linux/drivers/net/ethernet/dlink/dl2k.c
<<
>>
Prefs
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME        "DL2000/TC902x-based linux driver"
  14#define DRV_VERSION     "v1.19"
  15#define DRV_RELDATE     "2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19#define dw32(reg, val)  iowrite32(val, ioaddr + (reg))
  20#define dw16(reg, val)  iowrite16(val, ioaddr + (reg))
  21#define dw8(reg, val)   iowrite8(val, ioaddr + (reg))
  22#define dr32(reg)       ioread32(ioaddr + (reg))
  23#define dr16(reg)       ioread16(ioaddr + (reg))
  24#define dr8(reg)        ioread8(ioaddr + (reg))
  25
  26static char version[] =
  27      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  28#define MAX_UNITS 8
  29static int mtu[MAX_UNITS];
  30static int vlan[MAX_UNITS];
  31static int jumbo[MAX_UNITS];
  32static char *media[MAX_UNITS];
  33static int tx_flow=-1;
  34static int rx_flow=-1;
  35static int copy_thresh;
  36static int rx_coalesce=10;      /* Rx frame count each interrupt */
  37static int rx_timeout=200;      /* Rx DMA wait time in 640ns increments */
  38static int tx_coalesce=16;      /* HW xmit count each TxDMAComplete */
  39
  40
  41MODULE_AUTHOR ("Edward Peng");
  42MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  43MODULE_LICENSE("GPL");
  44module_param_array(mtu, int, NULL, 0);
  45module_param_array(media, charp, NULL, 0);
  46module_param_array(vlan, int, NULL, 0);
  47module_param_array(jumbo, int, NULL, 0);
  48module_param(tx_flow, int, 0);
  49module_param(rx_flow, int, 0);
  50module_param(copy_thresh, int, 0);
  51module_param(rx_coalesce, int, 0);      /* Rx frame count each interrupt */
  52module_param(rx_timeout, int, 0);       /* Rx DMA wait time in 64ns increments */
  53module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  54
  55
  56/* Enable the default interrupts */
  57#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  58       UpdateStats | LinkEvent)
  59
  60static void dl2k_enable_int(struct netdev_private *np)
  61{
  62        void __iomem *ioaddr = np->ioaddr;
  63
  64        dw16(IntEnable, DEFAULT_INTR);
  65}
  66
  67static const int max_intrloop = 50;
  68static const int multicast_filter_limit = 0x40;
  69
  70static int rio_open (struct net_device *dev);
  71static void rio_timer (unsigned long data);
  72static void rio_tx_timeout (struct net_device *dev);
  73static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  74static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  75static void rio_free_tx (struct net_device *dev, int irq);
  76static void tx_error (struct net_device *dev, int tx_status);
  77static int receive_packet (struct net_device *dev);
  78static void rio_error (struct net_device *dev, int int_status);
  79static void set_multicast (struct net_device *dev);
  80static struct net_device_stats *get_stats (struct net_device *dev);
  81static int clear_stats (struct net_device *dev);
  82static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  83static int rio_close (struct net_device *dev);
  84static int find_miiphy (struct net_device *dev);
  85static int parse_eeprom (struct net_device *dev);
  86static int read_eeprom (struct netdev_private *, int eep_addr);
  87static int mii_wait_link (struct net_device *dev, int wait);
  88static int mii_set_media (struct net_device *dev);
  89static int mii_get_media (struct net_device *dev);
  90static int mii_set_media_pcs (struct net_device *dev);
  91static int mii_get_media_pcs (struct net_device *dev);
  92static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  93static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  94                      u16 data);
  95
  96static const struct ethtool_ops ethtool_ops;
  97
  98static const struct net_device_ops netdev_ops = {
  99        .ndo_open               = rio_open,
 100        .ndo_start_xmit = start_xmit,
 101        .ndo_stop               = rio_close,
 102        .ndo_get_stats          = get_stats,
 103        .ndo_validate_addr      = eth_validate_addr,
 104        .ndo_set_mac_address    = eth_mac_addr,
 105        .ndo_set_rx_mode        = set_multicast,
 106        .ndo_do_ioctl           = rio_ioctl,
 107        .ndo_tx_timeout         = rio_tx_timeout,
 108};
 109
 110static int
 111rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 112{
 113        struct net_device *dev;
 114        struct netdev_private *np;
 115        static int card_idx;
 116        int chip_idx = ent->driver_data;
 117        int err, irq;
 118        void __iomem *ioaddr;
 119        static int version_printed;
 120        void *ring_space;
 121        dma_addr_t ring_dma;
 122
 123        if (!version_printed++)
 124                printk ("%s", version);
 125
 126        err = pci_enable_device (pdev);
 127        if (err)
 128                return err;
 129
 130        irq = pdev->irq;
 131        err = pci_request_regions (pdev, "dl2k");
 132        if (err)
 133                goto err_out_disable;
 134
 135        pci_set_master (pdev);
 136
 137        err = -ENOMEM;
 138
 139        dev = alloc_etherdev (sizeof (*np));
 140        if (!dev)
 141                goto err_out_res;
 142        SET_NETDEV_DEV(dev, &pdev->dev);
 143
 144        np = netdev_priv(dev);
 145
 146        /* IO registers range. */
 147        ioaddr = pci_iomap(pdev, 0, 0);
 148        if (!ioaddr)
 149                goto err_out_dev;
 150        np->eeprom_addr = ioaddr;
 151
 152#ifdef MEM_MAPPING
 153        /* MM registers range. */
 154        ioaddr = pci_iomap(pdev, 1, 0);
 155        if (!ioaddr)
 156                goto err_out_iounmap;
 157#endif
 158        np->ioaddr = ioaddr;
 159        np->chip_id = chip_idx;
 160        np->pdev = pdev;
 161        spin_lock_init (&np->tx_lock);
 162        spin_lock_init (&np->rx_lock);
 163
 164        /* Parse manual configuration */
 165        np->an_enable = 1;
 166        np->tx_coalesce = 1;
 167        if (card_idx < MAX_UNITS) {
 168                if (media[card_idx] != NULL) {
 169                        np->an_enable = 0;
 170                        if (strcmp (media[card_idx], "auto") == 0 ||
 171                            strcmp (media[card_idx], "autosense") == 0 ||
 172                            strcmp (media[card_idx], "0") == 0 ) {
 173                                np->an_enable = 2;
 174                        } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 175                            strcmp (media[card_idx], "4") == 0) {
 176                                np->speed = 100;
 177                                np->full_duplex = 1;
 178                        } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 179                                   strcmp (media[card_idx], "3") == 0) {
 180                                np->speed = 100;
 181                                np->full_duplex = 0;
 182                        } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 183                                   strcmp (media[card_idx], "2") == 0) {
 184                                np->speed = 10;
 185                                np->full_duplex = 1;
 186                        } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 187                                   strcmp (media[card_idx], "1") == 0) {
 188                                np->speed = 10;
 189                                np->full_duplex = 0;
 190                        } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 191                                 strcmp (media[card_idx], "6") == 0) {
 192                                np->speed=1000;
 193                                np->full_duplex=1;
 194                        } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 195                                 strcmp (media[card_idx], "5") == 0) {
 196                                np->speed = 1000;
 197                                np->full_duplex = 0;
 198                        } else {
 199                                np->an_enable = 1;
 200                        }
 201                }
 202                if (jumbo[card_idx] != 0) {
 203                        np->jumbo = 1;
 204                        dev->mtu = MAX_JUMBO;
 205                } else {
 206                        np->jumbo = 0;
 207                        if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 208                                dev->mtu = mtu[card_idx];
 209                }
 210                np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 211                    vlan[card_idx] : 0;
 212                if (rx_coalesce > 0 && rx_timeout > 0) {
 213                        np->rx_coalesce = rx_coalesce;
 214                        np->rx_timeout = rx_timeout;
 215                        np->coalesce = 1;
 216                }
 217                np->tx_flow = (tx_flow == 0) ? 0 : 1;
 218                np->rx_flow = (rx_flow == 0) ? 0 : 1;
 219
 220                if (tx_coalesce < 1)
 221                        tx_coalesce = 1;
 222                else if (tx_coalesce > TX_RING_SIZE-1)
 223                        tx_coalesce = TX_RING_SIZE - 1;
 224        }
 225        dev->netdev_ops = &netdev_ops;
 226        dev->watchdog_timeo = TX_TIMEOUT;
 227        dev->ethtool_ops = &ethtool_ops;
 228#if 0
 229        dev->features = NETIF_F_IP_CSUM;
 230#endif
 231        /* MTU range: 68 - 1536 or 8000 */
 232        dev->min_mtu = ETH_MIN_MTU;
 233        dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 234
 235        pci_set_drvdata (pdev, dev);
 236
 237        ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 238        if (!ring_space)
 239                goto err_out_iounmap;
 240        np->tx_ring = ring_space;
 241        np->tx_ring_dma = ring_dma;
 242
 243        ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 244        if (!ring_space)
 245                goto err_out_unmap_tx;
 246        np->rx_ring = ring_space;
 247        np->rx_ring_dma = ring_dma;
 248
 249        /* Parse eeprom data */
 250        parse_eeprom (dev);
 251
 252        /* Find PHY address */
 253        err = find_miiphy (dev);
 254        if (err)
 255                goto err_out_unmap_rx;
 256
 257        /* Fiber device? */
 258        np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 259        np->link_status = 0;
 260        /* Set media and reset PHY */
 261        if (np->phy_media) {
 262                /* default Auto-Negotiation for fiber deivices */
 263                if (np->an_enable == 2) {
 264                        np->an_enable = 1;
 265                }
 266        } else {
 267                /* Auto-Negotiation is mandatory for 1000BASE-T,
 268                   IEEE 802.3ab Annex 28D page 14 */
 269                if (np->speed == 1000)
 270                        np->an_enable = 1;
 271        }
 272
 273        err = register_netdev (dev);
 274        if (err)
 275                goto err_out_unmap_rx;
 276
 277        card_idx++;
 278
 279        printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 280                dev->name, np->name, dev->dev_addr, irq);
 281        if (tx_coalesce > 1)
 282                printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 283                                tx_coalesce);
 284        if (np->coalesce)
 285                printk(KERN_INFO
 286                       "rx_coalesce:\t%d packets\n"
 287                       "rx_timeout: \t%d ns\n",
 288                                np->rx_coalesce, np->rx_timeout*640);
 289        if (np->vlan)
 290                printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 291        return 0;
 292
 293err_out_unmap_rx:
 294        pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 295err_out_unmap_tx:
 296        pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 297err_out_iounmap:
 298#ifdef MEM_MAPPING
 299        pci_iounmap(pdev, np->ioaddr);
 300#endif
 301        pci_iounmap(pdev, np->eeprom_addr);
 302err_out_dev:
 303        free_netdev (dev);
 304err_out_res:
 305        pci_release_regions (pdev);
 306err_out_disable:
 307        pci_disable_device (pdev);
 308        return err;
 309}
 310
 311static int
 312find_miiphy (struct net_device *dev)
 313{
 314        struct netdev_private *np = netdev_priv(dev);
 315        int i, phy_found = 0;
 316        np = netdev_priv(dev);
 317        np->phy_addr = 1;
 318
 319        for (i = 31; i >= 0; i--) {
 320                int mii_status = mii_read (dev, i, 1);
 321                if (mii_status != 0xffff && mii_status != 0x0000) {
 322                        np->phy_addr = i;
 323                        phy_found++;
 324                }
 325        }
 326        if (!phy_found) {
 327                printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 328                return -ENODEV;
 329        }
 330        return 0;
 331}
 332
 333static int
 334parse_eeprom (struct net_device *dev)
 335{
 336        struct netdev_private *np = netdev_priv(dev);
 337        void __iomem *ioaddr = np->ioaddr;
 338        int i, j;
 339        u8 sromdata[256];
 340        u8 *psib;
 341        u32 crc;
 342        PSROM_t psrom = (PSROM_t) sromdata;
 343
 344        int cid, next;
 345
 346        for (i = 0; i < 128; i++)
 347                ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 348
 349        if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {  /* D-Link Only */
 350                /* Check CRC */
 351                crc = ~ether_crc_le (256 - 4, sromdata);
 352                if (psrom->crc != cpu_to_le32(crc)) {
 353                        printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 354                                        dev->name);
 355                        return -1;
 356                }
 357        }
 358
 359        /* Set MAC address */
 360        for (i = 0; i < 6; i++)
 361                dev->dev_addr[i] = psrom->mac_addr[i];
 362
 363        if (np->chip_id == CHIP_IP1000A) {
 364                np->led_mode = psrom->led_mode;
 365                return 0;
 366        }
 367
 368        if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 369                return 0;
 370        }
 371
 372        /* Parse Software Information Block */
 373        i = 0x30;
 374        psib = (u8 *) sromdata;
 375        do {
 376                cid = psib[i++];
 377                next = psib[i++];
 378                if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 379                        printk (KERN_ERR "Cell data error\n");
 380                        return -1;
 381                }
 382                switch (cid) {
 383                case 0: /* Format version */
 384                        break;
 385                case 1: /* End of cell */
 386                        return 0;
 387                case 2: /* Duplex Polarity */
 388                        np->duplex_polarity = psib[i];
 389                        dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 390                        break;
 391                case 3: /* Wake Polarity */
 392                        np->wake_polarity = psib[i];
 393                        break;
 394                case 9: /* Adapter description */
 395                        j = (next - i > 255) ? 255 : next - i;
 396                        memcpy (np->name, &(psib[i]), j);
 397                        break;
 398                case 4:
 399                case 5:
 400                case 6:
 401                case 7:
 402                case 8: /* Reversed */
 403                        break;
 404                default:        /* Unknown cell */
 405                        return -1;
 406                }
 407                i = next;
 408        } while (1);
 409
 410        return 0;
 411}
 412
 413static void rio_set_led_mode(struct net_device *dev)
 414{
 415        struct netdev_private *np = netdev_priv(dev);
 416        void __iomem *ioaddr = np->ioaddr;
 417        u32 mode;
 418
 419        if (np->chip_id != CHIP_IP1000A)
 420                return;
 421
 422        mode = dr32(ASICCtrl);
 423        mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 424
 425        if (np->led_mode & 0x01)
 426                mode |= IPG_AC_LED_MODE;
 427        if (np->led_mode & 0x02)
 428                mode |= IPG_AC_LED_MODE_BIT_1;
 429        if (np->led_mode & 0x08)
 430                mode |= IPG_AC_LED_SPEED;
 431
 432        dw32(ASICCtrl, mode);
 433}
 434
 435static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 436{
 437        return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 438}
 439
 440static void free_list(struct net_device *dev)
 441{
 442        struct netdev_private *np = netdev_priv(dev);
 443        struct sk_buff *skb;
 444        int i;
 445
 446        /* Free all the skbuffs in the queue. */
 447        for (i = 0; i < RX_RING_SIZE; i++) {
 448                skb = np->rx_skbuff[i];
 449                if (skb) {
 450                        pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
 451                                         skb->len, PCI_DMA_FROMDEVICE);
 452                        dev_kfree_skb(skb);
 453                        np->rx_skbuff[i] = NULL;
 454                }
 455                np->rx_ring[i].status = 0;
 456                np->rx_ring[i].fraginfo = 0;
 457        }
 458        for (i = 0; i < TX_RING_SIZE; i++) {
 459                skb = np->tx_skbuff[i];
 460                if (skb) {
 461                        pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
 462                                         skb->len, PCI_DMA_TODEVICE);
 463                        dev_kfree_skb(skb);
 464                        np->tx_skbuff[i] = NULL;
 465                }
 466        }
 467}
 468
 469static void rio_reset_ring(struct netdev_private *np)
 470{
 471        int i;
 472
 473        np->cur_rx = 0;
 474        np->cur_tx = 0;
 475        np->old_rx = 0;
 476        np->old_tx = 0;
 477
 478        for (i = 0; i < TX_RING_SIZE; i++)
 479                np->tx_ring[i].status = cpu_to_le64(TFDDone);
 480
 481        for (i = 0; i < RX_RING_SIZE; i++)
 482                np->rx_ring[i].status = 0;
 483}
 484
 485 /* allocate and initialize Tx and Rx descriptors */
 486static int alloc_list(struct net_device *dev)
 487{
 488        struct netdev_private *np = netdev_priv(dev);
 489        int i;
 490
 491        rio_reset_ring(np);
 492        np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 493
 494        /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 495        for (i = 0; i < TX_RING_SIZE; i++) {
 496                np->tx_skbuff[i] = NULL;
 497                np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 498                                              ((i + 1) % TX_RING_SIZE) *
 499                                              sizeof(struct netdev_desc));
 500        }
 501
 502        /* Initialize Rx descriptors & allocate buffers */
 503        for (i = 0; i < RX_RING_SIZE; i++) {
 504                /* Allocated fixed size of skbuff */
 505                struct sk_buff *skb;
 506
 507                skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 508                np->rx_skbuff[i] = skb;
 509                if (!skb) {
 510                        free_list(dev);
 511                        return -ENOMEM;
 512                }
 513
 514                np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 515                                                ((i + 1) % RX_RING_SIZE) *
 516                                                sizeof(struct netdev_desc));
 517                /* Rubicon now supports 40 bits of addressing space. */
 518                np->rx_ring[i].fraginfo =
 519                    cpu_to_le64(pci_map_single(
 520                                  np->pdev, skb->data, np->rx_buf_sz,
 521                                  PCI_DMA_FROMDEVICE));
 522                np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 523        }
 524
 525        return 0;
 526}
 527
 528static void rio_hw_init(struct net_device *dev)
 529{
 530        struct netdev_private *np = netdev_priv(dev);
 531        void __iomem *ioaddr = np->ioaddr;
 532        int i;
 533        u16 macctrl;
 534
 535        /* Reset all logic functions */
 536        dw16(ASICCtrl + 2,
 537             GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 538        mdelay(10);
 539
 540        rio_set_led_mode(dev);
 541
 542        /* DebugCtrl bit 4, 5, 9 must set */
 543        dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 544
 545        if (np->chip_id == CHIP_IP1000A &&
 546            (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 547                /* PHY magic taken from ipg driver, undocumented registers */
 548                mii_write(dev, np->phy_addr, 31, 0x0001);
 549                mii_write(dev, np->phy_addr, 27, 0x01e0);
 550                mii_write(dev, np->phy_addr, 31, 0x0002);
 551                mii_write(dev, np->phy_addr, 27, 0xeb8e);
 552                mii_write(dev, np->phy_addr, 31, 0x0000);
 553                mii_write(dev, np->phy_addr, 30, 0x005e);
 554                /* advertise 1000BASE-T half & full duplex, prefer MASTER */
 555                mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 556        }
 557
 558        if (np->phy_media)
 559                mii_set_media_pcs(dev);
 560        else
 561                mii_set_media(dev);
 562
 563        /* Jumbo frame */
 564        if (np->jumbo != 0)
 565                dw16(MaxFrameSize, MAX_JUMBO+14);
 566
 567        /* Set RFDListPtr */
 568        dw32(RFDListPtr0, np->rx_ring_dma);
 569        dw32(RFDListPtr1, 0);
 570
 571        /* Set station address */
 572        /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 573         * too. However, it doesn't work on IP1000A so we use 16-bit access.
 574         */
 575        for (i = 0; i < 3; i++)
 576                dw16(StationAddr0 + 2 * i,
 577                     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
 578
 579        set_multicast (dev);
 580        if (np->coalesce) {
 581                dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 582        }
 583        /* Set RIO to poll every N*320nsec. */
 584        dw8(RxDMAPollPeriod, 0x20);
 585        dw8(TxDMAPollPeriod, 0xff);
 586        dw8(RxDMABurstThresh, 0x30);
 587        dw8(RxDMAUrgentThresh, 0x30);
 588        dw32(RmonStatMask, 0x0007ffff);
 589        /* clear statistics */
 590        clear_stats (dev);
 591
 592        /* VLAN supported */
 593        if (np->vlan) {
 594                /* priority field in RxDMAIntCtrl  */
 595                dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 596                /* VLANId */
 597                dw16(VLANId, np->vlan);
 598                /* Length/Type should be 0x8100 */
 599                dw32(VLANTag, 0x8100 << 16 | np->vlan);
 600                /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 601                   VLAN information tagged by TFC' VID, CFI fields. */
 602                dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 603        }
 604
 605        /* Start Tx/Rx */
 606        dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 607
 608        macctrl = 0;
 609        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 610        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 611        macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 612        macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 613        dw16(MACCtrl, macctrl);
 614}
 615
 616static void rio_hw_stop(struct net_device *dev)
 617{
 618        struct netdev_private *np = netdev_priv(dev);
 619        void __iomem *ioaddr = np->ioaddr;
 620
 621        /* Disable interrupts */
 622        dw16(IntEnable, 0);
 623
 624        /* Stop Tx and Rx logics */
 625        dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 626}
 627
 628static int rio_open(struct net_device *dev)
 629{
 630        struct netdev_private *np = netdev_priv(dev);
 631        const int irq = np->pdev->irq;
 632        int i;
 633
 634        i = alloc_list(dev);
 635        if (i)
 636                return i;
 637
 638        rio_hw_init(dev);
 639
 640        i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 641        if (i) {
 642                rio_hw_stop(dev);
 643                free_list(dev);
 644                return i;
 645        }
 646
 647        setup_timer(&np->timer, rio_timer, (unsigned long)dev);
 648        np->timer.expires = jiffies + 1 * HZ;
 649        add_timer(&np->timer);
 650
 651        netif_start_queue (dev);
 652
 653        dl2k_enable_int(np);
 654        return 0;
 655}
 656
 657static void
 658rio_timer (unsigned long data)
 659{
 660        struct net_device *dev = (struct net_device *)data;
 661        struct netdev_private *np = netdev_priv(dev);
 662        unsigned int entry;
 663        int next_tick = 1*HZ;
 664        unsigned long flags;
 665
 666        spin_lock_irqsave(&np->rx_lock, flags);
 667        /* Recover rx ring exhausted error */
 668        if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 669                printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 670                /* Re-allocate skbuffs to fill the descriptor ring */
 671                for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 672                        struct sk_buff *skb;
 673                        entry = np->old_rx % RX_RING_SIZE;
 674                        /* Dropped packets don't need to re-allocate */
 675                        if (np->rx_skbuff[entry] == NULL) {
 676                                skb = netdev_alloc_skb_ip_align(dev,
 677                                                                np->rx_buf_sz);
 678                                if (skb == NULL) {
 679                                        np->rx_ring[entry].fraginfo = 0;
 680                                        printk (KERN_INFO
 681                                                "%s: Still unable to re-allocate Rx skbuff.#%d\n",
 682                                                dev->name, entry);
 683                                        break;
 684                                }
 685                                np->rx_skbuff[entry] = skb;
 686                                np->rx_ring[entry].fraginfo =
 687                                    cpu_to_le64 (pci_map_single
 688                                         (np->pdev, skb->data, np->rx_buf_sz,
 689                                          PCI_DMA_FROMDEVICE));
 690                        }
 691                        np->rx_ring[entry].fraginfo |=
 692                            cpu_to_le64((u64)np->rx_buf_sz << 48);
 693                        np->rx_ring[entry].status = 0;
 694                } /* end for */
 695        } /* end if */
 696        spin_unlock_irqrestore (&np->rx_lock, flags);
 697        np->timer.expires = jiffies + next_tick;
 698        add_timer(&np->timer);
 699}
 700
 701static void
 702rio_tx_timeout (struct net_device *dev)
 703{
 704        struct netdev_private *np = netdev_priv(dev);
 705        void __iomem *ioaddr = np->ioaddr;
 706
 707        printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 708                dev->name, dr32(TxStatus));
 709        rio_free_tx(dev, 0);
 710        dev->if_port = 0;
 711        netif_trans_update(dev); /* prevent tx timeout */
 712}
 713
 714static netdev_tx_t
 715start_xmit (struct sk_buff *skb, struct net_device *dev)
 716{
 717        struct netdev_private *np = netdev_priv(dev);
 718        void __iomem *ioaddr = np->ioaddr;
 719        struct netdev_desc *txdesc;
 720        unsigned entry;
 721        u64 tfc_vlan_tag = 0;
 722
 723        if (np->link_status == 0) {     /* Link Down */
 724                dev_kfree_skb(skb);
 725                return NETDEV_TX_OK;
 726        }
 727        entry = np->cur_tx % TX_RING_SIZE;
 728        np->tx_skbuff[entry] = skb;
 729        txdesc = &np->tx_ring[entry];
 730
 731#if 0
 732        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 733                txdesc->status |=
 734                    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 735                                 IPChecksumEnable);
 736        }
 737#endif
 738        if (np->vlan) {
 739                tfc_vlan_tag = VLANTagInsert |
 740                    ((u64)np->vlan << 32) |
 741                    ((u64)skb->priority << 45);
 742        }
 743        txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 744                                                        skb->len,
 745                                                        PCI_DMA_TODEVICE));
 746        txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 747
 748        /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 749         * Work around: Always use 1 descriptor in 10Mbps mode */
 750        if (entry % np->tx_coalesce == 0 || np->speed == 10)
 751                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 752                                              WordAlignDisable |
 753                                              TxDMAIndicate |
 754                                              (1 << FragCountShift));
 755        else
 756                txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 757                                              WordAlignDisable |
 758                                              (1 << FragCountShift));
 759
 760        /* TxDMAPollNow */
 761        dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 762        /* Schedule ISR */
 763        dw32(CountDown, 10000);
 764        np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 765        if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 766                        < TX_QUEUE_LEN - 1 && np->speed != 10) {
 767                /* do nothing */
 768        } else if (!netif_queue_stopped(dev)) {
 769                netif_stop_queue (dev);
 770        }
 771
 772        /* The first TFDListPtr */
 773        if (!dr32(TFDListPtr0)) {
 774                dw32(TFDListPtr0, np->tx_ring_dma +
 775                     entry * sizeof (struct netdev_desc));
 776                dw32(TFDListPtr1, 0);
 777        }
 778
 779        return NETDEV_TX_OK;
 780}
 781
 782static irqreturn_t
 783rio_interrupt (int irq, void *dev_instance)
 784{
 785        struct net_device *dev = dev_instance;
 786        struct netdev_private *np = netdev_priv(dev);
 787        void __iomem *ioaddr = np->ioaddr;
 788        unsigned int_status;
 789        int cnt = max_intrloop;
 790        int handled = 0;
 791
 792        while (1) {
 793                int_status = dr16(IntStatus);
 794                dw16(IntStatus, int_status);
 795                int_status &= DEFAULT_INTR;
 796                if (int_status == 0 || --cnt < 0)
 797                        break;
 798                handled = 1;
 799                /* Processing received packets */
 800                if (int_status & RxDMAComplete)
 801                        receive_packet (dev);
 802                /* TxDMAComplete interrupt */
 803                if ((int_status & (TxDMAComplete|IntRequested))) {
 804                        int tx_status;
 805                        tx_status = dr32(TxStatus);
 806                        if (tx_status & 0x01)
 807                                tx_error (dev, tx_status);
 808                        /* Free used tx skbuffs */
 809                        rio_free_tx (dev, 1);
 810                }
 811
 812                /* Handle uncommon events */
 813                if (int_status &
 814                    (HostError | LinkEvent | UpdateStats))
 815                        rio_error (dev, int_status);
 816        }
 817        if (np->cur_tx != np->old_tx)
 818                dw32(CountDown, 100);
 819        return IRQ_RETVAL(handled);
 820}
 821
 822static void
 823rio_free_tx (struct net_device *dev, int irq)
 824{
 825        struct netdev_private *np = netdev_priv(dev);
 826        int entry = np->old_tx % TX_RING_SIZE;
 827        int tx_use = 0;
 828        unsigned long flag = 0;
 829
 830        if (irq)
 831                spin_lock(&np->tx_lock);
 832        else
 833                spin_lock_irqsave(&np->tx_lock, flag);
 834
 835        /* Free used tx skbuffs */
 836        while (entry != np->cur_tx) {
 837                struct sk_buff *skb;
 838
 839                if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 840                        break;
 841                skb = np->tx_skbuff[entry];
 842                pci_unmap_single (np->pdev,
 843                                  desc_to_dma(&np->tx_ring[entry]),
 844                                  skb->len, PCI_DMA_TODEVICE);
 845                if (irq)
 846                        dev_kfree_skb_irq (skb);
 847                else
 848                        dev_kfree_skb (skb);
 849
 850                np->tx_skbuff[entry] = NULL;
 851                entry = (entry + 1) % TX_RING_SIZE;
 852                tx_use++;
 853        }
 854        if (irq)
 855                spin_unlock(&np->tx_lock);
 856        else
 857                spin_unlock_irqrestore(&np->tx_lock, flag);
 858        np->old_tx = entry;
 859
 860        /* If the ring is no longer full, clear tx_full and
 861           call netif_wake_queue() */
 862
 863        if (netif_queue_stopped(dev) &&
 864            ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 865            < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 866                netif_wake_queue (dev);
 867        }
 868}
 869
 870static void
 871tx_error (struct net_device *dev, int tx_status)
 872{
 873        struct netdev_private *np = netdev_priv(dev);
 874        void __iomem *ioaddr = np->ioaddr;
 875        int frame_id;
 876        int i;
 877
 878        frame_id = (tx_status & 0xffff0000);
 879        printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 880                dev->name, tx_status, frame_id);
 881        dev->stats.tx_errors++;
 882        /* Ttransmit Underrun */
 883        if (tx_status & 0x10) {
 884                dev->stats.tx_fifo_errors++;
 885                dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 886                /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 887                dw16(ASICCtrl + 2,
 888                     TxReset | DMAReset | FIFOReset | NetworkReset);
 889                /* Wait for ResetBusy bit clear */
 890                for (i = 50; i > 0; i--) {
 891                        if (!(dr16(ASICCtrl + 2) & ResetBusy))
 892                                break;
 893                        mdelay (1);
 894                }
 895                rio_set_led_mode(dev);
 896                rio_free_tx (dev, 1);
 897                /* Reset TFDListPtr */
 898                dw32(TFDListPtr0, np->tx_ring_dma +
 899                     np->old_tx * sizeof (struct netdev_desc));
 900                dw32(TFDListPtr1, 0);
 901
 902                /* Let TxStartThresh stay default value */
 903        }
 904        /* Late Collision */
 905        if (tx_status & 0x04) {
 906                dev->stats.tx_fifo_errors++;
 907                /* TxReset and clear FIFO */
 908                dw16(ASICCtrl + 2, TxReset | FIFOReset);
 909                /* Wait reset done */
 910                for (i = 50; i > 0; i--) {
 911                        if (!(dr16(ASICCtrl + 2) & ResetBusy))
 912                                break;
 913                        mdelay (1);
 914                }
 915                rio_set_led_mode(dev);
 916                /* Let TxStartThresh stay default value */
 917        }
 918        /* Maximum Collisions */
 919        if (tx_status & 0x08)
 920                dev->stats.collisions++;
 921        /* Restart the Tx */
 922        dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 923}
 924
 925static int
 926receive_packet (struct net_device *dev)
 927{
 928        struct netdev_private *np = netdev_priv(dev);
 929        int entry = np->cur_rx % RX_RING_SIZE;
 930        int cnt = 30;
 931
 932        /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 933        while (1) {
 934                struct netdev_desc *desc = &np->rx_ring[entry];
 935                int pkt_len;
 936                u64 frame_status;
 937
 938                if (!(desc->status & cpu_to_le64(RFDDone)) ||
 939                    !(desc->status & cpu_to_le64(FrameStart)) ||
 940                    !(desc->status & cpu_to_le64(FrameEnd)))
 941                        break;
 942
 943                /* Chip omits the CRC. */
 944                frame_status = le64_to_cpu(desc->status);
 945                pkt_len = frame_status & 0xffff;
 946                if (--cnt < 0)
 947                        break;
 948                /* Update rx error statistics, drop packet. */
 949                if (frame_status & RFS_Errors) {
 950                        dev->stats.rx_errors++;
 951                        if (frame_status & (RxRuntFrame | RxLengthError))
 952                                dev->stats.rx_length_errors++;
 953                        if (frame_status & RxFCSError)
 954                                dev->stats.rx_crc_errors++;
 955                        if (frame_status & RxAlignmentError && np->speed != 1000)
 956                                dev->stats.rx_frame_errors++;
 957                        if (frame_status & RxFIFOOverrun)
 958                                dev->stats.rx_fifo_errors++;
 959                } else {
 960                        struct sk_buff *skb;
 961
 962                        /* Small skbuffs for short packets */
 963                        if (pkt_len > copy_thresh) {
 964                                pci_unmap_single (np->pdev,
 965                                                  desc_to_dma(desc),
 966                                                  np->rx_buf_sz,
 967                                                  PCI_DMA_FROMDEVICE);
 968                                skb_put (skb = np->rx_skbuff[entry], pkt_len);
 969                                np->rx_skbuff[entry] = NULL;
 970                        } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 971                                pci_dma_sync_single_for_cpu(np->pdev,
 972                                                            desc_to_dma(desc),
 973                                                            np->rx_buf_sz,
 974                                                            PCI_DMA_FROMDEVICE);
 975                                skb_copy_to_linear_data (skb,
 976                                                  np->rx_skbuff[entry]->data,
 977                                                  pkt_len);
 978                                skb_put (skb, pkt_len);
 979                                pci_dma_sync_single_for_device(np->pdev,
 980                                                               desc_to_dma(desc),
 981                                                               np->rx_buf_sz,
 982                                                               PCI_DMA_FROMDEVICE);
 983                        }
 984                        skb->protocol = eth_type_trans (skb, dev);
 985#if 0
 986                        /* Checksum done by hw, but csum value unavailable. */
 987                        if (np->pdev->pci_rev_id >= 0x0c &&
 988                                !(frame_status & (TCPError | UDPError | IPError))) {
 989                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 990                        }
 991#endif
 992                        netif_rx (skb);
 993                }
 994                entry = (entry + 1) % RX_RING_SIZE;
 995        }
 996        spin_lock(&np->rx_lock);
 997        np->cur_rx = entry;
 998        /* Re-allocate skbuffs to fill the descriptor ring */
 999        entry = np->old_rx;
1000        while (entry != np->cur_rx) {
1001                struct sk_buff *skb;
1002                /* Dropped packets don't need to re-allocate */
1003                if (np->rx_skbuff[entry] == NULL) {
1004                        skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1005                        if (skb == NULL) {
1006                                np->rx_ring[entry].fraginfo = 0;
1007                                printk (KERN_INFO
1008                                        "%s: receive_packet: "
1009                                        "Unable to re-allocate Rx skbuff.#%d\n",
1010                                        dev->name, entry);
1011                                break;
1012                        }
1013                        np->rx_skbuff[entry] = skb;
1014                        np->rx_ring[entry].fraginfo =
1015                            cpu_to_le64 (pci_map_single
1016                                         (np->pdev, skb->data, np->rx_buf_sz,
1017                                          PCI_DMA_FROMDEVICE));
1018                }
1019                np->rx_ring[entry].fraginfo |=
1020                    cpu_to_le64((u64)np->rx_buf_sz << 48);
1021                np->rx_ring[entry].status = 0;
1022                entry = (entry + 1) % RX_RING_SIZE;
1023        }
1024        np->old_rx = entry;
1025        spin_unlock(&np->rx_lock);
1026        return 0;
1027}
1028
1029static void
1030rio_error (struct net_device *dev, int int_status)
1031{
1032        struct netdev_private *np = netdev_priv(dev);
1033        void __iomem *ioaddr = np->ioaddr;
1034        u16 macctrl;
1035
1036        /* Link change event */
1037        if (int_status & LinkEvent) {
1038                if (mii_wait_link (dev, 10) == 0) {
1039                        printk (KERN_INFO "%s: Link up\n", dev->name);
1040                        if (np->phy_media)
1041                                mii_get_media_pcs (dev);
1042                        else
1043                                mii_get_media (dev);
1044                        if (np->speed == 1000)
1045                                np->tx_coalesce = tx_coalesce;
1046                        else
1047                                np->tx_coalesce = 1;
1048                        macctrl = 0;
1049                        macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1050                        macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1051                        macctrl |= (np->tx_flow) ?
1052                                TxFlowControlEnable : 0;
1053                        macctrl |= (np->rx_flow) ?
1054                                RxFlowControlEnable : 0;
1055                        dw16(MACCtrl, macctrl);
1056                        np->link_status = 1;
1057                        netif_carrier_on(dev);
1058                } else {
1059                        printk (KERN_INFO "%s: Link off\n", dev->name);
1060                        np->link_status = 0;
1061                        netif_carrier_off(dev);
1062                }
1063        }
1064
1065        /* UpdateStats statistics registers */
1066        if (int_status & UpdateStats) {
1067                get_stats (dev);
1068        }
1069
1070        /* PCI Error, a catastronphic error related to the bus interface
1071           occurs, set GlobalReset and HostReset to reset. */
1072        if (int_status & HostError) {
1073                printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1074                        dev->name, int_status);
1075                dw16(ASICCtrl + 2, GlobalReset | HostReset);
1076                mdelay (500);
1077                rio_set_led_mode(dev);
1078        }
1079}
1080
1081static struct net_device_stats *
1082get_stats (struct net_device *dev)
1083{
1084        struct netdev_private *np = netdev_priv(dev);
1085        void __iomem *ioaddr = np->ioaddr;
1086#ifdef MEM_MAPPING
1087        int i;
1088#endif
1089        unsigned int stat_reg;
1090
1091        /* All statistics registers need to be acknowledged,
1092           else statistic overflow could cause problems */
1093
1094        dev->stats.rx_packets += dr32(FramesRcvOk);
1095        dev->stats.tx_packets += dr32(FramesXmtOk);
1096        dev->stats.rx_bytes += dr32(OctetRcvOk);
1097        dev->stats.tx_bytes += dr32(OctetXmtOk);
1098
1099        dev->stats.multicast = dr32(McstFramesRcvdOk);
1100        dev->stats.collisions += dr32(SingleColFrames)
1101                             +  dr32(MultiColFrames);
1102
1103        /* detailed tx errors */
1104        stat_reg = dr16(FramesAbortXSColls);
1105        dev->stats.tx_aborted_errors += stat_reg;
1106        dev->stats.tx_errors += stat_reg;
1107
1108        stat_reg = dr16(CarrierSenseErrors);
1109        dev->stats.tx_carrier_errors += stat_reg;
1110        dev->stats.tx_errors += stat_reg;
1111
1112        /* Clear all other statistic register. */
1113        dr32(McstOctetXmtOk);
1114        dr16(BcstFramesXmtdOk);
1115        dr32(McstFramesXmtdOk);
1116        dr16(BcstFramesRcvdOk);
1117        dr16(MacControlFramesRcvd);
1118        dr16(FrameTooLongErrors);
1119        dr16(InRangeLengthErrors);
1120        dr16(FramesCheckSeqErrors);
1121        dr16(FramesLostRxErrors);
1122        dr32(McstOctetXmtOk);
1123        dr32(BcstOctetXmtOk);
1124        dr32(McstFramesXmtdOk);
1125        dr32(FramesWDeferredXmt);
1126        dr32(LateCollisions);
1127        dr16(BcstFramesXmtdOk);
1128        dr16(MacControlFramesXmtd);
1129        dr16(FramesWEXDeferal);
1130
1131#ifdef MEM_MAPPING
1132        for (i = 0x100; i <= 0x150; i += 4)
1133                dr32(i);
1134#endif
1135        dr16(TxJumboFrames);
1136        dr16(RxJumboFrames);
1137        dr16(TCPCheckSumErrors);
1138        dr16(UDPCheckSumErrors);
1139        dr16(IPCheckSumErrors);
1140        return &dev->stats;
1141}
1142
1143static int
1144clear_stats (struct net_device *dev)
1145{
1146        struct netdev_private *np = netdev_priv(dev);
1147        void __iomem *ioaddr = np->ioaddr;
1148#ifdef MEM_MAPPING
1149        int i;
1150#endif
1151
1152        /* All statistics registers need to be acknowledged,
1153           else statistic overflow could cause problems */
1154        dr32(FramesRcvOk);
1155        dr32(FramesXmtOk);
1156        dr32(OctetRcvOk);
1157        dr32(OctetXmtOk);
1158
1159        dr32(McstFramesRcvdOk);
1160        dr32(SingleColFrames);
1161        dr32(MultiColFrames);
1162        dr32(LateCollisions);
1163        /* detailed rx errors */
1164        dr16(FrameTooLongErrors);
1165        dr16(InRangeLengthErrors);
1166        dr16(FramesCheckSeqErrors);
1167        dr16(FramesLostRxErrors);
1168
1169        /* detailed tx errors */
1170        dr16(FramesAbortXSColls);
1171        dr16(CarrierSenseErrors);
1172
1173        /* Clear all other statistic register. */
1174        dr32(McstOctetXmtOk);
1175        dr16(BcstFramesXmtdOk);
1176        dr32(McstFramesXmtdOk);
1177        dr16(BcstFramesRcvdOk);
1178        dr16(MacControlFramesRcvd);
1179        dr32(McstOctetXmtOk);
1180        dr32(BcstOctetXmtOk);
1181        dr32(McstFramesXmtdOk);
1182        dr32(FramesWDeferredXmt);
1183        dr16(BcstFramesXmtdOk);
1184        dr16(MacControlFramesXmtd);
1185        dr16(FramesWEXDeferal);
1186#ifdef MEM_MAPPING
1187        for (i = 0x100; i <= 0x150; i += 4)
1188                dr32(i);
1189#endif
1190        dr16(TxJumboFrames);
1191        dr16(RxJumboFrames);
1192        dr16(TCPCheckSumErrors);
1193        dr16(UDPCheckSumErrors);
1194        dr16(IPCheckSumErrors);
1195        return 0;
1196}
1197
1198static void
1199set_multicast (struct net_device *dev)
1200{
1201        struct netdev_private *np = netdev_priv(dev);
1202        void __iomem *ioaddr = np->ioaddr;
1203        u32 hash_table[2];
1204        u16 rx_mode = 0;
1205
1206        hash_table[0] = hash_table[1] = 0;
1207        /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1208        hash_table[1] |= 0x02000000;
1209        if (dev->flags & IFF_PROMISC) {
1210                /* Receive all frames promiscuously. */
1211                rx_mode = ReceiveAllFrames;
1212        } else if ((dev->flags & IFF_ALLMULTI) ||
1213                        (netdev_mc_count(dev) > multicast_filter_limit)) {
1214                /* Receive broadcast and multicast frames */
1215                rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1216        } else if (!netdev_mc_empty(dev)) {
1217                struct netdev_hw_addr *ha;
1218                /* Receive broadcast frames and multicast frames filtering
1219                   by Hashtable */
1220                rx_mode =
1221                    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1222                netdev_for_each_mc_addr(ha, dev) {
1223                        int bit, index = 0;
1224                        int crc = ether_crc_le(ETH_ALEN, ha->addr);
1225                        /* The inverted high significant 6 bits of CRC are
1226                           used as an index to hashtable */
1227                        for (bit = 0; bit < 6; bit++)
1228                                if (crc & (1 << (31 - bit)))
1229                                        index |= (1 << bit);
1230                        hash_table[index / 32] |= (1 << (index % 32));
1231                }
1232        } else {
1233                rx_mode = ReceiveBroadcast | ReceiveUnicast;
1234        }
1235        if (np->vlan) {
1236                /* ReceiveVLANMatch field in ReceiveMode */
1237                rx_mode |= ReceiveVLANMatch;
1238        }
1239
1240        dw32(HashTable0, hash_table[0]);
1241        dw32(HashTable1, hash_table[1]);
1242        dw16(ReceiveMode, rx_mode);
1243}
1244
1245static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1246{
1247        struct netdev_private *np = netdev_priv(dev);
1248
1249        strlcpy(info->driver, "dl2k", sizeof(info->driver));
1250        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1251        strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1252}
1253
1254static int rio_get_link_ksettings(struct net_device *dev,
1255                                  struct ethtool_link_ksettings *cmd)
1256{
1257        struct netdev_private *np = netdev_priv(dev);
1258        u32 supported, advertising;
1259
1260        if (np->phy_media) {
1261                /* fiber device */
1262                supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1263                advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1264                cmd->base.port = PORT_FIBRE;
1265        } else {
1266                /* copper device */
1267                supported = SUPPORTED_10baseT_Half |
1268                        SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1269                        | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1270                        SUPPORTED_Autoneg | SUPPORTED_MII;
1271                advertising = ADVERTISED_10baseT_Half |
1272                        ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1273                        ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1274                        ADVERTISED_Autoneg | ADVERTISED_MII;
1275                cmd->base.port = PORT_MII;
1276        }
1277        if (np->link_status) {
1278                cmd->base.speed = np->speed;
1279                cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1280        } else {
1281                cmd->base.speed = SPEED_UNKNOWN;
1282                cmd->base.duplex = DUPLEX_UNKNOWN;
1283        }
1284        if (np->an_enable)
1285                cmd->base.autoneg = AUTONEG_ENABLE;
1286        else
1287                cmd->base.autoneg = AUTONEG_DISABLE;
1288
1289        cmd->base.phy_address = np->phy_addr;
1290
1291        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1292                                                supported);
1293        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1294                                                advertising);
1295
1296        return 0;
1297}
1298
1299static int rio_set_link_ksettings(struct net_device *dev,
1300                                  const struct ethtool_link_ksettings *cmd)
1301{
1302        struct netdev_private *np = netdev_priv(dev);
1303        u32 speed = cmd->base.speed;
1304        u8 duplex = cmd->base.duplex;
1305
1306        netif_carrier_off(dev);
1307        if (cmd->base.autoneg == AUTONEG_ENABLE) {
1308                if (np->an_enable) {
1309                        return 0;
1310                } else {
1311                        np->an_enable = 1;
1312                        mii_set_media(dev);
1313                        return 0;
1314                }
1315        } else {
1316                np->an_enable = 0;
1317                if (np->speed == 1000) {
1318                        speed = SPEED_100;
1319                        duplex = DUPLEX_FULL;
1320                        printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1321                }
1322                switch (speed) {
1323                case SPEED_10:
1324                        np->speed = 10;
1325                        np->full_duplex = (duplex == DUPLEX_FULL);
1326                        break;
1327                case SPEED_100:
1328                        np->speed = 100;
1329                        np->full_duplex = (duplex == DUPLEX_FULL);
1330                        break;
1331                case SPEED_1000: /* not supported */
1332                default:
1333                        return -EINVAL;
1334                }
1335                mii_set_media(dev);
1336        }
1337        return 0;
1338}
1339
1340static u32 rio_get_link(struct net_device *dev)
1341{
1342        struct netdev_private *np = netdev_priv(dev);
1343        return np->link_status;
1344}
1345
1346static const struct ethtool_ops ethtool_ops = {
1347        .get_drvinfo = rio_get_drvinfo,
1348        .get_link = rio_get_link,
1349        .get_link_ksettings = rio_get_link_ksettings,
1350        .set_link_ksettings = rio_set_link_ksettings,
1351};
1352
1353static int
1354rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1355{
1356        int phy_addr;
1357        struct netdev_private *np = netdev_priv(dev);
1358        struct mii_ioctl_data *miidata = if_mii(rq);
1359
1360        phy_addr = np->phy_addr;
1361        switch (cmd) {
1362        case SIOCGMIIPHY:
1363                miidata->phy_id = phy_addr;
1364                break;
1365        case SIOCGMIIREG:
1366                miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1367                break;
1368        case SIOCSMIIREG:
1369                if (!capable(CAP_NET_ADMIN))
1370                        return -EPERM;
1371                mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1372                break;
1373        default:
1374                return -EOPNOTSUPP;
1375        }
1376        return 0;
1377}
1378
1379#define EEP_READ 0x0200
1380#define EEP_BUSY 0x8000
1381/* Read the EEPROM word */
1382/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1383static int read_eeprom(struct netdev_private *np, int eep_addr)
1384{
1385        void __iomem *ioaddr = np->eeprom_addr;
1386        int i = 1000;
1387
1388        dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1389        while (i-- > 0) {
1390                if (!(dr16(EepromCtrl) & EEP_BUSY))
1391                        return dr16(EepromData);
1392        }
1393        return 0;
1394}
1395
1396enum phy_ctrl_bits {
1397        MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1398        MII_DUPLEX = 0x08,
1399};
1400
1401#define mii_delay() dr8(PhyCtrl)
1402static void
1403mii_sendbit (struct net_device *dev, u32 data)
1404{
1405        struct netdev_private *np = netdev_priv(dev);
1406        void __iomem *ioaddr = np->ioaddr;
1407
1408        data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1409        dw8(PhyCtrl, data);
1410        mii_delay ();
1411        dw8(PhyCtrl, data | MII_CLK);
1412        mii_delay ();
1413}
1414
1415static int
1416mii_getbit (struct net_device *dev)
1417{
1418        struct netdev_private *np = netdev_priv(dev);
1419        void __iomem *ioaddr = np->ioaddr;
1420        u8 data;
1421
1422        data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1423        dw8(PhyCtrl, data);
1424        mii_delay ();
1425        dw8(PhyCtrl, data | MII_CLK);
1426        mii_delay ();
1427        return (dr8(PhyCtrl) >> 1) & 1;
1428}
1429
1430static void
1431mii_send_bits (struct net_device *dev, u32 data, int len)
1432{
1433        int i;
1434
1435        for (i = len - 1; i >= 0; i--) {
1436                mii_sendbit (dev, data & (1 << i));
1437        }
1438}
1439
1440static int
1441mii_read (struct net_device *dev, int phy_addr, int reg_num)
1442{
1443        u32 cmd;
1444        int i;
1445        u32 retval = 0;
1446
1447        /* Preamble */
1448        mii_send_bits (dev, 0xffffffff, 32);
1449        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1450        /* ST,OP = 0110'b for read operation */
1451        cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1452        mii_send_bits (dev, cmd, 14);
1453        /* Turnaround */
1454        if (mii_getbit (dev))
1455                goto err_out;
1456        /* Read data */
1457        for (i = 0; i < 16; i++) {
1458                retval |= mii_getbit (dev);
1459                retval <<= 1;
1460        }
1461        /* End cycle */
1462        mii_getbit (dev);
1463        return (retval >> 1) & 0xffff;
1464
1465      err_out:
1466        return 0;
1467}
1468static int
1469mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1470{
1471        u32 cmd;
1472
1473        /* Preamble */
1474        mii_send_bits (dev, 0xffffffff, 32);
1475        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1476        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1477        cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1478        mii_send_bits (dev, cmd, 32);
1479        /* End cycle */
1480        mii_getbit (dev);
1481        return 0;
1482}
1483static int
1484mii_wait_link (struct net_device *dev, int wait)
1485{
1486        __u16 bmsr;
1487        int phy_addr;
1488        struct netdev_private *np;
1489
1490        np = netdev_priv(dev);
1491        phy_addr = np->phy_addr;
1492
1493        do {
1494                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1495                if (bmsr & BMSR_LSTATUS)
1496                        return 0;
1497                mdelay (1);
1498        } while (--wait > 0);
1499        return -1;
1500}
1501static int
1502mii_get_media (struct net_device *dev)
1503{
1504        __u16 negotiate;
1505        __u16 bmsr;
1506        __u16 mscr;
1507        __u16 mssr;
1508        int phy_addr;
1509        struct netdev_private *np;
1510
1511        np = netdev_priv(dev);
1512        phy_addr = np->phy_addr;
1513
1514        bmsr = mii_read (dev, phy_addr, MII_BMSR);
1515        if (np->an_enable) {
1516                if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1517                        /* Auto-Negotiation not completed */
1518                        return -1;
1519                }
1520                negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1521                        mii_read (dev, phy_addr, MII_LPA);
1522                mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1523                mssr = mii_read (dev, phy_addr, MII_STAT1000);
1524                if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1525                        np->speed = 1000;
1526                        np->full_duplex = 1;
1527                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1528                } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1529                        np->speed = 1000;
1530                        np->full_duplex = 0;
1531                        printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1532                } else if (negotiate & ADVERTISE_100FULL) {
1533                        np->speed = 100;
1534                        np->full_duplex = 1;
1535                        printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1536                } else if (negotiate & ADVERTISE_100HALF) {
1537                        np->speed = 100;
1538                        np->full_duplex = 0;
1539                        printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1540                } else if (negotiate & ADVERTISE_10FULL) {
1541                        np->speed = 10;
1542                        np->full_duplex = 1;
1543                        printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1544                } else if (negotiate & ADVERTISE_10HALF) {
1545                        np->speed = 10;
1546                        np->full_duplex = 0;
1547                        printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1548                }
1549                if (negotiate & ADVERTISE_PAUSE_CAP) {
1550                        np->tx_flow &= 1;
1551                        np->rx_flow &= 1;
1552                } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1553                        np->tx_flow = 0;
1554                        np->rx_flow &= 1;
1555                }
1556                /* else tx_flow, rx_flow = user select  */
1557        } else {
1558                __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1559                switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1560                case BMCR_SPEED1000:
1561                        printk (KERN_INFO "Operating at 1000 Mbps, ");
1562                        break;
1563                case BMCR_SPEED100:
1564                        printk (KERN_INFO "Operating at 100 Mbps, ");
1565                        break;
1566                case 0:
1567                        printk (KERN_INFO "Operating at 10 Mbps, ");
1568                }
1569                if (bmcr & BMCR_FULLDPLX) {
1570                        printk (KERN_CONT "Full duplex\n");
1571                } else {
1572                        printk (KERN_CONT "Half duplex\n");
1573                }
1574        }
1575        if (np->tx_flow)
1576                printk(KERN_INFO "Enable Tx Flow Control\n");
1577        else
1578                printk(KERN_INFO "Disable Tx Flow Control\n");
1579        if (np->rx_flow)
1580                printk(KERN_INFO "Enable Rx Flow Control\n");
1581        else
1582                printk(KERN_INFO "Disable Rx Flow Control\n");
1583
1584        return 0;
1585}
1586
1587static int
1588mii_set_media (struct net_device *dev)
1589{
1590        __u16 pscr;
1591        __u16 bmcr;
1592        __u16 bmsr;
1593        __u16 anar;
1594        int phy_addr;
1595        struct netdev_private *np;
1596        np = netdev_priv(dev);
1597        phy_addr = np->phy_addr;
1598
1599        /* Does user set speed? */
1600        if (np->an_enable) {
1601                /* Advertise capabilities */
1602                bmsr = mii_read (dev, phy_addr, MII_BMSR);
1603                anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1604                        ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1605                          ADVERTISE_100HALF | ADVERTISE_10HALF |
1606                          ADVERTISE_100BASE4);
1607                if (bmsr & BMSR_100FULL)
1608                        anar |= ADVERTISE_100FULL;
1609                if (bmsr & BMSR_100HALF)
1610                        anar |= ADVERTISE_100HALF;
1611                if (bmsr & BMSR_100BASE4)
1612                        anar |= ADVERTISE_100BASE4;
1613                if (bmsr & BMSR_10FULL)
1614                        anar |= ADVERTISE_10FULL;
1615                if (bmsr & BMSR_10HALF)
1616                        anar |= ADVERTISE_10HALF;
1617                anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1618                mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1619
1620                /* Enable Auto crossover */
1621                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1622                pscr |= 3 << 5; /* 11'b */
1623                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1624
1625                /* Soft reset PHY */
1626                mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1627                bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1628                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629                mdelay(1);
1630        } else {
1631                /* Force speed setting */
1632                /* 1) Disable Auto crossover */
1633                pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1634                pscr &= ~(3 << 5);
1635                mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1636
1637                /* 2) PHY Reset */
1638                bmcr = mii_read (dev, phy_addr, MII_BMCR);
1639                bmcr |= BMCR_RESET;
1640                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1641
1642                /* 3) Power Down */
1643                bmcr = 0x1940;  /* must be 0x1940 */
1644                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1645                mdelay (100);   /* wait a certain time */
1646
1647                /* 4) Advertise nothing */
1648                mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1649
1650                /* 5) Set media and Power Up */
1651                bmcr = BMCR_PDOWN;
1652                if (np->speed == 100) {
1653                        bmcr |= BMCR_SPEED100;
1654                        printk (KERN_INFO "Manual 100 Mbps, ");
1655                } else if (np->speed == 10) {
1656                        printk (KERN_INFO "Manual 10 Mbps, ");
1657                }
1658                if (np->full_duplex) {
1659                        bmcr |= BMCR_FULLDPLX;
1660                        printk (KERN_CONT "Full duplex\n");
1661                } else {
1662                        printk (KERN_CONT "Half duplex\n");
1663                }
1664#if 0
1665                /* Set 1000BaseT Master/Slave setting */
1666                mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1667                mscr |= MII_MSCR_CFG_ENABLE;
1668                mscr &= ~MII_MSCR_CFG_VALUE = 0;
1669#endif
1670                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1671                mdelay(10);
1672        }
1673        return 0;
1674}
1675
1676static int
1677mii_get_media_pcs (struct net_device *dev)
1678{
1679        __u16 negotiate;
1680        __u16 bmsr;
1681        int phy_addr;
1682        struct netdev_private *np;
1683
1684        np = netdev_priv(dev);
1685        phy_addr = np->phy_addr;
1686
1687        bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1688        if (np->an_enable) {
1689                if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1690                        /* Auto-Negotiation not completed */
1691                        return -1;
1692                }
1693                negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1694                        mii_read (dev, phy_addr, PCS_ANLPAR);
1695                np->speed = 1000;
1696                if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1697                        printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1698                        np->full_duplex = 1;
1699                } else {
1700                        printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1701                        np->full_duplex = 0;
1702                }
1703                if (negotiate & PCS_ANAR_PAUSE) {
1704                        np->tx_flow &= 1;
1705                        np->rx_flow &= 1;
1706                } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1707                        np->tx_flow = 0;
1708                        np->rx_flow &= 1;
1709                }
1710                /* else tx_flow, rx_flow = user select  */
1711        } else {
1712                __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1713                printk (KERN_INFO "Operating at 1000 Mbps, ");
1714                if (bmcr & BMCR_FULLDPLX) {
1715                        printk (KERN_CONT "Full duplex\n");
1716                } else {
1717                        printk (KERN_CONT "Half duplex\n");
1718                }
1719        }
1720        if (np->tx_flow)
1721                printk(KERN_INFO "Enable Tx Flow Control\n");
1722        else
1723                printk(KERN_INFO "Disable Tx Flow Control\n");
1724        if (np->rx_flow)
1725                printk(KERN_INFO "Enable Rx Flow Control\n");
1726        else
1727                printk(KERN_INFO "Disable Rx Flow Control\n");
1728
1729        return 0;
1730}
1731
1732static int
1733mii_set_media_pcs (struct net_device *dev)
1734{
1735        __u16 bmcr;
1736        __u16 esr;
1737        __u16 anar;
1738        int phy_addr;
1739        struct netdev_private *np;
1740        np = netdev_priv(dev);
1741        phy_addr = np->phy_addr;
1742
1743        /* Auto-Negotiation? */
1744        if (np->an_enable) {
1745                /* Advertise capabilities */
1746                esr = mii_read (dev, phy_addr, PCS_ESR);
1747                anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1748                        ~PCS_ANAR_HALF_DUPLEX &
1749                        ~PCS_ANAR_FULL_DUPLEX;
1750                if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1751                        anar |= PCS_ANAR_HALF_DUPLEX;
1752                if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1753                        anar |= PCS_ANAR_FULL_DUPLEX;
1754                anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1755                mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1756
1757                /* Soft reset PHY */
1758                mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1759                bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1760                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1761                mdelay(1);
1762        } else {
1763                /* Force speed setting */
1764                /* PHY Reset */
1765                bmcr = BMCR_RESET;
1766                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1767                mdelay(10);
1768                if (np->full_duplex) {
1769                        bmcr = BMCR_FULLDPLX;
1770                        printk (KERN_INFO "Manual full duplex\n");
1771                } else {
1772                        bmcr = 0;
1773                        printk (KERN_INFO "Manual half duplex\n");
1774                }
1775                mii_write (dev, phy_addr, MII_BMCR, bmcr);
1776                mdelay(10);
1777
1778                /*  Advertise nothing */
1779                mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1780        }
1781        return 0;
1782}
1783
1784
1785static int
1786rio_close (struct net_device *dev)
1787{
1788        struct netdev_private *np = netdev_priv(dev);
1789        struct pci_dev *pdev = np->pdev;
1790
1791        netif_stop_queue (dev);
1792
1793        rio_hw_stop(dev);
1794
1795        free_irq(pdev->irq, dev);
1796        del_timer_sync (&np->timer);
1797
1798        free_list(dev);
1799
1800        return 0;
1801}
1802
1803static void
1804rio_remove1 (struct pci_dev *pdev)
1805{
1806        struct net_device *dev = pci_get_drvdata (pdev);
1807
1808        if (dev) {
1809                struct netdev_private *np = netdev_priv(dev);
1810
1811                unregister_netdev (dev);
1812                pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1813                                     np->rx_ring_dma);
1814                pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1815                                     np->tx_ring_dma);
1816#ifdef MEM_MAPPING
1817                pci_iounmap(pdev, np->ioaddr);
1818#endif
1819                pci_iounmap(pdev, np->eeprom_addr);
1820                free_netdev (dev);
1821                pci_release_regions (pdev);
1822                pci_disable_device (pdev);
1823        }
1824}
1825
1826#ifdef CONFIG_PM_SLEEP
1827static int rio_suspend(struct device *device)
1828{
1829        struct net_device *dev = dev_get_drvdata(device);
1830        struct netdev_private *np = netdev_priv(dev);
1831
1832        if (!netif_running(dev))
1833                return 0;
1834
1835        netif_device_detach(dev);
1836        del_timer_sync(&np->timer);
1837        rio_hw_stop(dev);
1838
1839        return 0;
1840}
1841
1842static int rio_resume(struct device *device)
1843{
1844        struct net_device *dev = dev_get_drvdata(device);
1845        struct netdev_private *np = netdev_priv(dev);
1846
1847        if (!netif_running(dev))
1848                return 0;
1849
1850        rio_reset_ring(np);
1851        rio_hw_init(dev);
1852        np->timer.expires = jiffies + 1 * HZ;
1853        add_timer(&np->timer);
1854        netif_device_attach(dev);
1855        dl2k_enable_int(np);
1856
1857        return 0;
1858}
1859
1860static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1861#define RIO_PM_OPS    (&rio_pm_ops)
1862
1863#else
1864
1865#define RIO_PM_OPS      NULL
1866
1867#endif /* CONFIG_PM_SLEEP */
1868
1869static struct pci_driver rio_driver = {
1870        .name           = "dl2k",
1871        .id_table       = rio_pci_tbl,
1872        .probe          = rio_probe1,
1873        .remove         = rio_remove1,
1874        .driver.pm      = RIO_PM_OPS,
1875};
1876
1877module_pci_driver(rio_driver);
1878/*
1879
1880Compile command:
1881
1882gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1883
1884Read Documentation/networking/dl2k.txt for details.
1885
1886*/
1887
1888