linux/drivers/net/ethernet/micrel/ks8851.c
<<
>>
Prefs
   1/* drivers/net/ethernet/micrel/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *      http://www.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25#include <linux/eeprom_93cx6.h>
  26#include <linux/regulator/consumer.h>
  27
  28#include <linux/spi/spi.h>
  29#include <linux/gpio.h>
  30#include <linux/of_gpio.h>
  31
  32#include "ks8851.h"
  33
  34/**
  35 * struct ks8851_rxctrl - KS8851 driver rx control
  36 * @mchash: Multicast hash-table data.
  37 * @rxcr1: KS_RXCR1 register setting
  38 * @rxcr2: KS_RXCR2 register setting
  39 *
  40 * Representation of the settings needs to control the receive filtering
  41 * such as the multicast hash-filter and the receive register settings. This
  42 * is used to make the job of working out if the receive settings change and
  43 * then issuing the new settings to the worker that will send the necessary
  44 * commands.
  45 */
  46struct ks8851_rxctrl {
  47        u16     mchash[4];
  48        u16     rxcr1;
  49        u16     rxcr2;
  50};
  51
  52/**
  53 * union ks8851_tx_hdr - tx header data
  54 * @txb: The header as bytes
  55 * @txw: The header as 16bit, little-endian words
  56 *
  57 * A dual representation of the tx header data to allow
  58 * access to individual bytes, and to allow 16bit accesses
  59 * with 16bit alignment.
  60 */
  61union ks8851_tx_hdr {
  62        u8      txb[6];
  63        __le16  txw[3];
  64};
  65
  66/**
  67 * struct ks8851_net - KS8851 driver private data
  68 * @netdev: The network device we're bound to
  69 * @spidev: The spi device we're bound to.
  70 * @lock: Lock to ensure that the device is not accessed when busy.
  71 * @statelock: Lock on this structure for tx list.
  72 * @mii: The MII state information for the mii calls.
  73 * @rxctrl: RX settings for @rxctrl_work.
  74 * @tx_work: Work queue for tx packets
  75 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  76 * @txq: Queue of packets for transmission.
  77 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  78 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  79 * @txh: Space for generating packet TX header in DMA-able data
  80 * @rxd: Space for receiving SPI data, in DMA-able space.
  81 * @txd: Space for transmitting SPI data, in DMA-able space.
  82 * @msg_enable: The message flags controlling driver output (see ethtool).
  83 * @fid: Incrementing frame id tag.
  84 * @rc_ier: Cached copy of KS_IER.
  85 * @rc_ccr: Cached copy of KS_CCR.
  86 * @rc_rxqcr: Cached copy of KS_RXQCR.
  87 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  88 * @vdd_reg:    Optional regulator supplying the chip
  89 * @vdd_io: Optional digital power supply for IO
  90 * @gpio: Optional reset_n gpio
  91 *
  92 * The @lock ensures that the chip is protected when certain operations are
  93 * in progress. When the read or write packet transfer is in progress, most
  94 * of the chip registers are not ccessible until the transfer is finished and
  95 * the DMA has been de-asserted.
  96 *
  97 * The @statelock is used to protect information in the structure which may
  98 * need to be accessed via several sources, such as the network driver layer
  99 * or one of the work queues.
 100 *
 101 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 102 * wants to DMA map them, it will not have any problems with data the driver
 103 * modifies.
 104 */
 105struct ks8851_net {
 106        struct net_device       *netdev;
 107        struct spi_device       *spidev;
 108        struct mutex            lock;
 109        spinlock_t              statelock;
 110
 111        union ks8851_tx_hdr     txh ____cacheline_aligned;
 112        u8                      rxd[8];
 113        u8                      txd[8];
 114
 115        u32                     msg_enable ____cacheline_aligned;
 116        u16                     tx_space;
 117        u8                      fid;
 118
 119        u16                     rc_ier;
 120        u16                     rc_rxqcr;
 121        u16                     rc_ccr;
 122
 123        struct mii_if_info      mii;
 124        struct ks8851_rxctrl    rxctrl;
 125
 126        struct work_struct      tx_work;
 127        struct work_struct      rxctrl_work;
 128
 129        struct sk_buff_head     txq;
 130
 131        struct spi_message      spi_msg1;
 132        struct spi_message      spi_msg2;
 133        struct spi_transfer     spi_xfer1;
 134        struct spi_transfer     spi_xfer2[2];
 135
 136        struct eeprom_93cx6     eeprom;
 137        struct regulator        *vdd_reg;
 138        struct regulator        *vdd_io;
 139        int                     gpio;
 140};
 141
 142static int msg_enable;
 143
 144/* shift for byte-enable data */
 145#define BYTE_EN(_x)     ((_x) << 2)
 146
 147/* turn register number and byte-enable mask into data for start of packet */
 148#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 149
 150/* SPI register read/write calls.
 151 *
 152 * All these calls issue SPI transactions to access the chip's registers. They
 153 * all require that the necessary lock is held to prevent accesses when the
 154 * chip is busy transferring packet data (RX/TX FIFO accesses).
 155 */
 156
 157/**
 158 * ks8851_wrreg16 - write 16bit register value to chip
 159 * @ks: The chip state
 160 * @reg: The register address
 161 * @val: The value to write
 162 *
 163 * Issue a write to put the value @val into the register specified in @reg.
 164 */
 165static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 166{
 167        struct spi_transfer *xfer = &ks->spi_xfer1;
 168        struct spi_message *msg = &ks->spi_msg1;
 169        __le16 txb[2];
 170        int ret;
 171
 172        txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 173        txb[1] = cpu_to_le16(val);
 174
 175        xfer->tx_buf = txb;
 176        xfer->rx_buf = NULL;
 177        xfer->len = 4;
 178
 179        ret = spi_sync(ks->spidev, msg);
 180        if (ret < 0)
 181                netdev_err(ks->netdev, "spi_sync() failed\n");
 182}
 183
 184/**
 185 * ks8851_wrreg8 - write 8bit register value to chip
 186 * @ks: The chip state
 187 * @reg: The register address
 188 * @val: The value to write
 189 *
 190 * Issue a write to put the value @val into the register specified in @reg.
 191 */
 192static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 193{
 194        struct spi_transfer *xfer = &ks->spi_xfer1;
 195        struct spi_message *msg = &ks->spi_msg1;
 196        __le16 txb[2];
 197        int ret;
 198        int bit;
 199
 200        bit = 1 << (reg & 3);
 201
 202        txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 203        txb[1] = val;
 204
 205        xfer->tx_buf = txb;
 206        xfer->rx_buf = NULL;
 207        xfer->len = 3;
 208
 209        ret = spi_sync(ks->spidev, msg);
 210        if (ret < 0)
 211                netdev_err(ks->netdev, "spi_sync() failed\n");
 212}
 213
 214/**
 215 * ks8851_rdreg - issue read register command and return the data
 216 * @ks: The device state
 217 * @op: The register address and byte enables in message format.
 218 * @rxb: The RX buffer to return the result into
 219 * @rxl: The length of data expected.
 220 *
 221 * This is the low level read call that issues the necessary spi message(s)
 222 * to read data from the register specified in @op.
 223 */
 224static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 225                         u8 *rxb, unsigned rxl)
 226{
 227        struct spi_transfer *xfer;
 228        struct spi_message *msg;
 229        __le16 *txb = (__le16 *)ks->txd;
 230        u8 *trx = ks->rxd;
 231        int ret;
 232
 233        txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 234
 235        if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
 236                msg = &ks->spi_msg2;
 237                xfer = ks->spi_xfer2;
 238
 239                xfer->tx_buf = txb;
 240                xfer->rx_buf = NULL;
 241                xfer->len = 2;
 242
 243                xfer++;
 244                xfer->tx_buf = NULL;
 245                xfer->rx_buf = trx;
 246                xfer->len = rxl;
 247        } else {
 248                msg = &ks->spi_msg1;
 249                xfer = &ks->spi_xfer1;
 250
 251                xfer->tx_buf = txb;
 252                xfer->rx_buf = trx;
 253                xfer->len = rxl + 2;
 254        }
 255
 256        ret = spi_sync(ks->spidev, msg);
 257        if (ret < 0)
 258                netdev_err(ks->netdev, "read: spi_sync() failed\n");
 259        else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
 260                memcpy(rxb, trx, rxl);
 261        else
 262                memcpy(rxb, trx + 2, rxl);
 263}
 264
 265/**
 266 * ks8851_rdreg8 - read 8 bit register from device
 267 * @ks: The chip information
 268 * @reg: The register address
 269 *
 270 * Read a 8bit register from the chip, returning the result
 271*/
 272static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 273{
 274        u8 rxb[1];
 275
 276        ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 277        return rxb[0];
 278}
 279
 280/**
 281 * ks8851_rdreg16 - read 16 bit register from device
 282 * @ks: The chip information
 283 * @reg: The register address
 284 *
 285 * Read a 16bit register from the chip, returning the result
 286*/
 287static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 288{
 289        __le16 rx = 0;
 290
 291        ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 292        return le16_to_cpu(rx);
 293}
 294
 295/**
 296 * ks8851_rdreg32 - read 32 bit register from device
 297 * @ks: The chip information
 298 * @reg: The register address
 299 *
 300 * Read a 32bit register from the chip.
 301 *
 302 * Note, this read requires the address be aligned to 4 bytes.
 303*/
 304static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 305{
 306        __le32 rx = 0;
 307
 308        WARN_ON(reg & 3);
 309
 310        ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 311        return le32_to_cpu(rx);
 312}
 313
 314/**
 315 * ks8851_soft_reset - issue one of the soft reset to the device
 316 * @ks: The device state.
 317 * @op: The bit(s) to set in the GRR
 318 *
 319 * Issue the relevant soft-reset command to the device's GRR register
 320 * specified by @op.
 321 *
 322 * Note, the delays are in there as a caution to ensure that the reset
 323 * has time to take effect and then complete. Since the datasheet does
 324 * not currently specify the exact sequence, we have chosen something
 325 * that seems to work with our device.
 326 */
 327static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 328{
 329        ks8851_wrreg16(ks, KS_GRR, op);
 330        mdelay(1);      /* wait a short time to effect reset */
 331        ks8851_wrreg16(ks, KS_GRR, 0);
 332        mdelay(1);      /* wait for condition to clear */
 333}
 334
 335/**
 336 * ks8851_set_powermode - set power mode of the device
 337 * @ks: The device state
 338 * @pwrmode: The power mode value to write to KS_PMECR.
 339 *
 340 * Change the power mode of the chip.
 341 */
 342static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 343{
 344        unsigned pmecr;
 345
 346        netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 347
 348        pmecr = ks8851_rdreg16(ks, KS_PMECR);
 349        pmecr &= ~PMECR_PM_MASK;
 350        pmecr |= pwrmode;
 351
 352        ks8851_wrreg16(ks, KS_PMECR, pmecr);
 353}
 354
 355/**
 356 * ks8851_write_mac_addr - write mac address to device registers
 357 * @dev: The network device
 358 *
 359 * Update the KS8851 MAC address registers from the address in @dev.
 360 *
 361 * This call assumes that the chip is not running, so there is no need to
 362 * shutdown the RXQ process whilst setting this.
 363*/
 364static int ks8851_write_mac_addr(struct net_device *dev)
 365{
 366        struct ks8851_net *ks = netdev_priv(dev);
 367        int i;
 368
 369        mutex_lock(&ks->lock);
 370
 371        /*
 372         * Wake up chip in case it was powered off when stopped; otherwise,
 373         * the first write to the MAC address does not take effect.
 374         */
 375        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 376        for (i = 0; i < ETH_ALEN; i++)
 377                ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 378        if (!netif_running(dev))
 379                ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 380
 381        mutex_unlock(&ks->lock);
 382
 383        return 0;
 384}
 385
 386/**
 387 * ks8851_read_mac_addr - read mac address from device registers
 388 * @dev: The network device
 389 *
 390 * Update our copy of the KS8851 MAC address from the registers of @dev.
 391*/
 392static void ks8851_read_mac_addr(struct net_device *dev)
 393{
 394        struct ks8851_net *ks = netdev_priv(dev);
 395        int i;
 396
 397        mutex_lock(&ks->lock);
 398
 399        for (i = 0; i < ETH_ALEN; i++)
 400                dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 401
 402        mutex_unlock(&ks->lock);
 403}
 404
 405/**
 406 * ks8851_init_mac - initialise the mac address
 407 * @ks: The device structure
 408 *
 409 * Get or create the initial mac address for the device and then set that
 410 * into the station address register. If there is an EEPROM present, then
 411 * we try that. If no valid mac address is found we use eth_random_addr()
 412 * to create a new one.
 413 */
 414static void ks8851_init_mac(struct ks8851_net *ks)
 415{
 416        struct net_device *dev = ks->netdev;
 417
 418        /* first, try reading what we've got already */
 419        if (ks->rc_ccr & CCR_EEPROM) {
 420                ks8851_read_mac_addr(dev);
 421                if (is_valid_ether_addr(dev->dev_addr))
 422                        return;
 423
 424                netdev_err(ks->netdev, "invalid mac address read %pM\n",
 425                                dev->dev_addr);
 426        }
 427
 428        eth_hw_addr_random(dev);
 429        ks8851_write_mac_addr(dev);
 430}
 431
 432/**
 433 * ks8851_rdfifo - read data from the receive fifo
 434 * @ks: The device state.
 435 * @buff: The buffer address
 436 * @len: The length of the data to read
 437 *
 438 * Issue an RXQ FIFO read command and read the @len amount of data from
 439 * the FIFO into the buffer specified by @buff.
 440 */
 441static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 442{
 443        struct spi_transfer *xfer = ks->spi_xfer2;
 444        struct spi_message *msg = &ks->spi_msg2;
 445        u8 txb[1];
 446        int ret;
 447
 448        netif_dbg(ks, rx_status, ks->netdev,
 449                  "%s: %d@%p\n", __func__, len, buff);
 450
 451        /* set the operation we're issuing */
 452        txb[0] = KS_SPIOP_RXFIFO;
 453
 454        xfer->tx_buf = txb;
 455        xfer->rx_buf = NULL;
 456        xfer->len = 1;
 457
 458        xfer++;
 459        xfer->rx_buf = buff;
 460        xfer->tx_buf = NULL;
 461        xfer->len = len;
 462
 463        ret = spi_sync(ks->spidev, msg);
 464        if (ret < 0)
 465                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 466}
 467
 468/**
 469 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 470 * @ks: The device state
 471 * @rxpkt: The data for the received packet
 472 *
 473 * Dump the initial data from the packet to dev_dbg().
 474*/
 475static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 476{
 477        netdev_dbg(ks->netdev,
 478                   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 479                   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 480                   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 481                   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 482}
 483
 484/**
 485 * ks8851_rx_pkts - receive packets from the host
 486 * @ks: The device information.
 487 *
 488 * This is called from the IRQ work queue when the system detects that there
 489 * are packets in the receive queue. Find out how many packets there are and
 490 * read them from the FIFO.
 491 */
 492static void ks8851_rx_pkts(struct ks8851_net *ks)
 493{
 494        struct sk_buff *skb;
 495        unsigned rxfc;
 496        unsigned rxlen;
 497        unsigned rxstat;
 498        u32 rxh;
 499        u8 *rxpkt;
 500
 501        rxfc = ks8851_rdreg8(ks, KS_RXFC);
 502
 503        netif_dbg(ks, rx_status, ks->netdev,
 504                  "%s: %d packets\n", __func__, rxfc);
 505
 506        /* Currently we're issuing a read per packet, but we could possibly
 507         * improve the code by issuing a single read, getting the receive
 508         * header, allocating the packet and then reading the packet data
 509         * out in one go.
 510         *
 511         * This form of operation would require us to hold the SPI bus'
 512         * chipselect low during the entie transaction to avoid any
 513         * reset to the data stream coming from the chip.
 514         */
 515
 516        for (; rxfc != 0; rxfc--) {
 517                rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 518                rxstat = rxh & 0xffff;
 519                rxlen = (rxh >> 16) & 0xfff;
 520
 521                netif_dbg(ks, rx_status, ks->netdev,
 522                          "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 523
 524                /* the length of the packet includes the 32bit CRC */
 525
 526                /* set dma read address */
 527                ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 528
 529                /* start the packet dma process, and set auto-dequeue rx */
 530                ks8851_wrreg16(ks, KS_RXQCR,
 531                               ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 532
 533                if (rxlen > 4) {
 534                        unsigned int rxalign;
 535
 536                        rxlen -= 4;
 537                        rxalign = ALIGN(rxlen, 4);
 538                        skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 539                        if (skb) {
 540
 541                                /* 4 bytes of status header + 4 bytes of
 542                                 * garbage: we put them before ethernet
 543                                 * header, so that they are copied,
 544                                 * but ignored.
 545                                 */
 546
 547                                rxpkt = skb_put(skb, rxlen) - 8;
 548
 549                                ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 550
 551                                if (netif_msg_pktdata(ks))
 552                                        ks8851_dbg_dumpkkt(ks, rxpkt);
 553
 554                                skb->protocol = eth_type_trans(skb, ks->netdev);
 555                                netif_rx_ni(skb);
 556
 557                                ks->netdev->stats.rx_packets++;
 558                                ks->netdev->stats.rx_bytes += rxlen;
 559                        }
 560                }
 561
 562                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 563        }
 564}
 565
 566/**
 567 * ks8851_irq - IRQ handler for dealing with interrupt requests
 568 * @irq: IRQ number
 569 * @_ks: cookie
 570 *
 571 * This handler is invoked when the IRQ line asserts to find out what happened.
 572 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 573 * in thread context.
 574 *
 575 * Read the interrupt status, work out what needs to be done and then clear
 576 * any of the interrupts that are not needed.
 577 */
 578static irqreturn_t ks8851_irq(int irq, void *_ks)
 579{
 580        struct ks8851_net *ks = _ks;
 581        unsigned status;
 582        unsigned handled = 0;
 583
 584        mutex_lock(&ks->lock);
 585
 586        status = ks8851_rdreg16(ks, KS_ISR);
 587
 588        netif_dbg(ks, intr, ks->netdev,
 589                  "%s: status 0x%04x\n", __func__, status);
 590
 591        if (status & IRQ_LCI)
 592                handled |= IRQ_LCI;
 593
 594        if (status & IRQ_LDI) {
 595                u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 596                pmecr &= ~PMECR_WKEVT_MASK;
 597                ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 598
 599                handled |= IRQ_LDI;
 600        }
 601
 602        if (status & IRQ_RXPSI)
 603                handled |= IRQ_RXPSI;
 604
 605        if (status & IRQ_TXI) {
 606                handled |= IRQ_TXI;
 607
 608                /* no lock here, tx queue should have been stopped */
 609
 610                /* update our idea of how much tx space is available to the
 611                 * system */
 612                ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 613
 614                netif_dbg(ks, intr, ks->netdev,
 615                          "%s: txspace %d\n", __func__, ks->tx_space);
 616        }
 617
 618        if (status & IRQ_RXI)
 619                handled |= IRQ_RXI;
 620
 621        if (status & IRQ_SPIBEI) {
 622                dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 623                handled |= IRQ_SPIBEI;
 624        }
 625
 626        ks8851_wrreg16(ks, KS_ISR, handled);
 627
 628        if (status & IRQ_RXI) {
 629                /* the datasheet says to disable the rx interrupt during
 630                 * packet read-out, however we're masking the interrupt
 631                 * from the device so do not bother masking just the RX
 632                 * from the device. */
 633
 634                ks8851_rx_pkts(ks);
 635        }
 636
 637        /* if something stopped the rx process, probably due to wanting
 638         * to change the rx settings, then do something about restarting
 639         * it. */
 640        if (status & IRQ_RXPSI) {
 641                struct ks8851_rxctrl *rxc = &ks->rxctrl;
 642
 643                /* update the multicast hash table */
 644                ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 645                ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 646                ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 647                ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 648
 649                ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 650                ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 651        }
 652
 653        mutex_unlock(&ks->lock);
 654
 655        if (status & IRQ_LCI)
 656                mii_check_link(&ks->mii);
 657
 658        if (status & IRQ_TXI)
 659                netif_wake_queue(ks->netdev);
 660
 661        return IRQ_HANDLED;
 662}
 663
 664/**
 665 * calc_txlen - calculate size of message to send packet
 666 * @len: Length of data
 667 *
 668 * Returns the size of the TXFIFO message needed to send
 669 * this packet.
 670 */
 671static inline unsigned calc_txlen(unsigned len)
 672{
 673        return ALIGN(len + 4, 4);
 674}
 675
 676/**
 677 * ks8851_wrpkt - write packet to TX FIFO
 678 * @ks: The device state.
 679 * @txp: The sk_buff to transmit.
 680 * @irq: IRQ on completion of the packet.
 681 *
 682 * Send the @txp to the chip. This means creating the relevant packet header
 683 * specifying the length of the packet and the other information the chip
 684 * needs, such as IRQ on completion. Send the header and the packet data to
 685 * the device.
 686 */
 687static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 688{
 689        struct spi_transfer *xfer = ks->spi_xfer2;
 690        struct spi_message *msg = &ks->spi_msg2;
 691        unsigned fid = 0;
 692        int ret;
 693
 694        netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 695                  __func__, txp, txp->len, txp->data, irq);
 696
 697        fid = ks->fid++;
 698        fid &= TXFR_TXFID_MASK;
 699
 700        if (irq)
 701                fid |= TXFR_TXIC;       /* irq on completion */
 702
 703        /* start header at txb[1] to align txw entries */
 704        ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 705        ks->txh.txw[1] = cpu_to_le16(fid);
 706        ks->txh.txw[2] = cpu_to_le16(txp->len);
 707
 708        xfer->tx_buf = &ks->txh.txb[1];
 709        xfer->rx_buf = NULL;
 710        xfer->len = 5;
 711
 712        xfer++;
 713        xfer->tx_buf = txp->data;
 714        xfer->rx_buf = NULL;
 715        xfer->len = ALIGN(txp->len, 4);
 716
 717        ret = spi_sync(ks->spidev, msg);
 718        if (ret < 0)
 719                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 720}
 721
 722/**
 723 * ks8851_done_tx - update and then free skbuff after transmitting
 724 * @ks: The device state
 725 * @txb: The buffer transmitted
 726 */
 727static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 728{
 729        struct net_device *dev = ks->netdev;
 730
 731        dev->stats.tx_bytes += txb->len;
 732        dev->stats.tx_packets++;
 733
 734        dev_kfree_skb(txb);
 735}
 736
 737/**
 738 * ks8851_tx_work - process tx packet(s)
 739 * @work: The work strucutre what was scheduled.
 740 *
 741 * This is called when a number of packets have been scheduled for
 742 * transmission and need to be sent to the device.
 743 */
 744static void ks8851_tx_work(struct work_struct *work)
 745{
 746        struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 747        struct sk_buff *txb;
 748        bool last = skb_queue_empty(&ks->txq);
 749
 750        mutex_lock(&ks->lock);
 751
 752        while (!last) {
 753                txb = skb_dequeue(&ks->txq);
 754                last = skb_queue_empty(&ks->txq);
 755
 756                if (txb != NULL) {
 757                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 758                        ks8851_wrpkt(ks, txb, last);
 759                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 760                        ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 761
 762                        ks8851_done_tx(ks, txb);
 763                }
 764        }
 765
 766        mutex_unlock(&ks->lock);
 767}
 768
 769/**
 770 * ks8851_net_open - open network device
 771 * @dev: The network device being opened.
 772 *
 773 * Called when the network device is marked active, such as a user executing
 774 * 'ifconfig up' on the device.
 775 */
 776static int ks8851_net_open(struct net_device *dev)
 777{
 778        struct ks8851_net *ks = netdev_priv(dev);
 779
 780        /* lock the card, even if we may not actually be doing anything
 781         * else at the moment */
 782        mutex_lock(&ks->lock);
 783
 784        netif_dbg(ks, ifup, ks->netdev, "opening\n");
 785
 786        /* bring chip out of any power saving mode it was in */
 787        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 788
 789        /* issue a soft reset to the RX/TX QMU to put it into a known
 790         * state. */
 791        ks8851_soft_reset(ks, GRR_QMU);
 792
 793        /* setup transmission parameters */
 794
 795        ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 796                                     TXCR_TXPE | /* pad to min length */
 797                                     TXCR_TXCRC | /* add CRC */
 798                                     TXCR_TXFCE)); /* enable flow control */
 799
 800        /* auto-increment tx data, reset tx pointer */
 801        ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 802
 803        /* setup receiver control */
 804
 805        ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 806                                      RXCR1_RXFCE | /* enable flow control */
 807                                      RXCR1_RXBE | /* broadcast enable */
 808                                      RXCR1_RXUE | /* unicast enable */
 809                                      RXCR1_RXE)); /* enable rx block */
 810
 811        /* transfer entire frames out in one go */
 812        ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 813
 814        /* set receive counter timeouts */
 815        ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 816        ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 817        ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 818
 819        ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 820                        RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 821                        RXQCR_RXDTTE);  /* IRQ on time exceeded */
 822
 823        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 824
 825        /* clear then enable interrupts */
 826
 827#define STD_IRQ (IRQ_LCI |      /* Link Change */       \
 828                 IRQ_TXI |      /* TX done */           \
 829                 IRQ_RXI |      /* RX done */           \
 830                 IRQ_SPIBEI |   /* SPI bus error */     \
 831                 IRQ_TXPSI |    /* TX process stop */   \
 832                 IRQ_RXPSI)     /* RX process stop */
 833
 834        ks->rc_ier = STD_IRQ;
 835        ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 836        ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 837
 838        netif_start_queue(ks->netdev);
 839
 840        netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 841
 842        mutex_unlock(&ks->lock);
 843        return 0;
 844}
 845
 846/**
 847 * ks8851_net_stop - close network device
 848 * @dev: The device being closed.
 849 *
 850 * Called to close down a network device which has been active. Cancell any
 851 * work, shutdown the RX and TX process and then place the chip into a low
 852 * power state whilst it is not being used.
 853 */
 854static int ks8851_net_stop(struct net_device *dev)
 855{
 856        struct ks8851_net *ks = netdev_priv(dev);
 857
 858        netif_info(ks, ifdown, dev, "shutting down\n");
 859
 860        netif_stop_queue(dev);
 861
 862        mutex_lock(&ks->lock);
 863        /* turn off the IRQs and ack any outstanding */
 864        ks8851_wrreg16(ks, KS_IER, 0x0000);
 865        ks8851_wrreg16(ks, KS_ISR, 0xffff);
 866        mutex_unlock(&ks->lock);
 867
 868        /* stop any outstanding work */
 869        flush_work(&ks->tx_work);
 870        flush_work(&ks->rxctrl_work);
 871
 872        mutex_lock(&ks->lock);
 873        /* shutdown RX process */
 874        ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 875
 876        /* shutdown TX process */
 877        ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 878
 879        /* set powermode to soft power down to save power */
 880        ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 881        mutex_unlock(&ks->lock);
 882
 883        /* ensure any queued tx buffers are dumped */
 884        while (!skb_queue_empty(&ks->txq)) {
 885                struct sk_buff *txb = skb_dequeue(&ks->txq);
 886
 887                netif_dbg(ks, ifdown, ks->netdev,
 888                          "%s: freeing txb %p\n", __func__, txb);
 889
 890                dev_kfree_skb(txb);
 891        }
 892
 893        return 0;
 894}
 895
 896/**
 897 * ks8851_start_xmit - transmit packet
 898 * @skb: The buffer to transmit
 899 * @dev: The device used to transmit the packet.
 900 *
 901 * Called by the network layer to transmit the @skb. Queue the packet for
 902 * the device and schedule the necessary work to transmit the packet when
 903 * it is free.
 904 *
 905 * We do this to firstly avoid sleeping with the network device locked,
 906 * and secondly so we can round up more than one packet to transmit which
 907 * means we can try and avoid generating too many transmit done interrupts.
 908 */
 909static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 910                                     struct net_device *dev)
 911{
 912        struct ks8851_net *ks = netdev_priv(dev);
 913        unsigned needed = calc_txlen(skb->len);
 914        netdev_tx_t ret = NETDEV_TX_OK;
 915
 916        netif_dbg(ks, tx_queued, ks->netdev,
 917                  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 918
 919        spin_lock(&ks->statelock);
 920
 921        if (needed > ks->tx_space) {
 922                netif_stop_queue(dev);
 923                ret = NETDEV_TX_BUSY;
 924        } else {
 925                ks->tx_space -= needed;
 926                skb_queue_tail(&ks->txq, skb);
 927        }
 928
 929        spin_unlock(&ks->statelock);
 930        schedule_work(&ks->tx_work);
 931
 932        return ret;
 933}
 934
 935/**
 936 * ks8851_rxctrl_work - work handler to change rx mode
 937 * @work: The work structure this belongs to.
 938 *
 939 * Lock the device and issue the necessary changes to the receive mode from
 940 * the network device layer. This is done so that we can do this without
 941 * having to sleep whilst holding the network device lock.
 942 *
 943 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 944 * receive parameters are programmed, we issue a write to disable the RXQ and
 945 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 946 * complete. The interrupt handler then writes the new values into the chip.
 947 */
 948static void ks8851_rxctrl_work(struct work_struct *work)
 949{
 950        struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 951
 952        mutex_lock(&ks->lock);
 953
 954        /* need to shutdown RXQ before modifying filter parameters */
 955        ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 956
 957        mutex_unlock(&ks->lock);
 958}
 959
 960static void ks8851_set_rx_mode(struct net_device *dev)
 961{
 962        struct ks8851_net *ks = netdev_priv(dev);
 963        struct ks8851_rxctrl rxctrl;
 964
 965        memset(&rxctrl, 0, sizeof(rxctrl));
 966
 967        if (dev->flags & IFF_PROMISC) {
 968                /* interface to receive everything */
 969
 970                rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 971        } else if (dev->flags & IFF_ALLMULTI) {
 972                /* accept all multicast packets */
 973
 974                rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 975                                RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 976        } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 977                struct netdev_hw_addr *ha;
 978                u32 crc;
 979
 980                /* accept some multicast */
 981
 982                netdev_for_each_mc_addr(ha, dev) {
 983                        crc = ether_crc(ETH_ALEN, ha->addr);
 984                        crc >>= (32 - 6);  /* get top six bits */
 985
 986                        rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 987                }
 988
 989                rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 990        } else {
 991                /* just accept broadcast / unicast */
 992                rxctrl.rxcr1 = RXCR1_RXPAFMA;
 993        }
 994
 995        rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 996                         RXCR1_RXBE | /* broadcast enable */
 997                         RXCR1_RXE | /* RX process enable */
 998                         RXCR1_RXFCE); /* enable flow control */
 999
1000        rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1001
1002        /* schedule work to do the actual set of the data if needed */
1003
1004        spin_lock(&ks->statelock);
1005
1006        if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1007                memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1008                schedule_work(&ks->rxctrl_work);
1009        }
1010
1011        spin_unlock(&ks->statelock);
1012}
1013
1014static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1015{
1016        struct sockaddr *sa = addr;
1017
1018        if (netif_running(dev))
1019                return -EBUSY;
1020
1021        if (!is_valid_ether_addr(sa->sa_data))
1022                return -EADDRNOTAVAIL;
1023
1024        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1025        return ks8851_write_mac_addr(dev);
1026}
1027
1028static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1029{
1030        struct ks8851_net *ks = netdev_priv(dev);
1031
1032        if (!netif_running(dev))
1033                return -EINVAL;
1034
1035        return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1036}
1037
1038static const struct net_device_ops ks8851_netdev_ops = {
1039        .ndo_open               = ks8851_net_open,
1040        .ndo_stop               = ks8851_net_stop,
1041        .ndo_do_ioctl           = ks8851_net_ioctl,
1042        .ndo_start_xmit         = ks8851_start_xmit,
1043        .ndo_set_mac_address    = ks8851_set_mac_address,
1044        .ndo_set_rx_mode        = ks8851_set_rx_mode,
1045        .ndo_validate_addr      = eth_validate_addr,
1046};
1047
1048/* ethtool support */
1049
1050static void ks8851_get_drvinfo(struct net_device *dev,
1051                               struct ethtool_drvinfo *di)
1052{
1053        strlcpy(di->driver, "KS8851", sizeof(di->driver));
1054        strlcpy(di->version, "1.00", sizeof(di->version));
1055        strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1056}
1057
1058static u32 ks8851_get_msglevel(struct net_device *dev)
1059{
1060        struct ks8851_net *ks = netdev_priv(dev);
1061        return ks->msg_enable;
1062}
1063
1064static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1065{
1066        struct ks8851_net *ks = netdev_priv(dev);
1067        ks->msg_enable = to;
1068}
1069
1070static int ks8851_get_link_ksettings(struct net_device *dev,
1071                                     struct ethtool_link_ksettings *cmd)
1072{
1073        struct ks8851_net *ks = netdev_priv(dev);
1074
1075        mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1076
1077        return 0;
1078}
1079
1080static int ks8851_set_link_ksettings(struct net_device *dev,
1081                                     const struct ethtool_link_ksettings *cmd)
1082{
1083        struct ks8851_net *ks = netdev_priv(dev);
1084        return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1085}
1086
1087static u32 ks8851_get_link(struct net_device *dev)
1088{
1089        struct ks8851_net *ks = netdev_priv(dev);
1090        return mii_link_ok(&ks->mii);
1091}
1092
1093static int ks8851_nway_reset(struct net_device *dev)
1094{
1095        struct ks8851_net *ks = netdev_priv(dev);
1096        return mii_nway_restart(&ks->mii);
1097}
1098
1099/* EEPROM support */
1100
1101static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1102{
1103        struct ks8851_net *ks = ee->data;
1104        unsigned val;
1105
1106        val = ks8851_rdreg16(ks, KS_EEPCR);
1107
1108        ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1109        ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1110        ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1111}
1112
1113static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1114{
1115        struct ks8851_net *ks = ee->data;
1116        unsigned val = EEPCR_EESA;      /* default - eeprom access on */
1117
1118        if (ee->drive_data)
1119                val |= EEPCR_EESRWA;
1120        if (ee->reg_data_in)
1121                val |= EEPCR_EEDO;
1122        if (ee->reg_data_clock)
1123                val |= EEPCR_EESCK;
1124        if (ee->reg_chip_select)
1125                val |= EEPCR_EECS;
1126
1127        ks8851_wrreg16(ks, KS_EEPCR, val);
1128}
1129
1130/**
1131 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1132 * @ks: The network device state.
1133 *
1134 * Check for the presence of an EEPROM, and then activate software access
1135 * to the device.
1136 */
1137static int ks8851_eeprom_claim(struct ks8851_net *ks)
1138{
1139        if (!(ks->rc_ccr & CCR_EEPROM))
1140                return -ENOENT;
1141
1142        mutex_lock(&ks->lock);
1143
1144        /* start with clock low, cs high */
1145        ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1146        return 0;
1147}
1148
1149/**
1150 * ks8851_eeprom_release - release the EEPROM interface
1151 * @ks: The device state
1152 *
1153 * Release the software access to the device EEPROM
1154 */
1155static void ks8851_eeprom_release(struct ks8851_net *ks)
1156{
1157        unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1158
1159        ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1160        mutex_unlock(&ks->lock);
1161}
1162
1163#define KS_EEPROM_MAGIC (0x00008851)
1164
1165static int ks8851_set_eeprom(struct net_device *dev,
1166                             struct ethtool_eeprom *ee, u8 *data)
1167{
1168        struct ks8851_net *ks = netdev_priv(dev);
1169        int offset = ee->offset;
1170        int len = ee->len;
1171        u16 tmp;
1172
1173        /* currently only support byte writing */
1174        if (len != 1)
1175                return -EINVAL;
1176
1177        if (ee->magic != KS_EEPROM_MAGIC)
1178                return -EINVAL;
1179
1180        if (ks8851_eeprom_claim(ks))
1181                return -ENOENT;
1182
1183        eeprom_93cx6_wren(&ks->eeprom, true);
1184
1185        /* ethtool currently only supports writing bytes, which means
1186         * we have to read/modify/write our 16bit EEPROMs */
1187
1188        eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1189
1190        if (offset & 1) {
1191                tmp &= 0xff;
1192                tmp |= *data << 8;
1193        } else {
1194                tmp &= 0xff00;
1195                tmp |= *data;
1196        }
1197
1198        eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1199        eeprom_93cx6_wren(&ks->eeprom, false);
1200
1201        ks8851_eeprom_release(ks);
1202
1203        return 0;
1204}
1205
1206static int ks8851_get_eeprom(struct net_device *dev,
1207                             struct ethtool_eeprom *ee, u8 *data)
1208{
1209        struct ks8851_net *ks = netdev_priv(dev);
1210        int offset = ee->offset;
1211        int len = ee->len;
1212
1213        /* must be 2 byte aligned */
1214        if (len & 1 || offset & 1)
1215                return -EINVAL;
1216
1217        if (ks8851_eeprom_claim(ks))
1218                return -ENOENT;
1219
1220        ee->magic = KS_EEPROM_MAGIC;
1221
1222        eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1223        ks8851_eeprom_release(ks);
1224
1225        return 0;
1226}
1227
1228static int ks8851_get_eeprom_len(struct net_device *dev)
1229{
1230        struct ks8851_net *ks = netdev_priv(dev);
1231
1232        /* currently, we assume it is an 93C46 attached, so return 128 */
1233        return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1234}
1235
1236static const struct ethtool_ops ks8851_ethtool_ops = {
1237        .get_drvinfo    = ks8851_get_drvinfo,
1238        .get_msglevel   = ks8851_get_msglevel,
1239        .set_msglevel   = ks8851_set_msglevel,
1240        .get_link       = ks8851_get_link,
1241        .nway_reset     = ks8851_nway_reset,
1242        .get_eeprom_len = ks8851_get_eeprom_len,
1243        .get_eeprom     = ks8851_get_eeprom,
1244        .set_eeprom     = ks8851_set_eeprom,
1245        .get_link_ksettings = ks8851_get_link_ksettings,
1246        .set_link_ksettings = ks8851_set_link_ksettings,
1247};
1248
1249/* MII interface controls */
1250
1251/**
1252 * ks8851_phy_reg - convert MII register into a KS8851 register
1253 * @reg: MII register number.
1254 *
1255 * Return the KS8851 register number for the corresponding MII PHY register
1256 * if possible. Return zero if the MII register has no direct mapping to the
1257 * KS8851 register set.
1258 */
1259static int ks8851_phy_reg(int reg)
1260{
1261        switch (reg) {
1262        case MII_BMCR:
1263                return KS_P1MBCR;
1264        case MII_BMSR:
1265                return KS_P1MBSR;
1266        case MII_PHYSID1:
1267                return KS_PHY1ILR;
1268        case MII_PHYSID2:
1269                return KS_PHY1IHR;
1270        case MII_ADVERTISE:
1271                return KS_P1ANAR;
1272        case MII_LPA:
1273                return KS_P1ANLPR;
1274        }
1275
1276        return 0x0;
1277}
1278
1279/**
1280 * ks8851_phy_read - MII interface PHY register read.
1281 * @dev: The network device the PHY is on.
1282 * @phy_addr: Address of PHY (ignored as we only have one)
1283 * @reg: The register to read.
1284 *
1285 * This call reads data from the PHY register specified in @reg. Since the
1286 * device does not support all the MII registers, the non-existent values
1287 * are always returned as zero.
1288 *
1289 * We return zero for unsupported registers as the MII code does not check
1290 * the value returned for any error status, and simply returns it to the
1291 * caller. The mii-tool that the driver was tested with takes any -ve error
1292 * as real PHY capabilities, thus displaying incorrect data to the user.
1293 */
1294static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1295{
1296        struct ks8851_net *ks = netdev_priv(dev);
1297        int ksreg;
1298        int result;
1299
1300        ksreg = ks8851_phy_reg(reg);
1301        if (!ksreg)
1302                return 0x0;     /* no error return allowed, so use zero */
1303
1304        mutex_lock(&ks->lock);
1305        result = ks8851_rdreg16(ks, ksreg);
1306        mutex_unlock(&ks->lock);
1307
1308        return result;
1309}
1310
1311static void ks8851_phy_write(struct net_device *dev,
1312                             int phy, int reg, int value)
1313{
1314        struct ks8851_net *ks = netdev_priv(dev);
1315        int ksreg;
1316
1317        ksreg = ks8851_phy_reg(reg);
1318        if (ksreg) {
1319                mutex_lock(&ks->lock);
1320                ks8851_wrreg16(ks, ksreg, value);
1321                mutex_unlock(&ks->lock);
1322        }
1323}
1324
1325/**
1326 * ks8851_read_selftest - read the selftest memory info.
1327 * @ks: The device state
1328 *
1329 * Read and check the TX/RX memory selftest information.
1330 */
1331static int ks8851_read_selftest(struct ks8851_net *ks)
1332{
1333        unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1334        int ret = 0;
1335        unsigned rd;
1336
1337        rd = ks8851_rdreg16(ks, KS_MBIR);
1338
1339        if ((rd & both_done) != both_done) {
1340                netdev_warn(ks->netdev, "Memory selftest not finished\n");
1341                return 0;
1342        }
1343
1344        if (rd & MBIR_TXMBFA) {
1345                netdev_err(ks->netdev, "TX memory selftest fail\n");
1346                ret |= 1;
1347        }
1348
1349        if (rd & MBIR_RXMBFA) {
1350                netdev_err(ks->netdev, "RX memory selftest fail\n");
1351                ret |= 2;
1352        }
1353
1354        return 0;
1355}
1356
1357/* driver bus management functions */
1358
1359#ifdef CONFIG_PM_SLEEP
1360
1361static int ks8851_suspend(struct device *dev)
1362{
1363        struct ks8851_net *ks = dev_get_drvdata(dev);
1364        struct net_device *netdev = ks->netdev;
1365
1366        if (netif_running(netdev)) {
1367                netif_device_detach(netdev);
1368                ks8851_net_stop(netdev);
1369        }
1370
1371        return 0;
1372}
1373
1374static int ks8851_resume(struct device *dev)
1375{
1376        struct ks8851_net *ks = dev_get_drvdata(dev);
1377        struct net_device *netdev = ks->netdev;
1378
1379        if (netif_running(netdev)) {
1380                ks8851_net_open(netdev);
1381                netif_device_attach(netdev);
1382        }
1383
1384        return 0;
1385}
1386#endif
1387
1388static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1389
1390static int ks8851_probe(struct spi_device *spi)
1391{
1392        struct net_device *ndev;
1393        struct ks8851_net *ks;
1394        int ret;
1395        unsigned cider;
1396        int gpio;
1397
1398        ndev = alloc_etherdev(sizeof(struct ks8851_net));
1399        if (!ndev)
1400                return -ENOMEM;
1401
1402        spi->bits_per_word = 8;
1403
1404        ks = netdev_priv(ndev);
1405
1406        ks->netdev = ndev;
1407        ks->spidev = spi;
1408        ks->tx_space = 6144;
1409
1410        gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1411                                       0, NULL);
1412        if (gpio == -EPROBE_DEFER) {
1413                ret = gpio;
1414                goto err_gpio;
1415        }
1416
1417        ks->gpio = gpio;
1418        if (gpio_is_valid(gpio)) {
1419                ret = devm_gpio_request_one(&spi->dev, gpio,
1420                                            GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1421                if (ret) {
1422                        dev_err(&spi->dev, "reset gpio request failed\n");
1423                        goto err_gpio;
1424                }
1425        }
1426
1427        ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1428        if (IS_ERR(ks->vdd_io)) {
1429                ret = PTR_ERR(ks->vdd_io);
1430                goto err_reg_io;
1431        }
1432
1433        ret = regulator_enable(ks->vdd_io);
1434        if (ret) {
1435                dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1436                        ret);
1437                goto err_reg_io;
1438        }
1439
1440        ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1441        if (IS_ERR(ks->vdd_reg)) {
1442                ret = PTR_ERR(ks->vdd_reg);
1443                goto err_reg;
1444        }
1445
1446        ret = regulator_enable(ks->vdd_reg);
1447        if (ret) {
1448                dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1449                        ret);
1450                goto err_reg;
1451        }
1452
1453        if (gpio_is_valid(gpio)) {
1454                usleep_range(10000, 11000);
1455                gpio_set_value(gpio, 1);
1456        }
1457
1458        mutex_init(&ks->lock);
1459        spin_lock_init(&ks->statelock);
1460
1461        INIT_WORK(&ks->tx_work, ks8851_tx_work);
1462        INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1463
1464        /* initialise pre-made spi transfer messages */
1465
1466        spi_message_init(&ks->spi_msg1);
1467        spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1468
1469        spi_message_init(&ks->spi_msg2);
1470        spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1471        spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1472
1473        /* setup EEPROM state */
1474
1475        ks->eeprom.data = ks;
1476        ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1477        ks->eeprom.register_read = ks8851_eeprom_regread;
1478        ks->eeprom.register_write = ks8851_eeprom_regwrite;
1479
1480        /* setup mii state */
1481        ks->mii.dev             = ndev;
1482        ks->mii.phy_id          = 1,
1483        ks->mii.phy_id_mask     = 1;
1484        ks->mii.reg_num_mask    = 0xf;
1485        ks->mii.mdio_read       = ks8851_phy_read;
1486        ks->mii.mdio_write      = ks8851_phy_write;
1487
1488        dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1489
1490        /* set the default message enable */
1491        ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1492                                                     NETIF_MSG_PROBE |
1493                                                     NETIF_MSG_LINK));
1494
1495        skb_queue_head_init(&ks->txq);
1496
1497        ndev->ethtool_ops = &ks8851_ethtool_ops;
1498        SET_NETDEV_DEV(ndev, &spi->dev);
1499
1500        spi_set_drvdata(spi, ks);
1501
1502        ndev->if_port = IF_PORT_100BASET;
1503        ndev->netdev_ops = &ks8851_netdev_ops;
1504        ndev->irq = spi->irq;
1505
1506        /* issue a global soft reset to reset the device. */
1507        ks8851_soft_reset(ks, GRR_GSR);
1508
1509        /* simple check for a valid chip being connected to the bus */
1510        cider = ks8851_rdreg16(ks, KS_CIDER);
1511        if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1512                dev_err(&spi->dev, "failed to read device ID\n");
1513                ret = -ENODEV;
1514                goto err_id;
1515        }
1516
1517        /* cache the contents of the CCR register for EEPROM, etc. */
1518        ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1519
1520        ks8851_read_selftest(ks);
1521        ks8851_init_mac(ks);
1522
1523        ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1524                                   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1525                                   ndev->name, ks);
1526        if (ret < 0) {
1527                dev_err(&spi->dev, "failed to get irq\n");
1528                goto err_irq;
1529        }
1530
1531        ret = register_netdev(ndev);
1532        if (ret) {
1533                dev_err(&spi->dev, "failed to register network device\n");
1534                goto err_netdev;
1535        }
1536
1537        netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1538                    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1539                    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1540
1541        return 0;
1542
1543
1544err_netdev:
1545        free_irq(ndev->irq, ks);
1546
1547err_irq:
1548        if (gpio_is_valid(gpio))
1549                gpio_set_value(gpio, 0);
1550err_id:
1551        regulator_disable(ks->vdd_reg);
1552err_reg:
1553        regulator_disable(ks->vdd_io);
1554err_reg_io:
1555err_gpio:
1556        free_netdev(ndev);
1557        return ret;
1558}
1559
1560static int ks8851_remove(struct spi_device *spi)
1561{
1562        struct ks8851_net *priv = spi_get_drvdata(spi);
1563
1564        if (netif_msg_drv(priv))
1565                dev_info(&spi->dev, "remove\n");
1566
1567        unregister_netdev(priv->netdev);
1568        free_irq(spi->irq, priv);
1569        if (gpio_is_valid(priv->gpio))
1570                gpio_set_value(priv->gpio, 0);
1571        regulator_disable(priv->vdd_reg);
1572        regulator_disable(priv->vdd_io);
1573        free_netdev(priv->netdev);
1574
1575        return 0;
1576}
1577
1578static const struct of_device_id ks8851_match_table[] = {
1579        { .compatible = "micrel,ks8851" },
1580        { }
1581};
1582MODULE_DEVICE_TABLE(of, ks8851_match_table);
1583
1584static struct spi_driver ks8851_driver = {
1585        .driver = {
1586                .name = "ks8851",
1587                .of_match_table = ks8851_match_table,
1588                .pm = &ks8851_pm_ops,
1589        },
1590        .probe = ks8851_probe,
1591        .remove = ks8851_remove,
1592};
1593module_spi_driver(ks8851_driver);
1594
1595MODULE_DESCRIPTION("KS8851 Network driver");
1596MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1597MODULE_LICENSE("GPL");
1598
1599module_param_named(message, msg_enable, int, 0);
1600MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1601MODULE_ALIAS("spi:ks8851");
1602