied
 296 * from user-space into the cached pages.
 297 */
 298int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 299                          void __user *user_addr, size_t user_size)
 300{
 301        int rc;
 302        struct pci_dev *pci_dev = cd->pci_dev;
 303
 304        sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
 305        sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
 306        sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
 307        sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
 308
 309        dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
 310                __func__, user_addr, user_size, sgl->nr_pages,
 311                sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
 312
 313        sgl->user_addr = user_addr;
 314        sgl->user_size = user_size;
 315        sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
 316
 317        if (get_order(sgl->sgl_size) > MAX_ORDER) {
 318                dev_err(&pci_dev->dev,
 319                        "[%s] err: too much memory requested!\n", __func__);
 320                return -ENOMEM;
 321        }
 322
 323        sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
 324                                             &sgl->sgl_dma_addr);
 325        if (sgl->sgl == NULL) {
 326                dev_err(&pci_dev->dev,
 327                        "[%s] err: no memory available!\n", __func__);
 328                return -ENOMEM;
 329        }
 330
 331        /* Only use buffering on incomplete pages */
 332        if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
 333                sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 334                                                       &sgl->fpage_dma_addr);
 335                if (sgl->fpage == NULL)
 336                        goto err_out;
 337
 338                /* Sync with user memory */
 339                if (copy_from_user(sgl->fpage + sgl->fpage_offs,
 340                                   user_addr, sgl->fpage_size)) {
 341                        rc = -EFAULT;
 342                        goto err_out;
 343                }
 344        }
 345        if (sgl->lpage_size != 0) {
 346                sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 347                                                       &sgl->lpage_dma_addr);
 348                if (sgl->lpage == NULL)
 349                        goto err_out1;
 350
 351                /* Sync with user memory */
 352                if (copy_from_user(sgl->lpage, user_addr + user_size -
 353                                   sgl->lpage_size, sgl->lpage_size)) {
 354                        rc = -EFAULT;
 355                        goto err_out2;
 356                }
 357        }
 358        return 0;
 359
 360 err_out2:
 361        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 362                                 sgl->lpage_dma_addr);
 363        sgl->lpage = NULL;
 364        sgl->lpage_dma_addr = 0;
 365 err_out1:
 366        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 367                                 sgl->fpage_dma_addr);
 368        sgl->fpage = NULL;
 369        sgl->fpage_dma_addr = 0;
 370 err_out:
 371        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 372                                 sgl->sgl_dma_addr);
 373        sgl->sgl = NULL;
 374        sgl->sgl_dma_addr = 0;
 375        sgl->sgl_size = 0;
 376        return -ENOMEM;
 377}
 378
 379int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 380                     dma_addr_t *dma_list)
 381{
 382        int i = 0, j = 0, p;
 383        unsigned long dma_offs, map_offs;
 384        dma_addr_t prev_daddr = 0;
 385        struct sg_entry *s, *last_s = NULL;
 386        size_t size = sgl->user_size;
 387
 388        dma_offs = 128;         /* next block if needed/dma_offset */
 389        map_offs = sgl->fpage_offs; /* offset in first page */
 390
 391        s = &sgl->sgl[0];       /* first set of 8 entries */
 392        p = 0;                  /* page */
 393        while (p < sgl->nr_pages) {
 394                dma_addr_t daddr;
 395                unsigned int size_to_map;
 396
 397                /* always write the chaining entry, cleanup is done later */
 398                j = 0;
 399                s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
 400                s[j].len         = cpu_to_be32(128);
 401                s[j].flags       = cpu_to_be32(SG_CHAINED);
 402                j++;
 403
 404                while (j < 8) {
 405                        /* DMA mapping for requested page, offs, size */
 406                        size_to_map = min(size, PAGE_SIZE - map_offs);
 407
 408                        if ((p == 0) && (sgl->fpage != NULL)) {
 409                                daddr = sgl->fpage_dma_addr + map_offs;
 410
 411                        } else if ((p == sgl->nr_pages - 1) &&
 412                                   (sgl->lpage != NULL)) {
 413                                daddr = sgl->lpage_dma_addr;
 414                        } else {
 415                                daddr = dma_list[p] + map_offs;
 416                        }
 417
 418                        size -= size_to_map;
 419                        map_offs = 0;
 420
 421                        if (prev_daddr == daddr) {
 422                                u32 prev_len = be32_to_cpu(last_s->len);
 423
 424                                /* pr_info("daddr combining: "
 425                                        "%016llx/%08x -> %016llx\n",
 426                                        prev_daddr, prev_len, daddr); */
 427
 428                                last_s->len = cpu_to_be32(prev_len +
 429                                                          size_to_map);
 430
 431                                p++; /* process next page */
 432                                if (p == sgl->nr_pages)
 433                                        goto fixup;  /* nothing to do */
 434
 435                                prev_daddr = daddr + size_to_map;
 436                                continue;
 437                        }
 438
 439                        /* start new entry */
 440                        s[j].target_addr = cpu_to_be64(daddr);
 441                        s[j].len         = cpu_to_be32(size_to_map);
 442                        s[j].flags       = cpu_to_be32(SG_DATA);
 443                        prev_daddr = daddr + size_to_map;
 444                        last_s = &s[j];
 445                        j++;
 446
 447                        p++;    /* process next page */
 448                        if (p == sgl->nr_pages)
 449                                goto fixup;  /* nothing to do */
 450                }
 451                dma_offs += 128;
 452                s += 8;         /* continue 8 elements further */
 453        }
 454 fixup:
 455        if (j == 1) {           /* combining happend on last entry! */
 456                s -= 8;         /* full shift needed on previous sgl block */
 457                j =  7;         /* shift all elements */
 458        }
 459
 460        for (i = 0; i < j; i++) /* move elements 1 up */
 461                s[i] = s[i + 1];
 462
 463        s[i].target_addr = cpu_to_be64(0);
 464        s[i].len         = cpu_to_be32(0);
 465        s[i].flags       = cpu_to_be32(SG_END_LIST);
 466        return 0;
 467}
 468
 469/**
 470 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
 471 *
 472 * After the DMA transfer has been completed we free the memory for
 473 * the sgl and the cached pages. Data is being transfered from cached
 474 * pages into user-space buffers.
 475 */
 476int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
 477{
 478        int rc = 0;
 479        struct pci_dev *pci_dev = cd->pci_dev;
 480
 481        if (sgl->fpage) {
 482                if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
 483                                 sgl->fpage_size)) {
 484                        dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
 485                                __func__);
 486                        rc = -EFAULT;
 487                }
 488                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 489                                         sgl->fpage_dma_addr);
 490                sgl->fpage = NULL;
 491                sgl->fpage_dma_addr = 0;
 492        }
 493        if (sgl->lpage) {
 494                if (copy_to_user(sgl->user_addr + sgl->user_size -
 495                                 sgl->lpage_size, sgl->lpage,
 496                                 sgl->lpage_size)) {
 497                        dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
 498                                __func__);
 499                        rc = -EFAULT;
 500                }
 501                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 502                                         sgl->lpage_dma_addr);
 503                sgl->lpage = NULL;
 504                sgl->lpage_dma_addr = 0;
 505        }
 506        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 507                                 sgl->sgl_dma_addr);
 508
 509        sgl->sgl = NULL;
 510        sgl->sgl_dma_addr = 0x0;
 511        sgl->sgl_size = 0;
 512        return rc;
 513}
 514
 515/**
 516 * free_user_pages() - Give pinned pages back
 517 *
 518 * Documentation of get_user_pages is in mm/memory.c:
 519 *
 520 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
 521 * as appropriate) must be called after the page is finished with, and
 522 * before put_page is called.
 523 *
 524 * FIXME Could be of use to others and might belong in the generic
 525 * code, if others agree. E.g.
 526 *    ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
 527 *    ceph_put_page_vector in net/ceph/pagevec.c
 528 *    maybe more?
 529 */
 530static int free_user_pages(struct page **page_list, unsigned int nr_pages,
 531                           int dirty)
 532{
 533        unsigned int i;
 534
 535        for (i = 0; i < nr_pages; i++) {
 536                if (page_list[i] != NULL) {
 537                        if (dirty)
 538                                set_page_dirty_lock(page_list[i]);
 539                        put_page(page_list[i]);
 540                }
 541        }
 542        return 0;
 543}
 544
 545/**
 546 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
 547 * @cd:         pointer to genwqe device
 548 * @m:          mapping params
 549 * @uaddr:      user virtual address
 550 * @size:       size of memory to be mapped
 551 *
 552 * We need to think about how we could speed this up. Of course it is
 553 * not a good idea to do this over and over again, like we are
 554 * currently doing it. Nevertheless, I am curious where on the path
 555 * the performance is spend. Most probably within the memory
 556 * allocation functions, but maybe also in the DMA mapping code.
 557 *
 558 * Restrictions: The maximum size of the possible mapping currently depends
 559 *               on the amount of memory we can get using kzalloc() for the
 560 *               page_list and pci_alloc_consistent for the sg_list.
 561 *               The sg_list is currently itself not scattered, which could
 562 *               be fixed with some effort. The page_list must be split into
 563 *               PAGE_SIZE chunks too. All that will make the complicated
 564 *               code more complicated.
 565 *
 566 * Return: 0 if success
 567 */
 568int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
 569                     unsigned long size, struct ddcb_requ *req)
 570{
 571        int rc = -EINVAL;
 572        unsigned long data, offs;
 573        struct pci_dev *pci_dev = cd->pci_dev;
 574
 575        if ((uaddr == NULL) || (size == 0)) {
 576                m->size = 0;    /* mark unused and not added */
 577                return -EINVAL;
 578        }
 579        m->u_vaddr = uaddr;
 580        m->size    = size;
 581
 582        /* determine space needed for page_list. */
 583        data = (unsigned long)uaddr;
 584        offs = offset_in_page(data);
 585        m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
 586
 587        m->page_list = kcalloc(m->nr_pages,
 588                               sizeof(struct page *) + sizeof(dma_addr_t),
 589                               GFP_KERNEL);
 590        if (!m->page_list) {
 591                dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
 592                m->nr_pages = 0;
 593                m->u_vaddr = NULL;
 594                m->size = 0;    /* mark unused and not added */
 595                return -ENOMEM;
 596        }
 597        m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
 598
 599        /* pin user pages in memory */
 600        rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
 601                                 m->nr_pages,
 602                                 1,             /* write by caller */
 603                                 m->page_list); /* ptrs to pages */
 604        if (rc < 0)
 605                goto fail_get_user_pages;
 606
 607        /* assumption: get_user_pages can be killed by signals. */
 608        if (rc < m->nr_pages) {
 609                free_user_pages(m->page_list, rc, 0);
 610                rc = -EFAULT;
 611                goto fail_get_user_pages;
 612        }
 613
 614        rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
 615        if (rc != 0)
 616                goto fail_free_user_pages;
 617
 618        return 0;
 619
 620 fail_free_user_pages:
 621        free_user_pages(m->page_list, m->nr_pages, 0);
 622
 623 fail_get_user_pages:
 624        kfree(m->page_list);
 625        m->page_list = NULL;
 626        m->dma_list = NULL;
 627        m->nr_pages = 0;
 628        m->u_vaddr = NULL;
 629        m->size = 0;            /* mark unused and not added */
 630        return rc;
 631}
 632
 633/**
 634 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
 635 *                        memory
 636 * @cd:         pointer to genwqe device
 637 * @m:          mapping params
 638 */
 639int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
 640                       struct ddcb_requ *req)
 641{
 642        struct pci_dev *pci_dev = cd->pci_dev;
 643
 644        if (!dma_mapping_used(m)) {
 645                dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
 646                        __func__, m);
 647                return -EINVAL;
 648        }
 649
 650        if (m->dma_list)
 651                genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
 652
 653        if (m->page_list) {
 654                free_user_pages(m->page_list, m->nr_pages, 1);
 655
 656                kfree(m->page_list);
 657                m->page_list = NULL;
 658                m->dma_list = NULL;
 659                m->nr_pages = 0;
 660        }
 661
 662        m->u_vaddr = NULL;
 663        m->size = 0;            /* mark as unused and not added */
 664        return 0;
 665}
 666
 667/**
 668 * genwqe_card_type() - Get chip type SLU Configuration Register
 669 * @cd:         pointer to the genwqe device descriptor
 670 * Return: 0: Altera Stratix-IV 230
 671 *         1: Altera Stratix-IV 530
 672 *         2: Altera Stratix-V A4
 673 *         3: Altera Stratix-V A7
 674 */
 675u8 genwqe_card_type(struct genwqe_dev *cd)
 676{
 677        u64 card_type = cd->slu_unitcfg;
 678
 679        return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
 680}
 681
 682/**
 683 * genwqe_card_reset() - Reset the card
 684 * @cd:         pointer to the genwqe device descriptor
 685 */
 686int genwqe_card_reset(struct genwqe_dev *cd)
 687{
 688        u64 softrst;
 689        struct pci_dev *pci_dev = cd->pci_dev;
 690
 691        if (!genwqe_is_privileged(cd))
 692                return -ENODEV;
 693
 694        /* new SL */
 695        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
 696        msleep(1000);
 697        __genwqe_readq(cd, IO_HSU_FIR_CLR);
 698        __genwqe_readq(cd, IO_APP_FIR_CLR);
 699        __genwqe_readq(cd, IO_SLU_FIR_CLR);
 700
 701        /*
 702         * Read-modify-write to preserve the stealth bits
 703         *
 704         * For SL >= 039, Stealth WE bit allows removing
 705         * the read-modify-wrote.
 706         * r-m-w may require a mask 0x3C to avoid hitting hard
 707         * reset again for error reset (should be 0, chicken).
 708         */
 709        softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
 710        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
 711
 712        /* give ERRORRESET some time to finish */
 713        msleep(50);
 714
 715        if (genwqe_need_err_masking(cd)) {
 716                dev_info(&pci_dev->dev,
 717                         "[%s] masking errors for old bitstreams\n", __func__);
 718                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
 719        }
 720        return 0;
 721}
 722
 723int genwqe_read_softreset(struct genwqe_dev *cd)
 724{
 725        u64 bitstream;
 726
 727        if (!genwqe_is_privileged(cd))
 728                return -ENODEV;
 729
 730        bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
 731        cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
 732        return 0;
 733}
 734
 735/**
 736 * genwqe_set_interrupt_capability() - Configure MSI capability structure
 737 * @cd:         pointer to the device
 738 * Return: 0 if no error
 739 */
 740int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
 741{
 742        int rc;
 743
 744        rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
 745        if (rc < 0)
 746                return rc;
 747        return 0;
 748}
 749
 750/**
 751 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
 752 * @cd:         pointer to the device
 753 */
 754void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
 755{
 756        pci_free_irq_vectors(cd->pci_dev);
 757}
 758
 759/**
 760 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
 761 * @cd:         card device
 762 * @r:          debug register array
 763 * @i:          index to desired entry
 764 * @m:          maximum possible entries
 765 * @addr:       addr which is read
 766 * @index:      index in debug array
 767 * @val:        read value
 768 */
 769static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
 770                       unsigned int *i, unsigned int m, u32 addr, u32 idx,
 771                       u64 val)
 772{
 773        if (WARN_ON_ONCE(*i >= m))
 774                return -EFAULT;
 775
 776        r[*i].addr = addr;
 777        r[*i].idx = idx;
 778        r[*i].val = val;
 779        ++*i;
 780        return 0;
 781}
 782
 783static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
 784                   unsigned int *i, unsigned int m, u32 addr, u64 val)
 785{
 786        return set_reg_idx(cd, r, i, m, addr, 0, val);
 787}
 788
 789int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
 790                         unsigned int max_regs, int all)
 791{
 792        unsigned int i, j, idx = 0;
 793        u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
 794        u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
 795
 796        /* Global FIR */
 797        gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
 798        set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
 799
 800        /* UnitCfg for SLU */
 801        sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
 802        set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
 803
 804        /* UnitCfg for APP */
 805        appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
 806        set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
 807
 808        /* Check all chip Units */
 809        for (i = 0; i < GENWQE_MAX_UNITS; i++) {
 810
 811                /* Unit FIR */
 812                ufir_addr = (i << 24) | 0x008;
 813                ufir = __genwqe_readq(cd, ufir_addr);
 814                set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
 815
 816                /* Unit FEC */
 817                ufec_addr = (i << 24) | 0x018;
 818                ufec = __genwqe_readq(cd, ufec_addr);
 819                set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
 820
 821                for (j = 0; j < 64; j++) {
 822                        /* wherever there is a primary 1, read the 2ndary */
 823                        if (!all && (!(ufir & (1ull << j))))
 824                                continue;
 825
 826                        sfir_addr = (i << 24) | (0x100 + 8 * j);
 827                        sfir = __genwqe_readq(cd, sfir_addr);
 828                        set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
 829
 830                        sfec_addr = (i << 24) | (0x300 + 8 * j);
 831                        sfec = __genwqe_readq(cd, sfec_addr);
 832                        set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
 833                }
 834        }
 835
 836        /* fill with invalid data until end */
 837        for (i = idx; i < max_regs; i++) {
 838                regs[i].addr = 0xffffffff;
 839                regs[i].val = 0xffffffffffffffffull;
 840        }
 841        return idx;
 842}
 843
 844/**
 845 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
 846 */
 847int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
 848{
 849        int entries = 0, ring, traps, traces, trace_entries;
 850        u32 eevptr_addr, l_addr, d_len, d_type;
 851        u64 eevptr, val, addr;
 852
 853        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 854        eevptr = __genwqe_readq(cd, eevptr_addr);
 855
 856        if ((eevptr != 0x0) && (eevptr != -1ull)) {
 857                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 858
 859                while (1) {
 860                        val = __genwqe_readq(cd, l_addr);
 861
 862                        if ((val == 0x0) || (val == -1ull))
 863                                break;
 864
 865                        /* 38:24 */
 866                        d_len  = (val & 0x0000007fff000000ull) >> 24;
 867
 868                        /* 39 */
 869                        d_type = (val & 0x0000008000000000ull) >> 36;
 870
 871                        if (d_type) {   /* repeat */
 872                                entries += d_len;
 873                        } else {        /* size in bytes! */
 874                                entries += d_len >> 3;
 875                        }
 876
 877                        l_addr += 8;
 878                }
 879        }
 880
 881        for (ring = 0; ring < 8; ring++) {
 882                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 883                val = __genwqe_readq(cd, addr);
 884
 885                if ((val == 0x0ull) || (val == -1ull))
 886                        continue;
 887
 888                traps = (val >> 24) & 0xff;
 889                traces = (val >> 16) & 0xff;
 890                trace_entries = val & 0xffff;
 891
 892                entries += traps + (traces * trace_entries);
 893        }
 894        return entries;
 895}
 896
 897/**
 898 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
 899 */
 900int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
 901                          struct genwqe_reg *regs, unsigned int max_regs)
 902{
 903        int i, traps, traces, trace, trace_entries, trace_entry, ring;
 904        unsigned int idx = 0;
 905        u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
 906        u64 eevptr, e, val, addr;
 907
 908        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 909        eevptr = __genwqe_readq(cd, eevptr_addr);
 910
 911        if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
 912                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 913                while (1) {
 914                        e = __genwqe_readq(cd, l_addr);
 915                        if ((e == 0x0) || (e == 0xffffffffffffffffull))
 916                                break;
 917
 918                        d_addr = (e & 0x0000000000ffffffull);       /* 23:0 */
 919                        d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
 920                        d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
 921                        d_addr |= GENWQE_UID_OFFS(uid);
 922
 923                        if (d_type) {
 924                                for (i = 0; i < (int)d_len; i++) {
 925                                        val = __genwqe_readq(cd, d_addr);
 926                                        set_reg_idx(cd, regs, &idx, max_regs,
 927                                                    d_addr, i, val);
 928                                }
 929                        } else {
 930                                d_len >>= 3; /* Size in bytes! */
 931                                for (i = 0; i < (int)d_len; i++, d_addr += 8) {
 932                                        val = __genwqe_readq(cd, d_addr);
 933                                        set_reg_idx(cd, regs, &idx, max_regs,
 934                                                    d_addr, 0, val);
 935                                }
 936                        }
 937                        l_addr += 8;
 938                }
 939        }
 940
 941        /*
 942         * To save time, there are only 6 traces poplulated on Uid=2,
 943         * Ring=1. each with iters=512.
 944         */
 945        for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
 946                                              2...7 are ASI rings */
 947                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 948                val = __genwqe_readq(cd, addr);
 949
 950                if ((val == 0x0ull) || (val == -1ull))
 951                        continue;
 952
 953                traps = (val >> 24) & 0xff;     /* Number of Traps      */
 954                traces = (val >> 16) & 0xff;    /* Number of Traces     */
 955                trace_entries = val & 0xffff;   /* Entries per trace    */
 956
 957                /* Note: This is a combined loop that dumps both the traps */
 958                /* (for the trace == 0 case) as well as the traces 1 to    */
 959                /* 'traces'.                                               */
 960                for (trace = 0; trace <= traces; trace++) {
 961                        u32 diag_sel =
 962                                GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
 963
 964                        addr = (GENWQE_UID_OFFS(uid) |
 965                                IO_EXTENDED_DIAG_SELECTOR);
 966                        __genwqe_writeq(cd, addr, diag_sel);
 967
 968                        for (trace_entry = 0;
 969                             trace_entry < (trace ? trace_entries : traps);
 970                             trace_entry++) {
 971                                addr = (GENWQE_UID_OFFS(uid) |
 972                                        IO_EXTENDED_DIAG_READ_MBX);
 973                                val = __genwqe_readq(cd, addr);
 974                                set_reg_idx(cd, regs, &idx, max_regs, addr,
 975                                            (diag_sel<<16) | trace_entry, val);
 976                        }
 977                }
 978        }
 979        return 0;
 980}
 981
 982/**
 983 * genwqe_write_vreg() - Write register in virtual window
 984 *
 985 * Note, these registers are only accessible to the PF through the
 986 * VF-window. It is not intended for the VF to access.
 987 */
 988int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
 989{
 990        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
 991        __genwqe_writeq(cd, reg, val);
 992        return 0;
 993}
 994
 995/**
 996 * genwqe_read_vreg() - Read register in virtual window
 997 *
 998 * Note, these registers are only accessible to the PF through the
 999 * VF-window. It is not intended for the VF to access.
1000 */
1001u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
1002{
1003        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1004        return __genwqe_readq(cd, reg);
1005}
1006
1007/**
1008 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1009 *
1010 * Note: From a design perspective it turned out to be a bad idea to
1011 * use codes here to specifiy the frequency/speed values. An old
1012 * driver cannot understand new codes and is therefore always a
1013 * problem. Better is to measure out the value or put the
1014 * speed/frequency directly into a register which is always a valid
1015 * value for old as well as for new software.
1016 *
1017 * Return: Card clock in MHz
1018 */
1019int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1020{
1021        u16 speed;              /*         MHz  MHz  MHz  MHz */
1022        static const int speed_grade[] = { 250, 200, 166, 175 };
1023
1024        speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1025        if (speed >= ARRAY_SIZE(speed_grade))
1026                return 0;       /* illegal value */
1027
1028        return speed_grade[speed];
1029}
1030
1031/**
1032 * genwqe_stop_traps() - Stop traps
1033 *
1034 * Before reading out the analysis data, we need to stop the traps.
1035 */
1036void genwqe_stop_traps(struct genwqe_dev *cd)
1037{
1038        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1039}
1040
1041/**
1042 * genwqe_start_traps() - Start traps
1043 *
1044 * After having read the data, we can/must enable the traps again.
1045 */
1046void genwqe_start_traps(struct genwqe_dev *cd)
1047{
1048        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1049
1050        if (genwqe_need_err_masking(cd))
1051                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1052}
1053