linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/mmc.h>
  41
  42#include "core.h"
  43#include "card.h"
  44#include "bus.h"
  45#include "host.h"
  46#include "sdio_bus.h"
  47#include "pwrseq.h"
  48
  49#include "mmc_ops.h"
  50#include "sd_ops.h"
  51#include "sdio_ops.h"
  52
  53/* If the device is not responding */
  54#define MMC_CORE_TIMEOUT_MS     (10 * 60 * 1000) /* 10 minute timeout */
  55
  56/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  57#define MMC_ERASE_TIMEOUT_MS    (60 * 1000) /* 60 s */
  58
  59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  60
  61/*
  62 * Enabling software CRCs on the data blocks can be a significant (30%)
  63 * performance cost, and for other reasons may not always be desired.
  64 * So we allow it it to be disabled.
  65 */
  66bool use_spi_crc = 1;
  67module_param(use_spi_crc, bool, 0);
  68
  69static int mmc_schedule_delayed_work(struct delayed_work *work,
  70                                     unsigned long delay)
  71{
  72        /*
  73         * We use the system_freezable_wq, because of two reasons.
  74         * First, it allows several works (not the same work item) to be
  75         * executed simultaneously. Second, the queue becomes frozen when
  76         * userspace becomes frozen during system PM.
  77         */
  78        return queue_delayed_work(system_freezable_wq, work, delay);
  79}
  80
  81#ifdef CONFIG_FAIL_MMC_REQUEST
  82
  83/*
  84 * Internal function. Inject random data errors.
  85 * If mmc_data is NULL no errors are injected.
  86 */
  87static void mmc_should_fail_request(struct mmc_host *host,
  88                                    struct mmc_request *mrq)
  89{
  90        struct mmc_command *cmd = mrq->cmd;
  91        struct mmc_data *data = mrq->data;
  92        static const int data_errors[] = {
  93                -ETIMEDOUT,
  94                -EILSEQ,
  95                -EIO,
  96        };
  97
  98        if (!data)
  99                return;
 100
 101        if (cmd->error || data->error ||
 102            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 103                return;
 104
 105        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 106        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 107}
 108
 109#else /* CONFIG_FAIL_MMC_REQUEST */
 110
 111static inline void mmc_should_fail_request(struct mmc_host *host,
 112                                           struct mmc_request *mrq)
 113{
 114}
 115
 116#endif /* CONFIG_FAIL_MMC_REQUEST */
 117
 118static inline void mmc_complete_cmd(struct mmc_request *mrq)
 119{
 120        if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 121                complete_all(&mrq->cmd_completion);
 122}
 123
 124void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 125{
 126        if (!mrq->cap_cmd_during_tfr)
 127                return;
 128
 129        mmc_complete_cmd(mrq);
 130
 131        pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 132                 mmc_hostname(host), mrq->cmd->opcode);
 133}
 134EXPORT_SYMBOL(mmc_command_done);
 135
 136/**
 137 *      mmc_request_done - finish processing an MMC request
 138 *      @host: MMC host which completed request
 139 *      @mrq: MMC request which request
 140 *
 141 *      MMC drivers should call this function when they have completed
 142 *      their processing of a request.
 143 */
 144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 145{
 146        struct mmc_command *cmd = mrq->cmd;
 147        int err = cmd->error;
 148
 149        /* Flag re-tuning needed on CRC errors */
 150        if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 151            cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 152            (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 153            (mrq->data && mrq->data->error == -EILSEQ) ||
 154            (mrq->stop && mrq->stop->error == -EILSEQ)))
 155                mmc_retune_needed(host);
 156
 157        if (err && cmd->retries && mmc_host_is_spi(host)) {
 158                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 159                        cmd->retries = 0;
 160        }
 161
 162        if (host->ongoing_mrq == mrq)
 163                host->ongoing_mrq = NULL;
 164
 165        mmc_complete_cmd(mrq);
 166
 167        trace_mmc_request_done(host, mrq);
 168
 169        /*
 170         * We list various conditions for the command to be considered
 171         * properly done:
 172         *
 173         * - There was no error, OK fine then
 174         * - We are not doing some kind of retry
 175         * - The card was removed (...so just complete everything no matter
 176         *   if there are errors or retries)
 177         */
 178        if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 179                mmc_should_fail_request(host, mrq);
 180
 181                if (!host->ongoing_mrq)
 182                        led_trigger_event(host->led, LED_OFF);
 183
 184                if (mrq->sbc) {
 185                        pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 186                                mmc_hostname(host), mrq->sbc->opcode,
 187                                mrq->sbc->error,
 188                                mrq->sbc->resp[0], mrq->sbc->resp[1],
 189                                mrq->sbc->resp[2], mrq->sbc->resp[3]);
 190                }
 191
 192                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 193                        mmc_hostname(host), cmd->opcode, err,
 194                        cmd->resp[0], cmd->resp[1],
 195                        cmd->resp[2], cmd->resp[3]);
 196
 197                if (mrq->data) {
 198                        pr_debug("%s:     %d bytes transferred: %d\n",
 199                                mmc_hostname(host),
 200                                mrq->data->bytes_xfered, mrq->data->error);
 201                }
 202
 203                if (mrq->stop) {
 204                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 205                                mmc_hostname(host), mrq->stop->opcode,
 206                                mrq->stop->error,
 207                                mrq->stop->resp[0], mrq->stop->resp[1],
 208                                mrq->stop->resp[2], mrq->stop->resp[3]);
 209                }
 210        }
 211        /*
 212         * Request starter must handle retries - see
 213         * mmc_wait_for_req_done().
 214         */
 215        if (mrq->done)
 216                mrq->done(mrq);
 217}
 218
 219EXPORT_SYMBOL(mmc_request_done);
 220
 221static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 222{
 223        int err;
 224
 225        /* Assumes host controller has been runtime resumed by mmc_claim_host */
 226        err = mmc_retune(host);
 227        if (err) {
 228                mrq->cmd->error = err;
 229                mmc_request_done(host, mrq);
 230                return;
 231        }
 232
 233        /*
 234         * For sdio rw commands we must wait for card busy otherwise some
 235         * sdio devices won't work properly.
 236         * And bypass I/O abort, reset and bus suspend operations.
 237         */
 238        if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 239            host->ops->card_busy) {
 240                int tries = 500; /* Wait aprox 500ms at maximum */
 241
 242                while (host->ops->card_busy(host) && --tries)
 243                        mmc_delay(1);
 244
 245                if (tries == 0) {
 246                        mrq->cmd->error = -EBUSY;
 247                        mmc_request_done(host, mrq);
 248                        return;
 249                }
 250        }
 251
 252        if (mrq->cap_cmd_during_tfr) {
 253                host->ongoing_mrq = mrq;
 254                /*
 255                 * Retry path could come through here without having waiting on
 256                 * cmd_completion, so ensure it is reinitialised.
 257                 */
 258                reinit_completion(&mrq->cmd_completion);
 259        }
 260
 261        trace_mmc_request_start(host, mrq);
 262
 263        if (host->cqe_on)
 264                host->cqe_ops->cqe_off(host);
 265
 266        host->ops->request(host, mrq);
 267}
 268
 269static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq)
 270{
 271        if (mrq->sbc) {
 272                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 273                         mmc_hostname(host), mrq->sbc->opcode,
 274                         mrq->sbc->arg, mrq->sbc->flags);
 275        }
 276
 277        if (mrq->cmd) {
 278                pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 279                         mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg,
 280                         mrq->cmd->flags);
 281        }
 282
 283        if (mrq->data) {
 284                pr_debug("%s:     blksz %d blocks %d flags %08x "
 285                        "tsac %d ms nsac %d\n",
 286                        mmc_hostname(host), mrq->data->blksz,
 287                        mrq->data->blocks, mrq->data->flags,
 288                        mrq->data->timeout_ns / 1000000,
 289                        mrq->data->timeout_clks);
 290        }
 291
 292        if (mrq->stop) {
 293                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 294                         mmc_hostname(host), mrq->stop->opcode,
 295                         mrq->stop->arg, mrq->stop->flags);
 296        }
 297}
 298
 299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 300{
 301        unsigned int i, sz = 0;
 302        struct scatterlist *sg;
 303
 304        if (mrq->cmd) {
 305                mrq->cmd->error = 0;
 306                mrq->cmd->mrq = mrq;
 307                mrq->cmd->data = mrq->data;
 308        }
 309        if (mrq->sbc) {
 310                mrq->sbc->error = 0;
 311                mrq->sbc->mrq = mrq;
 312        }
 313        if (mrq->data) {
 314                if (mrq->data->blksz > host->max_blk_size ||
 315                    mrq->data->blocks > host->max_blk_count ||
 316                    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 317                        return -EINVAL;
 318
 319                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 320                        sz += sg->length;
 321                if (sz != mrq->data->blocks * mrq->data->blksz)
 322                        return -EINVAL;
 323
 324                mrq->data->error = 0;
 325                mrq->data->mrq = mrq;
 326                if (mrq->stop) {
 327                        mrq->data->stop = mrq->stop;
 328                        mrq->stop->error = 0;
 329                        mrq->stop->mrq = mrq;
 330                }
 331        }
 332
 333        return 0;
 334}
 335
 336static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 337{
 338        int err;
 339
 340        mmc_retune_hold(host);
 341
 342        if (mmc_card_removed(host->card))
 343                return -ENOMEDIUM;
 344
 345        mmc_mrq_pr_debug(host, mrq);
 346
 347        WARN_ON(!host->claimed);
 348
 349        err = mmc_mrq_prep(host, mrq);
 350        if (err)
 351                return err;
 352
 353        led_trigger_event(host->led, LED_FULL);
 354        __mmc_start_request(host, mrq);
 355
 356        return 0;
 357}
 358
 359/*
 360 * mmc_wait_data_done() - done callback for data request
 361 * @mrq: done data request
 362 *
 363 * Wakes up mmc context, passed as a callback to host controller driver
 364 */
 365static void mmc_wait_data_done(struct mmc_request *mrq)
 366{
 367        struct mmc_context_info *context_info = &mrq->host->context_info;
 368
 369        context_info->is_done_rcv = true;
 370        wake_up_interruptible(&context_info->wait);
 371}
 372
 373static void mmc_wait_done(struct mmc_request *mrq)
 374{
 375        complete(&mrq->completion);
 376}
 377
 378static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 379{
 380        struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 381
 382        /*
 383         * If there is an ongoing transfer, wait for the command line to become
 384         * available.
 385         */
 386        if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 387                wait_for_completion(&ongoing_mrq->cmd_completion);
 388}
 389
 390/*
 391 *__mmc_start_data_req() - starts data request
 392 * @host: MMC host to start the request
 393 * @mrq: data request to start
 394 *
 395 * Sets the done callback to be called when request is completed by the card.
 396 * Starts data mmc request execution
 397 * If an ongoing transfer is already in progress, wait for the command line
 398 * to become available before sending another command.
 399 */
 400static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 401{
 402        int err;
 403
 404        mmc_wait_ongoing_tfr_cmd(host);
 405
 406        mrq->done = mmc_wait_data_done;
 407        mrq->host = host;
 408
 409        init_completion(&mrq->cmd_completion);
 410
 411        err = mmc_start_request(host, mrq);
 412        if (err) {
 413                mrq->cmd->error = err;
 414                mmc_complete_cmd(mrq);
 415                mmc_wait_data_done(mrq);
 416        }
 417
 418        return err;
 419}
 420
 421static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 422{
 423        int err;
 424
 425        mmc_wait_ongoing_tfr_cmd(host);
 426
 427        init_completion(&mrq->completion);
 428        mrq->done = mmc_wait_done;
 429
 430        init_completion(&mrq->cmd_completion);
 431
 432        err = mmc_start_request(host, mrq);
 433        if (err) {
 434                mrq->cmd->error = err;
 435                mmc_complete_cmd(mrq);
 436                complete(&mrq->completion);
 437        }
 438
 439        return err;
 440}
 441
 442void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 443{
 444        struct mmc_command *cmd;
 445
 446        while (1) {
 447                wait_for_completion(&mrq->completion);
 448
 449                cmd = mrq->cmd;
 450
 451                /*
 452                 * If host has timed out waiting for the sanitize
 453                 * to complete, card might be still in programming state
 454                 * so let's try to bring the card out of programming
 455                 * state.
 456                 */
 457                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 458                        if (!mmc_interrupt_hpi(host->card)) {
 459                                pr_warn("%s: %s: Interrupted sanitize\n",
 460                                        mmc_hostname(host), __func__);
 461                                cmd->error = 0;
 462                                break;
 463                        } else {
 464                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 465                                       mmc_hostname(host), __func__);
 466                        }
 467                }
 468                if (!cmd->error || !cmd->retries ||
 469                    mmc_card_removed(host->card))
 470                        break;
 471
 472                mmc_retune_recheck(host);
 473
 474                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 475                         mmc_hostname(host), cmd->opcode, cmd->error);
 476                cmd->retries--;
 477                cmd->error = 0;
 478                __mmc_start_request(host, mrq);
 479        }
 480
 481        mmc_retune_release(host);
 482}
 483EXPORT_SYMBOL(mmc_wait_for_req_done);
 484
 485/**
 486 *      mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 487 *      @host: MMC host
 488 *      @mrq: MMC request
 489 *
 490 *      mmc_is_req_done() is used with requests that have
 491 *      mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 492 *      starting a request and before waiting for it to complete. That is,
 493 *      either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 494 *      and before mmc_wait_for_req_done(). If it is called at other times the
 495 *      result is not meaningful.
 496 */
 497bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 498{
 499        if (host->areq)
 500                return host->context_info.is_done_rcv;
 501        else
 502                return completion_done(&mrq->completion);
 503}
 504EXPORT_SYMBOL(mmc_is_req_done);
 505
 506/**
 507 *      mmc_pre_req - Prepare for a new request
 508 *      @host: MMC host to prepare command
 509 *      @mrq: MMC request to prepare for
 510 *
 511 *      mmc_pre_req() is called in prior to mmc_start_req() to let
 512 *      host prepare for the new request. Preparation of a request may be
 513 *      performed while another request is running on the host.
 514 */
 515static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517        if (host->ops->pre_req)
 518                host->ops->pre_req(host, mrq);
 519}
 520
 521/**
 522 *      mmc_post_req - Post process a completed request
 523 *      @host: MMC host to post process command
 524 *      @mrq: MMC request to post process for
 525 *      @err: Error, if non zero, clean up any resources made in pre_req
 526 *
 527 *      Let the host post process a completed request. Post processing of
 528 *      a request may be performed while another reuqest is running.
 529 */
 530static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 531                         int err)
 532{
 533        if (host->ops->post_req)
 534                host->ops->post_req(host, mrq, err);
 535}
 536
 537/**
 538 * mmc_finalize_areq() - finalize an asynchronous request
 539 * @host: MMC host to finalize any ongoing request on
 540 *
 541 * Returns the status of the ongoing asynchronous request, but
 542 * MMC_BLK_SUCCESS if no request was going on.
 543 */
 544static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
 545{
 546        struct mmc_context_info *context_info = &host->context_info;
 547        enum mmc_blk_status status;
 548
 549        if (!host->areq)
 550                return MMC_BLK_SUCCESS;
 551
 552        while (1) {
 553                wait_event_interruptible(context_info->wait,
 554                                (context_info->is_done_rcv ||
 555                                 context_info->is_new_req));
 556
 557                if (context_info->is_done_rcv) {
 558                        struct mmc_command *cmd;
 559
 560                        context_info->is_done_rcv = false;
 561                        cmd = host->areq->mrq->cmd;
 562
 563                        if (!cmd->error || !cmd->retries ||
 564                            mmc_card_removed(host->card)) {
 565                                status = host->areq->err_check(host->card,
 566                                                               host->areq);
 567                                break; /* return status */
 568                        } else {
 569                                mmc_retune_recheck(host);
 570                                pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 571                                        mmc_hostname(host),
 572                                        cmd->opcode, cmd->error);
 573                                cmd->retries--;
 574                                cmd->error = 0;
 575                                __mmc_start_request(host, host->areq->mrq);
 576                                continue; /* wait for done/new event again */
 577                        }
 578                }
 579
 580                return MMC_BLK_NEW_REQUEST;
 581        }
 582
 583        mmc_retune_release(host);
 584
 585        /*
 586         * Check BKOPS urgency for each R1 response
 587         */
 588        if (host->card && mmc_card_mmc(host->card) &&
 589            ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 590             (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 591            (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
 592                mmc_start_bkops(host->card, true);
 593        }
 594
 595        return status;
 596}
 597
 598/**
 599 *      mmc_start_areq - start an asynchronous request
 600 *      @host: MMC host to start command
 601 *      @areq: asynchronous request to start
 602 *      @ret_stat: out parameter for status
 603 *
 604 *      Start a new MMC custom command request for a host.
 605 *      If there is on ongoing async request wait for completion
 606 *      of that request and start the new one and return.
 607 *      Does not wait for the new request to complete.
 608 *
 609 *      Returns the completed request, NULL in case of none completed.
 610 *      Wait for the an ongoing request (previoulsy started) to complete and
 611 *      return the completed request. If there is no ongoing request, NULL
 612 *      is returned without waiting. NULL is not an error condition.
 613 */
 614struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
 615                                     struct mmc_async_req *areq,
 616                                     enum mmc_blk_status *ret_stat)
 617{
 618        enum mmc_blk_status status;
 619        int start_err = 0;
 620        struct mmc_async_req *previous = host->areq;
 621
 622        /* Prepare a new request */
 623        if (areq)
 624                mmc_pre_req(host, areq->mrq);
 625
 626        /* Finalize previous request */
 627        status = mmc_finalize_areq(host);
 628        if (ret_stat)
 629                *ret_stat = status;
 630
 631        /* The previous request is still going on... */
 632        if (status == MMC_BLK_NEW_REQUEST)
 633                return NULL;
 634
 635        /* Fine so far, start the new request! */
 636        if (status == MMC_BLK_SUCCESS && areq)
 637                start_err = __mmc_start_data_req(host, areq->mrq);
 638
 639        /* Postprocess the old request at this point */
 640        if (host->areq)
 641                mmc_post_req(host, host->areq->mrq, 0);
 642
 643        /* Cancel a prepared request if it was not started. */
 644        if ((status != MMC_BLK_SUCCESS || start_err) && areq)
 645                mmc_post_req(host, areq->mrq, -EINVAL);
 646
 647        if (status != MMC_BLK_SUCCESS)
 648                host->areq = NULL;
 649        else
 650                host->areq = areq;
 651
 652        return previous;
 653}
 654EXPORT_SYMBOL(mmc_start_areq);
 655
 656/**
 657 *      mmc_wait_for_req - start a request and wait for completion
 658 *      @host: MMC host to start command
 659 *      @mrq: MMC request to start
 660 *
 661 *      Start a new MMC custom command request for a host, and wait
 662 *      for the command to complete. In the case of 'cap_cmd_during_tfr'
 663 *      requests, the transfer is ongoing and the caller can issue further
 664 *      commands that do not use the data lines, and then wait by calling
 665 *      mmc_wait_for_req_done().
 666 *      Does not attempt to parse the response.
 667 */
 668void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 669{
 670        __mmc_start_req(host, mrq);
 671
 672        if (!mrq->cap_cmd_during_tfr)
 673                mmc_wait_for_req_done(host, mrq);
 674}
 675EXPORT_SYMBOL(mmc_wait_for_req);
 676
 677/**
 678 *      mmc_wait_for_cmd - start a command and wait for completion
 679 *      @host: MMC host to start command
 680 *      @cmd: MMC command to start
 681 *      @retries: maximum number of retries
 682 *
 683 *      Start a new MMC command for a host, and wait for the command
 684 *      to complete.  Return any error that occurred while the command
 685 *      was executing.  Do not attempt to parse the response.
 686 */
 687int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 688{
 689        struct mmc_request mrq = {};
 690
 691        WARN_ON(!host->claimed);
 692
 693        memset(cmd->resp, 0, sizeof(cmd->resp));
 694        cmd->retries = retries;
 695
 696        mrq.cmd = cmd;
 697        cmd->data = NULL;
 698
 699        mmc_wait_for_req(host, &mrq);
 700
 701        return cmd->error;
 702}
 703
 704EXPORT_SYMBOL(mmc_wait_for_cmd);
 705
 706/**
 707 *      mmc_set_data_timeout - set the timeout for a data command
 708 *      @data: data phase for command
 709 *      @card: the MMC card associated with the data transfer
 710 *
 711 *      Computes the data timeout parameters according to the
 712 *      correct algorithm given the card type.
 713 */
 714void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 715{
 716        unsigned int mult;
 717
 718        /*
 719         * SDIO cards only define an upper 1 s limit on access.
 720         */
 721        if (mmc_card_sdio(card)) {
 722                data->timeout_ns = 1000000000;
 723                data->timeout_clks = 0;
 724                return;
 725        }
 726
 727        /*
 728         * SD cards use a 100 multiplier rather than 10
 729         */
 730        mult = mmc_card_sd(card) ? 100 : 10;
 731
 732        /*
 733         * Scale up the multiplier (and therefore the timeout) by
 734         * the r2w factor for writes.
 735         */
 736        if (data->flags & MMC_DATA_WRITE)
 737                mult <<= card->csd.r2w_factor;
 738
 739        data->timeout_ns = card->csd.taac_ns * mult;
 740        data->timeout_clks = card->csd.taac_clks * mult;
 741
 742        /*
 743         * SD cards also have an upper limit on the timeout.
 744         */
 745        if (mmc_card_sd(card)) {
 746                unsigned int timeout_us, limit_us;
 747
 748                timeout_us = data->timeout_ns / 1000;
 749                if (card->host->ios.clock)
 750                        timeout_us += data->timeout_clks * 1000 /
 751                                (card->host->ios.clock / 1000);
 752
 753                if (data->flags & MMC_DATA_WRITE)
 754                        /*
 755                         * The MMC spec "It is strongly recommended
 756                         * for hosts to implement more than 500ms
 757                         * timeout value even if the card indicates
 758                         * the 250ms maximum busy length."  Even the
 759                         * previous value of 300ms is known to be
 760                         * insufficient for some cards.
 761                         */
 762                        limit_us = 3000000;
 763                else
 764                        limit_us = 100000;
 765
 766                /*
 767                 * SDHC cards always use these fixed values.
 768                 */
 769                if (timeout_us > limit_us) {
 770                        data->timeout_ns = limit_us * 1000;
 771                        data->timeout_clks = 0;
 772                }
 773
 774                /* assign limit value if invalid */
 775                if (timeout_us == 0)
 776                        data->timeout_ns = limit_us * 1000;
 777        }
 778
 779        /*
 780         * Some cards require longer data read timeout than indicated in CSD.
 781         * Address this by setting the read timeout to a "reasonably high"
 782         * value. For the cards tested, 600ms has proven enough. If necessary,
 783         * this value can be increased if other problematic cards require this.
 784         */
 785        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 786                data->timeout_ns = 600000000;
 787                data->timeout_clks = 0;
 788        }
 789
 790        /*
 791         * Some cards need very high timeouts if driven in SPI mode.
 792         * The worst observed timeout was 900ms after writing a
 793         * continuous stream of data until the internal logic
 794         * overflowed.
 795         */
 796        if (mmc_host_is_spi(card->host)) {
 797                if (data->flags & MMC_DATA_WRITE) {
 798                        if (data->timeout_ns < 1000000000)
 799                                data->timeout_ns = 1000000000;  /* 1s */
 800                } else {
 801                        if (data->timeout_ns < 100000000)
 802                                data->timeout_ns =  100000000;  /* 100ms */
 803                }
 804        }
 805}
 806EXPORT_SYMBOL(mmc_set_data_timeout);
 807
 808/**
 809 *      mmc_align_data_size - pads a transfer size to a more optimal value
 810 *      @card: the MMC card associated with the data transfer
 811 *      @sz: original transfer size
 812 *
 813 *      Pads the original data size with a number of extra bytes in
 814 *      order to avoid controller bugs and/or performance hits
 815 *      (e.g. some controllers revert to PIO for certain sizes).
 816 *
 817 *      Returns the improved size, which might be unmodified.
 818 *
 819 *      Note that this function is only relevant when issuing a
 820 *      single scatter gather entry.
 821 */
 822unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 823{
 824        /*
 825         * FIXME: We don't have a system for the controller to tell
 826         * the core about its problems yet, so for now we just 32-bit
 827         * align the size.
 828         */
 829        sz = ((sz + 3) / 4) * 4;
 830
 831        return sz;
 832}
 833EXPORT_SYMBOL(mmc_align_data_size);
 834
 835/**
 836 *      __mmc_claim_host - exclusively claim a host
 837 *      @host: mmc host to claim
 838 *      @abort: whether or not the operation should be aborted
 839 *
 840 *      Claim a host for a set of operations.  If @abort is non null and
 841 *      dereference a non-zero value then this will return prematurely with
 842 *      that non-zero value without acquiring the lock.  Returns zero
 843 *      with the lock held otherwise.
 844 */
 845int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 846{
 847        DECLARE_WAITQUEUE(wait, current);
 848        unsigned long flags;
 849        int stop;
 850        bool pm = false;
 851
 852        might_sleep();
 853
 854        add_wait_queue(&host->wq, &wait);
 855        spin_lock_irqsave(&host->lock, flags);
 856        while (1) {
 857                set_current_state(TASK_UNINTERRUPTIBLE);
 858                stop = abort ? atomic_read(abort) : 0;
 859                if (stop || !host->claimed || host->claimer == current)
 860                        break;
 861                spin_unlock_irqrestore(&host->lock, flags);
 862                schedule();
 863                spin_lock_irqsave(&host->lock, flags);
 864        }
 865        set_current_state(TASK_RUNNING);
 866        if (!stop) {
 867                host->claimed = 1;
 868                host->claimer = current;
 869                host->claim_cnt += 1;
 870                if (host->claim_cnt == 1)
 871                        pm = true;
 872        } else
 873                wake_up(&host->wq);
 874        spin_unlock_irqrestore(&host->lock, flags);
 875        remove_wait_queue(&host->wq, &wait);
 876
 877        if (pm)
 878                pm_runtime_get_sync(mmc_dev(host));
 879
 880        return stop;
 881}
 882EXPORT_SYMBOL(__mmc_claim_host);
 883
 884/**
 885 *      mmc_release_host - release a host
 886 *      @host: mmc host to release
 887 *
 888 *      Release a MMC host, allowing others to claim the host
 889 *      for their operations.
 890 */
 891void mmc_release_host(struct mmc_host *host)
 892{
 893        unsigned long flags;
 894
 895        WARN_ON(!host->claimed);
 896
 897        spin_lock_irqsave(&host->lock, flags);
 898        if (--host->claim_cnt) {
 899                /* Release for nested claim */
 900                spin_unlock_irqrestore(&host->lock, flags);
 901        } else {
 902                host->claimed = 0;
 903                host->claimer = NULL;
 904                spin_unlock_irqrestore(&host->lock, flags);
 905                wake_up(&host->wq);
 906                pm_runtime_mark_last_busy(mmc_dev(host));
 907                pm_runtime_put_autosuspend(mmc_dev(host));
 908        }
 909}
 910EXPORT_SYMBOL(mmc_release_host);
 911
 912/*
 913 * This is a helper function, which fetches a runtime pm reference for the
 914 * card device and also claims the host.
 915 */
 916void mmc_get_card(struct mmc_card *card)
 917{
 918        pm_runtime_get_sync(&card->dev);
 919        mmc_claim_host(card->host);
 920}
 921EXPORT_SYMBOL(mmc_get_card);
 922
 923/*
 924 * This is a helper function, which releases the host and drops the runtime
 925 * pm reference for the card device.
 926 */
 927void mmc_put_card(struct mmc_card *card)
 928{
 929        mmc_release_host(card->host);
 930        pm_runtime_mark_last_busy(&card->dev);
 931        pm_runtime_put_autosuspend(&card->dev);
 932}
 933EXPORT_SYMBOL(mmc_put_card);
 934
 935/*
 936 * Internal function that does the actual ios call to the host driver,
 937 * optionally printing some debug output.
 938 */
 939static inline void mmc_set_ios(struct mmc_host *host)
 940{
 941        struct mmc_ios *ios = &host->ios;
 942
 943        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 944                "width %u timing %u\n",
 945                 mmc_hostname(host), ios->clock, ios->bus_mode,
 946                 ios->power_mode, ios->chip_select, ios->vdd,
 947                 1 << ios->bus_width, ios->timing);
 948
 949        host->ops->set_ios(host, ios);
 950}
 951
 952/*
 953 * Control chip select pin on a host.
 954 */
 955void mmc_set_chip_select(struct mmc_host *host, int mode)
 956{
 957        host->ios.chip_select = mode;
 958        mmc_set_ios(host);
 959}
 960
 961/*
 962 * Sets the host clock to the highest possible frequency that
 963 * is below "hz".
 964 */
 965void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 966{
 967        WARN_ON(hz && hz < host->f_min);
 968
 969        if (hz > host->f_max)
 970                hz = host->f_max;
 971
 972        host->ios.clock = hz;
 973        mmc_set_ios(host);
 974}
 975
 976int mmc_execute_tuning(struct mmc_card *card)
 977{
 978        struct mmc_host *host = card->host;
 979        u32 opcode;
 980        int err;
 981
 982        if (!host->ops->execute_tuning)
 983                return 0;
 984
 985        if (host->cqe_on)
 986                host->cqe_ops->cqe_off(host);
 987
 988        if (mmc_card_mmc(card))
 989                opcode = MMC_SEND_TUNING_BLOCK_HS200;
 990        else
 991                opcode = MMC_SEND_TUNING_BLOCK;
 992
 993        err = host->ops->execute_tuning(host, opcode);
 994
 995        if (err)
 996                pr_err("%s: tuning execution failed: %d\n",
 997                        mmc_hostname(host), err);
 998        else
 999                mmc_retune_enable(host);
1000
1001        return err;
1002}
1003
1004/*
1005 * Change the bus mode (open drain/push-pull) of a host.
1006 */
1007void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1008{
1009        host->ios.bus_mode = mode;
1010        mmc_set_ios(host);
1011}
1012
1013/*
1014 * Change data bus width of a host.
1015 */
1016void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1017{
1018        host->ios.bus_width = width;
1019        mmc_set_ios(host);
1020}
1021
1022/*
1023 * Set initial state after a power cycle or a hw_reset.
1024 */
1025void mmc_set_initial_state(struct mmc_host *host)
1026{
1027        if (host->cqe_on)
1028                host->cqe_ops->cqe_off(host);
1029
1030        mmc_retune_disable(host);
1031
1032        if (mmc_host_is_spi(host))
1033                host->ios.chip_select = MMC_CS_HIGH;
1034        else
1035                host->ios.chip_select = MMC_CS_DONTCARE;
1036        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1037        host->ios.bus_width = MMC_BUS_WIDTH_1;
1038        host->ios.timing = MMC_TIMING_LEGACY;
1039        host->ios.drv_type = 0;
1040        host->ios.enhanced_strobe = false;
1041
1042        /*
1043         * Make sure we are in non-enhanced strobe mode before we
1044         * actually enable it in ext_csd.
1045         */
1046        if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1047             host->ops->hs400_enhanced_strobe)
1048                host->ops->hs400_enhanced_strobe(host, &host->ios);
1049
1050        mmc_set_ios(host);
1051}
1052
1053/**
1054 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1055 * @vdd:        voltage (mV)
1056 * @low_bits:   prefer low bits in boundary cases
1057 *
1058 * This function returns the OCR bit number according to the provided @vdd
1059 * value. If conversion is not possible a negative errno value returned.
1060 *
1061 * Depending on the @low_bits flag the function prefers low or high OCR bits
1062 * on boundary voltages. For example,
1063 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1064 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1065 *
1066 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1067 */
1068static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1069{
1070        const int max_bit = ilog2(MMC_VDD_35_36);
1071        int bit;
1072
1073        if (vdd < 1650 || vdd > 3600)
1074                return -EINVAL;
1075
1076        if (vdd >= 1650 && vdd <= 1950)
1077                return ilog2(MMC_VDD_165_195);
1078
1079        if (low_bits)
1080                vdd -= 1;
1081
1082        /* Base 2000 mV, step 100 mV, bit's base 8. */
1083        bit = (vdd - 2000) / 100 + 8;
1084        if (bit > max_bit)
1085                return max_bit;
1086        return bit;
1087}
1088
1089/**
1090 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1091 * @vdd_min:    minimum voltage value (mV)
1092 * @vdd_max:    maximum voltage value (mV)
1093 *
1094 * This function returns the OCR mask bits according to the provided @vdd_min
1095 * and @vdd_max values. If conversion is not possible the function returns 0.
1096 *
1097 * Notes wrt boundary cases:
1098 * This function sets the OCR bits for all boundary voltages, for example
1099 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1100 * MMC_VDD_34_35 mask.
1101 */
1102u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1103{
1104        u32 mask = 0;
1105
1106        if (vdd_max < vdd_min)
1107                return 0;
1108
1109        /* Prefer high bits for the boundary vdd_max values. */
1110        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1111        if (vdd_max < 0)
1112                return 0;
1113
1114        /* Prefer low bits for the boundary vdd_min values. */
1115        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1116        if (vdd_min < 0)
1117                return 0;
1118
1119        /* Fill the mask, from max bit to min bit. */
1120        while (vdd_max >= vdd_min)
1121                mask |= 1 << vdd_max--;
1122
1123        return mask;
1124}
1125EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1126
1127#ifdef CONFIG_OF
1128
1129/**
1130 * mmc_of_parse_voltage - return mask of supported voltages
1131 * @np: The device node need to be parsed.
1132 * @mask: mask of voltages available for MMC/SD/SDIO
1133 *
1134 * Parse the "voltage-ranges" DT property, returning zero if it is not
1135 * found, negative errno if the voltage-range specification is invalid,
1136 * or one if the voltage-range is specified and successfully parsed.
1137 */
1138int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1139{
1140        const u32 *voltage_ranges;
1141        int num_ranges, i;
1142
1143        voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1144        num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1145        if (!voltage_ranges) {
1146                pr_debug("%pOF: voltage-ranges unspecified\n", np);
1147                return 0;
1148        }
1149        if (!num_ranges) {
1150                pr_err("%pOF: voltage-ranges empty\n", np);
1151                return -EINVAL;
1152        }
1153
1154        for (i = 0; i < num_ranges; i++) {
1155                const int j = i * 2;
1156                u32 ocr_mask;
1157
1158                ocr_mask = mmc_vddrange_to_ocrmask(
1159                                be32_to_cpu(voltage_ranges[j]),
1160                                be32_to_cpu(voltage_ranges[j + 1]));
1161                if (!ocr_mask) {
1162                        pr_err("%pOF: voltage-range #%d is invalid\n",
1163                                np, i);
1164                        return -EINVAL;
1165                }
1166                *mask |= ocr_mask;
1167        }
1168
1169        return 1;
1170}
1171EXPORT_SYMBOL(mmc_of_parse_voltage);
1172
1173#endif /* CONFIG_OF */
1174
1175static int mmc_of_get_func_num(struct device_node *node)
1176{
1177        u32 reg;
1178        int ret;
1179
1180        ret = of_property_read_u32(node, "reg", &reg);
1181        if (ret < 0)
1182                return ret;
1183
1184        return reg;
1185}
1186
1187struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1188                unsigned func_num)
1189{
1190        struct device_node *node;
1191
1192        if (!host->parent || !host->parent->of_node)
1193                return NULL;
1194
1195        for_each_child_of_node(host->parent->of_node, node) {
1196                if (mmc_of_get_func_num(node) == func_num)
1197                        return node;
1198        }
1199
1200        return NULL;
1201}
1202
1203#ifdef CONFIG_REGULATOR
1204
1205/**
1206 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1207 * @vdd_bit:    OCR bit number
1208 * @min_uV:     minimum voltage value (mV)
1209 * @max_uV:     maximum voltage value (mV)
1210 *
1211 * This function returns the voltage range according to the provided OCR
1212 * bit number. If conversion is not possible a negative errno value returned.
1213 */
1214static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1215{
1216        int             tmp;
1217
1218        if (!vdd_bit)
1219                return -EINVAL;
1220
1221        /*
1222         * REVISIT mmc_vddrange_to_ocrmask() may have set some
1223         * bits this regulator doesn't quite support ... don't
1224         * be too picky, most cards and regulators are OK with
1225         * a 0.1V range goof (it's a small error percentage).
1226         */
1227        tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1228        if (tmp == 0) {
1229                *min_uV = 1650 * 1000;
1230                *max_uV = 1950 * 1000;
1231        } else {
1232                *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1233                *max_uV = *min_uV + 100 * 1000;
1234        }
1235
1236        return 0;
1237}
1238
1239/**
1240 * mmc_regulator_get_ocrmask - return mask of supported voltages
1241 * @supply: regulator to use
1242 *
1243 * This returns either a negative errno, or a mask of voltages that
1244 * can be provided to MMC/SD/SDIO devices using the specified voltage
1245 * regulator.  This would normally be called before registering the
1246 * MMC host adapter.
1247 */
1248int mmc_regulator_get_ocrmask(struct regulator *supply)
1249{
1250        int                     result = 0;
1251        int                     count;
1252        int                     i;
1253        int                     vdd_uV;
1254        int                     vdd_mV;
1255
1256        count = regulator_count_voltages(supply);
1257        if (count < 0)
1258                return count;
1259
1260        for (i = 0; i < count; i++) {
1261                vdd_uV = regulator_list_voltage(supply, i);
1262                if (vdd_uV <= 0)
1263                        continue;
1264
1265                vdd_mV = vdd_uV / 1000;
1266                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1267        }
1268
1269        if (!result) {
1270                vdd_uV = regulator_get_voltage(supply);
1271                if (vdd_uV <= 0)
1272                        return vdd_uV;
1273
1274                vdd_mV = vdd_uV / 1000;
1275                result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1276        }
1277
1278        return result;
1279}
1280EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1281
1282/**
1283 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1284 * @mmc: the host to regulate
1285 * @supply: regulator to use
1286 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1287 *
1288 * Returns zero on success, else negative errno.
1289 *
1290 * MMC host drivers may use this to enable or disable a regulator using
1291 * a particular supply voltage.  This would normally be called from the
1292 * set_ios() method.
1293 */
1294int mmc_regulator_set_ocr(struct mmc_host *mmc,
1295                        struct regulator *supply,
1296                        unsigned short vdd_bit)
1297{
1298        int                     result = 0;
1299        int                     min_uV, max_uV;
1300
1301        if (vdd_bit) {
1302                mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1303
1304                result = regulator_set_voltage(supply, min_uV, max_uV);
1305                if (result == 0 && !mmc->regulator_enabled) {
1306                        result = regulator_enable(supply);
1307                        if (!result)
1308                                mmc->regulator_enabled = true;
1309                }
1310        } else if (mmc->regulator_enabled) {
1311                result = regulator_disable(supply);
1312                if (result == 0)
1313                        mmc->regulator_enabled = false;
1314        }
1315
1316        if (result)
1317                dev_err(mmc_dev(mmc),
1318                        "could not set regulator OCR (%d)\n", result);
1319        return result;
1320}
1321EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1322
1323static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1324                                                  int min_uV, int target_uV,
1325                                                  int max_uV)
1326{
1327        /*
1328         * Check if supported first to avoid errors since we may try several
1329         * signal levels during power up and don't want to show errors.
1330         */
1331        if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1332                return -EINVAL;
1333
1334        return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1335                                             max_uV);
1336}
1337
1338/**
1339 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1340 *
1341 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1342 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1343 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1344 * SD card spec also define VQMMC in terms of VMMC.
1345 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1346 *
1347 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1348 * requested voltage.  This is definitely a good idea for UHS where there's a
1349 * separate regulator on the card that's trying to make 1.8V and it's best if
1350 * we match.
1351 *
1352 * This function is expected to be used by a controller's
1353 * start_signal_voltage_switch() function.
1354 */
1355int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1356{
1357        struct device *dev = mmc_dev(mmc);
1358        int ret, volt, min_uV, max_uV;
1359
1360        /* If no vqmmc supply then we can't change the voltage */
1361        if (IS_ERR(mmc->supply.vqmmc))
1362                return -EINVAL;
1363
1364        switch (ios->signal_voltage) {
1365        case MMC_SIGNAL_VOLTAGE_120:
1366                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1367                                                1100000, 1200000, 1300000);
1368        case MMC_SIGNAL_VOLTAGE_180:
1369                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1370                                                1700000, 1800000, 1950000);
1371        case MMC_SIGNAL_VOLTAGE_330:
1372                ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1373                if (ret < 0)
1374                        return ret;
1375
1376                dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1377                        __func__, volt, max_uV);
1378
1379                min_uV = max(volt - 300000, 2700000);
1380                max_uV = min(max_uV + 200000, 3600000);
1381
1382                /*
1383                 * Due to a limitation in the current implementation of
1384                 * regulator_set_voltage_triplet() which is taking the lowest
1385                 * voltage possible if below the target, search for a suitable
1386                 * voltage in two steps and try to stay close to vmmc
1387                 * with a 0.3V tolerance at first.
1388                 */
1389                if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1390                                                min_uV, volt, max_uV))
1391                        return 0;
1392
1393                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1394                                                2700000, volt, 3600000);
1395        default:
1396                return -EINVAL;
1397        }
1398}
1399EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1400
1401#endif /* CONFIG_REGULATOR */
1402
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405        struct device *dev = mmc_dev(mmc);
1406        int ret;
1407
1408        mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409        mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411        if (IS_ERR(mmc->supply.vmmc)) {
1412                if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413                        return -EPROBE_DEFER;
1414                dev_dbg(dev, "No vmmc regulator found\n");
1415        } else {
1416                ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417                if (ret > 0)
1418                        mmc->ocr_avail = ret;
1419                else
1420                        dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421        }
1422
1423        if (IS_ERR(mmc->supply.vqmmc)) {
1424                if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425                        return -EPROBE_DEFER;
1426                dev_dbg(dev, "No vqmmc regulator found\n");
1427        }
1428
1429        return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439        int bit;
1440
1441        /*
1442         * Sanity check the voltages that the card claims to
1443         * support.
1444         */
1445        if (ocr & 0x7F) {
1446                dev_warn(mmc_dev(host),
1447                "card claims to support voltages below defined range\n");
1448                ocr &= ~0x7F;
1449        }
1450
1451        ocr &= host->ocr_avail;
1452        if (!ocr) {
1453                dev_warn(mmc_dev(host), "no support for card's volts\n");
1454                return 0;
1455        }
1456
1457        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458                bit = ffs(ocr) - 1;
1459                ocr &= 3 << bit;
1460                mmc_power_cycle(host, ocr);
1461        } else {
1462                bit = fls(ocr) - 1;
1463                ocr &= 3 << bit;
1464                if (bit != host->ios.vdd)
1465                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466        }
1467
1468        return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473        int err = 0;
1474        int old_signal_voltage = host->ios.signal_voltage;
1475
1476        host->ios.signal_voltage = signal_voltage;
1477        if (host->ops->start_signal_voltage_switch)
1478                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480        if (err)
1481                host->ios.signal_voltage = old_signal_voltage;
1482
1483        return err;
1484
1485}
1486
1487int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1488{
1489        struct mmc_command cmd = {};
1490        int err = 0;
1491        u32 clock;
1492
1493        /*
1494         * If we cannot switch voltages, return failure so the caller
1495         * can continue without UHS mode
1496         */
1497        if (!host->ops->start_signal_voltage_switch)
1498                return -EPERM;
1499        if (!host->ops->card_busy)
1500                pr_warn("%s: cannot verify signal voltage switch\n",
1501                        mmc_hostname(host));
1502
1503        cmd.opcode = SD_SWITCH_VOLTAGE;
1504        cmd.arg = 0;
1505        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1506
1507        err = mmc_wait_for_cmd(host, &cmd, 0);
1508        if (err)
1509                return err;
1510
1511        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1512                return -EIO;
1513
1514        /*
1515         * The card should drive cmd and dat[0:3] low immediately
1516         * after the response of cmd11, but wait 1 ms to be sure
1517         */
1518        mmc_delay(1);
1519        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1520                err = -EAGAIN;
1521                goto power_cycle;
1522        }
1523        /*
1524         * During a signal voltage level switch, the clock must be gated
1525         * for 5 ms according to the SD spec
1526         */
1527        clock = host->ios.clock;
1528        host->ios.clock = 0;
1529        mmc_set_ios(host);
1530
1531        if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
1532                /*
1533                 * Voltages may not have been switched, but we've already
1534                 * sent CMD11, so a power cycle is required anyway
1535                 */
1536                err = -EAGAIN;
1537                goto power_cycle;
1538        }
1539
1540        /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1541        mmc_delay(10);
1542        host->ios.clock = clock;
1543        mmc_set_ios(host);
1544
1545        /* Wait for at least 1 ms according to spec */
1546        mmc_delay(1);
1547
1548        /*
1549         * Failure to switch is indicated by the card holding
1550         * dat[0:3] low
1551         */
1552        if (host->ops->card_busy && host->ops->card_busy(host))
1553                err = -EAGAIN;
1554
1555power_cycle:
1556        if (err) {
1557                pr_debug("%s: Signal voltage switch failed, "
1558                        "power cycling card\n", mmc_hostname(host));
1559                mmc_power_cycle(host, ocr);
1560        }
1561
1562        return err;
1563}
1564
1565/*
1566 * Select timing parameters for host.
1567 */
1568void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1569{
1570        host->ios.timing = timing;
1571        mmc_set_ios(host);
1572}
1573
1574/*
1575 * Select appropriate driver type for host.
1576 */
1577void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1578{
1579        host->ios.drv_type = drv_type;
1580        mmc_set_ios(host);
1581}
1582
1583int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1584                              int card_drv_type, int *drv_type)
1585{
1586        struct mmc_host *host = card->host;
1587        int host_drv_type = SD_DRIVER_TYPE_B;
1588
1589        *drv_type = 0;
1590
1591        if (!host->ops->select_drive_strength)
1592                return 0;
1593
1594        /* Use SD definition of driver strength for hosts */
1595        if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1596                host_drv_type |= SD_DRIVER_TYPE_A;
1597
1598        if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1599                host_drv_type |= SD_DRIVER_TYPE_C;
1600
1601        if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1602                host_drv_type |= SD_DRIVER_TYPE_D;
1603
1604        /*
1605         * The drive strength that the hardware can support
1606         * depends on the board design.  Pass the appropriate
1607         * information and let the hardware specific code
1608         * return what is possible given the options
1609         */
1610        return host->ops->select_drive_strength(card, max_dtr,
1611                                                host_drv_type,
1612                                                card_drv_type,
1613                                                drv_type);
1614}
1615
1616/*
1617 * Apply power to the MMC stack.  This is a two-stage process.
1618 * First, we enable power to the card without the clock running.
1619 * We then wait a bit for the power to stabilise.  Finally,
1620 * enable the bus drivers and clock to the card.
1621 *
1622 * We must _NOT_ enable the clock prior to power stablising.
1623 *
1624 * If a host does all the power sequencing itself, ignore the
1625 * initial MMC_POWER_UP stage.
1626 */
1627void mmc_power_up(struct mmc_host *host, u32 ocr)
1628{
1629        if (host->ios.power_mode == MMC_POWER_ON)
1630                return;
1631
1632        mmc_pwrseq_pre_power_on(host);
1633
1634        host->ios.vdd = fls(ocr) - 1;
1635        host->ios.power_mode = MMC_POWER_UP;
1636        /* Set initial state and call mmc_set_ios */
1637        mmc_set_initial_state(host);
1638
1639        /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1640        if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1641                dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1642        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1643                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1644        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1645                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1646
1647        /*
1648         * This delay should be sufficient to allow the power supply
1649         * to reach the minimum voltage.
1650         */
1651        mmc_delay(10);
1652
1653        mmc_pwrseq_post_power_on(host);
1654
1655        host->ios.clock = host->f_init;
1656
1657        host->ios.power_mode = MMC_POWER_ON;
1658        mmc_set_ios(host);
1659
1660        /*
1661         * This delay must be at least 74 clock sizes, or 1 ms, or the
1662         * time required to reach a stable voltage.
1663         */
1664        mmc_delay(10);
1665}
1666
1667void mmc_power_off(struct mmc_host *host)
1668{
1669        if (host->ios.power_mode == MMC_POWER_OFF)
1670                return;
1671
1672        mmc_pwrseq_power_off(host);
1673
1674        host->ios.clock = 0;
1675        host->ios.vdd = 0;
1676
1677        host->ios.power_mode = MMC_POWER_OFF;
1678        /* Set initial state and call mmc_set_ios */
1679        mmc_set_initial_state(host);
1680
1681        /*
1682         * Some configurations, such as the 802.11 SDIO card in the OLPC
1683         * XO-1.5, require a short delay after poweroff before the card
1684         * can be successfully turned on again.
1685         */
1686        mmc_delay(1);
1687}
1688
1689void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1690{
1691        mmc_power_off(host);
1692        /* Wait at least 1 ms according to SD spec */
1693        mmc_delay(1);
1694        mmc_power_up(host, ocr);
1695}
1696
1697/*
1698 * Cleanup when the last reference to the bus operator is dropped.
1699 */
1700static void __mmc_release_bus(struct mmc_host *host)
1701{
1702        WARN_ON(!host->bus_dead);
1703
1704        host->bus_ops = NULL;
1705}
1706
1707/*
1708 * Increase reference count of bus operator
1709 */
1710static inline void mmc_bus_get(struct mmc_host *host)
1711{
1712        unsigned long flags;
1713
1714        spin_lock_irqsave(&host->lock, flags);
1715        host->bus_refs++;
1716        spin_unlock_irqrestore(&host->lock, flags);
1717}
1718
1719/*
1720 * Decrease reference count of bus operator and free it if
1721 * it is the last reference.
1722 */
1723static inline void mmc_bus_put(struct mmc_host *host)
1724{
1725        unsigned long flags;
1726
1727        spin_lock_irqsave(&host->lock, flags);
1728        host->bus_refs--;
1729        if ((host->bus_refs == 0) && host->bus_ops)
1730                __mmc_release_bus(host);
1731        spin_unlock_irqrestore(&host->lock, flags);
1732}
1733
1734/*
1735 * Assign a mmc bus handler to a host. Only one bus handler may control a
1736 * host at any given time.
1737 */
1738void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1739{
1740        unsigned long flags;
1741
1742        WARN_ON(!host->claimed);
1743
1744        spin_lock_irqsave(&host->lock, flags);
1745
1746        WARN_ON(host->bus_ops);
1747        WARN_ON(host->bus_refs);
1748
1749        host->bus_ops = ops;
1750        host->bus_refs = 1;
1751        host->bus_dead = 0;
1752
1753        spin_unlock_irqrestore(&host->lock, flags);
1754}
1755
1756/*
1757 * Remove the current bus handler from a host.
1758 */
1759void mmc_detach_bus(struct mmc_host *host)
1760{
1761        unsigned long flags;
1762
1763        WARN_ON(!host->claimed);
1764        WARN_ON(!host->bus_ops);
1765
1766        spin_lock_irqsave(&host->lock, flags);
1767
1768        host->bus_dead = 1;
1769
1770        spin_unlock_irqrestore(&host->lock, flags);
1771
1772        mmc_bus_put(host);
1773}
1774
1775static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1776                                bool cd_irq)
1777{
1778        /*
1779         * If the device is configured as wakeup, we prevent a new sleep for
1780         * 5 s to give provision for user space to consume the event.
1781         */
1782        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1783                device_can_wakeup(mmc_dev(host)))
1784                pm_wakeup_event(mmc_dev(host), 5000);
1785
1786        host->detect_change = 1;
1787        mmc_schedule_delayed_work(&host->detect, delay);
1788}
1789
1790/**
1791 *      mmc_detect_change - process change of state on a MMC socket
1792 *      @host: host which changed state.
1793 *      @delay: optional delay to wait before detection (jiffies)
1794 *
1795 *      MMC drivers should call this when they detect a card has been
1796 *      inserted or removed. The MMC layer will confirm that any
1797 *      present card is still functional, and initialize any newly
1798 *      inserted.
1799 */
1800void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1801{
1802        _mmc_detect_change(host, delay, true);
1803}
1804EXPORT_SYMBOL(mmc_detect_change);
1805
1806void mmc_init_erase(struct mmc_card *card)
1807{
1808        unsigned int sz;
1809
1810        if (is_power_of_2(card->erase_size))
1811                card->erase_shift = ffs(card->erase_size) - 1;
1812        else
1813                card->erase_shift = 0;
1814
1815        /*
1816         * It is possible to erase an arbitrarily large area of an SD or MMC
1817         * card.  That is not desirable because it can take a long time
1818         * (minutes) potentially delaying more important I/O, and also the
1819         * timeout calculations become increasingly hugely over-estimated.
1820         * Consequently, 'pref_erase' is defined as a guide to limit erases
1821         * to that size and alignment.
1822         *
1823         * For SD cards that define Allocation Unit size, limit erases to one
1824         * Allocation Unit at a time.
1825         * For MMC, have a stab at ai good value and for modern cards it will
1826         * end up being 4MiB. Note that if the value is too small, it can end
1827         * up taking longer to erase. Also note, erase_size is already set to
1828         * High Capacity Erase Size if available when this function is called.
1829         */
1830        if (mmc_card_sd(card) && card->ssr.au) {
1831                card->pref_erase = card->ssr.au;
1832                card->erase_shift = ffs(card->ssr.au) - 1;
1833        } else if (card->erase_size) {
1834                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1835                if (sz < 128)
1836                        card->pref_erase = 512 * 1024 / 512;
1837                else if (sz < 512)
1838                        card->pref_erase = 1024 * 1024 / 512;
1839                else if (sz < 1024)
1840                        card->pref_erase = 2 * 1024 * 1024 / 512;
1841                else
1842                        card->pref_erase = 4 * 1024 * 1024 / 512;
1843                if (card->pref_erase < card->erase_size)
1844                        card->pref_erase = card->erase_size;
1845                else {
1846                        sz = card->pref_erase % card->erase_size;
1847                        if (sz)
1848                                card->pref_erase += card->erase_size - sz;
1849                }
1850        } else
1851                card->pref_erase = 0;
1852}
1853
1854static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1855                                          unsigned int arg, unsigned int qty)
1856{
1857        unsigned int erase_timeout;
1858
1859        if (arg == MMC_DISCARD_ARG ||
1860            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1861                erase_timeout = card->ext_csd.trim_timeout;
1862        } else if (card->ext_csd.erase_group_def & 1) {
1863                /* High Capacity Erase Group Size uses HC timeouts */
1864                if (arg == MMC_TRIM_ARG)
1865                        erase_timeout = card->ext_csd.trim_timeout;
1866                else
1867                        erase_timeout = card->ext_csd.hc_erase_timeout;
1868        } else {
1869                /* CSD Erase Group Size uses write timeout */
1870                unsigned int mult = (10 << card->csd.r2w_factor);
1871                unsigned int timeout_clks = card->csd.taac_clks * mult;
1872                unsigned int timeout_us;
1873
1874                /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1875                if (card->csd.taac_ns < 1000000)
1876                        timeout_us = (card->csd.taac_ns * mult) / 1000;
1877                else
1878                        timeout_us = (card->csd.taac_ns / 1000) * mult;
1879
1880                /*
1881                 * ios.clock is only a target.  The real clock rate might be
1882                 * less but not that much less, so fudge it by multiplying by 2.
1883                 */
1884                timeout_clks <<= 1;
1885                timeout_us += (timeout_clks * 1000) /
1886                              (card->host->ios.clock / 1000);
1887
1888                erase_timeout = timeout_us / 1000;
1889
1890                /*
1891                 * Theoretically, the calculation could underflow so round up
1892                 * to 1ms in that case.
1893                 */
1894                if (!erase_timeout)
1895                        erase_timeout = 1;
1896        }
1897
1898        /* Multiplier for secure operations */
1899        if (arg & MMC_SECURE_ARGS) {
1900                if (arg == MMC_SECURE_ERASE_ARG)
1901                        erase_timeout *= card->ext_csd.sec_erase_mult;
1902                else
1903                        erase_timeout *= card->ext_csd.sec_trim_mult;
1904        }
1905
1906        erase_timeout *= qty;
1907
1908        /*
1909         * Ensure at least a 1 second timeout for SPI as per
1910         * 'mmc_set_data_timeout()'
1911         */
1912        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1913                erase_timeout = 1000;
1914
1915        return erase_timeout;
1916}
1917
1918static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1919                                         unsigned int arg,
1920                                         unsigned int qty)
1921{
1922        unsigned int erase_timeout;
1923
1924        if (card->ssr.erase_timeout) {
1925                /* Erase timeout specified in SD Status Register (SSR) */
1926                erase_timeout = card->ssr.erase_timeout * qty +
1927                                card->ssr.erase_offset;
1928        } else {
1929                /*
1930                 * Erase timeout not specified in SD Status Register (SSR) so
1931                 * use 250ms per write block.
1932                 */
1933                erase_timeout = 250 * qty;
1934        }
1935
1936        /* Must not be less than 1 second */
1937        if (erase_timeout < 1000)
1938                erase_timeout = 1000;
1939
1940        return erase_timeout;
1941}
1942
1943static unsigned int mmc_erase_timeout(struct mmc_card *card,
1944                                      unsigned int arg,
1945                                      unsigned int qty)
1946{
1947        if (mmc_card_sd(card))
1948                return mmc_sd_erase_timeout(card, arg, qty);
1949        else
1950                return mmc_mmc_erase_timeout(card, arg, qty);
1951}
1952
1953static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1954                        unsigned int to, unsigned int arg)
1955{
1956        struct mmc_command cmd = {};
1957        unsigned int qty = 0, busy_timeout = 0;
1958        bool use_r1b_resp = false;
1959        unsigned long timeout;
1960        int err;
1961
1962        mmc_retune_hold(card->host);
1963
1964        /*
1965         * qty is used to calculate the erase timeout which depends on how many
1966         * erase groups (or allocation units in SD terminology) are affected.
1967         * We count erasing part of an erase group as one erase group.
1968         * For SD, the allocation units are always a power of 2.  For MMC, the
1969         * erase group size is almost certainly also power of 2, but it does not
1970         * seem to insist on that in the JEDEC standard, so we fall back to
1971         * division in that case.  SD may not specify an allocation unit size,
1972         * in which case the timeout is based on the number of write blocks.
1973         *
1974         * Note that the timeout for secure trim 2 will only be correct if the
1975         * number of erase groups specified is the same as the total of all
1976         * preceding secure trim 1 commands.  Since the power may have been
1977         * lost since the secure trim 1 commands occurred, it is generally
1978         * impossible to calculate the secure trim 2 timeout correctly.
1979         */
1980        if (card->erase_shift)
1981                qty += ((to >> card->erase_shift) -
1982                        (from >> card->erase_shift)) + 1;
1983        else if (mmc_card_sd(card))
1984                qty += to - from + 1;
1985        else
1986                qty += ((to / card->erase_size) -
1987                        (from / card->erase_size)) + 1;
1988
1989        if (!mmc_card_blockaddr(card)) {
1990                from <<= 9;
1991                to <<= 9;
1992        }
1993
1994        if (mmc_card_sd(card))
1995                cmd.opcode = SD_ERASE_WR_BLK_START;
1996        else
1997                cmd.opcode = MMC_ERASE_GROUP_START;
1998        cmd.arg = from;
1999        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2001        if (err) {
2002                pr_err("mmc_erase: group start error %d, "
2003                       "status %#x\n", err, cmd.resp[0]);
2004                err = -EIO;
2005                goto out;
2006        }
2007
2008        memset(&cmd, 0, sizeof(struct mmc_command));
2009        if (mmc_card_sd(card))
2010                cmd.opcode = SD_ERASE_WR_BLK_END;
2011        else
2012                cmd.opcode = MMC_ERASE_GROUP_END;
2013        cmd.arg = to;
2014        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2015        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2016        if (err) {
2017                pr_err("mmc_erase: group end error %d, status %#x\n",
2018                       err, cmd.resp[0]);
2019                err = -EIO;
2020                goto out;
2021        }
2022
2023        memset(&cmd, 0, sizeof(struct mmc_command));
2024        cmd.opcode = MMC_ERASE;
2025        cmd.arg = arg;
2026        busy_timeout = mmc_erase_timeout(card, arg, qty);
2027        /*
2028         * If the host controller supports busy signalling and the timeout for
2029         * the erase operation does not exceed the max_busy_timeout, we should
2030         * use R1B response. Or we need to prevent the host from doing hw busy
2031         * detection, which is done by converting to a R1 response instead.
2032         */
2033        if (card->host->max_busy_timeout &&
2034            busy_timeout > card->host->max_busy_timeout) {
2035                cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2036        } else {
2037                cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2038                cmd.busy_timeout = busy_timeout;
2039                use_r1b_resp = true;
2040        }
2041
2042        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2043        if (err) {
2044                pr_err("mmc_erase: erase error %d, status %#x\n",
2045                       err, cmd.resp[0]);
2046                err = -EIO;
2047                goto out;
2048        }
2049
2050        if (mmc_host_is_spi(card->host))
2051                goto out;
2052
2053        /*
2054         * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2055         * shall be avoided.
2056         */
2057        if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2058                goto out;
2059
2060        timeout = jiffies + msecs_to_jiffies(busy_timeout);
2061        do {
2062                memset(&cmd, 0, sizeof(struct mmc_command));
2063                cmd.opcode = MMC_SEND_STATUS;
2064                cmd.arg = card->rca << 16;
2065                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2066                /* Do not retry else we can't see errors */
2067                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2068                if (err || (cmd.resp[0] & 0xFDF92000)) {
2069                        pr_err("error %d requesting status %#x\n",
2070                                err, cmd.resp[0]);
2071                        err = -EIO;
2072                        goto out;
2073                }
2074
2075                /* Timeout if the device never becomes ready for data and
2076                 * never leaves the program state.
2077                 */
2078                if (time_after(jiffies, timeout)) {
2079                        pr_err("%s: Card stuck in programming state! %s\n",
2080                                mmc_hostname(card->host), __func__);
2081                        err =  -EIO;
2082                        goto out;
2083                }
2084
2085        } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2086                 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2087out:
2088        mmc_retune_release(card->host);
2089        return err;
2090}
2091
2092static unsigned int mmc_align_erase_size(struct mmc_card *card,
2093                                         unsigned int *from,
2094                                         unsigned int *to,
2095                                         unsigned int nr)
2096{
2097        unsigned int from_new = *from, nr_new = nr, rem;
2098
2099        /*
2100         * When the 'card->erase_size' is power of 2, we can use round_up/down()
2101         * to align the erase size efficiently.
2102         */
2103        if (is_power_of_2(card->erase_size)) {
2104                unsigned int temp = from_new;
2105
2106                from_new = round_up(temp, card->erase_size);
2107                rem = from_new - temp;
2108
2109                if (nr_new > rem)
2110                        nr_new -= rem;
2111                else
2112                        return 0;
2113
2114                nr_new = round_down(nr_new, card->erase_size);
2115        } else {
2116                rem = from_new % card->erase_size;
2117                if (rem) {
2118                        rem = card->erase_size - rem;
2119                        from_new += rem;
2120                        if (nr_new > rem)
2121                                nr_new -= rem;
2122                        else
2123                                return 0;
2124                }
2125
2126                rem = nr_new % card->erase_size;
2127                if (rem)
2128                        nr_new -= rem;
2129        }
2130
2131        if (nr_new == 0)
2132                return 0;
2133
2134        *to = from_new + nr_new;
2135        *from = from_new;
2136
2137        return nr_new;
2138}
2139
2140/**
2141 * mmc_erase - erase sectors.
2142 * @card: card to erase
2143 * @from: first sector to erase
2144 * @nr: number of sectors to erase
2145 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2146 *
2147 * Caller must claim host before calling this function.
2148 */
2149int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2150              unsigned int arg)
2151{
2152        unsigned int rem, to = from + nr;
2153        int err;
2154
2155        if (!(card->host->caps & MMC_CAP_ERASE) ||
2156            !(card->csd.cmdclass & CCC_ERASE))
2157                return -EOPNOTSUPP;
2158
2159        if (!card->erase_size)
2160                return -EOPNOTSUPP;
2161
2162        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2163                return -EOPNOTSUPP;
2164
2165        if ((arg & MMC_SECURE_ARGS) &&
2166            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2167                return -EOPNOTSUPP;
2168
2169        if ((arg & MMC_TRIM_ARGS) &&
2170            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2171                return -EOPNOTSUPP;
2172
2173        if (arg == MMC_SECURE_ERASE_ARG) {
2174                if (from % card->erase_size || nr % card->erase_size)
2175                        return -EINVAL;
2176        }
2177
2178        if (arg == MMC_ERASE_ARG)
2179                nr = mmc_align_erase_size(card, &from, &to, nr);
2180
2181        if (nr == 0)
2182                return 0;
2183
2184        if (to <= from)
2185                return -EINVAL;
2186
2187        /* 'from' and 'to' are inclusive */
2188        to -= 1;
2189
2190        /*
2191         * Special case where only one erase-group fits in the timeout budget:
2192         * If the region crosses an erase-group boundary on this particular
2193         * case, we will be trimming more than one erase-group which, does not
2194         * fit in the timeout budget of the controller, so we need to split it
2195         * and call mmc_do_erase() twice if necessary. This special case is
2196         * identified by the card->eg_boundary flag.
2197         */
2198        rem = card->erase_size - (from % card->erase_size);
2199        if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2200                err = mmc_do_erase(card, from, from + rem - 1, arg);
2201                from += rem;
2202                if ((err) || (to <= from))
2203                        return err;
2204        }
2205
2206        return mmc_do_erase(card, from, to, arg);
2207}
2208EXPORT_SYMBOL(mmc_erase);
2209
2210int mmc_can_erase(struct mmc_card *card)
2211{
2212        if ((card->host->caps & MMC_CAP_ERASE) &&
2213            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2214                return 1;
2215        return 0;
2216}
2217EXPORT_SYMBOL(mmc_can_erase);
2218
2219int mmc_can_trim(struct mmc_card *card)
2220{
2221        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2222            (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2223                return 1;
2224        return 0;
2225}
2226EXPORT_SYMBOL(mmc_can_trim);
2227
2228int mmc_can_discard(struct mmc_card *card)
2229{
2230        /*
2231         * As there's no way to detect the discard support bit at v4.5
2232         * use the s/w feature support filed.
2233         */
2234        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2235                return 1;
2236        return 0;
2237}
2238EXPORT_SYMBOL(mmc_can_discard);
2239
2240int mmc_can_sanitize(struct mmc_card *card)
2241{
2242        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2243                return 0;
2244        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2245                return 1;
2246        return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_sanitize);
2249
2250int mmc_can_secure_erase_trim(struct mmc_card *card)
2251{
2252        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2253            !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2254                return 1;
2255        return 0;
2256}
2257EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2258
2259int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2260                            unsigned int nr)
2261{
2262        if (!card->erase_size)
2263                return 0;
2264        if (from % card->erase_size || nr % card->erase_size)
2265                return 0;
2266        return 1;
2267}
2268EXPORT_SYMBOL(mmc_erase_group_aligned);
2269
2270static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2271                                            unsigned int arg)
2272{
2273        struct mmc_host *host = card->host;
2274        unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2275        unsigned int last_timeout = 0;
2276        unsigned int max_busy_timeout = host->max_busy_timeout ?
2277                        host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2278
2279        if (card->erase_shift) {
2280                max_qty = UINT_MAX >> card->erase_shift;
2281                min_qty = card->pref_erase >> card->erase_shift;
2282        } else if (mmc_card_sd(card)) {
2283                max_qty = UINT_MAX;
2284                min_qty = card->pref_erase;
2285        } else {
2286                max_qty = UINT_MAX / card->erase_size;
2287                min_qty = card->pref_erase / card->erase_size;
2288        }
2289
2290        /*
2291         * We should not only use 'host->max_busy_timeout' as the limitation
2292         * when deciding the max discard sectors. We should set a balance value
2293         * to improve the erase speed, and it can not get too long timeout at
2294         * the same time.
2295         *
2296         * Here we set 'card->pref_erase' as the minimal discard sectors no
2297         * matter what size of 'host->max_busy_timeout', but if the
2298         * 'host->max_busy_timeout' is large enough for more discard sectors,
2299         * then we can continue to increase the max discard sectors until we
2300         * get a balance value. In cases when the 'host->max_busy_timeout'
2301         * isn't specified, use the default max erase timeout.
2302         */
2303        do {
2304                y = 0;
2305                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2306                        timeout = mmc_erase_timeout(card, arg, qty + x);
2307
2308                        if (qty + x > min_qty && timeout > max_busy_timeout)
2309                                break;
2310
2311                        if (timeout < last_timeout)
2312                                break;
2313                        last_timeout = timeout;
2314                        y = x;
2315                }
2316                qty += y;
2317        } while (y);
2318
2319        if (!qty)
2320                return 0;
2321
2322        /*
2323         * When specifying a sector range to trim, chances are we might cross
2324         * an erase-group boundary even if the amount of sectors is less than
2325         * one erase-group.
2326         * If we can only fit one erase-group in the controller timeout budget,
2327         * we have to care that erase-group boundaries are not crossed by a
2328         * single trim operation. We flag that special case with "eg_boundary".
2329         * In all other cases we can just decrement qty and pretend that we
2330         * always touch (qty + 1) erase-groups as a simple optimization.
2331         */
2332        if (qty == 1)
2333                card->eg_boundary = 1;
2334        else
2335                qty--;
2336
2337        /* Convert qty to sectors */
2338        if (card->erase_shift)
2339                max_discard = qty << card->erase_shift;
2340        else if (mmc_card_sd(card))
2341                max_discard = qty + 1;
2342        else
2343                max_discard = qty * card->erase_size;
2344
2345        return max_discard;
2346}
2347
2348unsigned int mmc_calc_max_discard(struct mmc_card *card)
2349{
2350        struct mmc_host *host = card->host;
2351        unsigned int max_discard, max_trim;
2352
2353        /*
2354         * Without erase_group_def set, MMC erase timeout depends on clock
2355         * frequence which can change.  In that case, the best choice is
2356         * just the preferred erase size.
2357         */
2358        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2359                return card->pref_erase;
2360
2361        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2362        if (mmc_can_trim(card)) {
2363                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2364                if (max_trim < max_discard)
2365                        max_discard = max_trim;
2366        } else if (max_discard < card->erase_size) {
2367                max_discard = 0;
2368        }
2369        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2370                mmc_hostname(host), max_discard, host->max_busy_timeout ?
2371                host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2372        return max_discard;
2373}
2374EXPORT_SYMBOL(mmc_calc_max_discard);
2375
2376bool mmc_card_is_blockaddr(struct mmc_card *card)
2377{
2378        return card ? mmc_card_blockaddr(card) : false;
2379}
2380EXPORT_SYMBOL(mmc_card_is_blockaddr);
2381
2382int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2383{
2384        struct mmc_command cmd = {};
2385
2386        if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2387            mmc_card_hs400(card) || mmc_card_hs400es(card))
2388                return 0;
2389
2390        cmd.opcode = MMC_SET_BLOCKLEN;
2391        cmd.arg = blocklen;
2392        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2393        return mmc_wait_for_cmd(card->host, &cmd, 5);
2394}
2395EXPORT_SYMBOL(mmc_set_blocklen);
2396
2397int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2398                        bool is_rel_write)
2399{
2400        struct mmc_command cmd = {};
2401
2402        cmd.opcode = MMC_SET_BLOCK_COUNT;
2403        cmd.arg = blockcount & 0x0000FFFF;
2404        if (is_rel_write)
2405                cmd.arg |= 1 << 31;
2406        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2407        return mmc_wait_for_cmd(card->host, &cmd, 5);
2408}
2409EXPORT_SYMBOL(mmc_set_blockcount);
2410
2411static void mmc_hw_reset_for_init(struct mmc_host *host)
2412{
2413        mmc_pwrseq_reset(host);
2414
2415        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2416                return;
2417        host->ops->hw_reset(host);
2418}
2419
2420int mmc_hw_reset(struct mmc_host *host)
2421{
2422        int ret;
2423
2424        if (!host->card)
2425                return -EINVAL;
2426
2427        mmc_bus_get(host);
2428        if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2429                mmc_bus_put(host);
2430                return -EOPNOTSUPP;
2431        }
2432
2433        ret = host->bus_ops->reset(host);
2434        mmc_bus_put(host);
2435
2436        if (ret)
2437                pr_warn("%s: tried to reset card, got error %d\n",
2438                        mmc_hostname(host), ret);
2439
2440        return ret;
2441}
2442EXPORT_SYMBOL(mmc_hw_reset);
2443
2444static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2445{
2446        host->f_init = freq;
2447
2448        pr_debug("%s: %s: trying to init card at %u Hz\n",
2449                mmc_hostname(host), __func__, host->f_init);
2450
2451        mmc_power_up(host, host->ocr_avail);
2452
2453        /*
2454         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2455         * do a hardware reset if possible.
2456         */
2457        mmc_hw_reset_for_init(host);
2458
2459        /*
2460         * sdio_reset sends CMD52 to reset card.  Since we do not know
2461         * if the card is being re-initialized, just send it.  CMD52
2462         * should be ignored by SD/eMMC cards.
2463         * Skip it if we already know that we do not support SDIO commands
2464         */
2465        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2466                sdio_reset(host);
2467
2468        mmc_go_idle(host);
2469
2470        if (!(host->caps2 & MMC_CAP2_NO_SD))
2471                mmc_send_if_cond(host, host->ocr_avail);
2472
2473        /* Order's important: probe SDIO, then SD, then MMC */
2474        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2475                if (!mmc_attach_sdio(host))
2476                        return 0;
2477
2478        if (!(host->caps2 & MMC_CAP2_NO_SD))
2479                if (!mmc_attach_sd(host))
2480                        return 0;
2481
2482        if (!(host->caps2 & MMC_CAP2_NO_MMC))
2483                if (!mmc_attach_mmc(host))
2484                        return 0;
2485
2486        mmc_power_off(host);
2487        return -EIO;
2488}
2489
2490int _mmc_detect_card_removed(struct mmc_host *host)
2491{
2492        int ret;
2493
2494        if (!host->card || mmc_card_removed(host->card))
2495                return 1;
2496
2497        ret = host->bus_ops->alive(host);
2498
2499        /*
2500         * Card detect status and alive check may be out of sync if card is
2501         * removed slowly, when card detect switch changes while card/slot
2502         * pads are still contacted in hardware (refer to "SD Card Mechanical
2503         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2504         * detect work 200ms later for this case.
2505         */
2506        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2507                mmc_detect_change(host, msecs_to_jiffies(200));
2508                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2509        }
2510
2511        if (ret) {
2512                mmc_card_set_removed(host->card);
2513                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2514        }
2515
2516        return ret;
2517}
2518
2519int mmc_detect_card_removed(struct mmc_host *host)
2520{
2521        struct mmc_card *card = host->card;
2522        int ret;
2523
2524        WARN_ON(!host->claimed);
2525
2526        if (!card)
2527                return 1;
2528
2529        if (!mmc_card_is_removable(host))
2530                return 0;
2531
2532        ret = mmc_card_removed(card);
2533        /*
2534         * The card will be considered unchanged unless we have been asked to
2535         * detect a change or host requires polling to provide card detection.
2536         */
2537        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2538                return ret;
2539
2540        host->detect_change = 0;
2541        if (!ret) {
2542                ret = _mmc_detect_card_removed(host);
2543                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2544                        /*
2545                         * Schedule a detect work as soon as possible to let a
2546                         * rescan handle the card removal.
2547                         */
2548                        cancel_delayed_work(&host->detect);
2549                        _mmc_detect_change(host, 0, false);
2550                }
2551        }
2552
2553        return ret;
2554}
2555EXPORT_SYMBOL(mmc_detect_card_removed);
2556
2557void mmc_rescan(struct work_struct *work)
2558{
2559        struct mmc_host *host =
2560                container_of(work, struct mmc_host, detect.work);
2561        int i;
2562
2563        if (host->rescan_disable)
2564                return;
2565
2566        /* If there is a non-removable card registered, only scan once */
2567        if (!mmc_card_is_removable(host) && host->rescan_entered)
2568                return;
2569        host->rescan_entered = 1;
2570
2571        if (host->trigger_card_event && host->ops->card_event) {
2572                mmc_claim_host(host);
2573                host->ops->card_event(host);
2574                mmc_release_host(host);
2575                host->trigger_card_event = false;
2576        }
2577
2578        mmc_bus_get(host);
2579
2580        /*
2581         * if there is a _removable_ card registered, check whether it is
2582         * still present
2583         */
2584        if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2585                host->bus_ops->detect(host);
2586
2587        host->detect_change = 0;
2588
2589        /*
2590         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2591         * the card is no longer present.
2592         */
2593        mmc_bus_put(host);
2594        mmc_bus_get(host);
2595
2596        /* if there still is a card present, stop here */
2597        if (host->bus_ops != NULL) {
2598                mmc_bus_put(host);
2599                goto out;
2600        }
2601
2602        /*
2603         * Only we can add a new handler, so it's safe to
2604         * release the lock here.
2605         */
2606        mmc_bus_put(host);
2607
2608        mmc_claim_host(host);
2609        if (mmc_card_is_removable(host) && host->ops->get_cd &&
2610                        host->ops->get_cd(host) == 0) {
2611                mmc_power_off(host);
2612                mmc_release_host(host);
2613                goto out;
2614        }
2615
2616        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2617                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2618                        break;
2619                if (freqs[i] <= host->f_min)
2620                        break;
2621        }
2622        mmc_release_host(host);
2623
2624 out:
2625        if (host->caps & MMC_CAP_NEEDS_POLL)
2626                mmc_schedule_delayed_work(&host->detect, HZ);
2627}
2628
2629void mmc_start_host(struct mmc_host *host)
2630{
2631        host->f_init = max(freqs[0], host->f_min);
2632        host->rescan_disable = 0;
2633        host->ios.power_mode = MMC_POWER_UNDEFINED;
2634
2635        if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2636                mmc_claim_host(host);
2637                mmc_power_up(host, host->ocr_avail);
2638                mmc_release_host(host);
2639        }
2640
2641        mmc_gpiod_request_cd_irq(host);
2642        _mmc_detect_change(host, 0, false);
2643}
2644
2645void mmc_stop_host(struct mmc_host *host)
2646{
2647        if (host->slot.cd_irq >= 0) {
2648                if (host->slot.cd_wake_enabled)
2649                        disable_irq_wake(host->slot.cd_irq);
2650                disable_irq(host->slot.cd_irq);
2651        }
2652
2653        host->rescan_disable = 1;
2654        cancel_delayed_work_sync(&host->detect);
2655
2656        /* clear pm flags now and let card drivers set them as needed */
2657        host->pm_flags = 0;
2658
2659        mmc_bus_get(host);
2660        if (host->bus_ops && !host->bus_dead) {
2661                /* Calling bus_ops->remove() with a claimed host can deadlock */
2662                host->bus_ops->remove(host);
2663                mmc_claim_host(host);
2664                mmc_detach_bus(host);
2665                mmc_power_off(host);
2666                mmc_release_host(host);
2667                mmc_bus_put(host);
2668                return;
2669        }
2670        mmc_bus_put(host);
2671
2672        mmc_claim_host(host);
2673        mmc_power_off(host);
2674        mmc_release_host(host);
2675}
2676
2677int mmc_power_save_host(struct mmc_host *host)
2678{
2679        int ret = 0;
2680
2681        pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2682
2683        mmc_bus_get(host);
2684
2685        if (!host->bus_ops || host->bus_dead) {
2686                mmc_bus_put(host);
2687                return -EINVAL;
2688        }
2689
2690        if (host->bus_ops->power_save)
2691                ret = host->bus_ops->power_save(host);
2692
2693        mmc_bus_put(host);
2694
2695        mmc_power_off(host);
2696
2697        return ret;
2698}
2699EXPORT_SYMBOL(mmc_power_save_host);
2700
2701int mmc_power_restore_host(struct mmc_host *host)
2702{
2703        int ret;
2704
2705        pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2706
2707        mmc_bus_get(host);
2708
2709        if (!host->bus_ops || host->bus_dead) {
2710                mmc_bus_put(host);
2711                return -EINVAL;
2712        }
2713
2714        mmc_power_up(host, host->card->ocr);
2715        ret = host->bus_ops->power_restore(host);
2716
2717        mmc_bus_put(host);
2718
2719        return ret;
2720}
2721EXPORT_SYMBOL(mmc_power_restore_host);
2722
2723#ifdef CONFIG_PM_SLEEP
2724/* Do the card removal on suspend if card is assumed removeable
2725 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2726   to sync the card.
2727*/
2728static int mmc_pm_notify(struct notifier_block *notify_block,
2729                        unsigned long mode, void *unused)
2730{
2731        struct mmc_host *host = container_of(
2732                notify_block, struct mmc_host, pm_notify);
2733        unsigned long flags;
2734        int err = 0;
2735
2736        switch (mode) {
2737        case PM_HIBERNATION_PREPARE:
2738        case PM_SUSPEND_PREPARE:
2739        case PM_RESTORE_PREPARE:
2740                spin_lock_irqsave(&host->lock, flags);
2741                host->rescan_disable = 1;
2742                spin_unlock_irqrestore(&host->lock, flags);
2743                cancel_delayed_work_sync(&host->detect);
2744
2745                if (!host->bus_ops)
2746                        break;
2747
2748                /* Validate prerequisites for suspend */
2749                if (host->bus_ops->pre_suspend)
2750                        err = host->bus_ops->pre_suspend(host);
2751                if (!err)
2752                        break;
2753
2754                /* Calling bus_ops->remove() with a claimed host can deadlock */
2755                host->bus_ops->remove(host);
2756                mmc_claim_host(host);
2757                mmc_detach_bus(host);
2758                mmc_power_off(host);
2759                mmc_release_host(host);
2760                host->pm_flags = 0;
2761                break;
2762
2763        case PM_POST_SUSPEND:
2764        case PM_POST_HIBERNATION:
2765        case PM_POST_RESTORE:
2766
2767                spin_lock_irqsave(&host->lock, flags);
2768                host->rescan_disable = 0;
2769                spin_unlock_irqrestore(&host->lock, flags);
2770                _mmc_detect_change(host, 0, false);
2771
2772        }
2773
2774        return 0;
2775}
2776
2777void mmc_register_pm_notifier(struct mmc_host *host)
2778{
2779        host->pm_notify.notifier_call = mmc_pm_notify;
2780        register_pm_notifier(&host->pm_notify);
2781}
2782
2783void mmc_unregister_pm_notifier(struct mmc_host *host)
2784{
2785        unregister_pm_notifier(&host->pm_notify);
2786}
2787#endif
2788
2789/**
2790 * mmc_init_context_info() - init synchronization context
2791 * @host: mmc host
2792 *
2793 * Init struct context_info needed to implement asynchronous
2794 * request mechanism, used by mmc core, host driver and mmc requests
2795 * supplier.
2796 */
2797void mmc_init_context_info(struct mmc_host *host)
2798{
2799        host->context_info.is_new_req = false;
2800        host->context_info.is_done_rcv = false;
2801        host->context_info.is_waiting_last_req = false;
2802        init_waitqueue_head(&host->context_info.wait);
2803}
2804
2805static int __init mmc_init(void)
2806{
2807        int ret;
2808
2809        ret = mmc_register_bus();
2810        if (ret)
2811                return ret;
2812
2813        ret = mmc_register_host_class();
2814        if (ret)
2815                goto unregister_bus;
2816
2817        ret = sdio_register_bus();
2818        if (ret)
2819                goto unregister_host_class;
2820
2821        return 0;
2822
2823unregister_host_class:
2824        mmc_unregister_host_class();
2825unregister_bus:
2826        mmc_unregister_bus();
2827        return ret;
2828}
2829
2830static void __exit mmc_exit(void)
2831{
2832        sdio_unregister_bus();
2833        mmc_unregister_host_class();
2834        mmc_unregister_bus();
2835}
2836
2837subsys_initcall(mmc_init);
2838module_exit(mmc_exit);
2839
2840MODULE_LICENSE("GPL");
2841