linux/drivers/net/ethernet/intel/e1000/e1000_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static const struct pci_device_id e1000_pci_tbl[] = {
  50        INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51        INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52        INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53        INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54        INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55        INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56        INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57        INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58        INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59        INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60        INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61        INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62        INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63        INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64        INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65        INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66        INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67        INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68        INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69        INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70        INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71        INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72        INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73        INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74        INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75        INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76        INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77        INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78        INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79        INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80        INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81        INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82        INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83        INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84        INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86        INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87        /* required last entry */
  88        {0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                                    struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                                    struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                                    struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                                    struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117int e1000_open(struct net_device *netdev);
 118int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133                                    struct net_device *netdev);
 134static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 135static int e1000_set_mac(struct net_device *netdev, void *p);
 136static irqreturn_t e1000_intr(int irq, void *data);
 137static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 138                               struct e1000_tx_ring *tx_ring);
 139static int e1000_clean(struct napi_struct *napi, int budget);
 140static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 141                               struct e1000_rx_ring *rx_ring,
 142                               int *work_done, int work_to_do);
 143static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 144                                     struct e1000_rx_ring *rx_ring,
 145                                     int *work_done, int work_to_do);
 146static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 147                                         struct e1000_rx_ring *rx_ring,
 148                                         int cleaned_count)
 149{
 150}
 151static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 152                                   struct e1000_rx_ring *rx_ring,
 153                                   int cleaned_count);
 154static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 155                                         struct e1000_rx_ring *rx_ring,
 156                                         int cleaned_count);
 157static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 158static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 159                           int cmd);
 160static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 161static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_tx_timeout(struct net_device *dev);
 163static void e1000_reset_task(struct work_struct *work);
 164static void e1000_smartspeed(struct e1000_adapter *adapter);
 165static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 166                                       struct sk_buff *skb);
 167
 168static bool e1000_vlan_used(struct e1000_adapter *adapter);
 169static void e1000_vlan_mode(struct net_device *netdev,
 170                            netdev_features_t features);
 171static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 172                                     bool filter_on);
 173static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 174                                 __be16 proto, u16 vid);
 175static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 176                                  __be16 proto, u16 vid);
 177static void e1000_restore_vlan(struct e1000_adapter *adapter);
 178
 179#ifdef CONFIG_PM
 180static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 181static int e1000_resume(struct pci_dev *pdev);
 182#endif
 183static void e1000_shutdown(struct pci_dev *pdev);
 184
 185#ifdef CONFIG_NET_POLL_CONTROLLER
 186/* for netdump / net console */
 187static void e1000_netpoll (struct net_device *netdev);
 188#endif
 189
 190#define COPYBREAK_DEFAULT 256
 191static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 192module_param(copybreak, uint, 0644);
 193MODULE_PARM_DESC(copybreak,
 194        "Maximum size of packet that is copied to a new buffer on receive");
 195
 196static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 197                                                pci_channel_state_t state);
 198static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 199static void e1000_io_resume(struct pci_dev *pdev);
 200
 201static const struct pci_error_handlers e1000_err_handler = {
 202        .error_detected = e1000_io_error_detected,
 203        .slot_reset = e1000_io_slot_reset,
 204        .resume = e1000_io_resume,
 205};
 206
 207static struct pci_driver e1000_driver = {
 208        .name     = e1000_driver_name,
 209        .id_table = e1000_pci_tbl,
 210        .probe    = e1000_probe,
 211        .remove   = e1000_remove,
 212#ifdef CONFIG_PM
 213        /* Power Management Hooks */
 214        .suspend  = e1000_suspend,
 215        .resume   = e1000_resume,
 216#endif
 217        .shutdown = e1000_shutdown,
 218        .err_handler = &e1000_err_handler
 219};
 220
 221MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 222MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 223MODULE_LICENSE("GPL");
 224MODULE_VERSION(DRV_VERSION);
 225
 226#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 227static int debug = -1;
 228module_param(debug, int, 0);
 229MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 230
 231/**
 232 * e1000_get_hw_dev - return device
 233 * used by hardware layer to print debugging information
 234 *
 235 **/
 236struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 237{
 238        struct e1000_adapter *adapter = hw->back;
 239        return adapter->netdev;
 240}
 241
 242/**
 243 * e1000_init_module - Driver Registration Routine
 244 *
 245 * e1000_init_module is the first routine called when the driver is
 246 * loaded. All it does is register with the PCI subsystem.
 247 **/
 248static int __init e1000_init_module(void)
 249{
 250        int ret;
 251        pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 252
 253        pr_info("%s\n", e1000_copyright);
 254
 255        ret = pci_register_driver(&e1000_driver);
 256        if (copybreak != COPYBREAK_DEFAULT) {
 257                if (copybreak == 0)
 258                        pr_info("copybreak disabled\n");
 259                else
 260                        pr_info("copybreak enabled for "
 261                                   "packets <= %u bytes\n", copybreak);
 262        }
 263        return ret;
 264}
 265
 266module_init(e1000_init_module);
 267
 268/**
 269 * e1000_exit_module - Driver Exit Cleanup Routine
 270 *
 271 * e1000_exit_module is called just before the driver is removed
 272 * from memory.
 273 **/
 274static void __exit e1000_exit_module(void)
 275{
 276        pci_unregister_driver(&e1000_driver);
 277}
 278
 279module_exit(e1000_exit_module);
 280
 281static int e1000_request_irq(struct e1000_adapter *adapter)
 282{
 283        struct net_device *netdev = adapter->netdev;
 284        irq_handler_t handler = e1000_intr;
 285        int irq_flags = IRQF_SHARED;
 286        int err;
 287
 288        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 289                          netdev);
 290        if (err) {
 291                e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 292        }
 293
 294        return err;
 295}
 296
 297static void e1000_free_irq(struct e1000_adapter *adapter)
 298{
 299        struct net_device *netdev = adapter->netdev;
 300
 301        free_irq(adapter->pdev->irq, netdev);
 302}
 303
 304/**
 305 * e1000_irq_disable - Mask off interrupt generation on the NIC
 306 * @adapter: board private structure
 307 **/
 308static void e1000_irq_disable(struct e1000_adapter *adapter)
 309{
 310        struct e1000_hw *hw = &adapter->hw;
 311
 312        ew32(IMC, ~0);
 313        E1000_WRITE_FLUSH();
 314        synchronize_irq(adapter->pdev->irq);
 315}
 316
 317/**
 318 * e1000_irq_enable - Enable default interrupt generation settings
 319 * @adapter: board private structure
 320 **/
 321static void e1000_irq_enable(struct e1000_adapter *adapter)
 322{
 323        struct e1000_hw *hw = &adapter->hw;
 324
 325        ew32(IMS, IMS_ENABLE_MASK);
 326        E1000_WRITE_FLUSH();
 327}
 328
 329static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 330{
 331        struct e1000_hw *hw = &adapter->hw;
 332        struct net_device *netdev = adapter->netdev;
 333        u16 vid = hw->mng_cookie.vlan_id;
 334        u16 old_vid = adapter->mng_vlan_id;
 335
 336        if (!e1000_vlan_used(adapter))
 337                return;
 338
 339        if (!test_bit(vid, adapter->active_vlans)) {
 340                if (hw->mng_cookie.status &
 341                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 342                        e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 343                        adapter->mng_vlan_id = vid;
 344                } else {
 345                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 346                }
 347                if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 348                    (vid != old_vid) &&
 349                    !test_bit(old_vid, adapter->active_vlans))
 350                        e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 351                                               old_vid);
 352        } else {
 353                adapter->mng_vlan_id = vid;
 354        }
 355}
 356
 357static void e1000_init_manageability(struct e1000_adapter *adapter)
 358{
 359        struct e1000_hw *hw = &adapter->hw;
 360
 361        if (adapter->en_mng_pt) {
 362                u32 manc = er32(MANC);
 363
 364                /* disable hardware interception of ARP */
 365                manc &= ~(E1000_MANC_ARP_EN);
 366
 367                ew32(MANC, manc);
 368        }
 369}
 370
 371static void e1000_release_manageability(struct e1000_adapter *adapter)
 372{
 373        struct e1000_hw *hw = &adapter->hw;
 374
 375        if (adapter->en_mng_pt) {
 376                u32 manc = er32(MANC);
 377
 378                /* re-enable hardware interception of ARP */
 379                manc |= E1000_MANC_ARP_EN;
 380
 381                ew32(MANC, manc);
 382        }
 383}
 384
 385/**
 386 * e1000_configure - configure the hardware for RX and TX
 387 * @adapter = private board structure
 388 **/
 389static void e1000_configure(struct e1000_adapter *adapter)
 390{
 391        struct net_device *netdev = adapter->netdev;
 392        int i;
 393
 394        e1000_set_rx_mode(netdev);
 395
 396        e1000_restore_vlan(adapter);
 397        e1000_init_manageability(adapter);
 398
 399        e1000_configure_tx(adapter);
 400        e1000_setup_rctl(adapter);
 401        e1000_configure_rx(adapter);
 402        /* call E1000_DESC_UNUSED which always leaves
 403         * at least 1 descriptor unused to make sure
 404         * next_to_use != next_to_clean
 405         */
 406        for (i = 0; i < adapter->num_rx_queues; i++) {
 407                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 408                adapter->alloc_rx_buf(adapter, ring,
 409                                      E1000_DESC_UNUSED(ring));
 410        }
 411}
 412
 413int e1000_up(struct e1000_adapter *adapter)
 414{
 415        struct e1000_hw *hw = &adapter->hw;
 416
 417        /* hardware has been reset, we need to reload some things */
 418        e1000_configure(adapter);
 419
 420        clear_bit(__E1000_DOWN, &adapter->flags);
 421
 422        napi_enable(&adapter->napi);
 423
 424        e1000_irq_enable(adapter);
 425
 426        netif_wake_queue(adapter->netdev);
 427
 428        /* fire a link change interrupt to start the watchdog */
 429        ew32(ICS, E1000_ICS_LSC);
 430        return 0;
 431}
 432
 433/**
 434 * e1000_power_up_phy - restore link in case the phy was powered down
 435 * @adapter: address of board private structure
 436 *
 437 * The phy may be powered down to save power and turn off link when the
 438 * driver is unloaded and wake on lan is not enabled (among others)
 439 * *** this routine MUST be followed by a call to e1000_reset ***
 440 **/
 441void e1000_power_up_phy(struct e1000_adapter *adapter)
 442{
 443        struct e1000_hw *hw = &adapter->hw;
 444        u16 mii_reg = 0;
 445
 446        /* Just clear the power down bit to wake the phy back up */
 447        if (hw->media_type == e1000_media_type_copper) {
 448                /* according to the manual, the phy will retain its
 449                 * settings across a power-down/up cycle
 450                 */
 451                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 452                mii_reg &= ~MII_CR_POWER_DOWN;
 453                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 454        }
 455}
 456
 457static void e1000_power_down_phy(struct e1000_adapter *adapter)
 458{
 459        struct e1000_hw *hw = &adapter->hw;
 460
 461        /* Power down the PHY so no link is implied when interface is down *
 462         * The PHY cannot be powered down if any of the following is true *
 463         * (a) WoL is enabled
 464         * (b) AMT is active
 465         * (c) SoL/IDER session is active
 466         */
 467        if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 468           hw->media_type == e1000_media_type_copper) {
 469                u16 mii_reg = 0;
 470
 471                switch (hw->mac_type) {
 472                case e1000_82540:
 473                case e1000_82545:
 474                case e1000_82545_rev_3:
 475                case e1000_82546:
 476                case e1000_ce4100:
 477                case e1000_82546_rev_3:
 478                case e1000_82541:
 479                case e1000_82541_rev_2:
 480                case e1000_82547:
 481                case e1000_82547_rev_2:
 482                        if (er32(MANC) & E1000_MANC_SMBUS_EN)
 483                                goto out;
 484                        break;
 485                default:
 486                        goto out;
 487                }
 488                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 489                mii_reg |= MII_CR_POWER_DOWN;
 490                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 491                msleep(1);
 492        }
 493out:
 494        return;
 495}
 496
 497static void e1000_down_and_stop(struct e1000_adapter *adapter)
 498{
 499        set_bit(__E1000_DOWN, &adapter->flags);
 500
 501        cancel_delayed_work_sync(&adapter->watchdog_task);
 502
 503        /*
 504         * Since the watchdog task can reschedule other tasks, we should cancel
 505         * it first, otherwise we can run into the situation when a work is
 506         * still running after the adapter has been turned down.
 507         */
 508
 509        cancel_delayed_work_sync(&adapter->phy_info_task);
 510        cancel_delayed_work_sync(&adapter->fifo_stall_task);
 511
 512        /* Only kill reset task if adapter is not resetting */
 513        if (!test_bit(__E1000_RESETTING, &adapter->flags))
 514                cancel_work_sync(&adapter->reset_task);
 515}
 516
 517void e1000_down(struct e1000_adapter *adapter)
 518{
 519        struct e1000_hw *hw = &adapter->hw;
 520        struct net_device *netdev = adapter->netdev;
 521        u32 rctl, tctl;
 522
 523        /* disable receives in the hardware */
 524        rctl = er32(RCTL);
 525        ew32(RCTL, rctl & ~E1000_RCTL_EN);
 526        /* flush and sleep below */
 527
 528        netif_tx_disable(netdev);
 529
 530        /* disable transmits in the hardware */
 531        tctl = er32(TCTL);
 532        tctl &= ~E1000_TCTL_EN;
 533        ew32(TCTL, tctl);
 534        /* flush both disables and wait for them to finish */
 535        E1000_WRITE_FLUSH();
 536        msleep(10);
 537
 538        /* Set the carrier off after transmits have been disabled in the
 539         * hardware, to avoid race conditions with e1000_watchdog() (which
 540         * may be running concurrently to us, checking for the carrier
 541         * bit to decide whether it should enable transmits again). Such
 542         * a race condition would result into transmission being disabled
 543         * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 544         */
 545        netif_carrier_off(netdev);
 546
 547        napi_disable(&adapter->napi);
 548
 549        e1000_irq_disable(adapter);
 550
 551        /* Setting DOWN must be after irq_disable to prevent
 552         * a screaming interrupt.  Setting DOWN also prevents
 553         * tasks from rescheduling.
 554         */
 555        e1000_down_and_stop(adapter);
 556
 557        adapter->link_speed = 0;
 558        adapter->link_duplex = 0;
 559
 560        e1000_reset(adapter);
 561        e1000_clean_all_tx_rings(adapter);
 562        e1000_clean_all_rx_rings(adapter);
 563}
 564
 565void e1000_reinit_locked(struct e1000_adapter *adapter)
 566{
 567        WARN_ON(in_interrupt());
 568        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 569                msleep(1);
 570        e1000_down(adapter);
 571        e1000_up(adapter);
 572        clear_bit(__E1000_RESETTING, &adapter->flags);
 573}
 574
 575void e1000_reset(struct e1000_adapter *adapter)
 576{
 577        struct e1000_hw *hw = &adapter->hw;
 578        u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 579        bool legacy_pba_adjust = false;
 580        u16 hwm;
 581
 582        /* Repartition Pba for greater than 9k mtu
 583         * To take effect CTRL.RST is required.
 584         */
 585
 586        switch (hw->mac_type) {
 587        case e1000_82542_rev2_0:
 588        case e1000_82542_rev2_1:
 589        case e1000_82543:
 590        case e1000_82544:
 591        case e1000_82540:
 592        case e1000_82541:
 593        case e1000_82541_rev_2:
 594                legacy_pba_adjust = true;
 595                pba = E1000_PBA_48K;
 596                break;
 597        case e1000_82545:
 598        case e1000_82545_rev_3:
 599        case e1000_82546:
 600        case e1000_ce4100:
 601        case e1000_82546_rev_3:
 602                pba = E1000_PBA_48K;
 603                break;
 604        case e1000_82547:
 605        case e1000_82547_rev_2:
 606                legacy_pba_adjust = true;
 607                pba = E1000_PBA_30K;
 608                break;
 609        case e1000_undefined:
 610        case e1000_num_macs:
 611                break;
 612        }
 613
 614        if (legacy_pba_adjust) {
 615                if (hw->max_frame_size > E1000_RXBUFFER_8192)
 616                        pba -= 8; /* allocate more FIFO for Tx */
 617
 618                if (hw->mac_type == e1000_82547) {
 619                        adapter->tx_fifo_head = 0;
 620                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 621                        adapter->tx_fifo_size =
 622                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 623                        atomic_set(&adapter->tx_fifo_stall, 0);
 624                }
 625        } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 626                /* adjust PBA for jumbo frames */
 627                ew32(PBA, pba);
 628
 629                /* To maintain wire speed transmits, the Tx FIFO should be
 630                 * large enough to accommodate two full transmit packets,
 631                 * rounded up to the next 1KB and expressed in KB.  Likewise,
 632                 * the Rx FIFO should be large enough to accommodate at least
 633                 * one full receive packet and is similarly rounded up and
 634                 * expressed in KB.
 635                 */
 636                pba = er32(PBA);
 637                /* upper 16 bits has Tx packet buffer allocation size in KB */
 638                tx_space = pba >> 16;
 639                /* lower 16 bits has Rx packet buffer allocation size in KB */
 640                pba &= 0xffff;
 641                /* the Tx fifo also stores 16 bytes of information about the Tx
 642                 * but don't include ethernet FCS because hardware appends it
 643                 */
 644                min_tx_space = (hw->max_frame_size +
 645                                sizeof(struct e1000_tx_desc) -
 646                                ETH_FCS_LEN) * 2;
 647                min_tx_space = ALIGN(min_tx_space, 1024);
 648                min_tx_space >>= 10;
 649                /* software strips receive CRC, so leave room for it */
 650                min_rx_space = hw->max_frame_size;
 651                min_rx_space = ALIGN(min_rx_space, 1024);
 652                min_rx_space >>= 10;
 653
 654                /* If current Tx allocation is less than the min Tx FIFO size,
 655                 * and the min Tx FIFO size is less than the current Rx FIFO
 656                 * allocation, take space away from current Rx allocation
 657                 */
 658                if (tx_space < min_tx_space &&
 659                    ((min_tx_space - tx_space) < pba)) {
 660                        pba = pba - (min_tx_space - tx_space);
 661
 662                        /* PCI/PCIx hardware has PBA alignment constraints */
 663                        switch (hw->mac_type) {
 664                        case e1000_82545 ... e1000_82546_rev_3:
 665                                pba &= ~(E1000_PBA_8K - 1);
 666                                break;
 667                        default:
 668                                break;
 669                        }
 670
 671                        /* if short on Rx space, Rx wins and must trump Tx
 672                         * adjustment or use Early Receive if available
 673                         */
 674                        if (pba < min_rx_space)
 675                                pba = min_rx_space;
 676                }
 677        }
 678
 679        ew32(PBA, pba);
 680
 681        /* flow control settings:
 682         * The high water mark must be low enough to fit one full frame
 683         * (or the size used for early receive) above it in the Rx FIFO.
 684         * Set it to the lower of:
 685         * - 90% of the Rx FIFO size, and
 686         * - the full Rx FIFO size minus the early receive size (for parts
 687         *   with ERT support assuming ERT set to E1000_ERT_2048), or
 688         * - the full Rx FIFO size minus one full frame
 689         */
 690        hwm = min(((pba << 10) * 9 / 10),
 691                  ((pba << 10) - hw->max_frame_size));
 692
 693        hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
 694        hw->fc_low_water = hw->fc_high_water - 8;
 695        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 696        hw->fc_send_xon = 1;
 697        hw->fc = hw->original_fc;
 698
 699        /* Allow time for pending master requests to run */
 700        e1000_reset_hw(hw);
 701        if (hw->mac_type >= e1000_82544)
 702                ew32(WUC, 0);
 703
 704        if (e1000_init_hw(hw))
 705                e_dev_err("Hardware Error\n");
 706        e1000_update_mng_vlan(adapter);
 707
 708        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 709        if (hw->mac_type >= e1000_82544 &&
 710            hw->autoneg == 1 &&
 711            hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 712                u32 ctrl = er32(CTRL);
 713                /* clear phy power management bit if we are in gig only mode,
 714                 * which if enabled will attempt negotiation to 100Mb, which
 715                 * can cause a loss of link at power off or driver unload
 716                 */
 717                ctrl &= ~E1000_CTRL_SWDPIN3;
 718                ew32(CTRL, ctrl);
 719        }
 720
 721        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 722        ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 723
 724        e1000_reset_adaptive(hw);
 725        e1000_phy_get_info(hw, &adapter->phy_info);
 726
 727        e1000_release_manageability(adapter);
 728}
 729
 730/* Dump the eeprom for users having checksum issues */
 731static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 732{
 733        struct net_device *netdev = adapter->netdev;
 734        struct ethtool_eeprom eeprom;
 735        const struct ethtool_ops *ops = netdev->ethtool_ops;
 736        u8 *data;
 737        int i;
 738        u16 csum_old, csum_new = 0;
 739
 740        eeprom.len = ops->get_eeprom_len(netdev);
 741        eeprom.offset = 0;
 742
 743        data = kmalloc(eeprom.len, GFP_KERNEL);
 744        if (!data)
 745                return;
 746
 747        ops->get_eeprom(netdev, &eeprom, data);
 748
 749        csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 750                   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 751        for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 752                csum_new += data[i] + (data[i + 1] << 8);
 753        csum_new = EEPROM_SUM - csum_new;
 754
 755        pr_err("/*********************/\n");
 756        pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 757        pr_err("Calculated              : 0x%04x\n", csum_new);
 758
 759        pr_err("Offset    Values\n");
 760        pr_err("========  ======\n");
 761        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 762
 763        pr_err("Include this output when contacting your support provider.\n");
 764        pr_err("This is not a software error! Something bad happened to\n");
 765        pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 766        pr_err("result in further problems, possibly loss of data,\n");
 767        pr_err("corruption or system hangs!\n");
 768        pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 769        pr_err("which is invalid and requires you to set the proper MAC\n");
 770        pr_err("address manually before continuing to enable this network\n");
 771        pr_err("device. Please inspect the EEPROM dump and report the\n");
 772        pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 773        pr_err("/*********************/\n");
 774
 775        kfree(data);
 776}
 777
 778/**
 779 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 780 * @pdev: PCI device information struct
 781 *
 782 * Return true if an adapter needs ioport resources
 783 **/
 784static int e1000_is_need_ioport(struct pci_dev *pdev)
 785{
 786        switch (pdev->device) {
 787        case E1000_DEV_ID_82540EM:
 788        case E1000_DEV_ID_82540EM_LOM:
 789        case E1000_DEV_ID_82540EP:
 790        case E1000_DEV_ID_82540EP_LOM:
 791        case E1000_DEV_ID_82540EP_LP:
 792        case E1000_DEV_ID_82541EI:
 793        case E1000_DEV_ID_82541EI_MOBILE:
 794        case E1000_DEV_ID_82541ER:
 795        case E1000_DEV_ID_82541ER_LOM:
 796        case E1000_DEV_ID_82541GI:
 797        case E1000_DEV_ID_82541GI_LF:
 798        case E1000_DEV_ID_82541GI_MOBILE:
 799        case E1000_DEV_ID_82544EI_COPPER:
 800        case E1000_DEV_ID_82544EI_FIBER:
 801        case E1000_DEV_ID_82544GC_COPPER:
 802        case E1000_DEV_ID_82544GC_LOM:
 803        case E1000_DEV_ID_82545EM_COPPER:
 804        case E1000_DEV_ID_82545EM_FIBER:
 805        case E1000_DEV_ID_82546EB_COPPER:
 806        case E1000_DEV_ID_82546EB_FIBER:
 807        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 808                return true;
 809        default:
 810                return false;
 811        }
 812}
 813
 814static netdev_features_t e1000_fix_features(struct net_device *netdev,
 815        netdev_features_t features)
 816{
 817        /* Since there is no support for separate Rx/Tx vlan accel
 818         * enable/disable make sure Tx flag is always in same state as Rx.
 819         */
 820        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 821                features |= NETIF_F_HW_VLAN_CTAG_TX;
 822        else
 823                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 824
 825        return features;
 826}
 827
 828static int e1000_set_features(struct net_device *netdev,
 829        netdev_features_t features)
 830{
 831        struct e1000_adapter *adapter = netdev_priv(netdev);
 832        netdev_features_t changed = features ^ netdev->features;
 833
 834        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 835                e1000_vlan_mode(netdev, features);
 836
 837        if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 838                return 0;
 839
 840        netdev->features = features;
 841        adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 842
 843        if (netif_running(netdev))
 844                e1000_reinit_locked(adapter);
 845        else
 846                e1000_reset(adapter);
 847
 848        return 0;
 849}
 850
 851static const struct net_device_ops e1000_netdev_ops = {
 852        .ndo_open               = e1000_open,
 853        .ndo_stop               = e1000_close,
 854        .ndo_start_xmit         = e1000_xmit_frame,
 855        .ndo_set_rx_mode        = e1000_set_rx_mode,
 856        .ndo_set_mac_address    = e1000_set_mac,
 857        .ndo_tx_timeout         = e1000_tx_timeout,
 858        .ndo_change_mtu         = e1000_change_mtu,
 859        .ndo_do_ioctl           = e1000_ioctl,
 860        .ndo_validate_addr      = eth_validate_addr,
 861        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
 862        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
 863#ifdef CONFIG_NET_POLL_CONTROLLER
 864        .ndo_poll_controller    = e1000_netpoll,
 865#endif
 866        .ndo_fix_features       = e1000_fix_features,
 867        .ndo_set_features       = e1000_set_features,
 868};
 869
 870/**
 871 * e1000_init_hw_struct - initialize members of hw struct
 872 * @adapter: board private struct
 873 * @hw: structure used by e1000_hw.c
 874 *
 875 * Factors out initialization of the e1000_hw struct to its own function
 876 * that can be called very early at init (just after struct allocation).
 877 * Fields are initialized based on PCI device information and
 878 * OS network device settings (MTU size).
 879 * Returns negative error codes if MAC type setup fails.
 880 */
 881static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 882                                struct e1000_hw *hw)
 883{
 884        struct pci_dev *pdev = adapter->pdev;
 885
 886        /* PCI config space info */
 887        hw->vendor_id = pdev->vendor;
 888        hw->device_id = pdev->device;
 889        hw->subsystem_vendor_id = pdev->subsystem_vendor;
 890        hw->subsystem_id = pdev->subsystem_device;
 891        hw->revision_id = pdev->revision;
 892
 893        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 894
 895        hw->max_frame_size = adapter->netdev->mtu +
 896                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 897        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 898
 899        /* identify the MAC */
 900        if (e1000_set_mac_type(hw)) {
 901                e_err(probe, "Unknown MAC Type\n");
 902                return -EIO;
 903        }
 904
 905        switch (hw->mac_type) {
 906        default:
 907                break;
 908        case e1000_82541:
 909        case e1000_82547:
 910        case e1000_82541_rev_2:
 911        case e1000_82547_rev_2:
 912                hw->phy_init_script = 1;
 913                break;
 914        }
 915
 916        e1000_set_media_type(hw);
 917        e1000_get_bus_info(hw);
 918
 919        hw->wait_autoneg_complete = false;
 920        hw->tbi_compatibility_en = true;
 921        hw->adaptive_ifs = true;
 922
 923        /* Copper options */
 924
 925        if (hw->media_type == e1000_media_type_copper) {
 926                hw->mdix = AUTO_ALL_MODES;
 927                hw->disable_polarity_correction = false;
 928                hw->master_slave = E1000_MASTER_SLAVE;
 929        }
 930
 931        return 0;
 932}
 933
 934/**
 935 * e1000_probe - Device Initialization Routine
 936 * @pdev: PCI device information struct
 937 * @ent: entry in e1000_pci_tbl
 938 *
 939 * Returns 0 on success, negative on failure
 940 *
 941 * e1000_probe initializes an adapter identified by a pci_dev structure.
 942 * The OS initialization, configuring of the adapter private structure,
 943 * and a hardware reset occur.
 944 **/
 945static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 946{
 947        struct net_device *netdev;
 948        struct e1000_adapter *adapter;
 949        struct e1000_hw *hw;
 950
 951        static int cards_found;
 952        static int global_quad_port_a; /* global ksp3 port a indication */
 953        int i, err, pci_using_dac;
 954        u16 eeprom_data = 0;
 955        u16 tmp = 0;
 956        u16 eeprom_apme_mask = E1000_EEPROM_APME;
 957        int bars, need_ioport;
 958
 959        /* do not allocate ioport bars when not needed */
 960        need_ioport = e1000_is_need_ioport(pdev);
 961        if (need_ioport) {
 962                bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 963                err = pci_enable_device(pdev);
 964        } else {
 965                bars = pci_select_bars(pdev, IORESOURCE_MEM);
 966                err = pci_enable_device_mem(pdev);
 967        }
 968        if (err)
 969                return err;
 970
 971        err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 972        if (err)
 973                goto err_pci_reg;
 974
 975        pci_set_master(pdev);
 976        err = pci_save_state(pdev);
 977        if (err)
 978                goto err_alloc_etherdev;
 979
 980        err = -ENOMEM;
 981        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 982        if (!netdev)
 983                goto err_alloc_etherdev;
 984
 985        SET_NETDEV_DEV(netdev, &pdev->dev);
 986
 987        pci_set_drvdata(pdev, netdev);
 988        adapter = netdev_priv(netdev);
 989        adapter->netdev = netdev;
 990        adapter->pdev = pdev;
 991        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 992        adapter->bars = bars;
 993        adapter->need_ioport = need_ioport;
 994
 995        hw = &adapter->hw;
 996        hw->back = adapter;
 997
 998        err = -EIO;
 999        hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1000        if (!hw->hw_addr)
1001                goto err_ioremap;
1002
1003        if (adapter->need_ioport) {
1004                for (i = BAR_1; i <= BAR_5; i++) {
1005                        if (pci_resource_len(pdev, i) == 0)
1006                                continue;
1007                        if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1008                                hw->io_base = pci_resource_start(pdev, i);
1009                                break;
1010                        }
1011                }
1012        }
1013
1014        /* make ready for any if (hw->...) below */
1015        err = e1000_init_hw_struct(adapter, hw);
1016        if (err)
1017                goto err_sw_init;
1018
1019        /* there is a workaround being applied below that limits
1020         * 64-bit DMA addresses to 64-bit hardware.  There are some
1021         * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022         */
1023        pci_using_dac = 0;
1024        if ((hw->bus_type == e1000_bus_type_pcix) &&
1025            !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1026                pci_using_dac = 1;
1027        } else {
1028                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1029                if (err) {
1030                        pr_err("No usable DMA config, aborting\n");
1031                        goto err_dma;
1032                }
1033        }
1034
1035        netdev->netdev_ops = &e1000_netdev_ops;
1036        e1000_set_ethtool_ops(netdev);
1037        netdev->watchdog_timeo = 5 * HZ;
1038        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1039
1040        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1041
1042        adapter->bd_number = cards_found;
1043
1044        /* setup the private structure */
1045
1046        err = e1000_sw_init(adapter);
1047        if (err)
1048                goto err_sw_init;
1049
1050        err = -EIO;
1051        if (hw->mac_type == e1000_ce4100) {
1052                hw->ce4100_gbe_mdio_base_virt =
1053                                        ioremap(pci_resource_start(pdev, BAR_1),
1054                                                pci_resource_len(pdev, BAR_1));
1055
1056                if (!hw->ce4100_gbe_mdio_base_virt)
1057                        goto err_mdio_ioremap;
1058        }
1059
1060        if (hw->mac_type >= e1000_82543) {
1061                netdev->hw_features = NETIF_F_SG |
1062                                   NETIF_F_HW_CSUM |
1063                                   NETIF_F_HW_VLAN_CTAG_RX;
1064                netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1065                                   NETIF_F_HW_VLAN_CTAG_FILTER;
1066        }
1067
1068        if ((hw->mac_type >= e1000_82544) &&
1069           (hw->mac_type != e1000_82547))
1070                netdev->hw_features |= NETIF_F_TSO;
1071
1072        netdev->priv_flags |= IFF_SUPP_NOFCS;
1073
1074        netdev->features |= netdev->hw_features;
1075        netdev->hw_features |= (NETIF_F_RXCSUM |
1076                                NETIF_F_RXALL |
1077                                NETIF_F_RXFCS);
1078
1079        if (pci_using_dac) {
1080                netdev->features |= NETIF_F_HIGHDMA;
1081                netdev->vlan_features |= NETIF_F_HIGHDMA;
1082        }
1083
1084        netdev->vlan_features |= (NETIF_F_TSO |
1085                                  NETIF_F_HW_CSUM |
1086                                  NETIF_F_SG);
1087
1088        /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1089        if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1090            hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1091                netdev->priv_flags |= IFF_UNICAST_FLT;
1092
1093        /* MTU range: 46 - 16110 */
1094        netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1095        netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1096
1097        adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1098
1099        /* initialize eeprom parameters */
1100        if (e1000_init_eeprom_params(hw)) {
1101                e_err(probe, "EEPROM initialization failed\n");
1102                goto err_eeprom;
1103        }
1104
1105        /* before reading the EEPROM, reset the controller to
1106         * put the device in a known good starting state
1107         */
1108
1109        e1000_reset_hw(hw);
1110
1111        /* make sure the EEPROM is good */
1112        if (e1000_validate_eeprom_checksum(hw) < 0) {
1113                e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1114                e1000_dump_eeprom(adapter);
1115                /* set MAC address to all zeroes to invalidate and temporary
1116                 * disable this device for the user. This blocks regular
1117                 * traffic while still permitting ethtool ioctls from reaching
1118                 * the hardware as well as allowing the user to run the
1119                 * interface after manually setting a hw addr using
1120                 * `ip set address`
1121                 */
1122                memset(hw->mac_addr, 0, netdev->addr_len);
1123        } else {
1124                /* copy the MAC address out of the EEPROM */
1125                if (e1000_read_mac_addr(hw))
1126                        e_err(probe, "EEPROM Read Error\n");
1127        }
1128        /* don't block initialization here due to bad MAC address */
1129        memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1130
1131        if (!is_valid_ether_addr(netdev->dev_addr))
1132                e_err(probe, "Invalid MAC Address\n");
1133
1134
1135        INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136        INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137                          e1000_82547_tx_fifo_stall_task);
1138        INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139        INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141        e1000_check_options(adapter);
1142
1143        /* Initial Wake on LAN setting
1144         * If APM wake is enabled in the EEPROM,
1145         * enable the ACPI Magic Packet filter
1146         */
1147
1148        switch (hw->mac_type) {
1149        case e1000_82542_rev2_0:
1150        case e1000_82542_rev2_1:
1151        case e1000_82543:
1152                break;
1153        case e1000_82544:
1154                e1000_read_eeprom(hw,
1155                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156                eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157                break;
1158        case e1000_82546:
1159        case e1000_82546_rev_3:
1160                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1161                        e1000_read_eeprom(hw,
1162                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163                        break;
1164                }
1165                /* Fall Through */
1166        default:
1167                e1000_read_eeprom(hw,
1168                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169                break;
1170        }
1171        if (eeprom_data & eeprom_apme_mask)
1172                adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174        /* now that we have the eeprom settings, apply the special cases
1175         * where the eeprom may be wrong or the board simply won't support
1176         * wake on lan on a particular port
1177         */
1178        switch (pdev->device) {
1179        case E1000_DEV_ID_82546GB_PCIE:
1180                adapter->eeprom_wol = 0;
1181                break;
1182        case E1000_DEV_ID_82546EB_FIBER:
1183        case E1000_DEV_ID_82546GB_FIBER:
1184                /* Wake events only supported on port A for dual fiber
1185                 * regardless of eeprom setting
1186                 */
1187                if (er32(STATUS) & E1000_STATUS_FUNC_1)
1188                        adapter->eeprom_wol = 0;
1189                break;
1190        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1191                /* if quad port adapter, disable WoL on all but port A */
1192                if (global_quad_port_a != 0)
1193                        adapter->eeprom_wol = 0;
1194                else
1195                        adapter->quad_port_a = true;
1196                /* Reset for multiple quad port adapters */
1197                if (++global_quad_port_a == 4)
1198                        global_quad_port_a = 0;
1199                break;
1200        }
1201
1202        /* initialize the wol settings based on the eeprom settings */
1203        adapter->wol = adapter->eeprom_wol;
1204        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1205
1206        /* Auto detect PHY address */
1207        if (hw->mac_type == e1000_ce4100) {
1208                for (i = 0; i < 32; i++) {
1209                        hw->phy_addr = i;
1210                        e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1211
1212                        if (tmp != 0 && tmp != 0xFF)
1213                                break;
1214                }
1215
1216                if (i >= 32)
1217                        goto err_eeprom;
1218        }
1219
1220        /* reset the hardware with the new settings */
1221        e1000_reset(adapter);
1222
1223        strcpy(netdev->name, "eth%d");
1224        err = register_netdev(netdev);
1225        if (err)
1226                goto err_register;
1227
1228        e1000_vlan_filter_on_off(adapter, false);
1229
1230        /* print bus type/speed/width info */
1231        e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1232               ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1233               ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1234                (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1235                (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1236                (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1237               ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1238               netdev->dev_addr);
1239
1240        /* carrier off reporting is important to ethtool even BEFORE open */
1241        netif_carrier_off(netdev);
1242
1243        e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1244
1245        cards_found++;
1246        return 0;
1247
1248err_register:
1249err_eeprom:
1250        e1000_phy_hw_reset(hw);
1251
1252        if (hw->flash_address)
1253                iounmap(hw->flash_address);
1254        kfree(adapter->tx_ring);
1255        kfree(adapter->rx_ring);
1256err_dma:
1257err_sw_init:
1258err_mdio_ioremap:
1259        iounmap(hw->ce4100_gbe_mdio_base_virt);
1260        iounmap(hw->hw_addr);
1261err_ioremap:
1262        free_netdev(netdev);
1263err_alloc_etherdev:
1264        pci_release_selected_regions(pdev, bars);
1265err_pci_reg:
1266        pci_disable_device(pdev);
1267        return err;
1268}
1269
1270/**
1271 * e1000_remove - Device Removal Routine
1272 * @pdev: PCI device information struct
1273 *
1274 * e1000_remove is called by the PCI subsystem to alert the driver
1275 * that it should release a PCI device. That could be caused by a
1276 * Hot-Plug event, or because the driver is going to be removed from
1277 * memory.
1278 **/
1279static void e1000_remove(struct pci_dev *pdev)
1280{
1281        struct net_device *netdev = pci_get_drvdata(pdev);
1282        struct e1000_adapter *adapter = netdev_priv(netdev);
1283        struct e1000_hw *hw = &adapter->hw;
1284
1285        e1000_down_and_stop(adapter);
1286        e1000_release_manageability(adapter);
1287
1288        unregister_netdev(netdev);
1289
1290        e1000_phy_hw_reset(hw);
1291
1292        kfree(adapter->tx_ring);
1293        kfree(adapter->rx_ring);
1294
1295        if (hw->mac_type == e1000_ce4100)
1296                iounmap(hw->ce4100_gbe_mdio_base_virt);
1297        iounmap(hw->hw_addr);
1298        if (hw->flash_address)
1299                iounmap(hw->flash_address);
1300        pci_release_selected_regions(pdev, adapter->bars);
1301
1302        free_netdev(netdev);
1303
1304        pci_disable_device(pdev);
1305}
1306
1307/**
1308 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1309 * @adapter: board private structure to initialize
1310 *
1311 * e1000_sw_init initializes the Adapter private data structure.
1312 * e1000_init_hw_struct MUST be called before this function
1313 **/
1314static int e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318        adapter->num_tx_queues = 1;
1319        adapter->num_rx_queues = 1;
1320
1321        if (e1000_alloc_queues(adapter)) {
1322                e_err(probe, "Unable to allocate memory for queues\n");
1323                return -ENOMEM;
1324        }
1325
1326        /* Explicitly disable IRQ since the NIC can be in any state. */
1327        e1000_irq_disable(adapter);
1328
1329        spin_lock_init(&adapter->stats_lock);
1330
1331        set_bit(__E1000_DOWN, &adapter->flags);
1332
1333        return 0;
1334}
1335
1336/**
1337 * e1000_alloc_queues - Allocate memory for all rings
1338 * @adapter: board private structure to initialize
1339 *
1340 * We allocate one ring per queue at run-time since we don't know the
1341 * number of queues at compile-time.
1342 **/
1343static int e1000_alloc_queues(struct e1000_adapter *adapter)
1344{
1345        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1346                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1347        if (!adapter->tx_ring)
1348                return -ENOMEM;
1349
1350        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1351                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1352        if (!adapter->rx_ring) {
1353                kfree(adapter->tx_ring);
1354                return -ENOMEM;
1355        }
1356
1357        return E1000_SUCCESS;
1358}
1359
1360/**
1361 * e1000_open - Called when a network interface is made active
1362 * @netdev: network interface device structure
1363 *
1364 * Returns 0 on success, negative value on failure
1365 *
1366 * The open entry point is called when a network interface is made
1367 * active by the system (IFF_UP).  At this point all resources needed
1368 * for transmit and receive operations are allocated, the interrupt
1369 * handler is registered with the OS, the watchdog task is started,
1370 * and the stack is notified that the interface is ready.
1371 **/
1372int e1000_open(struct net_device *netdev)
1373{
1374        struct e1000_adapter *adapter = netdev_priv(netdev);
1375        struct e1000_hw *hw = &adapter->hw;
1376        int err;
1377
1378        /* disallow open during test */
1379        if (test_bit(__E1000_TESTING, &adapter->flags))
1380                return -EBUSY;
1381
1382        netif_carrier_off(netdev);
1383
1384        /* allocate transmit descriptors */
1385        err = e1000_setup_all_tx_resources(adapter);
1386        if (err)
1387                goto err_setup_tx;
1388
1389        /* allocate receive descriptors */
1390        err = e1000_setup_all_rx_resources(adapter);
1391        if (err)
1392                goto err_setup_rx;
1393
1394        e1000_power_up_phy(adapter);
1395
1396        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1397        if ((hw->mng_cookie.status &
1398                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1399                e1000_update_mng_vlan(adapter);
1400        }
1401
1402        /* before we allocate an interrupt, we must be ready to handle it.
1403         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1404         * as soon as we call pci_request_irq, so we have to setup our
1405         * clean_rx handler before we do so.
1406         */
1407        e1000_configure(adapter);
1408
1409        err = e1000_request_irq(adapter);
1410        if (err)
1411                goto err_req_irq;
1412
1413        /* From here on the code is the same as e1000_up() */
1414        clear_bit(__E1000_DOWN, &adapter->flags);
1415
1416        napi_enable(&adapter->napi);
1417
1418        e1000_irq_enable(adapter);
1419
1420        netif_start_queue(netdev);
1421
1422        /* fire a link status change interrupt to start the watchdog */
1423        ew32(ICS, E1000_ICS_LSC);
1424
1425        return E1000_SUCCESS;
1426
1427err_req_irq:
1428        e1000_power_down_phy(adapter);
1429        e1000_free_all_rx_resources(adapter);
1430err_setup_rx:
1431        e1000_free_all_tx_resources(adapter);
1432err_setup_tx:
1433        e1000_reset(adapter);
1434
1435        return err;
1436}
1437
1438/**
1439 * e1000_close - Disables a network interface
1440 * @netdev: network interface device structure
1441 *
1442 * Returns 0, this is not allowed to fail
1443 *
1444 * The close entry point is called when an interface is de-activated
1445 * by the OS.  The hardware is still under the drivers control, but
1446 * needs to be disabled.  A global MAC reset is issued to stop the
1447 * hardware, and all transmit and receive resources are freed.
1448 **/
1449int e1000_close(struct net_device *netdev)
1450{
1451        struct e1000_adapter *adapter = netdev_priv(netdev);
1452        struct e1000_hw *hw = &adapter->hw;
1453        int count = E1000_CHECK_RESET_COUNT;
1454
1455        while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1456                usleep_range(10000, 20000);
1457
1458        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1459        e1000_down(adapter);
1460        e1000_power_down_phy(adapter);
1461        e1000_free_irq(adapter);
1462
1463        e1000_free_all_tx_resources(adapter);
1464        e1000_free_all_rx_resources(adapter);
1465
1466        /* kill manageability vlan ID if supported, but not if a vlan with
1467         * the same ID is registered on the host OS (let 8021q kill it)
1468         */
1469        if ((hw->mng_cookie.status &
1470             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1471            !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1472                e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1473                                       adapter->mng_vlan_id);
1474        }
1475
1476        return 0;
1477}
1478
1479/**
1480 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1481 * @adapter: address of board private structure
1482 * @start: address of beginning of memory
1483 * @len: length of memory
1484 **/
1485static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1486                                  unsigned long len)
1487{
1488        struct e1000_hw *hw = &adapter->hw;
1489        unsigned long begin = (unsigned long)start;
1490        unsigned long end = begin + len;
1491
1492        /* First rev 82545 and 82546 need to not allow any memory
1493         * write location to cross 64k boundary due to errata 23
1494         */
1495        if (hw->mac_type == e1000_82545 ||
1496            hw->mac_type == e1000_ce4100 ||
1497            hw->mac_type == e1000_82546) {
1498                return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1499        }
1500
1501        return true;
1502}
1503
1504/**
1505 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1506 * @adapter: board private structure
1507 * @txdr:    tx descriptor ring (for a specific queue) to setup
1508 *
1509 * Return 0 on success, negative on failure
1510 **/
1511static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1512                                    struct e1000_tx_ring *txdr)
1513{
1514        struct pci_dev *pdev = adapter->pdev;
1515        int size;
1516
1517        size = sizeof(struct e1000_tx_buffer) * txdr->count;
1518        txdr->buffer_info = vzalloc(size);
1519        if (!txdr->buffer_info)
1520                return -ENOMEM;
1521
1522        /* round up to nearest 4K */
1523
1524        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525        txdr->size = ALIGN(txdr->size, 4096);
1526
1527        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528                                        GFP_KERNEL);
1529        if (!txdr->desc) {
1530setup_tx_desc_die:
1531                vfree(txdr->buffer_info);
1532                return -ENOMEM;
1533        }
1534
1535        /* Fix for errata 23, can't cross 64kB boundary */
1536        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1537                void *olddesc = txdr->desc;
1538                dma_addr_t olddma = txdr->dma;
1539                e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1540                      txdr->size, txdr->desc);
1541                /* Try again, without freeing the previous */
1542                txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1543                                                &txdr->dma, GFP_KERNEL);
1544                /* Failed allocation, critical failure */
1545                if (!txdr->desc) {
1546                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                          olddma);
1548                        goto setup_tx_desc_die;
1549                }
1550
1551                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1552                        /* give up */
1553                        dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1554                                          txdr->dma);
1555                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556                                          olddma);
1557                        e_err(probe, "Unable to allocate aligned memory "
1558                              "for the transmit descriptor ring\n");
1559                        vfree(txdr->buffer_info);
1560                        return -ENOMEM;
1561                } else {
1562                        /* Free old allocation, new allocation was successful */
1563                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1564                                          olddma);
1565                }
1566        }
1567        memset(txdr->desc, 0, txdr->size);
1568
1569        txdr->next_to_use = 0;
1570        txdr->next_to_clean = 0;
1571
1572        return 0;
1573}
1574
1575/**
1576 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1577 *                                (Descriptors) for all queues
1578 * @adapter: board private structure
1579 *
1580 * Return 0 on success, negative on failure
1581 **/
1582int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1583{
1584        int i, err = 0;
1585
1586        for (i = 0; i < adapter->num_tx_queues; i++) {
1587                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1588                if (err) {
1589                        e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1590                        for (i-- ; i >= 0; i--)
1591                                e1000_free_tx_resources(adapter,
1592                                                        &adapter->tx_ring[i]);
1593                        break;
1594                }
1595        }
1596
1597        return err;
1598}
1599
1600/**
1601 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1602 * @adapter: board private structure
1603 *
1604 * Configure the Tx unit of the MAC after a reset.
1605 **/
1606static void e1000_configure_tx(struct e1000_adapter *adapter)
1607{
1608        u64 tdba;
1609        struct e1000_hw *hw = &adapter->hw;
1610        u32 tdlen, tctl, tipg;
1611        u32 ipgr1, ipgr2;
1612
1613        /* Setup the HW Tx Head and Tail descriptor pointers */
1614
1615        switch (adapter->num_tx_queues) {
1616        case 1:
1617        default:
1618                tdba = adapter->tx_ring[0].dma;
1619                tdlen = adapter->tx_ring[0].count *
1620                        sizeof(struct e1000_tx_desc);
1621                ew32(TDLEN, tdlen);
1622                ew32(TDBAH, (tdba >> 32));
1623                ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1624                ew32(TDT, 0);
1625                ew32(TDH, 0);
1626                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1627                                           E1000_TDH : E1000_82542_TDH);
1628                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1629                                           E1000_TDT : E1000_82542_TDT);
1630                break;
1631        }
1632
1633        /* Set the default values for the Tx Inter Packet Gap timer */
1634        if ((hw->media_type == e1000_media_type_fiber ||
1635             hw->media_type == e1000_media_type_internal_serdes))
1636                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1637        else
1638                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1639
1640        switch (hw->mac_type) {
1641        case e1000_82542_rev2_0:
1642        case e1000_82542_rev2_1:
1643                tipg = DEFAULT_82542_TIPG_IPGT;
1644                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1645                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1646                break;
1647        default:
1648                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1649                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1650                break;
1651        }
1652        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1653        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1654        ew32(TIPG, tipg);
1655
1656        /* Set the Tx Interrupt Delay register */
1657
1658        ew32(TIDV, adapter->tx_int_delay);
1659        if (hw->mac_type >= e1000_82540)
1660                ew32(TADV, adapter->tx_abs_int_delay);
1661
1662        /* Program the Transmit Control Register */
1663
1664        tctl = er32(TCTL);
1665        tctl &= ~E1000_TCTL_CT;
1666        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1667                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1668
1669        e1000_config_collision_dist(hw);
1670
1671        /* Setup Transmit Descriptor Settings for eop descriptor */
1672        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1673
1674        /* only set IDE if we are delaying interrupts using the timers */
1675        if (adapter->tx_int_delay)
1676                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1677
1678        if (hw->mac_type < e1000_82543)
1679                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1680        else
1681                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1682
1683        /* Cache if we're 82544 running in PCI-X because we'll
1684         * need this to apply a workaround later in the send path.
1685         */
1686        if (hw->mac_type == e1000_82544 &&
1687            hw->bus_type == e1000_bus_type_pcix)
1688                adapter->pcix_82544 = true;
1689
1690        ew32(TCTL, tctl);
1691
1692}
1693
1694/**
1695 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1696 * @adapter: board private structure
1697 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1698 *
1699 * Returns 0 on success, negative on failure
1700 **/
1701static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1702                                    struct e1000_rx_ring *rxdr)
1703{
1704        struct pci_dev *pdev = adapter->pdev;
1705        int size, desc_len;
1706
1707        size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1708        rxdr->buffer_info = vzalloc(size);
1709        if (!rxdr->buffer_info)
1710                return -ENOMEM;
1711
1712        desc_len = sizeof(struct e1000_rx_desc);
1713
1714        /* Round up to nearest 4K */
1715
1716        rxdr->size = rxdr->count * desc_len;
1717        rxdr->size = ALIGN(rxdr->size, 4096);
1718
1719        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1720                                        GFP_KERNEL);
1721        if (!rxdr->desc) {
1722setup_rx_desc_die:
1723                vfree(rxdr->buffer_info);
1724                return -ENOMEM;
1725        }
1726
1727        /* Fix for errata 23, can't cross 64kB boundary */
1728        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1729                void *olddesc = rxdr->desc;
1730                dma_addr_t olddma = rxdr->dma;
1731                e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1732                      rxdr->size, rxdr->desc);
1733                /* Try again, without freeing the previous */
1734                rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1735                                                &rxdr->dma, GFP_KERNEL);
1736                /* Failed allocation, critical failure */
1737                if (!rxdr->desc) {
1738                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739                                          olddma);
1740                        goto setup_rx_desc_die;
1741                }
1742
1743                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1744                        /* give up */
1745                        dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1746                                          rxdr->dma);
1747                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748                                          olddma);
1749                        e_err(probe, "Unable to allocate aligned memory for "
1750                              "the Rx descriptor ring\n");
1751                        goto setup_rx_desc_die;
1752                } else {
1753                        /* Free old allocation, new allocation was successful */
1754                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755                                          olddma);
1756                }
1757        }
1758        memset(rxdr->desc, 0, rxdr->size);
1759
1760        rxdr->next_to_clean = 0;
1761        rxdr->next_to_use = 0;
1762        rxdr->rx_skb_top = NULL;
1763
1764        return 0;
1765}
1766
1767/**
1768 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769 *                                (Descriptors) for all queues
1770 * @adapter: board private structure
1771 *
1772 * Return 0 on success, negative on failure
1773 **/
1774int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1775{
1776        int i, err = 0;
1777
1778        for (i = 0; i < adapter->num_rx_queues; i++) {
1779                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1780                if (err) {
1781                        e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1782                        for (i-- ; i >= 0; i--)
1783                                e1000_free_rx_resources(adapter,
1784                                                        &adapter->rx_ring[i]);
1785                        break;
1786                }
1787        }
1788
1789        return err;
1790}
1791
1792/**
1793 * e1000_setup_rctl - configure the receive control registers
1794 * @adapter: Board private structure
1795 **/
1796static void e1000_setup_rctl(struct e1000_adapter *adapter)
1797{
1798        struct e1000_hw *hw = &adapter->hw;
1799        u32 rctl;
1800
1801        rctl = er32(RCTL);
1802
1803        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1804
1805        rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1806                E1000_RCTL_RDMTS_HALF |
1807                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1808
1809        if (hw->tbi_compatibility_on == 1)
1810                rctl |= E1000_RCTL_SBP;
1811        else
1812                rctl &= ~E1000_RCTL_SBP;
1813
1814        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1815                rctl &= ~E1000_RCTL_LPE;
1816        else
1817                rctl |= E1000_RCTL_LPE;
1818
1819        /* Setup buffer sizes */
1820        rctl &= ~E1000_RCTL_SZ_4096;
1821        rctl |= E1000_RCTL_BSEX;
1822        switch (adapter->rx_buffer_len) {
1823        case E1000_RXBUFFER_2048:
1824        default:
1825                rctl |= E1000_RCTL_SZ_2048;
1826                rctl &= ~E1000_RCTL_BSEX;
1827                break;
1828        case E1000_RXBUFFER_4096:
1829                rctl |= E1000_RCTL_SZ_4096;
1830                break;
1831        case E1000_RXBUFFER_8192:
1832                rctl |= E1000_RCTL_SZ_8192;
1833                break;
1834        case E1000_RXBUFFER_16384:
1835                rctl |= E1000_RCTL_SZ_16384;
1836                break;
1837        }
1838
1839        /* This is useful for sniffing bad packets. */
1840        if (adapter->netdev->features & NETIF_F_RXALL) {
1841                /* UPE and MPE will be handled by normal PROMISC logic
1842                 * in e1000e_set_rx_mode
1843                 */
1844                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1845                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
1846                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1847
1848                rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1849                          E1000_RCTL_DPF | /* Allow filtered pause */
1850                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1851                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1852                 * and that breaks VLANs.
1853                 */
1854        }
1855
1856        ew32(RCTL, rctl);
1857}
1858
1859/**
1860 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1861 * @adapter: board private structure
1862 *
1863 * Configure the Rx unit of the MAC after a reset.
1864 **/
1865static void e1000_configure_rx(struct e1000_adapter *adapter)
1866{
1867        u64 rdba;
1868        struct e1000_hw *hw = &adapter->hw;
1869        u32 rdlen, rctl, rxcsum;
1870
1871        if (adapter->netdev->mtu > ETH_DATA_LEN) {
1872                rdlen = adapter->rx_ring[0].count *
1873                        sizeof(struct e1000_rx_desc);
1874                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1875                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1876        } else {
1877                rdlen = adapter->rx_ring[0].count *
1878                        sizeof(struct e1000_rx_desc);
1879                adapter->clean_rx = e1000_clean_rx_irq;
1880                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1881        }
1882
1883        /* disable receives while setting up the descriptors */
1884        rctl = er32(RCTL);
1885        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1886
1887        /* set the Receive Delay Timer Register */
1888        ew32(RDTR, adapter->rx_int_delay);
1889
1890        if (hw->mac_type >= e1000_82540) {
1891                ew32(RADV, adapter->rx_abs_int_delay);
1892                if (adapter->itr_setting != 0)
1893                        ew32(ITR, 1000000000 / (adapter->itr * 256));
1894        }
1895
1896        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1897         * the Base and Length of the Rx Descriptor Ring
1898         */
1899        switch (adapter->num_rx_queues) {
1900        case 1:
1901        default:
1902                rdba = adapter->rx_ring[0].dma;
1903                ew32(RDLEN, rdlen);
1904                ew32(RDBAH, (rdba >> 32));
1905                ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1906                ew32(RDT, 0);
1907                ew32(RDH, 0);
1908                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1909                                           E1000_RDH : E1000_82542_RDH);
1910                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1911                                           E1000_RDT : E1000_82542_RDT);
1912                break;
1913        }
1914
1915        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1916        if (hw->mac_type >= e1000_82543) {
1917                rxcsum = er32(RXCSUM);
1918                if (adapter->rx_csum)
1919                        rxcsum |= E1000_RXCSUM_TUOFL;
1920                else
1921                        /* don't need to clear IPPCSE as it defaults to 0 */
1922                        rxcsum &= ~E1000_RXCSUM_TUOFL;
1923                ew32(RXCSUM, rxcsum);
1924        }
1925
1926        /* Enable Receives */
1927        ew32(RCTL, rctl | E1000_RCTL_EN);
1928}
1929
1930/**
1931 * e1000_free_tx_resources - Free Tx Resources per Queue
1932 * @adapter: board private structure
1933 * @tx_ring: Tx descriptor ring for a specific queue
1934 *
1935 * Free all transmit software resources
1936 **/
1937static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1938                                    struct e1000_tx_ring *tx_ring)
1939{
1940        struct pci_dev *pdev = adapter->pdev;
1941
1942        e1000_clean_tx_ring(adapter, tx_ring);
1943
1944        vfree(tx_ring->buffer_info);
1945        tx_ring->buffer_info = NULL;
1946
1947        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1948                          tx_ring->dma);
1949
1950        tx_ring->desc = NULL;
1951}
1952
1953/**
1954 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1955 * @adapter: board private structure
1956 *
1957 * Free all transmit software resources
1958 **/
1959void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1960{
1961        int i;
1962
1963        for (i = 0; i < adapter->num_tx_queues; i++)
1964                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1965}
1966
1967static void
1968e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1969                                 struct e1000_tx_buffer *buffer_info)
1970{
1971        if (buffer_info->dma) {
1972                if (buffer_info->mapped_as_page)
1973                        dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1974                                       buffer_info->length, DMA_TO_DEVICE);
1975                else
1976                        dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1977                                         buffer_info->length,
1978                                         DMA_TO_DEVICE);
1979                buffer_info->dma = 0;
1980        }
1981        if (buffer_info->skb) {
1982                dev_kfree_skb_any(buffer_info->skb);
1983                buffer_info->skb = NULL;
1984        }
1985        buffer_info->time_stamp = 0;
1986        /* buffer_info must be completely set up in the transmit path */
1987}
1988
1989/**
1990 * e1000_clean_tx_ring - Free Tx Buffers
1991 * @adapter: board private structure
1992 * @tx_ring: ring to be cleaned
1993 **/
1994static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1995                                struct e1000_tx_ring *tx_ring)
1996{
1997        struct e1000_hw *hw = &adapter->hw;
1998        struct e1000_tx_buffer *buffer_info;
1999        unsigned long size;
2000        unsigned int i;
2001
2002        /* Free all the Tx ring sk_buffs */
2003
2004        for (i = 0; i < tx_ring->count; i++) {
2005                buffer_info = &tx_ring->buffer_info[i];
2006                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2007        }
2008
2009        netdev_reset_queue(adapter->netdev);
2010        size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2011        memset(tx_ring->buffer_info, 0, size);
2012
2013        /* Zero out the descriptor ring */
2014
2015        memset(tx_ring->desc, 0, tx_ring->size);
2016
2017        tx_ring->next_to_use = 0;
2018        tx_ring->next_to_clean = 0;
2019        tx_ring->last_tx_tso = false;
2020
2021        writel(0, hw->hw_addr + tx_ring->tdh);
2022        writel(0, hw->hw_addr + tx_ring->tdt);
2023}
2024
2025/**
2026 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2027 * @adapter: board private structure
2028 **/
2029static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2030{
2031        int i;
2032
2033        for (i = 0; i < adapter->num_tx_queues; i++)
2034                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2035}
2036
2037/**
2038 * e1000_free_rx_resources - Free Rx Resources
2039 * @adapter: board private structure
2040 * @rx_ring: ring to clean the resources from
2041 *
2042 * Free all receive software resources
2043 **/
2044static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2045                                    struct e1000_rx_ring *rx_ring)
2046{
2047        struct pci_dev *pdev = adapter->pdev;
2048
2049        e1000_clean_rx_ring(adapter, rx_ring);
2050
2051        vfree(rx_ring->buffer_info);
2052        rx_ring->buffer_info = NULL;
2053
2054        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2055                          rx_ring->dma);
2056
2057        rx_ring->desc = NULL;
2058}
2059
2060/**
2061 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2062 * @adapter: board private structure
2063 *
2064 * Free all receive software resources
2065 **/
2066void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2067{
2068        int i;
2069
2070        for (i = 0; i < adapter->num_rx_queues; i++)
2071                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2072}
2073
2074#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2075static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2076{
2077        return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2078                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2079}
2080
2081static void *e1000_alloc_frag(const struct e1000_adapter *a)
2082{
2083        unsigned int len = e1000_frag_len(a);
2084        u8 *data = netdev_alloc_frag(len);
2085
2086        if (likely(data))
2087                data += E1000_HEADROOM;
2088        return data;
2089}
2090
2091/**
2092 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2093 * @adapter: board private structure
2094 * @rx_ring: ring to free buffers from
2095 **/
2096static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2097                                struct e1000_rx_ring *rx_ring)
2098{
2099        struct e1000_hw *hw = &adapter->hw;
2100        struct e1000_rx_buffer *buffer_info;
2101        struct pci_dev *pdev = adapter->pdev;
2102        unsigned long size;
2103        unsigned int i;
2104
2105        /* Free all the Rx netfrags */
2106        for (i = 0; i < rx_ring->count; i++) {
2107                buffer_info = &rx_ring->buffer_info[i];
2108                if (adapter->clean_rx == e1000_clean_rx_irq) {
2109                        if (buffer_info->dma)
2110                                dma_unmap_single(&pdev->dev, buffer_info->dma,
2111                                                 adapter->rx_buffer_len,
2112                                                 DMA_FROM_DEVICE);
2113                        if (buffer_info->rxbuf.data) {
2114                                skb_free_frag(buffer_info->rxbuf.data);
2115                                buffer_info->rxbuf.data = NULL;
2116                        }
2117                } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2118                        if (buffer_info->dma)
2119                                dma_unmap_page(&pdev->dev, buffer_info->dma,
2120                                               adapter->rx_buffer_len,
2121                                               DMA_FROM_DEVICE);
2122                        if (buffer_info->rxbuf.page) {
2123                                put_page(buffer_info->rxbuf.page);
2124                                buffer_info->rxbuf.page = NULL;
2125                        }
2126                }
2127
2128                buffer_info->dma = 0;
2129        }
2130
2131        /* there also may be some cached data from a chained receive */
2132        napi_free_frags(&adapter->napi);
2133        rx_ring->rx_skb_top = NULL;
2134
2135        size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2136        memset(rx_ring->buffer_info, 0, size);
2137
2138        /* Zero out the descriptor ring */
2139        memset(rx_ring->desc, 0, rx_ring->size);
2140
2141        rx_ring->next_to_clean = 0;
2142        rx_ring->next_to_use = 0;
2143
2144        writel(0, hw->hw_addr + rx_ring->rdh);
2145        writel(0, hw->hw_addr + rx_ring->rdt);
2146}
2147
2148/**
2149 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2150 * @adapter: board private structure
2151 **/
2152static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2153{
2154        int i;
2155
2156        for (i = 0; i < adapter->num_rx_queues; i++)
2157                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2158}
2159
2160/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2161 * and memory write and invalidate disabled for certain operations
2162 */
2163static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2164{
2165        struct e1000_hw *hw = &adapter->hw;
2166        struct net_device *netdev = adapter->netdev;
2167        u32 rctl;
2168
2169        e1000_pci_clear_mwi(hw);
2170
2171        rctl = er32(RCTL);
2172        rctl |= E1000_RCTL_RST;
2173        ew32(RCTL, rctl);
2174        E1000_WRITE_FLUSH();
2175        mdelay(5);
2176
2177        if (netif_running(netdev))
2178                e1000_clean_all_rx_rings(adapter);
2179}
2180
2181static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2182{
2183        struct e1000_hw *hw = &adapter->hw;
2184        struct net_device *netdev = adapter->netdev;
2185        u32 rctl;
2186
2187        rctl = er32(RCTL);
2188        rctl &= ~E1000_RCTL_RST;
2189        ew32(RCTL, rctl);
2190        E1000_WRITE_FLUSH();
2191        mdelay(5);
2192
2193        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2194                e1000_pci_set_mwi(hw);
2195
2196        if (netif_running(netdev)) {
2197                /* No need to loop, because 82542 supports only 1 queue */
2198                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2199                e1000_configure_rx(adapter);
2200                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2201        }
2202}
2203
2204/**
2205 * e1000_set_mac - Change the Ethernet Address of the NIC
2206 * @netdev: network interface device structure
2207 * @p: pointer to an address structure
2208 *
2209 * Returns 0 on success, negative on failure
2210 **/
2211static int e1000_set_mac(struct net_device *netdev, void *p)
2212{
2213        struct e1000_adapter *adapter = netdev_priv(netdev);
2214        struct e1000_hw *hw = &adapter->hw;
2215        struct sockaddr *addr = p;
2216
2217        if (!is_valid_ether_addr(addr->sa_data))
2218                return -EADDRNOTAVAIL;
2219
2220        /* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222        if (hw->mac_type == e1000_82542_rev2_0)
2223                e1000_enter_82542_rst(adapter);
2224
2225        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228        e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230        if (hw->mac_type == e1000_82542_rev2_0)
2231                e1000_leave_82542_rst(adapter);
2232
2233        return 0;
2234}
2235
2236/**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245static void e1000_set_rx_mode(struct net_device *netdev)
2246{
2247        struct e1000_adapter *adapter = netdev_priv(netdev);
2248        struct e1000_hw *hw = &adapter->hw;
2249        struct netdev_hw_addr *ha;
2250        bool use_uc = false;
2251        u32 rctl;
2252        u32 hash_value;
2253        int i, rar_entries = E1000_RAR_ENTRIES;
2254        int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2255        u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2256
2257        if (!mcarray)
2258                return;
2259
2260        /* Check for Promiscuous and All Multicast modes */
2261
2262        rctl = er32(RCTL);
2263
2264        if (netdev->flags & IFF_PROMISC) {
2265                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2266                rctl &= ~E1000_RCTL_VFE;
2267        } else {
2268                if (netdev->flags & IFF_ALLMULTI)
2269                        rctl |= E1000_RCTL_MPE;
2270                else
2271                        rctl &= ~E1000_RCTL_MPE;
2272                /* Enable VLAN filter if there is a VLAN */
2273                if (e1000_vlan_used(adapter))
2274                        rctl |= E1000_RCTL_VFE;
2275        }
2276
2277        if (netdev_uc_count(netdev) > rar_entries - 1) {
2278                rctl |= E1000_RCTL_UPE;
2279        } else if (!(netdev->flags & IFF_PROMISC)) {
2280                rctl &= ~E1000_RCTL_UPE;
2281                use_uc = true;
2282        }
2283
2284        ew32(RCTL, rctl);
2285
2286        /* 82542 2.0 needs to be in reset to write receive address registers */
2287
2288        if (hw->mac_type == e1000_82542_rev2_0)
2289                e1000_enter_82542_rst(adapter);
2290
2291        /* load the first 14 addresses into the exact filters 1-14. Unicast
2292         * addresses take precedence to avoid disabling unicast filtering
2293         * when possible.
2294         *
2295         * RAR 0 is used for the station MAC address
2296         * if there are not 14 addresses, go ahead and clear the filters
2297         */
2298        i = 1;
2299        if (use_uc)
2300                netdev_for_each_uc_addr(ha, netdev) {
2301                        if (i == rar_entries)
2302                                break;
2303                        e1000_rar_set(hw, ha->addr, i++);
2304                }
2305
2306        netdev_for_each_mc_addr(ha, netdev) {
2307                if (i == rar_entries) {
2308                        /* load any remaining addresses into the hash table */
2309                        u32 hash_reg, hash_bit, mta;
2310                        hash_value = e1000_hash_mc_addr(hw, ha->addr);
2311                        hash_reg = (hash_value >> 5) & 0x7F;
2312                        hash_bit = hash_value & 0x1F;
2313                        mta = (1 << hash_bit);
2314                        mcarray[hash_reg] |= mta;
2315                } else {
2316                        e1000_rar_set(hw, ha->addr, i++);
2317                }
2318        }
2319
2320        for (; i < rar_entries; i++) {
2321                E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2322                E1000_WRITE_FLUSH();
2323                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2324                E1000_WRITE_FLUSH();
2325        }
2326
2327        /* write the hash table completely, write from bottom to avoid
2328         * both stupid write combining chipsets, and flushing each write
2329         */
2330        for (i = mta_reg_count - 1; i >= 0 ; i--) {
2331                /* If we are on an 82544 has an errata where writing odd
2332                 * offsets overwrites the previous even offset, but writing
2333                 * backwards over the range solves the issue by always
2334                 * writing the odd offset first
2335                 */
2336                E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2337        }
2338        E1000_WRITE_FLUSH();
2339
2340        if (hw->mac_type == e1000_82542_rev2_0)
2341                e1000_leave_82542_rst(adapter);
2342
2343        kfree(mcarray);
2344}
2345
2346/**
2347 * e1000_update_phy_info_task - get phy info
2348 * @work: work struct contained inside adapter struct
2349 *
2350 * Need to wait a few seconds after link up to get diagnostic information from
2351 * the phy
2352 */
2353static void e1000_update_phy_info_task(struct work_struct *work)
2354{
2355        struct e1000_adapter *adapter = container_of(work,
2356                                                     struct e1000_adapter,
2357                                                     phy_info_task.work);
2358
2359        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2360}
2361
2362/**
2363 * e1000_82547_tx_fifo_stall_task - task to complete work
2364 * @work: work struct contained inside adapter struct
2365 **/
2366static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2367{
2368        struct e1000_adapter *adapter = container_of(work,
2369                                                     struct e1000_adapter,
2370                                                     fifo_stall_task.work);
2371        struct e1000_hw *hw = &adapter->hw;
2372        struct net_device *netdev = adapter->netdev;
2373        u32 tctl;
2374
2375        if (atomic_read(&adapter->tx_fifo_stall)) {
2376                if ((er32(TDT) == er32(TDH)) &&
2377                   (er32(TDFT) == er32(TDFH)) &&
2378                   (er32(TDFTS) == er32(TDFHS))) {
2379                        tctl = er32(TCTL);
2380                        ew32(TCTL, tctl & ~E1000_TCTL_EN);
2381                        ew32(TDFT, adapter->tx_head_addr);
2382                        ew32(TDFH, adapter->tx_head_addr);
2383                        ew32(TDFTS, adapter->tx_head_addr);
2384                        ew32(TDFHS, adapter->tx_head_addr);
2385                        ew32(TCTL, tctl);
2386                        E1000_WRITE_FLUSH();
2387
2388                        adapter->tx_fifo_head = 0;
2389                        atomic_set(&adapter->tx_fifo_stall, 0);
2390                        netif_wake_queue(netdev);
2391                } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2392                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
2393                }
2394        }
2395}
2396
2397bool e1000_has_link(struct e1000_adapter *adapter)
2398{
2399        struct e1000_hw *hw = &adapter->hw;
2400        bool link_active = false;
2401
2402        /* get_link_status is set on LSC (link status) interrupt or rx
2403         * sequence error interrupt (except on intel ce4100).
2404         * get_link_status will stay false until the
2405         * e1000_check_for_link establishes link for copper adapters
2406         * ONLY
2407         */
2408        switch (hw->media_type) {
2409        case e1000_media_type_copper:
2410                if (hw->mac_type == e1000_ce4100)
2411                        hw->get_link_status = 1;
2412                if (hw->get_link_status) {
2413                        e1000_check_for_link(hw);
2414                        link_active = !hw->get_link_status;
2415                } else {
2416                        link_active = true;
2417                }
2418                break;
2419        case e1000_media_type_fiber:
2420                e1000_check_for_link(hw);
2421                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2422                break;
2423        case e1000_media_type_internal_serdes:
2424                e1000_check_for_link(hw);
2425                link_active = hw->serdes_has_link;
2426                break;
2427        default:
2428                break;
2429        }
2430
2431        return link_active;
2432}
2433
2434/**
2435 * e1000_watchdog - work function
2436 * @work: work struct contained inside adapter struct
2437 **/
2438static void e1000_watchdog(struct work_struct *work)
2439{
2440        struct e1000_adapter *adapter = container_of(work,
2441                                                     struct e1000_adapter,
2442                                                     watchdog_task.work);
2443        struct e1000_hw *hw = &adapter->hw;
2444        struct net_device *netdev = adapter->netdev;
2445        struct e1000_tx_ring *txdr = adapter->tx_ring;
2446        u32 link, tctl;
2447
2448        link = e1000_has_link(adapter);
2449        if ((netif_carrier_ok(netdev)) && link)
2450                goto link_up;
2451
2452        if (link) {
2453                if (!netif_carrier_ok(netdev)) {
2454                        u32 ctrl;
2455                        bool txb2b = true;
2456                        /* update snapshot of PHY registers on LSC */
2457                        e1000_get_speed_and_duplex(hw,
2458                                                   &adapter->link_speed,
2459                                                   &adapter->link_duplex);
2460
2461                        ctrl = er32(CTRL);
2462                        pr_info("%s NIC Link is Up %d Mbps %s, "
2463                                "Flow Control: %s\n",
2464                                netdev->name,
2465                                adapter->link_speed,
2466                                adapter->link_duplex == FULL_DUPLEX ?
2467                                "Full Duplex" : "Half Duplex",
2468                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2469                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2470                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2471                                E1000_CTRL_TFCE) ? "TX" : "None")));
2472
2473                        /* adjust timeout factor according to speed/duplex */
2474                        adapter->tx_timeout_factor = 1;
2475                        switch (adapter->link_speed) {
2476                        case SPEED_10:
2477                                txb2b = false;
2478                                adapter->tx_timeout_factor = 16;
2479                                break;
2480                        case SPEED_100:
2481                                txb2b = false;
2482                                /* maybe add some timeout factor ? */
2483                                break;
2484                        }
2485
2486                        /* enable transmits in the hardware */
2487                        tctl = er32(TCTL);
2488                        tctl |= E1000_TCTL_EN;
2489                        ew32(TCTL, tctl);
2490
2491                        netif_carrier_on(netdev);
2492                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2493                                schedule_delayed_work(&adapter->phy_info_task,
2494                                                      2 * HZ);
2495                        adapter->smartspeed = 0;
2496                }
2497        } else {
2498                if (netif_carrier_ok(netdev)) {
2499                        adapter->link_speed = 0;
2500                        adapter->link_duplex = 0;
2501                        pr_info("%s NIC Link is Down\n",
2502                                netdev->name);
2503                        netif_carrier_off(netdev);
2504
2505                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2506                                schedule_delayed_work(&adapter->phy_info_task,
2507                                                      2 * HZ);
2508                }
2509
2510                e1000_smartspeed(adapter);
2511        }
2512
2513link_up:
2514        e1000_update_stats(adapter);
2515
2516        hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2517        adapter->tpt_old = adapter->stats.tpt;
2518        hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2519        adapter->colc_old = adapter->stats.colc;
2520
2521        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2522        adapter->gorcl_old = adapter->stats.gorcl;
2523        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2524        adapter->gotcl_old = adapter->stats.gotcl;
2525
2526        e1000_update_adaptive(hw);
2527
2528        if (!netif_carrier_ok(netdev)) {
2529                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2530                        /* We've lost link, so the controller stops DMA,
2531                         * but we've got queued Tx work that's never going
2532                         * to get done, so reset controller to flush Tx.
2533                         * (Do the reset outside of interrupt context).
2534                         */
2535                        adapter->tx_timeout_count++;
2536                        schedule_work(&adapter->reset_task);
2537                        /* exit immediately since reset is imminent */
2538                        return;
2539                }
2540        }
2541
2542        /* Simple mode for Interrupt Throttle Rate (ITR) */
2543        if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2544                /* Symmetric Tx/Rx gets a reduced ITR=2000;
2545                 * Total asymmetrical Tx or Rx gets ITR=8000;
2546                 * everyone else is between 2000-8000.
2547                 */
2548                u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2549                u32 dif = (adapter->gotcl > adapter->gorcl ?
2550                            adapter->gotcl - adapter->gorcl :
2551                            adapter->gorcl - adapter->gotcl) / 10000;
2552                u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2553
2554                ew32(ITR, 1000000000 / (itr * 256));
2555        }
2556
2557        /* Cause software interrupt to ensure rx ring is cleaned */
2558        ew32(ICS, E1000_ICS_RXDMT0);
2559
2560        /* Force detection of hung controller every watchdog period */
2561        adapter->detect_tx_hung = true;
2562
2563        /* Reschedule the task */
2564        if (!test_bit(__E1000_DOWN, &adapter->flags))
2565                schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2566}
2567
2568enum latency_range {
2569        lowest_latency = 0,
2570        low_latency = 1,
2571        bulk_latency = 2,
2572        latency_invalid = 255
2573};
2574
2575/**
2576 * e1000_update_itr - update the dynamic ITR value based on statistics
2577 * @adapter: pointer to adapter
2578 * @itr_setting: current adapter->itr
2579 * @packets: the number of packets during this measurement interval
2580 * @bytes: the number of bytes during this measurement interval
2581 *
2582 *      Stores a new ITR value based on packets and byte
2583 *      counts during the last interrupt.  The advantage of per interrupt
2584 *      computation is faster updates and more accurate ITR for the current
2585 *      traffic pattern.  Constants in this function were computed
2586 *      based on theoretical maximum wire speed and thresholds were set based
2587 *      on testing data as well as attempting to minimize response time
2588 *      while increasing bulk throughput.
2589 *      this functionality is controlled by the InterruptThrottleRate module
2590 *      parameter (see e1000_param.c)
2591 **/
2592static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2593                                     u16 itr_setting, int packets, int bytes)
2594{
2595        unsigned int retval = itr_setting;
2596        struct e1000_hw *hw = &adapter->hw;
2597
2598        if (unlikely(hw->mac_type < e1000_82540))
2599                goto update_itr_done;
2600
2601        if (packets == 0)
2602                goto update_itr_done;
2603
2604        switch (itr_setting) {
2605        case lowest_latency:
2606                /* jumbo frames get bulk treatment*/
2607                if (bytes/packets > 8000)
2608                        retval = bulk_latency;
2609                else if ((packets < 5) && (bytes > 512))
2610                        retval = low_latency;
2611                break;
2612        case low_latency:  /* 50 usec aka 20000 ints/s */
2613                if (bytes > 10000) {
2614                        /* jumbo frames need bulk latency setting */
2615                        if (bytes/packets > 8000)
2616                                retval = bulk_latency;
2617                        else if ((packets < 10) || ((bytes/packets) > 1200))
2618                                retval = bulk_latency;
2619                        else if ((packets > 35))
2620                                retval = lowest_latency;
2621                } else if (bytes/packets > 2000)
2622                        retval = bulk_latency;
2623                else if (packets <= 2 && bytes < 512)
2624                        retval = lowest_latency;
2625                break;
2626        case bulk_latency: /* 250 usec aka 4000 ints/s */
2627                if (bytes > 25000) {
2628                        if (packets > 35)
2629                                retval = low_latency;
2630                } else if (bytes < 6000) {
2631                        retval = low_latency;
2632                }
2633                break;
2634        }
2635
2636update_itr_done:
2637        return retval;
2638}
2639
2640static void e1000_set_itr(struct e1000_adapter *adapter)
2641{
2642        struct e1000_hw *hw = &adapter->hw;
2643        u16 current_itr;
2644        u32 new_itr = adapter->itr;
2645
2646        if (unlikely(hw->mac_type < e1000_82540))
2647                return;
2648
2649        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2650        if (unlikely(adapter->link_speed != SPEED_1000)) {
2651                current_itr = 0;
2652                new_itr = 4000;
2653                goto set_itr_now;
2654        }
2655
2656        adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2657                                           adapter->total_tx_packets,
2658                                           adapter->total_tx_bytes);
2659        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2660        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2661                adapter->tx_itr = low_latency;
2662
2663        adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2664                                           adapter->total_rx_packets,
2665                                           adapter->total_rx_bytes);
2666        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2667        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2668                adapter->rx_itr = low_latency;
2669
2670        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2671
2672        switch (current_itr) {
2673        /* counts and packets in update_itr are dependent on these numbers */
2674        case lowest_latency:
2675                new_itr = 70000;
2676                break;
2677        case low_latency:
2678                new_itr = 20000; /* aka hwitr = ~200 */
2679                break;
2680        case bulk_latency:
2681                new_itr = 4000;
2682                break;
2683        default:
2684                break;
2685        }
2686
2687set_itr_now:
2688        if (new_itr != adapter->itr) {
2689                /* this attempts to bias the interrupt rate towards Bulk
2690                 * by adding intermediate steps when interrupt rate is
2691                 * increasing
2692                 */
2693                new_itr = new_itr > adapter->itr ?
2694                          min(adapter->itr + (new_itr >> 2), new_itr) :
2695                          new_itr;
2696                adapter->itr = new_itr;
2697                ew32(ITR, 1000000000 / (new_itr * 256));
2698        }
2699}
2700
2701#define E1000_TX_FLAGS_CSUM             0x00000001
2702#define E1000_TX_FLAGS_VLAN             0x00000002
2703#define E1000_TX_FLAGS_TSO              0x00000004
2704#define E1000_TX_FLAGS_IPV4             0x00000008
2705#define E1000_TX_FLAGS_NO_FCS           0x00000010
2706#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2707#define E1000_TX_FLAGS_VLAN_SHIFT       16
2708
2709static int e1000_tso(struct e1000_adapter *adapter,
2710                     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2711                     __be16 protocol)
2712{
2713        struct e1000_context_desc *context_desc;
2714        struct e1000_tx_buffer *buffer_info;
2715        unsigned int i;
2716        u32 cmd_length = 0;
2717        u16 ipcse = 0, tucse, mss;
2718        u8 ipcss, ipcso, tucss, tucso, hdr_len;
2719
2720        if (skb_is_gso(skb)) {
2721                int err;
2722
2723                err = skb_cow_head(skb, 0);
2724                if (err < 0)
2725                        return err;
2726
2727                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2728                mss = skb_shinfo(skb)->gso_size;
2729                if (protocol == htons(ETH_P_IP)) {
2730                        struct iphdr *iph = ip_hdr(skb);
2731                        iph->tot_len = 0;
2732                        iph->check = 0;
2733                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2734                                                                 iph->daddr, 0,
2735                                                                 IPPROTO_TCP,
2736                                                                 0);
2737                        cmd_length = E1000_TXD_CMD_IP;
2738                        ipcse = skb_transport_offset(skb) - 1;
2739                } else if (skb_is_gso_v6(skb)) {
2740                        ipv6_hdr(skb)->payload_len = 0;
2741                        tcp_hdr(skb)->check =
2742                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2743                                                 &ipv6_hdr(skb)->daddr,
2744                                                 0, IPPROTO_TCP, 0);
2745                        ipcse = 0;
2746                }
2747                ipcss = skb_network_offset(skb);
2748                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2749                tucss = skb_transport_offset(skb);
2750                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2751                tucse = 0;
2752
2753                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2754                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2755
2756                i = tx_ring->next_to_use;
2757                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2758                buffer_info = &tx_ring->buffer_info[i];
2759
2760                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2761                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2762                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2763                context_desc->upper_setup.tcp_fields.tucss = tucss;
2764                context_desc->upper_setup.tcp_fields.tucso = tucso;
2765                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2766                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2767                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2768                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2769
2770                buffer_info->time_stamp = jiffies;
2771                buffer_info->next_to_watch = i;
2772
2773                if (++i == tx_ring->count)
2774                        i = 0;
2775
2776                tx_ring->next_to_use = i;
2777
2778                return true;
2779        }
2780        return false;
2781}
2782
2783static bool e1000_tx_csum(struct e1000_adapter *adapter,
2784                          struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2785                          __be16 protocol)
2786{
2787        struct e1000_context_desc *context_desc;
2788        struct e1000_tx_buffer *buffer_info;
2789        unsigned int i;
2790        u8 css;
2791        u32 cmd_len = E1000_TXD_CMD_DEXT;
2792
2793        if (skb->ip_summed != CHECKSUM_PARTIAL)
2794                return false;
2795
2796        switch (protocol) {
2797        case cpu_to_be16(ETH_P_IP):
2798                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2799                        cmd_len |= E1000_TXD_CMD_TCP;
2800                break;
2801        case cpu_to_be16(ETH_P_IPV6):
2802                /* XXX not handling all IPV6 headers */
2803                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2804                        cmd_len |= E1000_TXD_CMD_TCP;
2805                break;
2806        default:
2807                if (unlikely(net_ratelimit()))
2808                        e_warn(drv, "checksum_partial proto=%x!\n",
2809                               skb->protocol);
2810                break;
2811        }
2812
2813        css = skb_checksum_start_offset(skb);
2814
2815        i = tx_ring->next_to_use;
2816        buffer_info = &tx_ring->buffer_info[i];
2817        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2818
2819        context_desc->lower_setup.ip_config = 0;
2820        context_desc->upper_setup.tcp_fields.tucss = css;
2821        context_desc->upper_setup.tcp_fields.tucso =
2822                css + skb->csum_offset;
2823        context_desc->upper_setup.tcp_fields.tucse = 0;
2824        context_desc->tcp_seg_setup.data = 0;
2825        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2826
2827        buffer_info->time_stamp = jiffies;
2828        buffer_info->next_to_watch = i;
2829
2830        if (unlikely(++i == tx_ring->count))
2831                i = 0;
2832
2833        tx_ring->next_to_use = i;
2834
2835        return true;
2836}
2837
2838#define E1000_MAX_TXD_PWR       12
2839#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2840
2841static int e1000_tx_map(struct e1000_adapter *adapter,
2842                        struct e1000_tx_ring *tx_ring,
2843                        struct sk_buff *skb, unsigned int first,
2844                        unsigned int max_per_txd, unsigned int nr_frags,
2845                        unsigned int mss)
2846{
2847        struct e1000_hw *hw = &adapter->hw;
2848        struct pci_dev *pdev = adapter->pdev;
2849        struct e1000_tx_buffer *buffer_info;
2850        unsigned int len = skb_headlen(skb);
2851        unsigned int offset = 0, size, count = 0, i;
2852        unsigned int f, bytecount, segs;
2853
2854        i = tx_ring->next_to_use;
2855
2856        while (len) {
2857                buffer_info = &tx_ring->buffer_info[i];
2858                size = min(len, max_per_txd);
2859                /* Workaround for Controller erratum --
2860                 * descriptor for non-tso packet in a linear SKB that follows a
2861                 * tso gets written back prematurely before the data is fully
2862                 * DMA'd to the controller
2863                 */
2864                if (!skb->data_len && tx_ring->last_tx_tso &&
2865                    !skb_is_gso(skb)) {
2866                        tx_ring->last_tx_tso = false;
2867                        size -= 4;
2868                }
2869
2870                /* Workaround for premature desc write-backs
2871                 * in TSO mode.  Append 4-byte sentinel desc
2872                 */
2873                if (unlikely(mss && !nr_frags && size == len && size > 8))
2874                        size -= 4;
2875                /* work-around for errata 10 and it applies
2876                 * to all controllers in PCI-X mode
2877                 * The fix is to make sure that the first descriptor of a
2878                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2879                 */
2880                if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2881                             (size > 2015) && count == 0))
2882                        size = 2015;
2883
2884                /* Workaround for potential 82544 hang in PCI-X.  Avoid
2885                 * terminating buffers within evenly-aligned dwords.
2886                 */
2887                if (unlikely(adapter->pcix_82544 &&
2888                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2889                   size > 4))
2890                        size -= 4;
2891
2892                buffer_info->length = size;
2893                /* set time_stamp *before* dma to help avoid a possible race */
2894                buffer_info->time_stamp = jiffies;
2895                buffer_info->mapped_as_page = false;
2896                buffer_info->dma = dma_map_single(&pdev->dev,
2897                                                  skb->data + offset,
2898                                                  size, DMA_TO_DEVICE);
2899                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2900                        goto dma_error;
2901                buffer_info->next_to_watch = i;
2902
2903                len -= size;
2904                offset += size;
2905                count++;
2906                if (len) {
2907                        i++;
2908                        if (unlikely(i == tx_ring->count))
2909                                i = 0;
2910                }
2911        }
2912
2913        for (f = 0; f < nr_frags; f++) {
2914                const struct skb_frag_struct *frag;
2915
2916                frag = &skb_shinfo(skb)->frags[f];
2917                len = skb_frag_size(frag);
2918                offset = 0;
2919
2920                while (len) {
2921                        unsigned long bufend;
2922                        i++;
2923                        if (unlikely(i == tx_ring->count))
2924                                i = 0;
2925
2926                        buffer_info = &tx_ring->buffer_info[i];
2927                        size = min(len, max_per_txd);
2928                        /* Workaround for premature desc write-backs
2929                         * in TSO mode.  Append 4-byte sentinel desc
2930                         */
2931                        if (unlikely(mss && f == (nr_frags-1) &&
2932                            size == len && size > 8))
2933                                size -= 4;
2934                        /* Workaround for potential 82544 hang in PCI-X.
2935                         * Avoid terminating buffers within evenly-aligned
2936                         * dwords.
2937                         */
2938                        bufend = (unsigned long)
2939                                page_to_phys(skb_frag_page(frag));
2940                        bufend += offset + size - 1;
2941                        if (unlikely(adapter->pcix_82544 &&
2942                                     !(bufend & 4) &&
2943                                     size > 4))
2944                                size -= 4;
2945
2946                        buffer_info->length = size;
2947                        buffer_info->time_stamp = jiffies;
2948                        buffer_info->mapped_as_page = true;
2949                        buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2950                                                offset, size, DMA_TO_DEVICE);
2951                        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2952                                goto dma_error;
2953                        buffer_info->next_to_watch = i;
2954
2955                        len -= size;
2956                        offset += size;
2957                        count++;
2958                }
2959        }
2960
2961        segs = skb_shinfo(skb)->gso_segs ?: 1;
2962        /* multiply data chunks by size of headers */
2963        bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2964
2965        tx_ring->buffer_info[i].skb = skb;
2966        tx_ring->buffer_info[i].segs = segs;
2967        tx_ring->buffer_info[i].bytecount = bytecount;
2968        tx_ring->buffer_info[first].next_to_watch = i;
2969
2970        return count;
2971
2972dma_error:
2973        dev_err(&pdev->dev, "TX DMA map failed\n");
2974        buffer_info->dma = 0;
2975        if (count)
2976                count--;
2977
2978        while (count--) {
2979                if (i == 0)
2980                        i += tx_ring->count;
2981                i--;
2982                buffer_info = &tx_ring->buffer_info[i];
2983                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2984        }
2985
2986        return 0;
2987}
2988
2989static void e1000_tx_queue(struct e1000_adapter *adapter,
2990                           struct e1000_tx_ring *tx_ring, int tx_flags,
2991                           int count)
2992{
2993        struct e1000_tx_desc *tx_desc = NULL;
2994        struct e1000_tx_buffer *buffer_info;
2995        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2996        unsigned int i;
2997
2998        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2999                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3000                             E1000_TXD_CMD_TSE;
3001                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002
3003                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3004                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3005        }
3006
3007        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3008                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3009                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010        }
3011
3012        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3013                txd_lower |= E1000_TXD_CMD_VLE;
3014                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3015        }
3016
3017        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018                txd_lower &= ~(E1000_TXD_CMD_IFCS);
3019
3020        i = tx_ring->next_to_use;
3021
3022        while (count--) {
3023                buffer_info = &tx_ring->buffer_info[i];
3024                tx_desc = E1000_TX_DESC(*tx_ring, i);
3025                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3026                tx_desc->lower.data =
3027                        cpu_to_le32(txd_lower | buffer_info->length);
3028                tx_desc->upper.data = cpu_to_le32(txd_upper);
3029                if (unlikely(++i == tx_ring->count))
3030                        i = 0;
3031        }
3032
3033        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3034
3035        /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3036        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3037                tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3038
3039        /* Force memory writes to complete before letting h/w
3040         * know there are new descriptors to fetch.  (Only
3041         * applicable for weak-ordered memory model archs,
3042         * such as IA-64).
3043         */
3044        wmb();
3045
3046        tx_ring->next_to_use = i;
3047}
3048
3049/* 82547 workaround to avoid controller hang in half-duplex environment.
3050 * The workaround is to avoid queuing a large packet that would span
3051 * the internal Tx FIFO ring boundary by notifying the stack to resend
3052 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3053 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3054 * to the beginning of the Tx FIFO.
3055 */
3056
3057#define E1000_FIFO_HDR                  0x10
3058#define E1000_82547_PAD_LEN             0x3E0
3059
3060static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3061                                       struct sk_buff *skb)
3062{
3063        u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3064        u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3065
3066        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3067
3068        if (adapter->link_duplex != HALF_DUPLEX)
3069                goto no_fifo_stall_required;
3070
3071        if (atomic_read(&adapter->tx_fifo_stall))
3072                return 1;
3073
3074        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3075                atomic_set(&adapter->tx_fifo_stall, 1);
3076                return 1;
3077        }
3078
3079no_fifo_stall_required:
3080        adapter->tx_fifo_head += skb_fifo_len;
3081        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3082                adapter->tx_fifo_head -= adapter->tx_fifo_size;
3083        return 0;
3084}
3085
3086static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3087{
3088        struct e1000_adapter *adapter = netdev_priv(netdev);
3089        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3090
3091        netif_stop_queue(netdev);
3092        /* Herbert's original patch had:
3093         *  smp_mb__after_netif_stop_queue();
3094         * but since that doesn't exist yet, just open code it.
3095         */
3096        smp_mb();
3097
3098        /* We need to check again in a case another CPU has just
3099         * made room available.
3100         */
3101        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3102                return -EBUSY;
3103
3104        /* A reprieve! */
3105        netif_start_queue(netdev);
3106        ++adapter->restart_queue;
3107        return 0;
3108}
3109
3110static int e1000_maybe_stop_tx(struct net_device *netdev,
3111                               struct e1000_tx_ring *tx_ring, int size)
3112{
3113        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3114                return 0;
3115        return __e1000_maybe_stop_tx(netdev, size);
3116}
3117
3118#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3119static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3120                                    struct net_device *netdev)
3121{
3122        struct e1000_adapter *adapter = netdev_priv(netdev);
3123        struct e1000_hw *hw = &adapter->hw;
3124        struct e1000_tx_ring *tx_ring;
3125        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3126        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3127        unsigned int tx_flags = 0;
3128        unsigned int len = skb_headlen(skb);
3129        unsigned int nr_frags;
3130        unsigned int mss;
3131        int count = 0;
3132        int tso;
3133        unsigned int f;
3134        __be16 protocol = vlan_get_protocol(skb);
3135
3136        /* This goes back to the question of how to logically map a Tx queue
3137         * to a flow.  Right now, performance is impacted slightly negatively
3138         * if using multiple Tx queues.  If the stack breaks away from a
3139         * single qdisc implementation, we can look at this again.
3140         */
3141        tx_ring = adapter->tx_ring;
3142
3143        /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3144         * packets may get corrupted during padding by HW.
3145         * To WA this issue, pad all small packets manually.
3146         */
3147        if (eth_skb_pad(skb))
3148                return NETDEV_TX_OK;
3149
3150        mss = skb_shinfo(skb)->gso_size;
3151        /* The controller does a simple calculation to
3152         * make sure there is enough room in the FIFO before
3153         * initiating the DMA for each buffer.  The calc is:
3154         * 4 = ceil(buffer len/mss).  To make sure we don't
3155         * overrun the FIFO, adjust the max buffer len if mss
3156         * drops.
3157         */
3158        if (mss) {
3159                u8 hdr_len;
3160                max_per_txd = min(mss << 2, max_per_txd);
3161                max_txd_pwr = fls(max_per_txd) - 1;
3162
3163                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3164                if (skb->data_len && hdr_len == len) {
3165                        switch (hw->mac_type) {
3166                                unsigned int pull_size;
3167                        case e1000_82544:
3168                                /* Make sure we have room to chop off 4 bytes,
3169                                 * and that the end alignment will work out to
3170                                 * this hardware's requirements
3171                                 * NOTE: this is a TSO only workaround
3172                                 * if end byte alignment not correct move us
3173                                 * into the next dword
3174                                 */
3175                                if ((unsigned long)(skb_tail_pointer(skb) - 1)
3176                                    & 4)
3177                                        break;
3178                                /* fall through */
3179                                pull_size = min((unsigned int)4, skb->data_len);
3180                                if (!__pskb_pull_tail(skb, pull_size)) {
3181                                        e_err(drv, "__pskb_pull_tail "
3182                                              "failed.\n");
3183                                        dev_kfree_skb_any(skb);
3184                                        return NETDEV_TX_OK;
3185                                }
3186                                len = skb_headlen(skb);
3187                                break;
3188                        default:
3189                                /* do nothing */
3190                                break;
3191                        }
3192                }
3193        }
3194
3195        /* reserve a descriptor for the offload context */
3196        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3197                count++;
3198        count++;
3199
3200        /* Controller Erratum workaround */
3201        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3202                count++;
3203
3204        count += TXD_USE_COUNT(len, max_txd_pwr);
3205
3206        if (adapter->pcix_82544)
3207                count++;
3208
3209        /* work-around for errata 10 and it applies to all controllers
3210         * in PCI-X mode, so add one more descriptor to the count
3211         */
3212        if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3213                        (len > 2015)))
3214                count++;
3215
3216        nr_frags = skb_shinfo(skb)->nr_frags;
3217        for (f = 0; f < nr_frags; f++)
3218                count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3219                                       max_txd_pwr);
3220        if (adapter->pcix_82544)
3221                count += nr_frags;
3222
3223        /* need: count + 2 desc gap to keep tail from touching
3224         * head, otherwise try next time
3225         */
3226        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3227                return NETDEV_TX_BUSY;
3228
3229        if (unlikely((hw->mac_type == e1000_82547) &&
3230                     (e1000_82547_fifo_workaround(adapter, skb)))) {
3231                netif_stop_queue(netdev);
3232                if (!test_bit(__E1000_DOWN, &adapter->flags))
3233                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
3234                return NETDEV_TX_BUSY;
3235        }
3236
3237        if (skb_vlan_tag_present(skb)) {
3238                tx_flags |= E1000_TX_FLAGS_VLAN;
3239                tx_flags |= (skb_vlan_tag_get(skb) <<
3240                             E1000_TX_FLAGS_VLAN_SHIFT);
3241        }
3242
3243        first = tx_ring->next_to_use;
3244
3245        tso = e1000_tso(adapter, tx_ring, skb, protocol);
3246        if (tso < 0) {
3247                dev_kfree_skb_any(skb);
3248                return NETDEV_TX_OK;
3249        }
3250
3251        if (likely(tso)) {
3252                if (likely(hw->mac_type != e1000_82544))
3253                        tx_ring->last_tx_tso = true;
3254                tx_flags |= E1000_TX_FLAGS_TSO;
3255        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3256                tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258        if (protocol == htons(ETH_P_IP))
3259                tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261        if (unlikely(skb->no_fcs))
3262                tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264        count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265                             nr_frags, mss);
3266
3267        if (count) {
3268                /* The descriptors needed is higher than other Intel drivers
3269                 * due to a number of workarounds.  The breakdown is below:
3270                 * Data descriptors: MAX_SKB_FRAGS + 1
3271                 * Context Descriptor: 1
3272                 * Keep head from touching tail: 2
3273                 * Workarounds: 3
3274                 */
3275                int desc_needed = MAX_SKB_FRAGS + 7;
3276
3277                netdev_sent_queue(netdev, skb->len);
3278                skb_tx_timestamp(skb);
3279
3280                e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3281
3282                /* 82544 potentially requires twice as many data descriptors
3283                 * in order to guarantee buffers don't end on evenly-aligned
3284                 * dwords
3285                 */
3286                if (adapter->pcix_82544)
3287                        desc_needed += MAX_SKB_FRAGS + 1;
3288
3289                /* Make sure there is space in the ring for the next send. */
3290                e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3291
3292                if (!skb->xmit_more ||
3293                    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3294                        writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3295                        /* we need this if more than one processor can write to
3296                         * our tail at a time, it synchronizes IO on IA64/Altix
3297                         * systems
3298                         */
3299                        mmiowb();
3300                }
3301        } else {
3302                dev_kfree_skb_any(skb);
3303                tx_ring->buffer_info[first].time_stamp = 0;
3304                tx_ring->next_to_use = first;
3305        }
3306
3307        return NETDEV_TX_OK;
3308}
3309
3310#define NUM_REGS 38 /* 1 based count */
3311static void e1000_regdump(struct e1000_adapter *adapter)
3312{
3313        struct e1000_hw *hw = &adapter->hw;
3314        u32 regs[NUM_REGS];
3315        u32 *regs_buff = regs;
3316        int i = 0;
3317
3318        static const char * const reg_name[] = {
3319                "CTRL",  "STATUS",
3320                "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3321                "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3322                "TIDV", "TXDCTL", "TADV", "TARC0",
3323                "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3324                "TXDCTL1", "TARC1",
3325                "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3326                "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3327                "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3328        };
3329
3330        regs_buff[0]  = er32(CTRL);
3331        regs_buff[1]  = er32(STATUS);
3332
3333        regs_buff[2]  = er32(RCTL);
3334        regs_buff[3]  = er32(RDLEN);
3335        regs_buff[4]  = er32(RDH);
3336        regs_buff[5]  = er32(RDT);
3337        regs_buff[6]  = er32(RDTR);
3338
3339        regs_buff[7]  = er32(TCTL);
3340        regs_buff[8]  = er32(TDBAL);
3341        regs_buff[9]  = er32(TDBAH);
3342        regs_buff[10] = er32(TDLEN);
3343        regs_buff[11] = er32(TDH);
3344        regs_buff[12] = er32(TDT);
3345        regs_buff[13] = er32(TIDV);
3346        regs_buff[14] = er32(TXDCTL);
3347        regs_buff[15] = er32(TADV);
3348        regs_buff[16] = er32(TARC0);
3349
3350        regs_buff[17] = er32(TDBAL1);
3351        regs_buff[18] = er32(TDBAH1);
3352        regs_buff[19] = er32(TDLEN1);
3353        regs_buff[20] = er32(TDH1);
3354        regs_buff[21] = er32(TDT1);
3355        regs_buff[22] = er32(TXDCTL1);
3356        regs_buff[23] = er32(TARC1);
3357        regs_buff[24] = er32(CTRL_EXT);
3358        regs_buff[25] = er32(ERT);
3359        regs_buff[26] = er32(RDBAL0);
3360        regs_buff[27] = er32(RDBAH0);
3361        regs_buff[28] = er32(TDFH);
3362        regs_buff[29] = er32(TDFT);
3363        regs_buff[30] = er32(TDFHS);
3364        regs_buff[31] = er32(TDFTS);
3365        regs_buff[32] = er32(TDFPC);
3366        regs_buff[33] = er32(RDFH);
3367        regs_buff[34] = er32(RDFT);
3368        regs_buff[35] = er32(RDFHS);
3369        regs_buff[36] = er32(RDFTS);
3370        regs_buff[37] = er32(RDFPC);
3371
3372        pr_info("Register dump\n");
3373        for (i = 0; i < NUM_REGS; i++)
3374                pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3375}
3376
3377/*
3378 * e1000_dump: Print registers, tx ring and rx ring
3379 */
3380static void e1000_dump(struct e1000_adapter *adapter)
3381{
3382        /* this code doesn't handle multiple rings */
3383        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3384        struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3385        int i;
3386
3387        if (!netif_msg_hw(adapter))
3388                return;
3389
3390        /* Print Registers */
3391        e1000_regdump(adapter);
3392
3393        /* transmit dump */
3394        pr_info("TX Desc ring0 dump\n");
3395
3396        /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3397         *
3398         * Legacy Transmit Descriptor
3399         *   +--------------------------------------------------------------+
3400         * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3401         *   +--------------------------------------------------------------+
3402         * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3403         *   +--------------------------------------------------------------+
3404         *   63       48 47        36 35    32 31     24 23    16 15        0
3405         *
3406         * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3407         *   63      48 47    40 39       32 31             16 15    8 7      0
3408         *   +----------------------------------------------------------------+
3409         * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3410         *   +----------------------------------------------------------------+
3411         * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3412         *   +----------------------------------------------------------------+
3413         *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3414         *
3415         * Extended Data Descriptor (DTYP=0x1)
3416         *   +----------------------------------------------------------------+
3417         * 0 |                     Buffer Address [63:0]                      |
3418         *   +----------------------------------------------------------------+
3419         * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3420         *   +----------------------------------------------------------------+
3421         *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3422         */
3423        pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3424        pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3425
3426        if (!netif_msg_tx_done(adapter))
3427                goto rx_ring_summary;
3428
3429        for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3430                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3431                struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3432                struct my_u { __le64 a; __le64 b; };
3433                struct my_u *u = (struct my_u *)tx_desc;
3434                const char *type;
3435
3436                if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3437                        type = "NTC/U";
3438                else if (i == tx_ring->next_to_use)
3439                        type = "NTU";
3440                else if (i == tx_ring->next_to_clean)
3441                        type = "NTC";
3442                else
3443                        type = "";
3444
3445                pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3446                        ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3447                        le64_to_cpu(u->a), le64_to_cpu(u->b),
3448                        (u64)buffer_info->dma, buffer_info->length,
3449                        buffer_info->next_to_watch,
3450                        (u64)buffer_info->time_stamp, buffer_info->skb, type);
3451        }
3452
3453rx_ring_summary:
3454        /* receive dump */
3455        pr_info("\nRX Desc ring dump\n");
3456
3457        /* Legacy Receive Descriptor Format
3458         *
3459         * +-----------------------------------------------------+
3460         * |                Buffer Address [63:0]                |
3461         * +-----------------------------------------------------+
3462         * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3463         * +-----------------------------------------------------+
3464         * 63       48 47    40 39      32 31         16 15      0
3465         */
3466        pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3467
3468        if (!netif_msg_rx_status(adapter))
3469                goto exit;
3470
3471        for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3472                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3473                struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3474                struct my_u { __le64 a; __le64 b; };
3475                struct my_u *u = (struct my_u *)rx_desc;
3476                const char *type;
3477
3478                if (i == rx_ring->next_to_use)
3479                        type = "NTU";
3480                else if (i == rx_ring->next_to_clean)
3481                        type = "NTC";
3482                else
3483                        type = "";
3484
3485                pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3486                        i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3487                        (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3488        } /* for */
3489
3490        /* dump the descriptor caches */
3491        /* rx */
3492        pr_info("Rx descriptor cache in 64bit format\n");
3493        for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3494                pr_info("R%04X: %08X|%08X %08X|%08X\n",
3495                        i,
3496                        readl(adapter->hw.hw_addr + i+4),
3497                        readl(adapter->hw.hw_addr + i),
3498                        readl(adapter->hw.hw_addr + i+12),
3499                        readl(adapter->hw.hw_addr + i+8));
3500        }
3501        /* tx */
3502        pr_info("Tx descriptor cache in 64bit format\n");
3503        for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3504                pr_info("T%04X: %08X|%08X %08X|%08X\n",
3505                        i,
3506                        readl(adapter->hw.hw_addr + i+4),
3507                        readl(adapter->hw.hw_addr + i),
3508                        readl(adapter->hw.hw_addr + i+12),
3509                        readl(adapter->hw.hw_addr + i+8));
3510        }
3511exit:
3512        return;
3513}
3514
3515/**
3516 * e1000_tx_timeout - Respond to a Tx Hang
3517 * @netdev: network interface device structure
3518 **/
3519static void e1000_tx_timeout(struct net_device *netdev)
3520{
3521        struct e1000_adapter *adapter = netdev_priv(netdev);
3522
3523        /* Do the reset outside of interrupt context */
3524        adapter->tx_timeout_count++;
3525        schedule_work(&adapter->reset_task);
3526}
3527
3528static void e1000_reset_task(struct work_struct *work)
3529{
3530        struct e1000_adapter *adapter =
3531                container_of(work, struct e1000_adapter, reset_task);
3532
3533        e_err(drv, "Reset adapter\n");
3534        e1000_reinit_locked(adapter);
3535}
3536
3537/**
3538 * e1000_change_mtu - Change the Maximum Transfer Unit
3539 * @netdev: network interface device structure
3540 * @new_mtu: new value for maximum frame size
3541 *
3542 * Returns 0 on success, negative on failure
3543 **/
3544static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3545{
3546        struct e1000_adapter *adapter = netdev_priv(netdev);
3547        struct e1000_hw *hw = &adapter->hw;
3548        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3549
3550        /* Adapter-specific max frame size limits. */
3551        switch (hw->mac_type) {
3552        case e1000_undefined ... e1000_82542_rev2_1:
3553                if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3554                        e_err(probe, "Jumbo Frames not supported.\n");
3555                        return -EINVAL;
3556                }
3557                break;
3558        default:
3559                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3560                break;
3561        }
3562
3563        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3564                msleep(1);
3565        /* e1000_down has a dependency on max_frame_size */
3566        hw->max_frame_size = max_frame;
3567        if (netif_running(netdev)) {
3568                /* prevent buffers from being reallocated */
3569                adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3570                e1000_down(adapter);
3571        }
3572
3573        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3574         * means we reserve 2 more, this pushes us to allocate from the next
3575         * larger slab size.
3576         * i.e. RXBUFFER_2048 --> size-4096 slab
3577         * however with the new *_jumbo_rx* routines, jumbo receives will use
3578         * fragmented skbs
3579         */
3580
3581        if (max_frame <= E1000_RXBUFFER_2048)
3582                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3583        else
3584#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3585                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3586#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3587                adapter->rx_buffer_len = PAGE_SIZE;
3588#endif
3589
3590        /* adjust allocation if LPE protects us, and we aren't using SBP */
3591        if (!hw->tbi_compatibility_on &&
3592            ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3593             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3594                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3595
3596        pr_info("%s changing MTU from %d to %d\n",
3597                netdev->name, netdev->mtu, new_mtu);
3598        netdev->mtu = new_mtu;
3599
3600        if (netif_running(netdev))
3601                e1000_up(adapter);
3602        else
3603                e1000_reset(adapter);
3604
3605        clear_bit(__E1000_RESETTING, &adapter->flags);
3606
3607        return 0;
3608}
3609
3610/**
3611 * e1000_update_stats - Update the board statistics counters
3612 * @adapter: board private structure
3613 **/
3614void e1000_update_stats(struct e1000_adapter *adapter)
3615{
3616        struct net_device *netdev = adapter->netdev;
3617        struct e1000_hw *hw = &adapter->hw;
3618        struct pci_dev *pdev = adapter->pdev;
3619        unsigned long flags;
3620        u16 phy_tmp;
3621
3622#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3623
3624        /* Prevent stats update while adapter is being reset, or if the pci
3625         * connection is down.
3626         */
3627        if (adapter->link_speed == 0)
3628                return;
3629        if (pci_channel_offline(pdev))
3630                return;
3631
3632        spin_lock_irqsave(&adapter->stats_lock, flags);
3633
3634        /* these counters are modified from e1000_tbi_adjust_stats,
3635         * called from the interrupt context, so they must only
3636         * be written while holding adapter->stats_lock
3637         */
3638
3639        adapter->stats.crcerrs += er32(CRCERRS);
3640        adapter->stats.gprc += er32(GPRC);
3641        adapter->stats.gorcl += er32(GORCL);
3642        adapter->stats.gorch += er32(GORCH);
3643        adapter->stats.bprc += er32(BPRC);
3644        adapter->stats.mprc += er32(MPRC);
3645        adapter->stats.roc += er32(ROC);
3646
3647        adapter->stats.prc64 += er32(PRC64);
3648        adapter->stats.prc127 += er32(PRC127);
3649        adapter->stats.prc255 += er32(PRC255);
3650        adapter->stats.prc511 += er32(PRC511);
3651        adapter->stats.prc1023 += er32(PRC1023);
3652        adapter->stats.prc1522 += er32(PRC1522);
3653
3654        adapter->stats.symerrs += er32(SYMERRS);
3655        adapter->stats.mpc += er32(MPC);
3656        adapter->stats.scc += er32(SCC);
3657        adapter->stats.ecol += er32(ECOL);
3658        adapter->stats.mcc += er32(MCC);
3659        adapter->stats.latecol += er32(LATECOL);
3660        adapter->stats.dc += er32(DC);
3661        adapter->stats.sec += er32(SEC);
3662        adapter->stats.rlec += er32(RLEC);
3663        adapter->stats.xonrxc += er32(XONRXC);
3664        adapter->stats.xontxc += er32(XONTXC);
3665        adapter->stats.xoffrxc += er32(XOFFRXC);
3666        adapter->stats.xofftxc += er32(XOFFTXC);
3667        adapter->stats.fcruc += er32(FCRUC);
3668        adapter->stats.gptc += er32(GPTC);
3669        adapter->stats.gotcl += er32(GOTCL);
3670        adapter->stats.gotch += er32(GOTCH);
3671        adapter->stats.rnbc += er32(RNBC);
3672        adapter->stats.ruc += er32(RUC);
3673        adapter->stats.rfc += er32(RFC);
3674        adapter->stats.rjc += er32(RJC);
3675        adapter->stats.torl += er32(TORL);
3676        adapter->stats.torh += er32(TORH);
3677        adapter->stats.totl += er32(TOTL);
3678        adapter->stats.toth += er32(TOTH);
3679        adapter->stats.tpr += er32(TPR);
3680
3681        adapter->stats.ptc64 += er32(PTC64);
3682        adapter->stats.ptc127 += er32(PTC127);
3683        adapter->stats.ptc255 += er32(PTC255);
3684        adapter->stats.ptc511 += er32(PTC511);
3685        adapter->stats.ptc1023 += er32(PTC1023);
3686        adapter->stats.ptc1522 += er32(PTC1522);
3687
3688        adapter->stats.mptc += er32(MPTC);
3689        adapter->stats.bptc += er32(BPTC);
3690
3691        /* used for adaptive IFS */
3692
3693        hw->tx_packet_delta = er32(TPT);
3694        adapter->stats.tpt += hw->tx_packet_delta;
3695        hw->collision_delta = er32(COLC);
3696        adapter->stats.colc += hw->collision_delta;
3697
3698        if (hw->mac_type >= e1000_82543) {
3699                adapter->stats.algnerrc += er32(ALGNERRC);
3700                adapter->stats.rxerrc += er32(RXERRC);
3701                adapter->stats.tncrs += er32(TNCRS);
3702                adapter->stats.cexterr += er32(CEXTERR);
3703                adapter->stats.tsctc += er32(TSCTC);
3704                adapter->stats.tsctfc += er32(TSCTFC);
3705        }
3706
3707        /* Fill out the OS statistics structure */
3708        netdev->stats.multicast = adapter->stats.mprc;
3709        netdev->stats.collisions = adapter->stats.colc;
3710
3711        /* Rx Errors */
3712
3713        /* RLEC on some newer hardware can be incorrect so build
3714         * our own version based on RUC and ROC
3715         */
3716        netdev->stats.rx_errors = adapter->stats.rxerrc +
3717                adapter->stats.crcerrs + adapter->stats.algnerrc +
3718                adapter->stats.ruc + adapter->stats.roc +
3719                adapter->stats.cexterr;
3720        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3721        netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3722        netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3723        netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3724        netdev->stats.rx_missed_errors = adapter->stats.mpc;
3725
3726        /* Tx Errors */
3727        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3728        netdev->stats.tx_errors = adapter->stats.txerrc;
3729        netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3730        netdev->stats.tx_window_errors = adapter->stats.latecol;
3731        netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3732        if (hw->bad_tx_carr_stats_fd &&
3733            adapter->link_duplex == FULL_DUPLEX) {
3734                netdev->stats.tx_carrier_errors = 0;
3735                adapter->stats.tncrs = 0;
3736        }
3737
3738        /* Tx Dropped needs to be maintained elsewhere */
3739
3740        /* Phy Stats */
3741        if (hw->media_type == e1000_media_type_copper) {
3742                if ((adapter->link_speed == SPEED_1000) &&
3743                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3744                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3745                        adapter->phy_stats.idle_errors += phy_tmp;
3746                }
3747
3748                if ((hw->mac_type <= e1000_82546) &&
3749                   (hw->phy_type == e1000_phy_m88) &&
3750                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3751                        adapter->phy_stats.receive_errors += phy_tmp;
3752        }
3753
3754        /* Management Stats */
3755        if (hw->has_smbus) {
3756                adapter->stats.mgptc += er32(MGTPTC);
3757                adapter->stats.mgprc += er32(MGTPRC);
3758                adapter->stats.mgpdc += er32(MGTPDC);
3759        }
3760
3761        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3762}
3763
3764/**
3765 * e1000_intr - Interrupt Handler
3766 * @irq: interrupt number
3767 * @data: pointer to a network interface device structure
3768 **/
3769static irqreturn_t e1000_intr(int irq, void *data)
3770{
3771        struct net_device *netdev = data;
3772        struct e1000_adapter *adapter = netdev_priv(netdev);
3773        struct e1000_hw *hw = &adapter->hw;
3774        u32 icr = er32(ICR);
3775
3776        if (unlikely((!icr)))
3777                return IRQ_NONE;  /* Not our interrupt */
3778
3779        /* we might have caused the interrupt, but the above
3780         * read cleared it, and just in case the driver is
3781         * down there is nothing to do so return handled
3782         */
3783        if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784                return IRQ_HANDLED;
3785
3786        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787                hw->get_link_status = 1;
3788                /* guard against interrupt when we're going down */
3789                if (!test_bit(__E1000_DOWN, &adapter->flags))
3790                        schedule_delayed_work(&adapter->watchdog_task, 1);
3791        }
3792
3793        /* disable interrupts, without the synchronize_irq bit */
3794        ew32(IMC, ~0);
3795        E1000_WRITE_FLUSH();
3796
3797        if (likely(napi_schedule_prep(&adapter->napi))) {
3798                adapter->total_tx_bytes = 0;
3799                adapter->total_tx_packets = 0;
3800                adapter->total_rx_bytes = 0;
3801                adapter->total_rx_packets = 0;
3802                __napi_schedule(&adapter->napi);
3803        } else {
3804                /* this really should not happen! if it does it is basically a
3805                 * bug, but not a hard error, so enable ints and continue
3806                 */
3807                if (!test_bit(__E1000_DOWN, &adapter->flags))
3808                        e1000_irq_enable(adapter);
3809        }
3810
3811        return IRQ_HANDLED;
3812}
3813
3814/**
3815 * e1000_clean - NAPI Rx polling callback
3816 * @adapter: board private structure
3817 **/
3818static int e1000_clean(struct napi_struct *napi, int budget)
3819{
3820        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3821                                                     napi);
3822        int tx_clean_complete = 0, work_done = 0;
3823
3824        tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3825
3826        adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3827
3828        if (!tx_clean_complete)
3829                work_done = budget;
3830
3831        /* If budget not fully consumed, exit the polling mode */
3832        if (work_done < budget) {
3833                if (likely(adapter->itr_setting & 3))
3834                        e1000_set_itr(adapter);
3835                napi_complete_done(napi, work_done);
3836                if (!test_bit(__E1000_DOWN, &adapter->flags))
3837                        e1000_irq_enable(adapter);
3838        }
3839
3840        return work_done;
3841}
3842
3843/**
3844 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3845 * @adapter: board private structure
3846 **/
3847static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3848                               struct e1000_tx_ring *tx_ring)
3849{
3850        struct e1000_hw *hw = &adapter->hw;
3851        struct net_device *netdev = adapter->netdev;
3852        struct e1000_tx_desc *tx_desc, *eop_desc;
3853        struct e1000_tx_buffer *buffer_info;
3854        unsigned int i, eop;
3855        unsigned int count = 0;
3856        unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3857        unsigned int bytes_compl = 0, pkts_compl = 0;
3858
3859        i = tx_ring->next_to_clean;
3860        eop = tx_ring->buffer_info[i].next_to_watch;
3861        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3862
3863        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3864               (count < tx_ring->count)) {
3865                bool cleaned = false;
3866                dma_rmb();      /* read buffer_info after eop_desc */
3867                for ( ; !cleaned; count++) {
3868                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3869                        buffer_info = &tx_ring->buffer_info[i];
3870                        cleaned = (i == eop);
3871
3872                        if (cleaned) {
3873                                total_tx_packets += buffer_info->segs;
3874                                total_tx_bytes += buffer_info->bytecount;
3875                                if (buffer_info->skb) {
3876                                        bytes_compl += buffer_info->skb->len;
3877                                        pkts_compl++;
3878                                }
3879
3880                        }
3881                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3882                        tx_desc->upper.data = 0;
3883
3884                        if (unlikely(++i == tx_ring->count))
3885                                i = 0;
3886                }
3887
3888                eop = tx_ring->buffer_info[i].next_to_watch;
3889                eop_desc = E1000_TX_DESC(*tx_ring, eop);
3890        }
3891
3892        /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3893         * which will reuse the cleaned buffers.
3894         */
3895        smp_store_release(&tx_ring->next_to_clean, i);
3896
3897        netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3898
3899#define TX_WAKE_THRESHOLD 32
3900        if (unlikely(count && netif_carrier_ok(netdev) &&
3901                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3902                /* Make sure that anybody stopping the queue after this
3903                 * sees the new next_to_clean.
3904                 */
3905                smp_mb();
3906
3907                if (netif_queue_stopped(netdev) &&
3908                    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3909                        netif_wake_queue(netdev);
3910                        ++adapter->restart_queue;
3911                }
3912        }
3913
3914        if (adapter->detect_tx_hung) {
3915                /* Detect a transmit hang in hardware, this serializes the
3916                 * check with the clearing of time_stamp and movement of i
3917                 */
3918                adapter->detect_tx_hung = false;
3919                if (tx_ring->buffer_info[eop].time_stamp &&
3920                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3921                               (adapter->tx_timeout_factor * HZ)) &&
3922                    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3923
3924                        /* detected Tx unit hang */
3925                        e_err(drv, "Detected Tx Unit Hang\n"
3926                              "  Tx Queue             <%lu>\n"
3927                              "  TDH                  <%x>\n"
3928                              "  TDT                  <%x>\n"
3929                              "  next_to_use          <%x>\n"
3930                              "  next_to_clean        <%x>\n"
3931                              "buffer_info[next_to_clean]\n"
3932                              "  time_stamp           <%lx>\n"
3933                              "  next_to_watch        <%x>\n"
3934                              "  jiffies              <%lx>\n"
3935                              "  next_to_watch.status <%x>\n",
3936                                (unsigned long)(tx_ring - adapter->tx_ring),
3937                                readl(hw->hw_addr + tx_ring->tdh),
3938                                readl(hw->hw_addr + tx_ring->tdt),
3939                                tx_ring->next_to_use,
3940                                tx_ring->next_to_clean,
3941                                tx_ring->buffer_info[eop].time_stamp,
3942                                eop,
3943                                jiffies,
3944                                eop_desc->upper.fields.status);
3945                        e1000_dump(adapter);
3946                        netif_stop_queue(netdev);
3947                }
3948        }
3949        adapter->total_tx_bytes += total_tx_bytes;
3950        adapter->total_tx_packets += total_tx_packets;
3951        netdev->stats.tx_bytes += total_tx_bytes;
3952        netdev->stats.tx_packets += total_tx_packets;
3953        return count < tx_ring->count;
3954}
3955
3956/**
3957 * e1000_rx_checksum - Receive Checksum Offload for 82543
3958 * @adapter:     board private structure
3959 * @status_err:  receive descriptor status and error fields
3960 * @csum:        receive descriptor csum field
3961 * @sk_buff:     socket buffer with received data
3962 **/
3963static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3964                              u32 csum, struct sk_buff *skb)
3965{
3966        struct e1000_hw *hw = &adapter->hw;
3967        u16 status = (u16)status_err;
3968        u8 errors = (u8)(status_err >> 24);
3969
3970        skb_checksum_none_assert(skb);
3971
3972        /* 82543 or newer only */
3973        if (unlikely(hw->mac_type < e1000_82543))
3974                return;
3975        /* Ignore Checksum bit is set */
3976        if (unlikely(status & E1000_RXD_STAT_IXSM))
3977                return;
3978        /* TCP/UDP checksum error bit is set */
3979        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3980                /* let the stack verify checksum errors */
3981                adapter->hw_csum_err++;
3982                return;
3983        }
3984        /* TCP/UDP Checksum has not been calculated */
3985        if (!(status & E1000_RXD_STAT_TCPCS))
3986                return;
3987
3988        /* It must be a TCP or UDP packet with a valid checksum */
3989        if (likely(status & E1000_RXD_STAT_TCPCS)) {
3990                /* TCP checksum is good */
3991                skb->ip_summed = CHECKSUM_UNNECESSARY;
3992        }
3993        adapter->hw_csum_good++;
3994}
3995
3996/**
3997 * e1000_consume_page - helper function for jumbo Rx path
3998 **/
3999static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4000                               u16 length)
4001{
4002        bi->rxbuf.page = NULL;
4003        skb->len += length;
4004        skb->data_len += length;
4005        skb->truesize += PAGE_SIZE;
4006}
4007
4008/**
4009 * e1000_receive_skb - helper function to handle rx indications
4010 * @adapter: board private structure
4011 * @status: descriptor status field as written by hardware
4012 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4013 * @skb: pointer to sk_buff to be indicated to stack
4014 */
4015static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4016                              __le16 vlan, struct sk_buff *skb)
4017{
4018        skb->protocol = eth_type_trans(skb, adapter->netdev);
4019
4020        if (status & E1000_RXD_STAT_VP) {
4021                u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4022
4023                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4024        }
4025        napi_gro_receive(&adapter->napi, skb);
4026}
4027
4028/**
4029 * e1000_tbi_adjust_stats
4030 * @hw: Struct containing variables accessed by shared code
4031 * @frame_len: The length of the frame in question
4032 * @mac_addr: The Ethernet destination address of the frame in question
4033 *
4034 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4035 */
4036static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4037                                   struct e1000_hw_stats *stats,
4038                                   u32 frame_len, const u8 *mac_addr)
4039{
4040        u64 carry_bit;
4041
4042        /* First adjust the frame length. */
4043        frame_len--;
4044        /* We need to adjust the statistics counters, since the hardware
4045         * counters overcount this packet as a CRC error and undercount
4046         * the packet as a good packet
4047         */
4048        /* This packet should not be counted as a CRC error. */
4049        stats->crcerrs--;
4050        /* This packet does count as a Good Packet Received. */
4051        stats->gprc++;
4052
4053        /* Adjust the Good Octets received counters */
4054        carry_bit = 0x80000000 & stats->gorcl;
4055        stats->gorcl += frame_len;
4056        /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4057         * Received Count) was one before the addition,
4058         * AND it is zero after, then we lost the carry out,
4059         * need to add one to Gorch (Good Octets Received Count High).
4060         * This could be simplified if all environments supported
4061         * 64-bit integers.
4062         */
4063        if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4064                stats->gorch++;
4065        /* Is this a broadcast or multicast?  Check broadcast first,
4066         * since the test for a multicast frame will test positive on
4067         * a broadcast frame.
4068         */
4069        if (is_broadcast_ether_addr(mac_addr))
4070                stats->bprc++;
4071        else if (is_multicast_ether_addr(mac_addr))
4072                stats->mprc++;
4073
4074        if (frame_len == hw->max_frame_size) {
4075                /* In this case, the hardware has overcounted the number of
4076                 * oversize frames.
4077                 */
4078                if (stats->roc > 0)
4079                        stats->roc--;
4080        }
4081
4082        /* Adjust the bin counters when the extra byte put the frame in the
4083         * wrong bin. Remember that the frame_len was adjusted above.
4084         */
4085        if (frame_len == 64) {
4086                stats->prc64++;
4087                stats->prc127--;
4088        } else if (frame_len == 127) {
4089                stats->prc127++;
4090                stats->prc255--;
4091        } else if (frame_len == 255) {
4092                stats->prc255++;
4093                stats->prc511--;
4094        } else if (frame_len == 511) {
4095                stats->prc511++;
4096                stats->prc1023--;
4097        } else if (frame_len == 1023) {
4098                stats->prc1023++;
4099                stats->prc1522--;
4100        } else if (frame_len == 1522) {
4101                stats->prc1522++;
4102        }
4103}
4104
4105static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4106                                    u8 status, u8 errors,
4107                                    u32 length, const u8 *data)
4108{
4109        struct e1000_hw *hw = &adapter->hw;
4110        u8 last_byte = *(data + length - 1);
4111
4112        if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4113                unsigned long irq_flags;
4114
4115                spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4116                e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4117                spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4118
4119                return true;
4120        }
4121
4122        return false;
4123}
4124
4125static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4126                                          unsigned int bufsz)
4127{
4128        struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4129
4130        if (unlikely(!skb))
4131                adapter->alloc_rx_buff_failed++;
4132        return skb;
4133}
4134
4135/**
4136 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4137 * @adapter: board private structure
4138 * @rx_ring: ring to clean
4139 * @work_done: amount of napi work completed this call
4140 * @work_to_do: max amount of work allowed for this call to do
4141 *
4142 * the return value indicates whether actual cleaning was done, there
4143 * is no guarantee that everything was cleaned
4144 */
4145static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4146                                     struct e1000_rx_ring *rx_ring,
4147                                     int *work_done, int work_to_do)
4148{
4149        struct net_device *netdev = adapter->netdev;
4150        struct pci_dev *pdev = adapter->pdev;
4151        struct e1000_rx_desc *rx_desc, *next_rxd;
4152        struct e1000_rx_buffer *buffer_info, *next_buffer;
4153        u32 length;
4154        unsigned int i;
4155        int cleaned_count = 0;
4156        bool cleaned = false;
4157        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4158
4159        i = rx_ring->next_to_clean;
4160        rx_desc = E1000_RX_DESC(*rx_ring, i);
4161        buffer_info = &rx_ring->buffer_info[i];
4162
4163        while (rx_desc->status & E1000_RXD_STAT_DD) {
4164                struct sk_buff *skb;
4165                u8 status;
4166
4167                if (*work_done >= work_to_do)
4168                        break;
4169                (*work_done)++;
4170                dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4171
4172                status = rx_desc->status;
4173
4174                if (++i == rx_ring->count)
4175                        i = 0;
4176
4177                next_rxd = E1000_RX_DESC(*rx_ring, i);
4178                prefetch(next_rxd);
4179
4180                next_buffer = &rx_ring->buffer_info[i];
4181
4182                cleaned = true;
4183                cleaned_count++;
4184                dma_unmap_page(&pdev->dev, buffer_info->dma,
4185                               adapter->rx_buffer_len, DMA_FROM_DEVICE);
4186                buffer_info->dma = 0;
4187
4188                length = le16_to_cpu(rx_desc->length);
4189
4190                /* errors is only valid for DD + EOP descriptors */
4191                if (unlikely((status & E1000_RXD_STAT_EOP) &&
4192                    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4193                        u8 *mapped = page_address(buffer_info->rxbuf.page);
4194
4195                        if (e1000_tbi_should_accept(adapter, status,
4196                                                    rx_desc->errors,
4197                                                    length, mapped)) {
4198                                length--;
4199                        } else if (netdev->features & NETIF_F_RXALL) {
4200                                goto process_skb;
4201                        } else {
4202                                /* an error means any chain goes out the window
4203                                 * too
4204                                 */
4205                                if (rx_ring->rx_skb_top)
4206                                        dev_kfree_skb(rx_ring->rx_skb_top);
4207                                rx_ring->rx_skb_top = NULL;
4208                                goto next_desc;
4209                        }
4210                }
4211
4212#define rxtop rx_ring->rx_skb_top
4213process_skb:
4214                if (!(status & E1000_RXD_STAT_EOP)) {
4215                        /* this descriptor is only the beginning (or middle) */
4216                        if (!rxtop) {
4217                                /* this is the beginning of a chain */
4218                                rxtop = napi_get_frags(&adapter->napi);
4219                                if (!rxtop)
4220                                        break;
4221
4222                                skb_fill_page_desc(rxtop, 0,
4223                                                   buffer_info->rxbuf.page,
4224                                                   0, length);
4225                        } else {
4226                                /* this is the middle of a chain */
4227                                skb_fill_page_desc(rxtop,
4228                                    skb_shinfo(rxtop)->nr_frags,
4229                                    buffer_info->rxbuf.page, 0, length);
4230                        }
4231                        e1000_consume_page(buffer_info, rxtop, length);
4232                        goto next_desc;
4233                } else {
4234                        if (rxtop) {
4235                                /* end of the chain */
4236                                skb_fill_page_desc(rxtop,
4237                                    skb_shinfo(rxtop)->nr_frags,
4238                                    buffer_info->rxbuf.page, 0, length);
4239                                skb = rxtop;
4240                                rxtop = NULL;
4241                                e1000_consume_page(buffer_info, skb, length);
4242                        } else {
4243                                struct page *p;
4244                                /* no chain, got EOP, this buf is the packet
4245                                 * copybreak to save the put_page/alloc_page
4246                                 */
4247                                p = buffer_info->rxbuf.page;
4248                                if (length <= copybreak) {
4249                                        u8 *vaddr;
4250
4251                                        if (likely(!(netdev->features & NETIF_F_RXFCS)))
4252                                                length -= 4;
4253                                        skb = e1000_alloc_rx_skb(adapter,
4254                                                                 length);
4255                                        if (!skb)
4256                                                break;
4257
4258                                        vaddr = kmap_atomic(p);
4259                                        memcpy(skb_tail_pointer(skb), vaddr,
4260                                               length);
4261                                        kunmap_atomic(vaddr);
4262                                        /* re-use the page, so don't erase
4263                                         * buffer_info->rxbuf.page
4264                                         */
4265                                        skb_put(skb, length);
4266                                        e1000_rx_checksum(adapter,
4267                                                          status | rx_desc->errors << 24,
4268                                                          le16_to_cpu(rx_desc->csum), skb);
4269
4270                                        total_rx_bytes += skb->len;
4271                                        total_rx_packets++;
4272
4273                                        e1000_receive_skb(adapter, status,
4274                                                          rx_desc->special, skb);
4275                                        goto next_desc;
4276                                } else {
4277                                        skb = napi_get_frags(&adapter->napi);
4278                                        if (!skb) {
4279                                                adapter->alloc_rx_buff_failed++;
4280                                                break;
4281                                        }
4282                                        skb_fill_page_desc(skb, 0, p, 0,
4283                                                           length);
4284                                        e1000_consume_page(buffer_info, skb,
4285                                                           length);
4286                                }
4287                        }
4288                }
4289
4290                /* Receive Checksum Offload XXX recompute due to CRC strip? */
4291                e1000_rx_checksum(adapter,
4292                                  (u32)(status) |
4293                                  ((u32)(rx_desc->errors) << 24),
4294                                  le16_to_cpu(rx_desc->csum), skb);
4295
4296                total_rx_bytes += (skb->len - 4); /* don't count FCS */
4297                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4298                        pskb_trim(skb, skb->len - 4);
4299                total_rx_packets++;
4300
4301                if (status & E1000_RXD_STAT_VP) {
4302                        __le16 vlan = rx_desc->special;
4303                        u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4304
4305                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4306                }
4307
4308                napi_gro_frags(&adapter->napi);
4309
4310next_desc:
4311                rx_desc->status = 0;
4312
4313                /* return some buffers to hardware, one at a time is too slow */
4314                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4315                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4316                        cleaned_count = 0;
4317                }
4318
4319                /* use prefetched values */
4320                rx_desc = next_rxd;
4321                buffer_info = next_buffer;
4322        }
4323        rx_ring->next_to_clean = i;
4324
4325        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4326        if (cleaned_count)
4327                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4328
4329        adapter->total_rx_packets += total_rx_packets;
4330        adapter->total_rx_bytes += total_rx_bytes;
4331        netdev->stats.rx_bytes += total_rx_bytes;
4332        netdev->stats.rx_packets += total_rx_packets;
4333        return cleaned;
4334}
4335
4336/* this should improve performance for small packets with large amounts
4337 * of reassembly being done in the stack
4338 */
4339static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4340                                       struct e1000_rx_buffer *buffer_info,
4341                                       u32 length, const void *data)
4342{
4343        struct sk_buff *skb;
4344
4345        if (length > copybreak)
4346                return NULL;
4347
4348        skb = e1000_alloc_rx_skb(adapter, length);
4349        if (!skb)
4350                return NULL;
4351
4352        dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4353                                length, DMA_FROM_DEVICE);
4354
4355        skb_put_data(skb, data, length);
4356
4357        return skb;
4358}
4359
4360/**
4361 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4362 * @adapter: board private structure
4363 * @rx_ring: ring to clean
4364 * @work_done: amount of napi work completed this call
4365 * @work_to_do: max amount of work allowed for this call to do
4366 */
4367static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4368                               struct e1000_rx_ring *rx_ring,
4369                               int *work_done, int work_to_do)
4370{
4371        struct net_device *netdev = adapter->netdev;
4372        struct pci_dev *pdev = adapter->pdev;
4373        struct e1000_rx_desc *rx_desc, *next_rxd;
4374        struct e1000_rx_buffer *buffer_info, *next_buffer;
4375        u32 length;
4376        unsigned int i;
4377        int cleaned_count = 0;
4378        bool cleaned = false;
4379        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4380
4381        i = rx_ring->next_to_clean;
4382        rx_desc = E1000_RX_DESC(*rx_ring, i);
4383        buffer_info = &rx_ring->buffer_info[i];
4384
4385        while (rx_desc->status & E1000_RXD_STAT_DD) {
4386                struct sk_buff *skb;
4387                u8 *data;
4388                u8 status;
4389
4390                if (*work_done >= work_to_do)
4391                        break;
4392                (*work_done)++;
4393                dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4394
4395                status = rx_desc->status;
4396                length = le16_to_cpu(rx_desc->length);
4397
4398                data = buffer_info->rxbuf.data;
4399                prefetch(data);
4400                skb = e1000_copybreak(adapter, buffer_info, length, data);
4401                if (!skb) {
4402                        unsigned int frag_len = e1000_frag_len(adapter);
4403
4404                        skb = build_skb(data - E1000_HEADROOM, frag_len);
4405                        if (!skb) {
4406                                adapter->alloc_rx_buff_failed++;
4407                                break;
4408                        }
4409
4410                        skb_reserve(skb, E1000_HEADROOM);
4411                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4412                                         adapter->rx_buffer_len,
4413                                         DMA_FROM_DEVICE);
4414                        buffer_info->dma = 0;
4415                        buffer_info->rxbuf.data = NULL;
4416                }
4417
4418                if (++i == rx_ring->count)
4419                        i = 0;
4420
4421                next_rxd = E1000_RX_DESC(*rx_ring, i);
4422                prefetch(next_rxd);
4423
4424                next_buffer = &rx_ring->buffer_info[i];
4425
4426                cleaned = true;
4427                cleaned_count++;
4428
4429                /* !EOP means multiple descriptors were used to store a single
4430                 * packet, if thats the case we need to toss it.  In fact, we
4431                 * to toss every packet with the EOP bit clear and the next
4432                 * frame that _does_ have the EOP bit set, as it is by
4433                 * definition only a frame fragment
4434                 */
4435                if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4436                        adapter->discarding = true;
4437
4438                if (adapter->discarding) {
4439                        /* All receives must fit into a single buffer */
4440                        netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4441                        dev_kfree_skb(skb);
4442                        if (status & E1000_RXD_STAT_EOP)
4443                                adapter->discarding = false;
4444                        goto next_desc;
4445                }
4446
4447                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4448                        if (e1000_tbi_should_accept(adapter, status,
4449                                                    rx_desc->errors,
4450                                                    length, data)) {
4451                                length--;
4452                        } else if (netdev->features & NETIF_F_RXALL) {
4453                                goto process_skb;
4454                        } else {
4455                                dev_kfree_skb(skb);
4456                                goto next_desc;
4457                        }
4458                }
4459
4460process_skb:
4461                total_rx_bytes += (length - 4); /* don't count FCS */
4462                total_rx_packets++;
4463
4464                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4465                        /* adjust length to remove Ethernet CRC, this must be
4466                         * done after the TBI_ACCEPT workaround above
4467                         */
4468                        length -= 4;
4469
4470                if (buffer_info->rxbuf.data == NULL)
4471                        skb_put(skb, length);
4472                else /* copybreak skb */
4473                        skb_trim(skb, length);
4474
4475                /* Receive Checksum Offload */
4476                e1000_rx_checksum(adapter,
4477                                  (u32)(status) |
4478                                  ((u32)(rx_desc->errors) << 24),
4479                                  le16_to_cpu(rx_desc->csum), skb);
4480
4481                e1000_receive_skb(adapter, status, rx_desc->special, skb);
4482
4483next_desc:
4484                rx_desc->status = 0;
4485
4486                /* return some buffers to hardware, one at a time is too slow */
4487                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4488                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4489                        cleaned_count = 0;
4490                }
4491
4492                /* use prefetched values */
4493                rx_desc = next_rxd;
4494                buffer_info = next_buffer;
4495        }
4496        rx_ring->next_to_clean = i;
4497
4498        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4499        if (cleaned_count)
4500                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4501
4502        adapter->total_rx_packets += total_rx_packets;
4503        adapter->total_rx_bytes += total_rx_bytes;
4504        netdev->stats.rx_bytes += total_rx_bytes;
4505        netdev->stats.rx_packets += total_rx_packets;
4506        return cleaned;
4507}
4508
4509/**
4510 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4511 * @adapter: address of board private structure
4512 * @rx_ring: pointer to receive ring structure
4513 * @cleaned_count: number of buffers to allocate this pass
4514 **/
4515static void
4516e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4517                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4518{
4519        struct pci_dev *pdev = adapter->pdev;
4520        struct e1000_rx_desc *rx_desc;
4521        struct e1000_rx_buffer *buffer_info;
4522        unsigned int i;
4523
4524        i = rx_ring->next_to_use;
4525        buffer_info = &rx_ring->buffer_info[i];
4526
4527        while (cleaned_count--) {
4528                /* allocate a new page if necessary */
4529                if (!buffer_info->rxbuf.page) {
4530                        buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4531                        if (unlikely(!buffer_info->rxbuf.page)) {
4532                                adapter->alloc_rx_buff_failed++;
4533                                break;
4534                        }
4535                }
4536
4537                if (!buffer_info->dma) {
4538                        buffer_info->dma = dma_map_page(&pdev->dev,
4539                                                        buffer_info->rxbuf.page, 0,
4540                                                        adapter->rx_buffer_len,
4541                                                        DMA_FROM_DEVICE);
4542                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4543                                put_page(buffer_info->rxbuf.page);
4544                                buffer_info->rxbuf.page = NULL;
4545                                buffer_info->dma = 0;
4546                                adapter->alloc_rx_buff_failed++;
4547                                break;
4548                        }
4549                }
4550
4551                rx_desc = E1000_RX_DESC(*rx_ring, i);
4552                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4553
4554                if (unlikely(++i == rx_ring->count))
4555                        i = 0;
4556                buffer_info = &rx_ring->buffer_info[i];
4557        }
4558
4559        if (likely(rx_ring->next_to_use != i)) {
4560                rx_ring->next_to_use = i;
4561                if (unlikely(i-- == 0))
4562                        i = (rx_ring->count - 1);
4563
4564                /* Force memory writes to complete before letting h/w
4565                 * know there are new descriptors to fetch.  (Only
4566                 * applicable for weak-ordered memory model archs,
4567                 * such as IA-64).
4568                 */
4569                wmb();
4570                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4571        }
4572}
4573
4574/**
4575 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4576 * @adapter: address of board private structure
4577 **/
4578static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4579                                   struct e1000_rx_ring *rx_ring,
4580                                   int cleaned_count)
4581{
4582        struct e1000_hw *hw = &adapter->hw;
4583        struct pci_dev *pdev = adapter->pdev;
4584        struct e1000_rx_desc *rx_desc;
4585        struct e1000_rx_buffer *buffer_info;
4586        unsigned int i;
4587        unsigned int bufsz = adapter->rx_buffer_len;
4588
4589        i = rx_ring->next_to_use;
4590        buffer_info = &rx_ring->buffer_info[i];
4591
4592        while (cleaned_count--) {
4593                void *data;
4594
4595                if (buffer_info->rxbuf.data)
4596                        goto skip;
4597
4598                data = e1000_alloc_frag(adapter);
4599                if (!data) {
4600                        /* Better luck next round */
4601                        adapter->alloc_rx_buff_failed++;
4602                        break;
4603                }
4604
4605                /* Fix for errata 23, can't cross 64kB boundary */
4606                if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4607                        void *olddata = data;
4608                        e_err(rx_err, "skb align check failed: %u bytes at "
4609                              "%p\n", bufsz, data);
4610                        /* Try again, without freeing the previous */
4611                        data = e1000_alloc_frag(adapter);
4612                        /* Failed allocation, critical failure */
4613                        if (!data) {
4614                                skb_free_frag(olddata);
4615                                adapter->alloc_rx_buff_failed++;
4616                                break;
4617                        }
4618
4619                        if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4620                                /* give up */
4621                                skb_free_frag(data);
4622                                skb_free_frag(olddata);
4623                                adapter->alloc_rx_buff_failed++;
4624                                break;
4625                        }
4626
4627                        /* Use new allocation */
4628                        skb_free_frag(olddata);
4629                }
4630                buffer_info->dma = dma_map_single(&pdev->dev,
4631                                                  data,
4632                                                  adapter->rx_buffer_len,
4633                                                  DMA_FROM_DEVICE);
4634                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4635                        skb_free_frag(data);
4636                        buffer_info->dma = 0;
4637                        adapter->alloc_rx_buff_failed++;
4638                        break;
4639                }
4640
4641                /* XXX if it was allocated cleanly it will never map to a
4642                 * boundary crossing
4643                 */
4644
4645                /* Fix for errata 23, can't cross 64kB boundary */
4646                if (!e1000_check_64k_bound(adapter,
4647                                        (void *)(unsigned long)buffer_info->dma,
4648                                        adapter->rx_buffer_len)) {
4649                        e_err(rx_err, "dma align check failed: %u bytes at "
4650                              "%p\n", adapter->rx_buffer_len,
4651                              (void *)(unsigned long)buffer_info->dma);
4652
4653                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4654                                         adapter->rx_buffer_len,
4655                                         DMA_FROM_DEVICE);
4656
4657                        skb_free_frag(data);
4658                        buffer_info->rxbuf.data = NULL;
4659                        buffer_info->dma = 0;
4660
4661                        adapter->alloc_rx_buff_failed++;
4662                        break;
4663                }
4664                buffer_info->rxbuf.data = data;
4665 skip:
4666                rx_desc = E1000_RX_DESC(*rx_ring, i);
4667                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4668
4669                if (unlikely(++i == rx_ring->count))
4670                        i = 0;
4671                buffer_info = &rx_ring->buffer_info[i];
4672        }
4673
4674        if (likely(rx_ring->next_to_use != i)) {
4675                rx_ring->next_to_use = i;
4676                if (unlikely(i-- == 0))
4677                        i = (rx_ring->count - 1);
4678
4679                /* Force memory writes to complete before letting h/w
4680                 * know there are new descriptors to fetch.  (Only
4681                 * applicable for weak-ordered memory model archs,
4682                 * such as IA-64).
4683                 */
4684                wmb();
4685                writel(i, hw->hw_addr + rx_ring->rdt);
4686        }
4687}
4688
4689/**
4690 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4691 * @adapter:
4692 **/
4693static void e1000_smartspeed(struct e1000_adapter *adapter)
4694{
4695        struct e1000_hw *hw = &adapter->hw;
4696        u16 phy_status;
4697        u16 phy_ctrl;
4698
4699        if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4700           !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4701                return;
4702
4703        if (adapter->smartspeed == 0) {
4704                /* If Master/Slave config fault is asserted twice,
4705                 * we assume back-to-back
4706                 */
4707                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4708                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4709                        return;
4710                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4711                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4712                        return;
4713                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4715                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4716                        e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4717                                            phy_ctrl);
4718                        adapter->smartspeed++;
4719                        if (!e1000_phy_setup_autoneg(hw) &&
4720                           !e1000_read_phy_reg(hw, PHY_CTRL,
4721                                               &phy_ctrl)) {
4722                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723                                             MII_CR_RESTART_AUTO_NEG);
4724                                e1000_write_phy_reg(hw, PHY_CTRL,
4725                                                    phy_ctrl);
4726                        }
4727                }
4728                return;
4729        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4730                /* If still no link, perhaps using 2/3 pair cable */
4731                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4732                phy_ctrl |= CR_1000T_MS_ENABLE;
4733                e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4734                if (!e1000_phy_setup_autoneg(hw) &&
4735                   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4736                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4737                                     MII_CR_RESTART_AUTO_NEG);
4738                        e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4739                }
4740        }
4741        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4742        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4743                adapter->smartspeed = 0;
4744}
4745
4746/**
4747 * e1000_ioctl -
4748 * @netdev:
4749 * @ifreq:
4750 * @cmd:
4751 **/
4752static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4753{
4754        switch (cmd) {
4755        case SIOCGMIIPHY:
4756        case SIOCGMIIREG:
4757        case SIOCSMIIREG:
4758                return e1000_mii_ioctl(netdev, ifr, cmd);
4759        default:
4760                return -EOPNOTSUPP;
4761        }
4762}
4763
4764/**
4765 * e1000_mii_ioctl -
4766 * @netdev:
4767 * @ifreq:
4768 * @cmd:
4769 **/
4770static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4771                           int cmd)
4772{
4773        struct e1000_adapter *adapter = netdev_priv(netdev);
4774        struct e1000_hw *hw = &adapter->hw;
4775        struct mii_ioctl_data *data = if_mii(ifr);
4776        int retval;
4777        u16 mii_reg;
4778        unsigned long flags;
4779
4780        if (hw->media_type != e1000_media_type_copper)
4781                return -EOPNOTSUPP;
4782
4783        switch (cmd) {
4784        case SIOCGMIIPHY:
4785                data->phy_id = hw->phy_addr;
4786                break;
4787        case SIOCGMIIREG:
4788                spin_lock_irqsave(&adapter->stats_lock, flags);
4789                if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4790                                   &data->val_out)) {
4791                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4792                        return -EIO;
4793                }
4794                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4795                break;
4796        case SIOCSMIIREG:
4797                if (data->reg_num & ~(0x1F))
4798                        return -EFAULT;
4799                mii_reg = data->val_in;
4800                spin_lock_irqsave(&adapter->stats_lock, flags);
4801                if (e1000_write_phy_reg(hw, data->reg_num,
4802                                        mii_reg)) {
4803                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4804                        return -EIO;
4805                }
4806                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4807                if (hw->media_type == e1000_media_type_copper) {
4808                        switch (data->reg_num) {
4809                        case PHY_CTRL:
4810                                if (mii_reg & MII_CR_POWER_DOWN)
4811                                        break;
4812                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4813                                        hw->autoneg = 1;
4814                                        hw->autoneg_advertised = 0x2F;
4815                                } else {
4816                                        u32 speed;
4817                                        if (mii_reg & 0x40)
4818                                                speed = SPEED_1000;
4819                                        else if (mii_reg & 0x2000)
4820                                                speed = SPEED_100;
4821                                        else
4822                                                speed = SPEED_10;
4823                                        retval = e1000_set_spd_dplx(
4824                                                adapter, speed,
4825                                                ((mii_reg & 0x100)
4826                                                 ? DUPLEX_FULL :
4827                                                 DUPLEX_HALF));
4828                                        if (retval)
4829                                                return retval;
4830                                }
4831                                if (netif_running(adapter->netdev))
4832                                        e1000_reinit_locked(adapter);
4833                                else
4834                                        e1000_reset(adapter);
4835                                break;
4836                        case M88E1000_PHY_SPEC_CTRL:
4837                        case M88E1000_EXT_PHY_SPEC_CTRL:
4838                                if (e1000_phy_reset(hw))
4839                                        return -EIO;
4840                                break;
4841                        }
4842                } else {
4843                        switch (data->reg_num) {
4844                        case PHY_CTRL:
4845                                if (mii_reg & MII_CR_POWER_DOWN)
4846                                        break;
4847                                if (netif_running(adapter->netdev))
4848                                        e1000_reinit_locked(adapter);
4849                                else
4850                                        e1000_reset(adapter);
4851                                break;
4852                        }
4853                }
4854                break;
4855        default:
4856                return -EOPNOTSUPP;
4857        }
4858        return E1000_SUCCESS;
4859}
4860
4861void e1000_pci_set_mwi(struct e1000_hw *hw)
4862{
4863        struct e1000_adapter *adapter = hw->back;
4864        int ret_val = pci_set_mwi(adapter->pdev);
4865
4866        if (ret_val)
4867                e_err(probe, "Error in setting MWI\n");
4868}
4869
4870void e1000_pci_clear_mwi(struct e1000_hw *hw)
4871{
4872        struct e1000_adapter *adapter = hw->back;
4873
4874        pci_clear_mwi(adapter->pdev);
4875}
4876
4877int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4878{
4879        struct e1000_adapter *adapter = hw->back;
4880        return pcix_get_mmrbc(adapter->pdev);
4881}
4882
4883void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4884{
4885        struct e1000_adapter *adapter = hw->back;
4886        pcix_set_mmrbc(adapter->pdev, mmrbc);
4887}
4888
4889void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4890{
4891        outl(value, port);
4892}
4893
4894static bool e1000_vlan_used(struct e1000_adapter *adapter)
4895{
4896        u16 vid;
4897
4898        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4899                return true;
4900        return false;
4901}
4902
4903static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4904                              netdev_features_t features)
4905{
4906        struct e1000_hw *hw = &adapter->hw;
4907        u32 ctrl;
4908
4909        ctrl = er32(CTRL);
4910        if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4911                /* enable VLAN tag insert/strip */
4912                ctrl |= E1000_CTRL_VME;
4913        } else {
4914                /* disable VLAN tag insert/strip */
4915                ctrl &= ~E1000_CTRL_VME;
4916        }
4917        ew32(CTRL, ctrl);
4918}
4919static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4920                                     bool filter_on)
4921{
4922        struct e1000_hw *hw = &adapter->hw;
4923        u32 rctl;
4924
4925        if (!test_bit(__E1000_DOWN, &adapter->flags))
4926                e1000_irq_disable(adapter);
4927
4928        __e1000_vlan_mode(adapter, adapter->netdev->features);
4929        if (filter_on) {
4930                /* enable VLAN receive filtering */
4931                rctl = er32(RCTL);
4932                rctl &= ~E1000_RCTL_CFIEN;
4933                if (!(adapter->netdev->flags & IFF_PROMISC))
4934                        rctl |= E1000_RCTL_VFE;
4935                ew32(RCTL, rctl);
4936                e1000_update_mng_vlan(adapter);
4937        } else {
4938                /* disable VLAN receive filtering */
4939                rctl = er32(RCTL);
4940                rctl &= ~E1000_RCTL_VFE;
4941                ew32(RCTL, rctl);
4942        }
4943
4944        if (!test_bit(__E1000_DOWN, &adapter->flags))
4945                e1000_irq_enable(adapter);
4946}
4947
4948static void e1000_vlan_mode(struct net_device *netdev,
4949                            netdev_features_t features)
4950{
4951        struct e1000_adapter *adapter = netdev_priv(netdev);
4952
4953        if (!test_bit(__E1000_DOWN, &adapter->flags))
4954                e1000_irq_disable(adapter);
4955
4956        __e1000_vlan_mode(adapter, features);
4957
4958        if (!test_bit(__E1000_DOWN, &adapter->flags))
4959                e1000_irq_enable(adapter);
4960}
4961
4962static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4963                                 __be16 proto, u16 vid)
4964{
4965        struct e1000_adapter *adapter = netdev_priv(netdev);
4966        struct e1000_hw *hw = &adapter->hw;
4967        u32 vfta, index;
4968
4969        if ((hw->mng_cookie.status &
4970             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4971            (vid == adapter->mng_vlan_id))
4972                return 0;
4973
4974        if (!e1000_vlan_used(adapter))
4975                e1000_vlan_filter_on_off(adapter, true);
4976
4977        /* add VID to filter table */
4978        index = (vid >> 5) & 0x7F;
4979        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4980        vfta |= (1 << (vid & 0x1F));
4981        e1000_write_vfta(hw, index, vfta);
4982
4983        set_bit(vid, adapter->active_vlans);
4984
4985        return 0;
4986}
4987
4988static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4989                                  __be16 proto, u16 vid)
4990{
4991        struct e1000_adapter *adapter = netdev_priv(netdev);
4992        struct e1000_hw *hw = &adapter->hw;
4993        u32 vfta, index;
4994
4995        if (!test_bit(__E1000_DOWN, &adapter->flags))
4996                e1000_irq_disable(adapter);
4997        if (!test_bit(__E1000_DOWN, &adapter->flags))
4998                e1000_irq_enable(adapter);
4999
5000        /* remove VID from filter table */
5001        index = (vid >> 5) & 0x7F;
5002        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5003        vfta &= ~(1 << (vid & 0x1F));
5004        e1000_write_vfta(hw, index, vfta);
5005
5006        clear_bit(vid, adapter->active_vlans);
5007
5008        if (!e1000_vlan_used(adapter))
5009                e1000_vlan_filter_on_off(adapter, false);
5010
5011        return 0;
5012}
5013
5014static void e1000_restore_vlan(struct e1000_adapter *adapter)
5015{
5016        u16 vid;
5017
5018        if (!e1000_vlan_used(adapter))
5019                return;
5020
5021        e1000_vlan_filter_on_off(adapter, true);
5022        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5023                e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5024}
5025
5026int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5027{
5028        struct e1000_hw *hw = &adapter->hw;
5029
5030        hw->autoneg = 0;
5031
5032        /* Make sure dplx is at most 1 bit and lsb of speed is not set
5033         * for the switch() below to work
5034         */
5035        if ((spd & 1) || (dplx & ~1))
5036                goto err_inval;
5037
5038        /* Fiber NICs only allow 1000 gbps Full duplex */
5039        if ((hw->media_type == e1000_media_type_fiber) &&
5040            spd != SPEED_1000 &&
5041            dplx != DUPLEX_FULL)
5042                goto err_inval;
5043
5044        switch (spd + dplx) {
5045        case SPEED_10 + DUPLEX_HALF:
5046                hw->forced_speed_duplex = e1000_10_half;
5047                break;
5048        case SPEED_10 + DUPLEX_FULL:
5049                hw->forced_speed_duplex = e1000_10_full;
5050                break;
5051        case SPEED_100 + DUPLEX_HALF:
5052                hw->forced_speed_duplex = e1000_100_half;
5053                break;
5054        case SPEED_100 + DUPLEX_FULL:
5055                hw->forced_speed_duplex = e1000_100_full;
5056                break;
5057        case SPEED_1000 + DUPLEX_FULL:
5058                hw->autoneg = 1;
5059                hw->autoneg_advertised = ADVERTISE_1000_FULL;
5060                break;
5061        case SPEED_1000 + DUPLEX_HALF: /* not supported */
5062        default:
5063                goto err_inval;
5064        }
5065
5066        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5067        hw->mdix = AUTO_ALL_MODES;
5068
5069        return 0;
5070
5071err_inval:
5072        e_err(probe, "Unsupported Speed/Duplex configuration\n");
5073        return -EINVAL;
5074}
5075
5076static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5077{
5078        struct net_device *netdev = pci_get_drvdata(pdev);
5079        struct e1000_adapter *adapter = netdev_priv(netdev);
5080        struct e1000_hw *hw = &adapter->hw;
5081        u32 ctrl, ctrl_ext, rctl, status;
5082        u32 wufc = adapter->wol;
5083#ifdef CONFIG_PM
5084        int retval = 0;
5085#endif
5086
5087        netif_device_detach(netdev);
5088
5089        if (netif_running(netdev)) {
5090                int count = E1000_CHECK_RESET_COUNT;
5091
5092                while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5093                        usleep_range(10000, 20000);
5094
5095                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5096                e1000_down(adapter);
5097        }
5098
5099#ifdef CONFIG_PM
5100        retval = pci_save_state(pdev);
5101        if (retval)
5102                return retval;
5103#endif
5104
5105        status = er32(STATUS);
5106        if (status & E1000_STATUS_LU)
5107                wufc &= ~E1000_WUFC_LNKC;
5108
5109        if (wufc) {
5110                e1000_setup_rctl(adapter);
5111                e1000_set_rx_mode(netdev);
5112
5113                rctl = er32(RCTL);
5114
5115                /* turn on all-multi mode if wake on multicast is enabled */
5116                if (wufc & E1000_WUFC_MC)
5117                        rctl |= E1000_RCTL_MPE;
5118
5119                /* enable receives in the hardware */
5120                ew32(RCTL, rctl | E1000_RCTL_EN);
5121
5122                if (hw->mac_type >= e1000_82540) {
5123                        ctrl = er32(CTRL);
5124                        /* advertise wake from D3Cold */
5125                        #define E1000_CTRL_ADVD3WUC 0x00100000
5126                        /* phy power management enable */
5127                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5128                        ctrl |= E1000_CTRL_ADVD3WUC |
5129                                E1000_CTRL_EN_PHY_PWR_MGMT;
5130                        ew32(CTRL, ctrl);
5131                }
5132
5133                if (hw->media_type == e1000_media_type_fiber ||
5134                    hw->media_type == e1000_media_type_internal_serdes) {
5135                        /* keep the laser running in D3 */
5136                        ctrl_ext = er32(CTRL_EXT);
5137                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5138                        ew32(CTRL_EXT, ctrl_ext);
5139                }
5140
5141                ew32(WUC, E1000_WUC_PME_EN);
5142                ew32(WUFC, wufc);
5143        } else {
5144                ew32(WUC, 0);
5145                ew32(WUFC, 0);
5146        }
5147
5148        e1000_release_manageability(adapter);
5149
5150        *enable_wake = !!wufc;
5151
5152        /* make sure adapter isn't asleep if manageability is enabled */
5153        if (adapter->en_mng_pt)
5154                *enable_wake = true;
5155
5156        if (netif_running(netdev))
5157                e1000_free_irq(adapter);
5158
5159        pci_disable_device(pdev);
5160
5161        return 0;
5162}
5163
5164#ifdef CONFIG_PM
5165static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5166{
5167        int retval;
5168        bool wake;
5169
5170        retval = __e1000_shutdown(pdev, &wake);
5171        if (retval)
5172                return retval;
5173
5174        if (wake) {
5175                pci_prepare_to_sleep(pdev);
5176        } else {
5177                pci_wake_from_d3(pdev, false);
5178                pci_set_power_state(pdev, PCI_D3hot);
5179        }
5180
5181        return 0;
5182}
5183
5184static int e1000_resume(struct pci_dev *pdev)
5185{
5186        struct net_device *netdev = pci_get_drvdata(pdev);
5187        struct e1000_adapter *adapter = netdev_priv(netdev);
5188        struct e1000_hw *hw = &adapter->hw;
5189        u32 err;
5190
5191        pci_set_power_state(pdev, PCI_D0);
5192        pci_restore_state(pdev);
5193        pci_save_state(pdev);
5194
5195        if (adapter->need_ioport)
5196                err = pci_enable_device(pdev);
5197        else
5198                err = pci_enable_device_mem(pdev);
5199        if (err) {
5200                pr_err("Cannot enable PCI device from suspend\n");
5201                return err;
5202        }
5203        pci_set_master(pdev);
5204
5205        pci_enable_wake(pdev, PCI_D3hot, 0);
5206        pci_enable_wake(pdev, PCI_D3cold, 0);
5207
5208        if (netif_running(netdev)) {
5209                err = e1000_request_irq(adapter);
5210                if (err)
5211                        return err;
5212        }
5213
5214        e1000_power_up_phy(adapter);
5215        e1000_reset(adapter);
5216        ew32(WUS, ~0);
5217
5218        e1000_init_manageability(adapter);
5219
5220        if (netif_running(netdev))
5221                e1000_up(adapter);
5222
5223        netif_device_attach(netdev);
5224
5225        return 0;
5226}
5227#endif
5228
5229static void e1000_shutdown(struct pci_dev *pdev)
5230{
5231        bool wake;
5232
5233        __e1000_shutdown(pdev, &wake);
5234
5235        if (system_state == SYSTEM_POWER_OFF) {
5236                pci_wake_from_d3(pdev, wake);
5237                pci_set_power_state(pdev, PCI_D3hot);
5238        }
5239}
5240
5241#ifdef CONFIG_NET_POLL_CONTROLLER
5242/* Polling 'interrupt' - used by things like netconsole to send skbs
5243 * without having to re-enable interrupts. It's not called while
5244 * the interrupt routine is executing.
5245 */
5246static void e1000_netpoll(struct net_device *netdev)
5247{
5248        struct e1000_adapter *adapter = netdev_priv(netdev);
5249
5250        if (disable_hardirq(adapter->pdev->irq))
5251                e1000_intr(adapter->pdev->irq, netdev);
5252        enable_irq(adapter->pdev->irq);
5253}
5254#endif
5255
5256/**
5257 * e1000_io_error_detected - called when PCI error is detected
5258 * @pdev: Pointer to PCI device
5259 * @state: The current pci connection state
5260 *
5261 * This function is called after a PCI bus error affecting
5262 * this device has been detected.
5263 */
5264static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5265                                                pci_channel_state_t state)
5266{
5267        struct net_device *netdev = pci_get_drvdata(pdev);
5268        struct e1000_adapter *adapter = netdev_priv(netdev);
5269
5270        netif_device_detach(netdev);
5271
5272        if (state == pci_channel_io_perm_failure)
5273                return PCI_ERS_RESULT_DISCONNECT;
5274
5275        if (netif_running(netdev))
5276                e1000_down(adapter);
5277        pci_disable_device(pdev);
5278
5279        /* Request a slot slot reset. */
5280        return PCI_ERS_RESULT_NEED_RESET;
5281}
5282
5283/**
5284 * e1000_io_slot_reset - called after the pci bus has been reset.
5285 * @pdev: Pointer to PCI device
5286 *
5287 * Restart the card from scratch, as if from a cold-boot. Implementation
5288 * resembles the first-half of the e1000_resume routine.
5289 */
5290static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5291{
5292        struct net_device *netdev = pci_get_drvdata(pdev);
5293        struct e1000_adapter *adapter = netdev_priv(netdev);
5294        struct e1000_hw *hw = &adapter->hw;
5295        int err;
5296
5297        if (adapter->need_ioport)
5298                err = pci_enable_device(pdev);
5299        else
5300                err = pci_enable_device_mem(pdev);
5301        if (err) {
5302                pr_err("Cannot re-enable PCI device after reset.\n");
5303                return PCI_ERS_RESULT_DISCONNECT;
5304        }
5305        pci_set_master(pdev);
5306
5307        pci_enable_wake(pdev, PCI_D3hot, 0);
5308        pci_enable_wake(pdev, PCI_D3cold, 0);
5309
5310        e1000_reset(adapter);
5311        ew32(WUS, ~0);
5312
5313        return PCI_ERS_RESULT_RECOVERED;
5314}
5315
5316/**
5317 * e1000_io_resume - called when traffic can start flowing again.
5318 * @pdev: Pointer to PCI device
5319 *
5320 * This callback is called when the error recovery driver tells us that
5321 * its OK to resume normal operation. Implementation resembles the
5322 * second-half of the e1000_resume routine.
5323 */
5324static void e1000_io_resume(struct pci_dev *pdev)
5325{
5326        struct net_device *netdev = pci_get_drvdata(pdev);
5327        struct e1000_adapter *adapter = netdev_priv(netdev);
5328
5329        e1000_init_manageability(adapter);
5330
5331        if (netif_running(netdev)) {
5332                if (e1000_up(adapter)) {
5333                        pr_info("can't bring device back up after reset\n");
5334                        return;
5335                }
5336        }
5337
5338        netif_device_attach(netdev);
5339}
5340
5341/* e1000_main.c */
5342