linux/drivers/mtd/ubi/io.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 */
  21
  22/*
  23 * UBI input/output sub-system.
  24 *
  25 * This sub-system provides a uniform way to work with all kinds of the
  26 * underlying MTD devices. It also implements handy functions for reading and
  27 * writing UBI headers.
  28 *
  29 * We are trying to have a paranoid mindset and not to trust to what we read
  30 * from the flash media in order to be more secure and robust. So this
  31 * sub-system validates every single header it reads from the flash media.
  32 *
  33 * Some words about how the eraseblock headers are stored.
  34 *
  35 * The erase counter header is always stored at offset zero. By default, the
  36 * VID header is stored after the EC header at the closest aligned offset
  37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  38 * header at the closest aligned offset. But this default layout may be
  39 * changed. For example, for different reasons (e.g., optimization) UBI may be
  40 * asked to put the VID header at further offset, and even at an unaligned
  41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  42 * proper padding in front of it. Data offset may also be changed but it has to
  43 * be aligned.
  44 *
  45 * About minimal I/O units. In general, UBI assumes flash device model where
  46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  48 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
  49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  50 * to do different optimizations.
  51 *
  52 * This is extremely useful in case of NAND flashes which admit of several
  53 * write operations to one NAND page. In this case UBI can fit EC and VID
  54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  57 * users.
  58 *
  59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  61 * headers.
  62 *
  63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
  65 *
  66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
  67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  69 * Thus, we prefer to use sub-pages only for EC and VID headers.
  70 *
  71 * As it was noted above, the VID header may start at a non-aligned offset.
  72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
  74 * last sub-page (EC header is always at offset zero). This causes some
  75 * difficulties when reading and writing VID headers.
  76 *
  77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  78 * the data and want to write this VID header out. As we can only write in
  79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  80 * to offset 448 of this buffer.
  81 *
  82 * The I/O sub-system does the following trick in order to avoid this extra
  83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  85 * When the VID header is being written out, it shifts the VID header pointer
  86 * back and writes the whole sub-page.
  87 */
  88
  89#include <linux/crc32.h>
  90#include <linux/err.h>
  91#include <linux/slab.h>
  92#include "ubi.h"
  93
  94static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  95static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  96static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  97                             const struct ubi_ec_hdr *ec_hdr);
  98static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  99static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
 100                              const struct ubi_vid_hdr *vid_hdr);
 101static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
 102                            int offset, int len);
 103
 104/**
 105 * ubi_io_read - read data from a physical eraseblock.
 106 * @ubi: UBI device description object
 107 * @buf: buffer where to store the read data
 108 * @pnum: physical eraseblock number to read from
 109 * @offset: offset within the physical eraseblock from where to read
 110 * @len: how many bytes to read
 111 *
 112 * This function reads data from offset @offset of physical eraseblock @pnum
 113 * and stores the read data in the @buf buffer. The following return codes are
 114 * possible:
 115 *
 116 * o %0 if all the requested data were successfully read;
 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 118 *   correctable bit-flips were detected; this is harmless but may indicate
 119 *   that this eraseblock may become bad soon (but do not have to);
 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 121 *   example it can be an ECC error in case of NAND; this most probably means
 122 *   that the data is corrupted;
 123 * o %-EIO if some I/O error occurred;
 124 * o other negative error codes in case of other errors.
 125 */
 126int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
 127                int len)
 128{
 129        int err, retries = 0;
 130        size_t read;
 131        loff_t addr;
 132
 133        dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
 134
 135        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 136        ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 137        ubi_assert(len > 0);
 138
 139        err = self_check_not_bad(ubi, pnum);
 140        if (err)
 141                return err;
 142
 143        /*
 144         * Deliberately corrupt the buffer to improve robustness. Indeed, if we
 145         * do not do this, the following may happen:
 146         * 1. The buffer contains data from previous operation, e.g., read from
 147         *    another PEB previously. The data looks like expected, e.g., if we
 148         *    just do not read anything and return - the caller would not
 149         *    notice this. E.g., if we are reading a VID header, the buffer may
 150         *    contain a valid VID header from another PEB.
 151         * 2. The driver is buggy and returns us success or -EBADMSG or
 152         *    -EUCLEAN, but it does not actually put any data to the buffer.
 153         *
 154         * This may confuse UBI or upper layers - they may think the buffer
 155         * contains valid data while in fact it is just old data. This is
 156         * especially possible because UBI (and UBIFS) relies on CRC, and
 157         * treats data as correct even in case of ECC errors if the CRC is
 158         * correct.
 159         *
 160         * Try to prevent this situation by changing the first byte of the
 161         * buffer.
 162         */
 163        *((uint8_t *)buf) ^= 0xFF;
 164
 165        addr = (loff_t)pnum * ubi->peb_size + offset;
 166retry:
 167        err = mtd_read(ubi->mtd, addr, len, &read, buf);
 168        if (err) {
 169                const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
 170
 171                if (mtd_is_bitflip(err)) {
 172                        /*
 173                         * -EUCLEAN is reported if there was a bit-flip which
 174                         * was corrected, so this is harmless.
 175                         *
 176                         * We do not report about it here unless debugging is
 177                         * enabled. A corresponding message will be printed
 178                         * later, when it is has been scrubbed.
 179                         */
 180                        ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
 181                                pnum);
 182                        ubi_assert(len == read);
 183                        return UBI_IO_BITFLIPS;
 184                }
 185
 186                if (retries++ < UBI_IO_RETRIES) {
 187                        ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
 188                                 err, errstr, len, pnum, offset, read);
 189                        yield();
 190                        goto retry;
 191                }
 192
 193                ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
 194                        err, errstr, len, pnum, offset, read);
 195                dump_stack();
 196
 197                /*
 198                 * The driver should never return -EBADMSG if it failed to read
 199                 * all the requested data. But some buggy drivers might do
 200                 * this, so we change it to -EIO.
 201                 */
 202                if (read != len && mtd_is_eccerr(err)) {
 203                        ubi_assert(0);
 204                        err = -EIO;
 205                }
 206        } else {
 207                ubi_assert(len == read);
 208
 209                if (ubi_dbg_is_bitflip(ubi)) {
 210                        dbg_gen("bit-flip (emulated)");
 211                        err = UBI_IO_BITFLIPS;
 212                }
 213        }
 214
 215        return err;
 216}
 217
 218/**
 219 * ubi_io_write - write data to a physical eraseblock.
 220 * @ubi: UBI device description object
 221 * @buf: buffer with the data to write
 222 * @pnum: physical eraseblock number to write to
 223 * @offset: offset within the physical eraseblock where to write
 224 * @len: how many bytes to write
 225 *
 226 * This function writes @len bytes of data from buffer @buf to offset @offset
 227 * of physical eraseblock @pnum. If all the data were successfully written,
 228 * zero is returned. If an error occurred, this function returns a negative
 229 * error code. If %-EIO is returned, the physical eraseblock most probably went
 230 * bad.
 231 *
 232 * Note, in case of an error, it is possible that something was still written
 233 * to the flash media, but may be some garbage.
 234 */
 235int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
 236                 int len)
 237{
 238        int err;
 239        size_t written;
 240        loff_t addr;
 241
 242        dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
 243
 244        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 245        ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 246        ubi_assert(offset % ubi->hdrs_min_io_size == 0);
 247        ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
 248
 249        if (ubi->ro_mode) {
 250                ubi_err(ubi, "read-only mode");
 251                return -EROFS;
 252        }
 253
 254        err = self_check_not_bad(ubi, pnum);
 255        if (err)
 256                return err;
 257
 258        /* The area we are writing to has to contain all 0xFF bytes */
 259        err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 260        if (err)
 261                return err;
 262
 263        if (offset >= ubi->leb_start) {
 264                /*
 265                 * We write to the data area of the physical eraseblock. Make
 266                 * sure it has valid EC and VID headers.
 267                 */
 268                err = self_check_peb_ec_hdr(ubi, pnum);
 269                if (err)
 270                        return err;
 271                err = self_check_peb_vid_hdr(ubi, pnum);
 272                if (err)
 273                        return err;
 274        }
 275
 276        if (ubi_dbg_is_write_failure(ubi)) {
 277                ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
 278                        len, pnum, offset);
 279                dump_stack();
 280                return -EIO;
 281        }
 282
 283        addr = (loff_t)pnum * ubi->peb_size + offset;
 284        err = mtd_write(ubi->mtd, addr, len, &written, buf);
 285        if (err) {
 286                ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
 287                        err, len, pnum, offset, written);
 288                dump_stack();
 289                ubi_dump_flash(ubi, pnum, offset, len);
 290        } else
 291                ubi_assert(written == len);
 292
 293        if (!err) {
 294                err = self_check_write(ubi, buf, pnum, offset, len);
 295                if (err)
 296                        return err;
 297
 298                /*
 299                 * Since we always write sequentially, the rest of the PEB has
 300                 * to contain only 0xFF bytes.
 301                 */
 302                offset += len;
 303                len = ubi->peb_size - offset;
 304                if (len)
 305                        err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 306        }
 307
 308        return err;
 309}
 310
 311/**
 312 * erase_callback - MTD erasure call-back.
 313 * @ei: MTD erase information object.
 314 *
 315 * Note, even though MTD erase interface is asynchronous, all the current
 316 * implementations are synchronous anyway.
 317 */
 318static void erase_callback(struct erase_info *ei)
 319{
 320        wake_up_interruptible((wait_queue_head_t *)ei->priv);
 321}
 322
 323/**
 324 * do_sync_erase - synchronously erase a physical eraseblock.
 325 * @ubi: UBI device description object
 326 * @pnum: the physical eraseblock number to erase
 327 *
 328 * This function synchronously erases physical eraseblock @pnum and returns
 329 * zero in case of success and a negative error code in case of failure. If
 330 * %-EIO is returned, the physical eraseblock most probably went bad.
 331 */
 332static int do_sync_erase(struct ubi_device *ubi, int pnum)
 333{
 334        int err, retries = 0;
 335        struct erase_info ei;
 336        wait_queue_head_t wq;
 337
 338        dbg_io("erase PEB %d", pnum);
 339        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 340
 341        if (ubi->ro_mode) {
 342                ubi_err(ubi, "read-only mode");
 343                return -EROFS;
 344        }
 345
 346retry:
 347        init_waitqueue_head(&wq);
 348        memset(&ei, 0, sizeof(struct erase_info));
 349
 350        ei.mtd      = ubi->mtd;
 351        ei.addr     = (loff_t)pnum * ubi->peb_size;
 352        ei.len      = ubi->peb_size;
 353        ei.callback = erase_callback;
 354        ei.priv     = (unsigned long)&wq;
 355
 356        err = mtd_erase(ubi->mtd, &ei);
 357        if (err) {
 358                if (retries++ < UBI_IO_RETRIES) {
 359                        ubi_warn(ubi, "error %d while erasing PEB %d, retry",
 360                                 err, pnum);
 361                        yield();
 362                        goto retry;
 363                }
 364                ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
 365                dump_stack();
 366                return err;
 367        }
 368
 369        err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
 370                                           ei.state == MTD_ERASE_FAILED);
 371        if (err) {
 372                ubi_err(ubi, "interrupted PEB %d erasure", pnum);
 373                return -EINTR;
 374        }
 375
 376        if (ei.state == MTD_ERASE_FAILED) {
 377                if (retries++ < UBI_IO_RETRIES) {
 378                        ubi_warn(ubi, "error while erasing PEB %d, retry",
 379                                 pnum);
 380                        yield();
 381                        goto retry;
 382                }
 383                ubi_err(ubi, "cannot erase PEB %d", pnum);
 384                dump_stack();
 385                return -EIO;
 386        }
 387
 388        err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
 389        if (err)
 390                return err;
 391
 392        if (ubi_dbg_is_erase_failure(ubi)) {
 393                ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
 394                return -EIO;
 395        }
 396
 397        return 0;
 398}
 399
 400/* Patterns to write to a physical eraseblock when torturing it */
 401static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
 402
 403/**
 404 * torture_peb - test a supposedly bad physical eraseblock.
 405 * @ubi: UBI device description object
 406 * @pnum: the physical eraseblock number to test
 407 *
 408 * This function returns %-EIO if the physical eraseblock did not pass the
 409 * test, a positive number of erase operations done if the test was
 410 * successfully passed, and other negative error codes in case of other errors.
 411 */
 412static int torture_peb(struct ubi_device *ubi, int pnum)
 413{
 414        int err, i, patt_count;
 415
 416        ubi_msg(ubi, "run torture test for PEB %d", pnum);
 417        patt_count = ARRAY_SIZE(patterns);
 418        ubi_assert(patt_count > 0);
 419
 420        mutex_lock(&ubi->buf_mutex);
 421        for (i = 0; i < patt_count; i++) {
 422                err = do_sync_erase(ubi, pnum);
 423                if (err)
 424                        goto out;
 425
 426                /* Make sure the PEB contains only 0xFF bytes */
 427                err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 428                if (err)
 429                        goto out;
 430
 431                err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
 432                if (err == 0) {
 433                        ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
 434                                pnum);
 435                        err = -EIO;
 436                        goto out;
 437                }
 438
 439                /* Write a pattern and check it */
 440                memset(ubi->peb_buf, patterns[i], ubi->peb_size);
 441                err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 442                if (err)
 443                        goto out;
 444
 445                memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
 446                err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 447                if (err)
 448                        goto out;
 449
 450                err = ubi_check_pattern(ubi->peb_buf, patterns[i],
 451                                        ubi->peb_size);
 452                if (err == 0) {
 453                        ubi_err(ubi, "pattern %x checking failed for PEB %d",
 454                                patterns[i], pnum);
 455                        err = -EIO;
 456                        goto out;
 457                }
 458        }
 459
 460        err = patt_count;
 461        ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
 462
 463out:
 464        mutex_unlock(&ubi->buf_mutex);
 465        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 466                /*
 467                 * If a bit-flip or data integrity error was detected, the test
 468                 * has not passed because it happened on a freshly erased
 469                 * physical eraseblock which means something is wrong with it.
 470                 */
 471                ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
 472                        pnum);
 473                err = -EIO;
 474        }
 475        return err;
 476}
 477
 478/**
 479 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
 480 * @ubi: UBI device description object
 481 * @pnum: physical eraseblock number to prepare
 482 *
 483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
 484 * algorithm: the PEB is first filled with zeroes, then it is erased. And
 485 * filling with zeroes starts from the end of the PEB. This was observed with
 486 * Spansion S29GL512N NOR flash.
 487 *
 488 * This means that in case of a power cut we may end up with intact data at the
 489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
 490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
 491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
 492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
 493 *
 494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
 495 * magic numbers in order to invalidate them and prevent the failures. Returns
 496 * zero in case of success and a negative error code in case of failure.
 497 */
 498static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
 499{
 500        int err;
 501        size_t written;
 502        loff_t addr;
 503        uint32_t data = 0;
 504        struct ubi_ec_hdr ec_hdr;
 505        struct ubi_vid_io_buf vidb;
 506
 507        /*
 508         * Note, we cannot generally define VID header buffers on stack,
 509         * because of the way we deal with these buffers (see the header
 510         * comment in this file). But we know this is a NOR-specific piece of
 511         * code, so we can do this. But yes, this is error-prone and we should
 512         * (pre-)allocate VID header buffer instead.
 513         */
 514        struct ubi_vid_hdr vid_hdr;
 515
 516        /*
 517         * If VID or EC is valid, we have to corrupt them before erasing.
 518         * It is important to first invalidate the EC header, and then the VID
 519         * header. Otherwise a power cut may lead to valid EC header and
 520         * invalid VID header, in which case UBI will treat this PEB as
 521         * corrupted and will try to preserve it, and print scary warnings.
 522         */
 523        addr = (loff_t)pnum * ubi->peb_size;
 524        err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
 525        if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 526            err != UBI_IO_FF){
 527                err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 528                if(err)
 529                        goto error;
 530        }
 531
 532        ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
 533        ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
 534
 535        err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
 536        if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 537            err != UBI_IO_FF){
 538                addr += ubi->vid_hdr_aloffset;
 539                err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 540                if (err)
 541                        goto error;
 542        }
 543        return 0;
 544
 545error:
 546        /*
 547         * The PEB contains a valid VID or EC header, but we cannot invalidate
 548         * it. Supposedly the flash media or the driver is screwed up, so
 549         * return an error.
 550         */
 551        ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
 552        ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
 553        return -EIO;
 554}
 555
 556/**
 557 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
 558 * @ubi: UBI device description object
 559 * @pnum: physical eraseblock number to erase
 560 * @torture: if this physical eraseblock has to be tortured
 561 *
 562 * This function synchronously erases physical eraseblock @pnum. If @torture
 563 * flag is not zero, the physical eraseblock is checked by means of writing
 564 * different patterns to it and reading them back. If the torturing is enabled,
 565 * the physical eraseblock is erased more than once.
 566 *
 567 * This function returns the number of erasures made in case of success, %-EIO
 568 * if the erasure failed or the torturing test failed, and other negative error
 569 * codes in case of other errors. Note, %-EIO means that the physical
 570 * eraseblock is bad.
 571 */
 572int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
 573{
 574        int err, ret = 0;
 575
 576        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 577
 578        err = self_check_not_bad(ubi, pnum);
 579        if (err != 0)
 580                return err;
 581
 582        if (ubi->ro_mode) {
 583                ubi_err(ubi, "read-only mode");
 584                return -EROFS;
 585        }
 586
 587        if (ubi->nor_flash) {
 588                err = nor_erase_prepare(ubi, pnum);
 589                if (err)
 590                        return err;
 591        }
 592
 593        if (torture) {
 594                ret = torture_peb(ubi, pnum);
 595                if (ret < 0)
 596                        return ret;
 597        }
 598
 599        err = do_sync_erase(ubi, pnum);
 600        if (err)
 601                return err;
 602
 603        return ret + 1;
 604}
 605
 606/**
 607 * ubi_io_is_bad - check if a physical eraseblock is bad.
 608 * @ubi: UBI device description object
 609 * @pnum: the physical eraseblock number to check
 610 *
 611 * This function returns a positive number if the physical eraseblock is bad,
 612 * zero if not, and a negative error code if an error occurred.
 613 */
 614int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
 615{
 616        struct mtd_info *mtd = ubi->mtd;
 617
 618        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 619
 620        if (ubi->bad_allowed) {
 621                int ret;
 622
 623                ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
 624                if (ret < 0)
 625                        ubi_err(ubi, "error %d while checking if PEB %d is bad",
 626                                ret, pnum);
 627                else if (ret)
 628                        dbg_io("PEB %d is bad", pnum);
 629                return ret;
 630        }
 631
 632        return 0;
 633}
 634
 635/**
 636 * ubi_io_mark_bad - mark a physical eraseblock as bad.
 637 * @ubi: UBI device description object
 638 * @pnum: the physical eraseblock number to mark
 639 *
 640 * This function returns zero in case of success and a negative error code in
 641 * case of failure.
 642 */
 643int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
 644{
 645        int err;
 646        struct mtd_info *mtd = ubi->mtd;
 647
 648        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 649
 650        if (ubi->ro_mode) {
 651                ubi_err(ubi, "read-only mode");
 652                return -EROFS;
 653        }
 654
 655        if (!ubi->bad_allowed)
 656                return 0;
 657
 658        err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
 659        if (err)
 660                ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
 661        return err;
 662}
 663
 664/**
 665 * validate_ec_hdr - validate an erase counter header.
 666 * @ubi: UBI device description object
 667 * @ec_hdr: the erase counter header to check
 668 *
 669 * This function returns zero if the erase counter header is OK, and %1 if
 670 * not.
 671 */
 672static int validate_ec_hdr(const struct ubi_device *ubi,
 673                           const struct ubi_ec_hdr *ec_hdr)
 674{
 675        long long ec;
 676        int vid_hdr_offset, leb_start;
 677
 678        ec = be64_to_cpu(ec_hdr->ec);
 679        vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
 680        leb_start = be32_to_cpu(ec_hdr->data_offset);
 681
 682        if (ec_hdr->version != UBI_VERSION) {
 683                ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
 684                        UBI_VERSION, (int)ec_hdr->version);
 685                goto bad;
 686        }
 687
 688        if (vid_hdr_offset != ubi->vid_hdr_offset) {
 689                ubi_err(ubi, "bad VID header offset %d, expected %d",
 690                        vid_hdr_offset, ubi->vid_hdr_offset);
 691                goto bad;
 692        }
 693
 694        if (leb_start != ubi->leb_start) {
 695                ubi_err(ubi, "bad data offset %d, expected %d",
 696                        leb_start, ubi->leb_start);
 697                goto bad;
 698        }
 699
 700        if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
 701                ubi_err(ubi, "bad erase counter %lld", ec);
 702                goto bad;
 703        }
 704
 705        return 0;
 706
 707bad:
 708        ubi_err(ubi, "bad EC header");
 709        ubi_dump_ec_hdr(ec_hdr);
 710        dump_stack();
 711        return 1;
 712}
 713
 714/**
 715 * ubi_io_read_ec_hdr - read and check an erase counter header.
 716 * @ubi: UBI device description object
 717 * @pnum: physical eraseblock to read from
 718 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
 719 * header
 720 * @verbose: be verbose if the header is corrupted or was not found
 721 *
 722 * This function reads erase counter header from physical eraseblock @pnum and
 723 * stores it in @ec_hdr. This function also checks CRC checksum of the read
 724 * erase counter header. The following codes may be returned:
 725 *
 726 * o %0 if the CRC checksum is correct and the header was successfully read;
 727 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
 728 *   and corrected by the flash driver; this is harmless but may indicate that
 729 *   this eraseblock may become bad soon (but may be not);
 730 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
 731 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
 732 *   a data integrity error (uncorrectable ECC error in case of NAND);
 733 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
 734 * o a negative error code in case of failure.
 735 */
 736int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
 737                       struct ubi_ec_hdr *ec_hdr, int verbose)
 738{
 739        int err, read_err;
 740        uint32_t crc, magic, hdr_crc;
 741
 742        dbg_io("read EC header from PEB %d", pnum);
 743        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 744
 745        read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
 746        if (read_err) {
 747                if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 748                        return read_err;
 749
 750                /*
 751                 * We read all the data, but either a correctable bit-flip
 752                 * occurred, or MTD reported a data integrity error
 753                 * (uncorrectable ECC error in case of NAND). The former is
 754                 * harmless, the later may mean that the read data is
 755                 * corrupted. But we have a CRC check-sum and we will detect
 756                 * this. If the EC header is still OK, we just report this as
 757                 * there was a bit-flip, to force scrubbing.
 758                 */
 759        }
 760
 761        magic = be32_to_cpu(ec_hdr->magic);
 762        if (magic != UBI_EC_HDR_MAGIC) {
 763                if (mtd_is_eccerr(read_err))
 764                        return UBI_IO_BAD_HDR_EBADMSG;
 765
 766                /*
 767                 * The magic field is wrong. Let's check if we have read all
 768                 * 0xFF. If yes, this physical eraseblock is assumed to be
 769                 * empty.
 770                 */
 771                if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
 772                        /* The physical eraseblock is supposedly empty */
 773                        if (verbose)
 774                                ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
 775                                         pnum);
 776                        dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
 777                                pnum);
 778                        if (!read_err)
 779                                return UBI_IO_FF;
 780                        else
 781                                return UBI_IO_FF_BITFLIPS;
 782                }
 783
 784                /*
 785                 * This is not a valid erase counter header, and these are not
 786                 * 0xFF bytes. Report that the header is corrupted.
 787                 */
 788                if (verbose) {
 789                        ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
 790                                 pnum, magic, UBI_EC_HDR_MAGIC);
 791                        ubi_dump_ec_hdr(ec_hdr);
 792                }
 793                dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
 794                        pnum, magic, UBI_EC_HDR_MAGIC);
 795                return UBI_IO_BAD_HDR;
 796        }
 797
 798        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 799        hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
 800
 801        if (hdr_crc != crc) {
 802                if (verbose) {
 803                        ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 804                                 pnum, crc, hdr_crc);
 805                        ubi_dump_ec_hdr(ec_hdr);
 806                }
 807                dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 808                        pnum, crc, hdr_crc);
 809
 810                if (!read_err)
 811                        return UBI_IO_BAD_HDR;
 812                else
 813                        return UBI_IO_BAD_HDR_EBADMSG;
 814        }
 815
 816        /* And of course validate what has just been read from the media */
 817        err = validate_ec_hdr(ubi, ec_hdr);
 818        if (err) {
 819                ubi_err(ubi, "validation failed for PEB %d", pnum);
 820                return -EINVAL;
 821        }
 822
 823        /*
 824         * If there was %-EBADMSG, but the header CRC is still OK, report about
 825         * a bit-flip to force scrubbing on this PEB.
 826         */
 827        return read_err ? UBI_IO_BITFLIPS : 0;
 828}
 829
 830/**
 831 * ubi_io_write_ec_hdr - write an erase counter header.
 832 * @ubi: UBI device description object
 833 * @pnum: physical eraseblock to write to
 834 * @ec_hdr: the erase counter header to write
 835 *
 836 * This function writes erase counter header described by @ec_hdr to physical
 837 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
 838 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
 839 * field.
 840 *
 841 * This function returns zero in case of success and a negative error code in
 842 * case of failure. If %-EIO is returned, the physical eraseblock most probably
 843 * went bad.
 844 */
 845int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
 846                        struct ubi_ec_hdr *ec_hdr)
 847{
 848        int err;
 849        uint32_t crc;
 850
 851        dbg_io("write EC header to PEB %d", pnum);
 852        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 853
 854        ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
 855        ec_hdr->version = UBI_VERSION;
 856        ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
 857        ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
 858        ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
 859        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 860        ec_hdr->hdr_crc = cpu_to_be32(crc);
 861
 862        err = self_check_ec_hdr(ubi, pnum, ec_hdr);
 863        if (err)
 864                return err;
 865
 866        if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
 867                return -EROFS;
 868
 869        err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
 870        return err;
 871}
 872
 873/**
 874 * validate_vid_hdr - validate a volume identifier header.
 875 * @ubi: UBI device description object
 876 * @vid_hdr: the volume identifier header to check
 877 *
 878 * This function checks that data stored in the volume identifier header
 879 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
 880 */
 881static int validate_vid_hdr(const struct ubi_device *ubi,
 882                            const struct ubi_vid_hdr *vid_hdr)
 883{
 884        int vol_type = vid_hdr->vol_type;
 885        int copy_flag = vid_hdr->copy_flag;
 886        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 887        int lnum = be32_to_cpu(vid_hdr->lnum);
 888        int compat = vid_hdr->compat;
 889        int data_size = be32_to_cpu(vid_hdr->data_size);
 890        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 891        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 892        int data_crc = be32_to_cpu(vid_hdr->data_crc);
 893        int usable_leb_size = ubi->leb_size - data_pad;
 894
 895        if (copy_flag != 0 && copy_flag != 1) {
 896                ubi_err(ubi, "bad copy_flag");
 897                goto bad;
 898        }
 899
 900        if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
 901            data_pad < 0) {
 902                ubi_err(ubi, "negative values");
 903                goto bad;
 904        }
 905
 906        if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
 907                ubi_err(ubi, "bad vol_id");
 908                goto bad;
 909        }
 910
 911        if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
 912                ubi_err(ubi, "bad compat");
 913                goto bad;
 914        }
 915
 916        if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
 917            compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
 918            compat != UBI_COMPAT_REJECT) {
 919                ubi_err(ubi, "bad compat");
 920                goto bad;
 921        }
 922
 923        if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 924                ubi_err(ubi, "bad vol_type");
 925                goto bad;
 926        }
 927
 928        if (data_pad >= ubi->leb_size / 2) {
 929                ubi_err(ubi, "bad data_pad");
 930                goto bad;
 931        }
 932
 933        if (data_size > ubi->leb_size) {
 934                ubi_err(ubi, "bad data_size");
 935                goto bad;
 936        }
 937
 938        if (vol_type == UBI_VID_STATIC) {
 939                /*
 940                 * Although from high-level point of view static volumes may
 941                 * contain zero bytes of data, but no VID headers can contain
 942                 * zero at these fields, because they empty volumes do not have
 943                 * mapped logical eraseblocks.
 944                 */
 945                if (used_ebs == 0) {
 946                        ubi_err(ubi, "zero used_ebs");
 947                        goto bad;
 948                }
 949                if (data_size == 0) {
 950                        ubi_err(ubi, "zero data_size");
 951                        goto bad;
 952                }
 953                if (lnum < used_ebs - 1) {
 954                        if (data_size != usable_leb_size) {
 955                                ubi_err(ubi, "bad data_size");
 956                                goto bad;
 957                        }
 958                } else if (lnum == used_ebs - 1) {
 959                        if (data_size == 0) {
 960                                ubi_err(ubi, "bad data_size at last LEB");
 961                                goto bad;
 962                        }
 963                } else {
 964                        ubi_err(ubi, "too high lnum");
 965                        goto bad;
 966                }
 967        } else {
 968                if (copy_flag == 0) {
 969                        if (data_crc != 0) {
 970                                ubi_err(ubi, "non-zero data CRC");
 971                                goto bad;
 972                        }
 973                        if (data_size != 0) {
 974                                ubi_err(ubi, "non-zero data_size");
 975                                goto bad;
 976                        }
 977                } else {
 978                        if (data_size == 0) {
 979                                ubi_err(ubi, "zero data_size of copy");
 980                                goto bad;
 981                        }
 982                }
 983                if (used_ebs != 0) {
 984                        ubi_err(ubi, "bad used_ebs");
 985                        goto bad;
 986                }
 987        }
 988
 989        return 0;
 990
 991bad:
 992        ubi_err(ubi, "bad VID header");
 993        ubi_dump_vid_hdr(vid_hdr);
 994        dump_stack();
 995        return 1;
 996}
 997
 998/**
 999 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1000 * @ubi: UBI device description object
1001 * @pnum: physical eraseblock number to read from
1002 * @vidb: the volume identifier buffer to store data in
1003 * @verbose: be verbose if the header is corrupted or wasn't found
1004 *
1005 * This function reads the volume identifier header from physical eraseblock
1006 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
1007 * volume identifier header. The error codes are the same as in
1008 * 'ubi_io_read_ec_hdr()'.
1009 *
1010 * Note, the implementation of this function is also very similar to
1011 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1012 */
1013int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1014                        struct ubi_vid_io_buf *vidb, int verbose)
1015{
1016        int err, read_err;
1017        uint32_t crc, magic, hdr_crc;
1018        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1019        void *p = vidb->buffer;
1020
1021        dbg_io("read VID header from PEB %d", pnum);
1022        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1023
1024        read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1025                          ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
1026        if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1027                return read_err;
1028
1029        magic = be32_to_cpu(vid_hdr->magic);
1030        if (magic != UBI_VID_HDR_MAGIC) {
1031                if (mtd_is_eccerr(read_err))
1032                        return UBI_IO_BAD_HDR_EBADMSG;
1033
1034                if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1035                        if (verbose)
1036                                ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1037                                         pnum);
1038                        dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1039                                pnum);
1040                        if (!read_err)
1041                                return UBI_IO_FF;
1042                        else
1043                                return UBI_IO_FF_BITFLIPS;
1044                }
1045
1046                if (verbose) {
1047                        ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1048                                 pnum, magic, UBI_VID_HDR_MAGIC);
1049                        ubi_dump_vid_hdr(vid_hdr);
1050                }
1051                dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1052                        pnum, magic, UBI_VID_HDR_MAGIC);
1053                return UBI_IO_BAD_HDR;
1054        }
1055
1056        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1057        hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1058
1059        if (hdr_crc != crc) {
1060                if (verbose) {
1061                        ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1062                                 pnum, crc, hdr_crc);
1063                        ubi_dump_vid_hdr(vid_hdr);
1064                }
1065                dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1066                        pnum, crc, hdr_crc);
1067                if (!read_err)
1068                        return UBI_IO_BAD_HDR;
1069                else
1070                        return UBI_IO_BAD_HDR_EBADMSG;
1071        }
1072
1073        err = validate_vid_hdr(ubi, vid_hdr);
1074        if (err) {
1075                ubi_err(ubi, "validation failed for PEB %d", pnum);
1076                return -EINVAL;
1077        }
1078
1079        return read_err ? UBI_IO_BITFLIPS : 0;
1080}
1081
1082/**
1083 * ubi_io_write_vid_hdr - write a volume identifier header.
1084 * @ubi: UBI device description object
1085 * @pnum: the physical eraseblock number to write to
1086 * @vidb: the volume identifier buffer to write
1087 *
1088 * This function writes the volume identifier header described by @vid_hdr to
1089 * physical eraseblock @pnum. This function automatically fills the
1090 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1091 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1092 *
1093 * This function returns zero in case of success and a negative error code in
1094 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1095 * bad.
1096 */
1097int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1098                         struct ubi_vid_io_buf *vidb)
1099{
1100        struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1101        int err;
1102        uint32_t crc;
1103        void *p = vidb->buffer;
1104
1105        dbg_io("write VID header to PEB %d", pnum);
1106        ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1107
1108        err = self_check_peb_ec_hdr(ubi, pnum);
1109        if (err)
1110                return err;
1111
1112        vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1113        vid_hdr->version = UBI_VERSION;
1114        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1115        vid_hdr->hdr_crc = cpu_to_be32(crc);
1116
1117        err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1118        if (err)
1119                return err;
1120
1121        if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1122                return -EROFS;
1123
1124        err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1125                           ubi->vid_hdr_alsize);
1126        return err;
1127}
1128
1129/**
1130 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1131 * @ubi: UBI device description object
1132 * @pnum: physical eraseblock number to check
1133 *
1134 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1135 * it is bad and a negative error code if an error occurred.
1136 */
1137static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1138{
1139        int err;
1140
1141        if (!ubi_dbg_chk_io(ubi))
1142                return 0;
1143
1144        err = ubi_io_is_bad(ubi, pnum);
1145        if (!err)
1146                return err;
1147
1148        ubi_err(ubi, "self-check failed for PEB %d", pnum);
1149        dump_stack();
1150        return err > 0 ? -EINVAL : err;
1151}
1152
1153/**
1154 * self_check_ec_hdr - check if an erase counter header is all right.
1155 * @ubi: UBI device description object
1156 * @pnum: physical eraseblock number the erase counter header belongs to
1157 * @ec_hdr: the erase counter header to check
1158 *
1159 * This function returns zero if the erase counter header contains valid
1160 * values, and %-EINVAL if not.
1161 */
1162static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1163                             const struct ubi_ec_hdr *ec_hdr)
1164{
1165        int err;
1166        uint32_t magic;
1167
1168        if (!ubi_dbg_chk_io(ubi))
1169                return 0;
1170
1171        magic = be32_to_cpu(ec_hdr->magic);
1172        if (magic != UBI_EC_HDR_MAGIC) {
1173                ubi_err(ubi, "bad magic %#08x, must be %#08x",
1174                        magic, UBI_EC_HDR_MAGIC);
1175                goto fail;
1176        }
1177
1178        err = validate_ec_hdr(ubi, ec_hdr);
1179        if (err) {
1180                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1181                goto fail;
1182        }
1183
1184        return 0;
1185
1186fail:
1187        ubi_dump_ec_hdr(ec_hdr);
1188        dump_stack();
1189        return -EINVAL;
1190}
1191
1192/**
1193 * self_check_peb_ec_hdr - check erase counter header.
1194 * @ubi: UBI device description object
1195 * @pnum: the physical eraseblock number to check
1196 *
1197 * This function returns zero if the erase counter header is all right and and
1198 * a negative error code if not or if an error occurred.
1199 */
1200static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1201{
1202        int err;
1203        uint32_t crc, hdr_crc;
1204        struct ubi_ec_hdr *ec_hdr;
1205
1206        if (!ubi_dbg_chk_io(ubi))
1207                return 0;
1208
1209        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1210        if (!ec_hdr)
1211                return -ENOMEM;
1212
1213        err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1214        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1215                goto exit;
1216
1217        crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1218        hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1219        if (hdr_crc != crc) {
1220                ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1221                        crc, hdr_crc);
1222                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1223                ubi_dump_ec_hdr(ec_hdr);
1224                dump_stack();
1225                err = -EINVAL;
1226                goto exit;
1227        }
1228
1229        err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1230
1231exit:
1232        kfree(ec_hdr);
1233        return err;
1234}
1235
1236/**
1237 * self_check_vid_hdr - check that a volume identifier header is all right.
1238 * @ubi: UBI device description object
1239 * @pnum: physical eraseblock number the volume identifier header belongs to
1240 * @vid_hdr: the volume identifier header to check
1241 *
1242 * This function returns zero if the volume identifier header is all right, and
1243 * %-EINVAL if not.
1244 */
1245static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1246                              const struct ubi_vid_hdr *vid_hdr)
1247{
1248        int err;
1249        uint32_t magic;
1250
1251        if (!ubi_dbg_chk_io(ubi))
1252                return 0;
1253
1254        magic = be32_to_cpu(vid_hdr->magic);
1255        if (magic != UBI_VID_HDR_MAGIC) {
1256                ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1257                        magic, pnum, UBI_VID_HDR_MAGIC);
1258                goto fail;
1259        }
1260
1261        err = validate_vid_hdr(ubi, vid_hdr);
1262        if (err) {
1263                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1264                goto fail;
1265        }
1266
1267        return err;
1268
1269fail:
1270        ubi_err(ubi, "self-check failed for PEB %d", pnum);
1271        ubi_dump_vid_hdr(vid_hdr);
1272        dump_stack();
1273        return -EINVAL;
1274
1275}
1276
1277/**
1278 * self_check_peb_vid_hdr - check volume identifier header.
1279 * @ubi: UBI device description object
1280 * @pnum: the physical eraseblock number to check
1281 *
1282 * This function returns zero if the volume identifier header is all right,
1283 * and a negative error code if not or if an error occurred.
1284 */
1285static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1286{
1287        int err;
1288        uint32_t crc, hdr_crc;
1289        struct ubi_vid_io_buf *vidb;
1290        struct ubi_vid_hdr *vid_hdr;
1291        void *p;
1292
1293        if (!ubi_dbg_chk_io(ubi))
1294                return 0;
1295
1296        vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1297        if (!vidb)
1298                return -ENOMEM;
1299
1300        vid_hdr = ubi_get_vid_hdr(vidb);
1301        p = vidb->buffer;
1302        err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1303                          ubi->vid_hdr_alsize);
1304        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1305                goto exit;
1306
1307        crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1308        hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1309        if (hdr_crc != crc) {
1310                ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1311                        pnum, crc, hdr_crc);
1312                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1313                ubi_dump_vid_hdr(vid_hdr);
1314                dump_stack();
1315                err = -EINVAL;
1316                goto exit;
1317        }
1318
1319        err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1320
1321exit:
1322        ubi_free_vid_buf(vidb);
1323        return err;
1324}
1325
1326/**
1327 * self_check_write - make sure write succeeded.
1328 * @ubi: UBI device description object
1329 * @buf: buffer with data which were written
1330 * @pnum: physical eraseblock number the data were written to
1331 * @offset: offset within the physical eraseblock the data were written to
1332 * @len: how many bytes were written
1333 *
1334 * This functions reads data which were recently written and compares it with
1335 * the original data buffer - the data have to match. Returns zero if the data
1336 * match and a negative error code if not or in case of failure.
1337 */
1338static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1339                            int offset, int len)
1340{
1341        int err, i;
1342        size_t read;
1343        void *buf1;
1344        loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1345
1346        if (!ubi_dbg_chk_io(ubi))
1347                return 0;
1348
1349        buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1350        if (!buf1) {
1351                ubi_err(ubi, "cannot allocate memory to check writes");
1352                return 0;
1353        }
1354
1355        err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1356        if (err && !mtd_is_bitflip(err))
1357                goto out_free;
1358
1359        for (i = 0; i < len; i++) {
1360                uint8_t c = ((uint8_t *)buf)[i];
1361                uint8_t c1 = ((uint8_t *)buf1)[i];
1362                int dump_len;
1363
1364                if (c == c1)
1365                        continue;
1366
1367                ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1368                        pnum, offset, len);
1369                ubi_msg(ubi, "data differ at position %d", i);
1370                dump_len = max_t(int, 128, len - i);
1371                ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1372                        i, i + dump_len);
1373                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1374                               buf + i, dump_len, 1);
1375                ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1376                        i, i + dump_len);
1377                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1378                               buf1 + i, dump_len, 1);
1379                dump_stack();
1380                err = -EINVAL;
1381                goto out_free;
1382        }
1383
1384        vfree(buf1);
1385        return 0;
1386
1387out_free:
1388        vfree(buf1);
1389        return err;
1390}
1391
1392/**
1393 * ubi_self_check_all_ff - check that a region of flash is empty.
1394 * @ubi: UBI device description object
1395 * @pnum: the physical eraseblock number to check
1396 * @offset: the starting offset within the physical eraseblock to check
1397 * @len: the length of the region to check
1398 *
1399 * This function returns zero if only 0xFF bytes are present at offset
1400 * @offset of the physical eraseblock @pnum, and a negative error code if not
1401 * or if an error occurred.
1402 */
1403int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1404{
1405        size_t read;
1406        int err;
1407        void *buf;
1408        loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1409
1410        if (!ubi_dbg_chk_io(ubi))
1411                return 0;
1412
1413        buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1414        if (!buf) {
1415                ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1416                return 0;
1417        }
1418
1419        err = mtd_read(ubi->mtd, addr, len, &read, buf);
1420        if (err && !mtd_is_bitflip(err)) {
1421                ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1422                        err, len, pnum, offset, read);
1423                goto error;
1424        }
1425
1426        err = ubi_check_pattern(buf, 0xFF, len);
1427        if (err == 0) {
1428                ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1429                        pnum, offset, len);
1430                goto fail;
1431        }
1432
1433        vfree(buf);
1434        return 0;
1435
1436fail:
1437        ubi_err(ubi, "self-check failed for PEB %d", pnum);
1438        ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1439        print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1440        err = -EINVAL;
1441error:
1442        dump_stack();
1443        vfree(buf);
1444        return err;
1445}
1446