linux/drivers/net/ethernet/sfc/falcon/efx.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/ethtool.h>
  21#include <linux/topology.h>
  22#include <linux/gfp.h>
  23#include <linux/aer.h>
  24#include <linux/interrupt.h>
  25#include "net_driver.h"
  26#include "efx.h"
  27#include "nic.h"
  28#include "selftest.h"
  29
  30#include "workarounds.h"
  31
  32/**************************************************************************
  33 *
  34 * Type name strings
  35 *
  36 **************************************************************************
  37 */
  38
  39/* Loopback mode names (see LOOPBACK_MODE()) */
  40const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
  41const char *const ef4_loopback_mode_names[] = {
  42        [LOOPBACK_NONE]         = "NONE",
  43        [LOOPBACK_DATA]         = "DATAPATH",
  44        [LOOPBACK_GMAC]         = "GMAC",
  45        [LOOPBACK_XGMII]        = "XGMII",
  46        [LOOPBACK_XGXS]         = "XGXS",
  47        [LOOPBACK_XAUI]         = "XAUI",
  48        [LOOPBACK_GMII]         = "GMII",
  49        [LOOPBACK_SGMII]        = "SGMII",
  50        [LOOPBACK_XGBR]         = "XGBR",
  51        [LOOPBACK_XFI]          = "XFI",
  52        [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
  53        [LOOPBACK_GMII_FAR]     = "GMII_FAR",
  54        [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
  55        [LOOPBACK_XFI_FAR]      = "XFI_FAR",
  56        [LOOPBACK_GPHY]         = "GPHY",
  57        [LOOPBACK_PHYXS]        = "PHYXS",
  58        [LOOPBACK_PCS]          = "PCS",
  59        [LOOPBACK_PMAPMD]       = "PMA/PMD",
  60        [LOOPBACK_XPORT]        = "XPORT",
  61        [LOOPBACK_XGMII_WS]     = "XGMII_WS",
  62        [LOOPBACK_XAUI_WS]      = "XAUI_WS",
  63        [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  64        [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  65        [LOOPBACK_GMII_WS]      = "GMII_WS",
  66        [LOOPBACK_XFI_WS]       = "XFI_WS",
  67        [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
  68        [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
  69};
  70
  71const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
  72const char *const ef4_reset_type_names[] = {
  73        [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  74        [RESET_TYPE_ALL]                = "ALL",
  75        [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  76        [RESET_TYPE_WORLD]              = "WORLD",
  77        [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  78        [RESET_TYPE_DATAPATH]           = "DATAPATH",
  79        [RESET_TYPE_DISABLE]            = "DISABLE",
  80        [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  81        [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  82        [RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
  83        [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  84        [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  85};
  86
  87/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  88 * queued onto this work queue. This is not a per-nic work queue, because
  89 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  90 */
  91static struct workqueue_struct *reset_workqueue;
  92
  93/* How often and how many times to poll for a reset while waiting for a
  94 * BIST that another function started to complete.
  95 */
  96#define BIST_WAIT_DELAY_MS      100
  97#define BIST_WAIT_DELAY_COUNT   100
  98
  99/**************************************************************************
 100 *
 101 * Configurable values
 102 *
 103 *************************************************************************/
 104
 105/*
 106 * Use separate channels for TX and RX events
 107 *
 108 * Set this to 1 to use separate channels for TX and RX. It allows us
 109 * to control interrupt affinity separately for TX and RX.
 110 *
 111 * This is only used in MSI-X interrupt mode
 112 */
 113bool ef4_separate_tx_channels;
 114module_param(ef4_separate_tx_channels, bool, 0444);
 115MODULE_PARM_DESC(ef4_separate_tx_channels,
 116                 "Use separate channels for TX and RX");
 117
 118/* This is the weight assigned to each of the (per-channel) virtual
 119 * NAPI devices.
 120 */
 121static int napi_weight = 64;
 122
 123/* This is the time (in jiffies) between invocations of the hardware
 124 * monitor.
 125 * On Falcon-based NICs, this will:
 126 * - Check the on-board hardware monitor;
 127 * - Poll the link state and reconfigure the hardware as necessary.
 128 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 129 * chance to start.
 130 */
 131static unsigned int ef4_monitor_interval = 1 * HZ;
 132
 133/* Initial interrupt moderation settings.  They can be modified after
 134 * module load with ethtool.
 135 *
 136 * The default for RX should strike a balance between increasing the
 137 * round-trip latency and reducing overhead.
 138 */
 139static unsigned int rx_irq_mod_usec = 60;
 140
 141/* Initial interrupt moderation settings.  They can be modified after
 142 * module load with ethtool.
 143 *
 144 * This default is chosen to ensure that a 10G link does not go idle
 145 * while a TX queue is stopped after it has become full.  A queue is
 146 * restarted when it drops below half full.  The time this takes (assuming
 147 * worst case 3 descriptors per packet and 1024 descriptors) is
 148 *   512 / 3 * 1.2 = 205 usec.
 149 */
 150static unsigned int tx_irq_mod_usec = 150;
 151
 152/* This is the first interrupt mode to try out of:
 153 * 0 => MSI-X
 154 * 1 => MSI
 155 * 2 => legacy
 156 */
 157static unsigned int interrupt_mode;
 158
 159/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 160 * i.e. the number of CPUs among which we may distribute simultaneous
 161 * interrupt handling.
 162 *
 163 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 164 * The default (0) means to assign an interrupt to each core.
 165 */
 166static unsigned int rss_cpus;
 167module_param(rss_cpus, uint, 0444);
 168MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 169
 170static bool phy_flash_cfg;
 171module_param(phy_flash_cfg, bool, 0644);
 172MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 173
 174static unsigned irq_adapt_low_thresh = 8000;
 175module_param(irq_adapt_low_thresh, uint, 0644);
 176MODULE_PARM_DESC(irq_adapt_low_thresh,
 177                 "Threshold score for reducing IRQ moderation");
 178
 179static unsigned irq_adapt_high_thresh = 16000;
 180module_param(irq_adapt_high_thresh, uint, 0644);
 181MODULE_PARM_DESC(irq_adapt_high_thresh,
 182                 "Threshold score for increasing IRQ moderation");
 183
 184static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 185                         NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 186                         NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 187                         NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 188module_param(debug, uint, 0);
 189MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 190
 191/**************************************************************************
 192 *
 193 * Utility functions and prototypes
 194 *
 195 *************************************************************************/
 196
 197static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
 198static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
 199static void ef4_remove_channel(struct ef4_channel *channel);
 200static void ef4_remove_channels(struct ef4_nic *efx);
 201static const struct ef4_channel_type ef4_default_channel_type;
 202static void ef4_remove_port(struct ef4_nic *efx);
 203static void ef4_init_napi_channel(struct ef4_channel *channel);
 204static void ef4_fini_napi(struct ef4_nic *efx);
 205static void ef4_fini_napi_channel(struct ef4_channel *channel);
 206static void ef4_fini_struct(struct ef4_nic *efx);
 207static void ef4_start_all(struct ef4_nic *efx);
 208static void ef4_stop_all(struct ef4_nic *efx);
 209
 210#define EF4_ASSERT_RESET_SERIALISED(efx)                \
 211        do {                                            \
 212                if ((efx->state == STATE_READY) ||      \
 213                    (efx->state == STATE_RECOVERY) ||   \
 214                    (efx->state == STATE_DISABLED))     \
 215                        ASSERT_RTNL();                  \
 216        } while (0)
 217
 218static int ef4_check_disabled(struct ef4_nic *efx)
 219{
 220        if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 221                netif_err(efx, drv, efx->net_dev,
 222                          "device is disabled due to earlier errors\n");
 223                return -EIO;
 224        }
 225        return 0;
 226}
 227
 228/**************************************************************************
 229 *
 230 * Event queue processing
 231 *
 232 *************************************************************************/
 233
 234/* Process channel's event queue
 235 *
 236 * This function is responsible for processing the event queue of a
 237 * single channel.  The caller must guarantee that this function will
 238 * never be concurrently called more than once on the same channel,
 239 * though different channels may be being processed concurrently.
 240 */
 241static int ef4_process_channel(struct ef4_channel *channel, int budget)
 242{
 243        struct ef4_tx_queue *tx_queue;
 244        int spent;
 245
 246        if (unlikely(!channel->enabled))
 247                return 0;
 248
 249        ef4_for_each_channel_tx_queue(tx_queue, channel) {
 250                tx_queue->pkts_compl = 0;
 251                tx_queue->bytes_compl = 0;
 252        }
 253
 254        spent = ef4_nic_process_eventq(channel, budget);
 255        if (spent && ef4_channel_has_rx_queue(channel)) {
 256                struct ef4_rx_queue *rx_queue =
 257                        ef4_channel_get_rx_queue(channel);
 258
 259                ef4_rx_flush_packet(channel);
 260                ef4_fast_push_rx_descriptors(rx_queue, true);
 261        }
 262
 263        /* Update BQL */
 264        ef4_for_each_channel_tx_queue(tx_queue, channel) {
 265                if (tx_queue->bytes_compl) {
 266                        netdev_tx_completed_queue(tx_queue->core_txq,
 267                                tx_queue->pkts_compl, tx_queue->bytes_compl);
 268                }
 269        }
 270
 271        return spent;
 272}
 273
 274/* NAPI poll handler
 275 *
 276 * NAPI guarantees serialisation of polls of the same device, which
 277 * provides the guarantee required by ef4_process_channel().
 278 */
 279static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
 280{
 281        int step = efx->irq_mod_step_us;
 282
 283        if (channel->irq_mod_score < irq_adapt_low_thresh) {
 284                if (channel->irq_moderation_us > step) {
 285                        channel->irq_moderation_us -= step;
 286                        efx->type->push_irq_moderation(channel);
 287                }
 288        } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
 289                if (channel->irq_moderation_us <
 290                    efx->irq_rx_moderation_us) {
 291                        channel->irq_moderation_us += step;
 292                        efx->type->push_irq_moderation(channel);
 293                }
 294        }
 295
 296        channel->irq_count = 0;
 297        channel->irq_mod_score = 0;
 298}
 299
 300static int ef4_poll(struct napi_struct *napi, int budget)
 301{
 302        struct ef4_channel *channel =
 303                container_of(napi, struct ef4_channel, napi_str);
 304        struct ef4_nic *efx = channel->efx;
 305        int spent;
 306
 307        netif_vdbg(efx, intr, efx->net_dev,
 308                   "channel %d NAPI poll executing on CPU %d\n",
 309                   channel->channel, raw_smp_processor_id());
 310
 311        spent = ef4_process_channel(channel, budget);
 312
 313        if (spent < budget) {
 314                if (ef4_channel_has_rx_queue(channel) &&
 315                    efx->irq_rx_adaptive &&
 316                    unlikely(++channel->irq_count == 1000)) {
 317                        ef4_update_irq_mod(efx, channel);
 318                }
 319
 320                ef4_filter_rfs_expire(channel);
 321
 322                /* There is no race here; although napi_disable() will
 323                 * only wait for napi_complete(), this isn't a problem
 324                 * since ef4_nic_eventq_read_ack() will have no effect if
 325                 * interrupts have already been disabled.
 326                 */
 327                napi_complete_done(napi, spent);
 328                ef4_nic_eventq_read_ack(channel);
 329        }
 330
 331        return spent;
 332}
 333
 334/* Create event queue
 335 * Event queue memory allocations are done only once.  If the channel
 336 * is reset, the memory buffer will be reused; this guards against
 337 * errors during channel reset and also simplifies interrupt handling.
 338 */
 339static int ef4_probe_eventq(struct ef4_channel *channel)
 340{
 341        struct ef4_nic *efx = channel->efx;
 342        unsigned long entries;
 343
 344        netif_dbg(efx, probe, efx->net_dev,
 345                  "chan %d create event queue\n", channel->channel);
 346
 347        /* Build an event queue with room for one event per tx and rx buffer,
 348         * plus some extra for link state events and MCDI completions. */
 349        entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 350        EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
 351        channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
 352
 353        return ef4_nic_probe_eventq(channel);
 354}
 355
 356/* Prepare channel's event queue */
 357static int ef4_init_eventq(struct ef4_channel *channel)
 358{
 359        struct ef4_nic *efx = channel->efx;
 360        int rc;
 361
 362        EF4_WARN_ON_PARANOID(channel->eventq_init);
 363
 364        netif_dbg(efx, drv, efx->net_dev,
 365                  "chan %d init event queue\n", channel->channel);
 366
 367        rc = ef4_nic_init_eventq(channel);
 368        if (rc == 0) {
 369                efx->type->push_irq_moderation(channel);
 370                channel->eventq_read_ptr = 0;
 371                channel->eventq_init = true;
 372        }
 373        return rc;
 374}
 375
 376/* Enable event queue processing and NAPI */
 377void ef4_start_eventq(struct ef4_channel *channel)
 378{
 379        netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 380                  "chan %d start event queue\n", channel->channel);
 381
 382        /* Make sure the NAPI handler sees the enabled flag set */
 383        channel->enabled = true;
 384        smp_wmb();
 385
 386        napi_enable(&channel->napi_str);
 387        ef4_nic_eventq_read_ack(channel);
 388}
 389
 390/* Disable event queue processing and NAPI */
 391void ef4_stop_eventq(struct ef4_channel *channel)
 392{
 393        if (!channel->enabled)
 394                return;
 395
 396        napi_disable(&channel->napi_str);
 397        channel->enabled = false;
 398}
 399
 400static void ef4_fini_eventq(struct ef4_channel *channel)
 401{
 402        if (!channel->eventq_init)
 403                return;
 404
 405        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 406                  "chan %d fini event queue\n", channel->channel);
 407
 408        ef4_nic_fini_eventq(channel);
 409        channel->eventq_init = false;
 410}
 411
 412static void ef4_remove_eventq(struct ef4_channel *channel)
 413{
 414        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 415                  "chan %d remove event queue\n", channel->channel);
 416
 417        ef4_nic_remove_eventq(channel);
 418}
 419
 420/**************************************************************************
 421 *
 422 * Channel handling
 423 *
 424 *************************************************************************/
 425
 426/* Allocate and initialise a channel structure. */
 427static struct ef4_channel *
 428ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
 429{
 430        struct ef4_channel *channel;
 431        struct ef4_rx_queue *rx_queue;
 432        struct ef4_tx_queue *tx_queue;
 433        int j;
 434
 435        channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 436        if (!channel)
 437                return NULL;
 438
 439        channel->efx = efx;
 440        channel->channel = i;
 441        channel->type = &ef4_default_channel_type;
 442
 443        for (j = 0; j < EF4_TXQ_TYPES; j++) {
 444                tx_queue = &channel->tx_queue[j];
 445                tx_queue->efx = efx;
 446                tx_queue->queue = i * EF4_TXQ_TYPES + j;
 447                tx_queue->channel = channel;
 448        }
 449
 450        rx_queue = &channel->rx_queue;
 451        rx_queue->efx = efx;
 452        setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill,
 453                    (unsigned long)rx_queue);
 454
 455        return channel;
 456}
 457
 458/* Allocate and initialise a channel structure, copying parameters
 459 * (but not resources) from an old channel structure.
 460 */
 461static struct ef4_channel *
 462ef4_copy_channel(const struct ef4_channel *old_channel)
 463{
 464        struct ef4_channel *channel;
 465        struct ef4_rx_queue *rx_queue;
 466        struct ef4_tx_queue *tx_queue;
 467        int j;
 468
 469        channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 470        if (!channel)
 471                return NULL;
 472
 473        *channel = *old_channel;
 474
 475        channel->napi_dev = NULL;
 476        INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
 477        channel->napi_str.napi_id = 0;
 478        channel->napi_str.state = 0;
 479        memset(&channel->eventq, 0, sizeof(channel->eventq));
 480
 481        for (j = 0; j < EF4_TXQ_TYPES; j++) {
 482                tx_queue = &channel->tx_queue[j];
 483                if (tx_queue->channel)
 484                        tx_queue->channel = channel;
 485                tx_queue->buffer = NULL;
 486                memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 487        }
 488
 489        rx_queue = &channel->rx_queue;
 490        rx_queue->buffer = NULL;
 491        memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 492        setup_timer(&rx_queue->slow_fill, ef4_rx_slow_fill,
 493                    (unsigned long)rx_queue);
 494
 495        return channel;
 496}
 497
 498static int ef4_probe_channel(struct ef4_channel *channel)
 499{
 500        struct ef4_tx_queue *tx_queue;
 501        struct ef4_rx_queue *rx_queue;
 502        int rc;
 503
 504        netif_dbg(channel->efx, probe, channel->efx->net_dev,
 505                  "creating channel %d\n", channel->channel);
 506
 507        rc = channel->type->pre_probe(channel);
 508        if (rc)
 509                goto fail;
 510
 511        rc = ef4_probe_eventq(channel);
 512        if (rc)
 513                goto fail;
 514
 515        ef4_for_each_channel_tx_queue(tx_queue, channel) {
 516                rc = ef4_probe_tx_queue(tx_queue);
 517                if (rc)
 518                        goto fail;
 519        }
 520
 521        ef4_for_each_channel_rx_queue(rx_queue, channel) {
 522                rc = ef4_probe_rx_queue(rx_queue);
 523                if (rc)
 524                        goto fail;
 525        }
 526
 527        return 0;
 528
 529fail:
 530        ef4_remove_channel(channel);
 531        return rc;
 532}
 533
 534static void
 535ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
 536{
 537        struct ef4_nic *efx = channel->efx;
 538        const char *type;
 539        int number;
 540
 541        number = channel->channel;
 542        if (efx->tx_channel_offset == 0) {
 543                type = "";
 544        } else if (channel->channel < efx->tx_channel_offset) {
 545                type = "-rx";
 546        } else {
 547                type = "-tx";
 548                number -= efx->tx_channel_offset;
 549        }
 550        snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 551}
 552
 553static void ef4_set_channel_names(struct ef4_nic *efx)
 554{
 555        struct ef4_channel *channel;
 556
 557        ef4_for_each_channel(channel, efx)
 558                channel->type->get_name(channel,
 559                                        efx->msi_context[channel->channel].name,
 560                                        sizeof(efx->msi_context[0].name));
 561}
 562
 563static int ef4_probe_channels(struct ef4_nic *efx)
 564{
 565        struct ef4_channel *channel;
 566        int rc;
 567
 568        /* Restart special buffer allocation */
 569        efx->next_buffer_table = 0;
 570
 571        /* Probe channels in reverse, so that any 'extra' channels
 572         * use the start of the buffer table. This allows the traffic
 573         * channels to be resized without moving them or wasting the
 574         * entries before them.
 575         */
 576        ef4_for_each_channel_rev(channel, efx) {
 577                rc = ef4_probe_channel(channel);
 578                if (rc) {
 579                        netif_err(efx, probe, efx->net_dev,
 580                                  "failed to create channel %d\n",
 581                                  channel->channel);
 582                        goto fail;
 583                }
 584        }
 585        ef4_set_channel_names(efx);
 586
 587        return 0;
 588
 589fail:
 590        ef4_remove_channels(efx);
 591        return rc;
 592}
 593
 594/* Channels are shutdown and reinitialised whilst the NIC is running
 595 * to propagate configuration changes (mtu, checksum offload), or
 596 * to clear hardware error conditions
 597 */
 598static void ef4_start_datapath(struct ef4_nic *efx)
 599{
 600        netdev_features_t old_features = efx->net_dev->features;
 601        bool old_rx_scatter = efx->rx_scatter;
 602        struct ef4_tx_queue *tx_queue;
 603        struct ef4_rx_queue *rx_queue;
 604        struct ef4_channel *channel;
 605        size_t rx_buf_len;
 606
 607        /* Calculate the rx buffer allocation parameters required to
 608         * support the current MTU, including padding for header
 609         * alignment and overruns.
 610         */
 611        efx->rx_dma_len = (efx->rx_prefix_size +
 612                           EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
 613                           efx->type->rx_buffer_padding);
 614        rx_buf_len = (sizeof(struct ef4_rx_page_state) +
 615                      efx->rx_ip_align + efx->rx_dma_len);
 616        if (rx_buf_len <= PAGE_SIZE) {
 617                efx->rx_scatter = efx->type->always_rx_scatter;
 618                efx->rx_buffer_order = 0;
 619        } else if (efx->type->can_rx_scatter) {
 620                BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 621                BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
 622                             2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
 623                                       EF4_RX_BUF_ALIGNMENT) >
 624                             PAGE_SIZE);
 625                efx->rx_scatter = true;
 626                efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
 627                efx->rx_buffer_order = 0;
 628        } else {
 629                efx->rx_scatter = false;
 630                efx->rx_buffer_order = get_order(rx_buf_len);
 631        }
 632
 633        ef4_rx_config_page_split(efx);
 634        if (efx->rx_buffer_order)
 635                netif_dbg(efx, drv, efx->net_dev,
 636                          "RX buf len=%u; page order=%u batch=%u\n",
 637                          efx->rx_dma_len, efx->rx_buffer_order,
 638                          efx->rx_pages_per_batch);
 639        else
 640                netif_dbg(efx, drv, efx->net_dev,
 641                          "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 642                          efx->rx_dma_len, efx->rx_page_buf_step,
 643                          efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 644
 645        /* Restore previously fixed features in hw_features and remove
 646         * features which are fixed now
 647         */
 648        efx->net_dev->hw_features |= efx->net_dev->features;
 649        efx->net_dev->hw_features &= ~efx->fixed_features;
 650        efx->net_dev->features |= efx->fixed_features;
 651        if (efx->net_dev->features != old_features)
 652                netdev_features_change(efx->net_dev);
 653
 654        /* RX filters may also have scatter-enabled flags */
 655        if (efx->rx_scatter != old_rx_scatter)
 656                efx->type->filter_update_rx_scatter(efx);
 657
 658        /* We must keep at least one descriptor in a TX ring empty.
 659         * We could avoid this when the queue size does not exactly
 660         * match the hardware ring size, but it's not that important.
 661         * Therefore we stop the queue when one more skb might fill
 662         * the ring completely.  We wake it when half way back to
 663         * empty.
 664         */
 665        efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
 666        efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 667
 668        /* Initialise the channels */
 669        ef4_for_each_channel(channel, efx) {
 670                ef4_for_each_channel_tx_queue(tx_queue, channel) {
 671                        ef4_init_tx_queue(tx_queue);
 672                        atomic_inc(&efx->active_queues);
 673                }
 674
 675                ef4_for_each_channel_rx_queue(rx_queue, channel) {
 676                        ef4_init_rx_queue(rx_queue);
 677                        atomic_inc(&efx->active_queues);
 678                        ef4_stop_eventq(channel);
 679                        ef4_fast_push_rx_descriptors(rx_queue, false);
 680                        ef4_start_eventq(channel);
 681                }
 682
 683                WARN_ON(channel->rx_pkt_n_frags);
 684        }
 685
 686        if (netif_device_present(efx->net_dev))
 687                netif_tx_wake_all_queues(efx->net_dev);
 688}
 689
 690static void ef4_stop_datapath(struct ef4_nic *efx)
 691{
 692        struct ef4_channel *channel;
 693        struct ef4_tx_queue *tx_queue;
 694        struct ef4_rx_queue *rx_queue;
 695        int rc;
 696
 697        EF4_ASSERT_RESET_SERIALISED(efx);
 698        BUG_ON(efx->port_enabled);
 699
 700        /* Stop RX refill */
 701        ef4_for_each_channel(channel, efx) {
 702                ef4_for_each_channel_rx_queue(rx_queue, channel)
 703                        rx_queue->refill_enabled = false;
 704        }
 705
 706        ef4_for_each_channel(channel, efx) {
 707                /* RX packet processing is pipelined, so wait for the
 708                 * NAPI handler to complete.  At least event queue 0
 709                 * might be kept active by non-data events, so don't
 710                 * use napi_synchronize() but actually disable NAPI
 711                 * temporarily.
 712                 */
 713                if (ef4_channel_has_rx_queue(channel)) {
 714                        ef4_stop_eventq(channel);
 715                        ef4_start_eventq(channel);
 716                }
 717        }
 718
 719        rc = efx->type->fini_dmaq(efx);
 720        if (rc && EF4_WORKAROUND_7803(efx)) {
 721                /* Schedule a reset to recover from the flush failure. The
 722                 * descriptor caches reference memory we're about to free,
 723                 * but falcon_reconfigure_mac_wrapper() won't reconnect
 724                 * the MACs because of the pending reset.
 725                 */
 726                netif_err(efx, drv, efx->net_dev,
 727                          "Resetting to recover from flush failure\n");
 728                ef4_schedule_reset(efx, RESET_TYPE_ALL);
 729        } else if (rc) {
 730                netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 731        } else {
 732                netif_dbg(efx, drv, efx->net_dev,
 733                          "successfully flushed all queues\n");
 734        }
 735
 736        ef4_for_each_channel(channel, efx) {
 737                ef4_for_each_channel_rx_queue(rx_queue, channel)
 738                        ef4_fini_rx_queue(rx_queue);
 739                ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
 740                        ef4_fini_tx_queue(tx_queue);
 741        }
 742}
 743
 744static void ef4_remove_channel(struct ef4_channel *channel)
 745{
 746        struct ef4_tx_queue *tx_queue;
 747        struct ef4_rx_queue *rx_queue;
 748
 749        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 750                  "destroy chan %d\n", channel->channel);
 751
 752        ef4_for_each_channel_rx_queue(rx_queue, channel)
 753                ef4_remove_rx_queue(rx_queue);
 754        ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
 755                ef4_remove_tx_queue(tx_queue);
 756        ef4_remove_eventq(channel);
 757        channel->type->post_remove(channel);
 758}
 759
 760static void ef4_remove_channels(struct ef4_nic *efx)
 761{
 762        struct ef4_channel *channel;
 763
 764        ef4_for_each_channel(channel, efx)
 765                ef4_remove_channel(channel);
 766}
 767
 768int
 769ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
 770{
 771        struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
 772        u32 old_rxq_entries, old_txq_entries;
 773        unsigned i, next_buffer_table = 0;
 774        int rc, rc2;
 775
 776        rc = ef4_check_disabled(efx);
 777        if (rc)
 778                return rc;
 779
 780        /* Not all channels should be reallocated. We must avoid
 781         * reallocating their buffer table entries.
 782         */
 783        ef4_for_each_channel(channel, efx) {
 784                struct ef4_rx_queue *rx_queue;
 785                struct ef4_tx_queue *tx_queue;
 786
 787                if (channel->type->copy)
 788                        continue;
 789                next_buffer_table = max(next_buffer_table,
 790                                        channel->eventq.index +
 791                                        channel->eventq.entries);
 792                ef4_for_each_channel_rx_queue(rx_queue, channel)
 793                        next_buffer_table = max(next_buffer_table,
 794                                                rx_queue->rxd.index +
 795                                                rx_queue->rxd.entries);
 796                ef4_for_each_channel_tx_queue(tx_queue, channel)
 797                        next_buffer_table = max(next_buffer_table,
 798                                                tx_queue->txd.index +
 799                                                tx_queue->txd.entries);
 800        }
 801
 802        ef4_device_detach_sync(efx);
 803        ef4_stop_all(efx);
 804        ef4_soft_disable_interrupts(efx);
 805
 806        /* Clone channels (where possible) */
 807        memset(other_channel, 0, sizeof(other_channel));
 808        for (i = 0; i < efx->n_channels; i++) {
 809                channel = efx->channel[i];
 810                if (channel->type->copy)
 811                        channel = channel->type->copy(channel);
 812                if (!channel) {
 813                        rc = -ENOMEM;
 814                        goto out;
 815                }
 816                other_channel[i] = channel;
 817        }
 818
 819        /* Swap entry counts and channel pointers */
 820        old_rxq_entries = efx->rxq_entries;
 821        old_txq_entries = efx->txq_entries;
 822        efx->rxq_entries = rxq_entries;
 823        efx->txq_entries = txq_entries;
 824        for (i = 0; i < efx->n_channels; i++) {
 825                channel = efx->channel[i];
 826                efx->channel[i] = other_channel[i];
 827                other_channel[i] = channel;
 828        }
 829
 830        /* Restart buffer table allocation */
 831        efx->next_buffer_table = next_buffer_table;
 832
 833        for (i = 0; i < efx->n_channels; i++) {
 834                channel = efx->channel[i];
 835                if (!channel->type->copy)
 836                        continue;
 837                rc = ef4_probe_channel(channel);
 838                if (rc)
 839                        goto rollback;
 840                ef4_init_napi_channel(efx->channel[i]);
 841        }
 842
 843out:
 844        /* Destroy unused channel structures */
 845        for (i = 0; i < efx->n_channels; i++) {
 846                channel = other_channel[i];
 847                if (channel && channel->type->copy) {
 848                        ef4_fini_napi_channel(channel);
 849                        ef4_remove_channel(channel);
 850                        kfree(channel);
 851                }
 852        }
 853
 854        rc2 = ef4_soft_enable_interrupts(efx);
 855        if (rc2) {
 856                rc = rc ? rc : rc2;
 857                netif_err(efx, drv, efx->net_dev,
 858                          "unable to restart interrupts on channel reallocation\n");
 859                ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
 860        } else {
 861                ef4_start_all(efx);
 862                netif_device_attach(efx->net_dev);
 863        }
 864        return rc;
 865
 866rollback:
 867        /* Swap back */
 868        efx->rxq_entries = old_rxq_entries;
 869        efx->txq_entries = old_txq_entries;
 870        for (i = 0; i < efx->n_channels; i++) {
 871                channel = efx->channel[i];
 872                efx->channel[i] = other_channel[i];
 873                other_channel[i] = channel;
 874        }
 875        goto out;
 876}
 877
 878void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
 879{
 880        mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 881}
 882
 883static const struct ef4_channel_type ef4_default_channel_type = {
 884        .pre_probe              = ef4_channel_dummy_op_int,
 885        .post_remove            = ef4_channel_dummy_op_void,
 886        .get_name               = ef4_get_channel_name,
 887        .copy                   = ef4_copy_channel,
 888        .keep_eventq            = false,
 889};
 890
 891int ef4_channel_dummy_op_int(struct ef4_channel *channel)
 892{
 893        return 0;
 894}
 895
 896void ef4_channel_dummy_op_void(struct ef4_channel *channel)
 897{
 898}
 899
 900/**************************************************************************
 901 *
 902 * Port handling
 903 *
 904 **************************************************************************/
 905
 906/* This ensures that the kernel is kept informed (via
 907 * netif_carrier_on/off) of the link status, and also maintains the
 908 * link status's stop on the port's TX queue.
 909 */
 910void ef4_link_status_changed(struct ef4_nic *efx)
 911{
 912        struct ef4_link_state *link_state = &efx->link_state;
 913
 914        /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 915         * that no events are triggered between unregister_netdev() and the
 916         * driver unloading. A more general condition is that NETDEV_CHANGE
 917         * can only be generated between NETDEV_UP and NETDEV_DOWN */
 918        if (!netif_running(efx->net_dev))
 919                return;
 920
 921        if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 922                efx->n_link_state_changes++;
 923
 924                if (link_state->up)
 925                        netif_carrier_on(efx->net_dev);
 926                else
 927                        netif_carrier_off(efx->net_dev);
 928        }
 929
 930        /* Status message for kernel log */
 931        if (link_state->up)
 932                netif_info(efx, link, efx->net_dev,
 933                           "link up at %uMbps %s-duplex (MTU %d)\n",
 934                           link_state->speed, link_state->fd ? "full" : "half",
 935                           efx->net_dev->mtu);
 936        else
 937                netif_info(efx, link, efx->net_dev, "link down\n");
 938}
 939
 940void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
 941{
 942        efx->link_advertising = advertising;
 943        if (advertising) {
 944                if (advertising & ADVERTISED_Pause)
 945                        efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
 946                else
 947                        efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
 948                if (advertising & ADVERTISED_Asym_Pause)
 949                        efx->wanted_fc ^= EF4_FC_TX;
 950        }
 951}
 952
 953void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
 954{
 955        efx->wanted_fc = wanted_fc;
 956        if (efx->link_advertising) {
 957                if (wanted_fc & EF4_FC_RX)
 958                        efx->link_advertising |= (ADVERTISED_Pause |
 959                                                  ADVERTISED_Asym_Pause);
 960                else
 961                        efx->link_advertising &= ~(ADVERTISED_Pause |
 962                                                   ADVERTISED_Asym_Pause);
 963                if (wanted_fc & EF4_FC_TX)
 964                        efx->link_advertising ^= ADVERTISED_Asym_Pause;
 965        }
 966}
 967
 968static void ef4_fini_port(struct ef4_nic *efx);
 969
 970/* We assume that efx->type->reconfigure_mac will always try to sync RX
 971 * filters and therefore needs to read-lock the filter table against freeing
 972 */
 973void ef4_mac_reconfigure(struct ef4_nic *efx)
 974{
 975        down_read(&efx->filter_sem);
 976        efx->type->reconfigure_mac(efx);
 977        up_read(&efx->filter_sem);
 978}
 979
 980/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 981 * the MAC appropriately. All other PHY configuration changes are pushed
 982 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
 983 * through ef4_monitor().
 984 *
 985 * Callers must hold the mac_lock
 986 */
 987int __ef4_reconfigure_port(struct ef4_nic *efx)
 988{
 989        enum ef4_phy_mode phy_mode;
 990        int rc;
 991
 992        WARN_ON(!mutex_is_locked(&efx->mac_lock));
 993
 994        /* Disable PHY transmit in mac level loopbacks */
 995        phy_mode = efx->phy_mode;
 996        if (LOOPBACK_INTERNAL(efx))
 997                efx->phy_mode |= PHY_MODE_TX_DISABLED;
 998        else
 999                efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1000
1001        rc = efx->type->reconfigure_port(efx);
1002
1003        if (rc)
1004                efx->phy_mode = phy_mode;
1005
1006        return rc;
1007}
1008
1009/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1010 * disabled. */
1011int ef4_reconfigure_port(struct ef4_nic *efx)
1012{
1013        int rc;
1014
1015        EF4_ASSERT_RESET_SERIALISED(efx);
1016
1017        mutex_lock(&efx->mac_lock);
1018        rc = __ef4_reconfigure_port(efx);
1019        mutex_unlock(&efx->mac_lock);
1020
1021        return rc;
1022}
1023
1024/* Asynchronous work item for changing MAC promiscuity and multicast
1025 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1026 * MAC directly. */
1027static void ef4_mac_work(struct work_struct *data)
1028{
1029        struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1030
1031        mutex_lock(&efx->mac_lock);
1032        if (efx->port_enabled)
1033                ef4_mac_reconfigure(efx);
1034        mutex_unlock(&efx->mac_lock);
1035}
1036
1037static int ef4_probe_port(struct ef4_nic *efx)
1038{
1039        int rc;
1040
1041        netif_dbg(efx, probe, efx->net_dev, "create port\n");
1042
1043        if (phy_flash_cfg)
1044                efx->phy_mode = PHY_MODE_SPECIAL;
1045
1046        /* Connect up MAC/PHY operations table */
1047        rc = efx->type->probe_port(efx);
1048        if (rc)
1049                return rc;
1050
1051        /* Initialise MAC address to permanent address */
1052        ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1053
1054        return 0;
1055}
1056
1057static int ef4_init_port(struct ef4_nic *efx)
1058{
1059        int rc;
1060
1061        netif_dbg(efx, drv, efx->net_dev, "init port\n");
1062
1063        mutex_lock(&efx->mac_lock);
1064
1065        rc = efx->phy_op->init(efx);
1066        if (rc)
1067                goto fail1;
1068
1069        efx->port_initialized = true;
1070
1071        /* Reconfigure the MAC before creating dma queues (required for
1072         * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1073        ef4_mac_reconfigure(efx);
1074
1075        /* Ensure the PHY advertises the correct flow control settings */
1076        rc = efx->phy_op->reconfigure(efx);
1077        if (rc && rc != -EPERM)
1078                goto fail2;
1079
1080        mutex_unlock(&efx->mac_lock);
1081        return 0;
1082
1083fail2:
1084        efx->phy_op->fini(efx);
1085fail1:
1086        mutex_unlock(&efx->mac_lock);
1087        return rc;
1088}
1089
1090static void ef4_start_port(struct ef4_nic *efx)
1091{
1092        netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1093        BUG_ON(efx->port_enabled);
1094
1095        mutex_lock(&efx->mac_lock);
1096        efx->port_enabled = true;
1097
1098        /* Ensure MAC ingress/egress is enabled */
1099        ef4_mac_reconfigure(efx);
1100
1101        mutex_unlock(&efx->mac_lock);
1102}
1103
1104/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1105 * and the async self-test, wait for them to finish and prevent them
1106 * being scheduled again.  This doesn't cover online resets, which
1107 * should only be cancelled when removing the device.
1108 */
1109static void ef4_stop_port(struct ef4_nic *efx)
1110{
1111        netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1112
1113        EF4_ASSERT_RESET_SERIALISED(efx);
1114
1115        mutex_lock(&efx->mac_lock);
1116        efx->port_enabled = false;
1117        mutex_unlock(&efx->mac_lock);
1118
1119        /* Serialise against ef4_set_multicast_list() */
1120        netif_addr_lock_bh(efx->net_dev);
1121        netif_addr_unlock_bh(efx->net_dev);
1122
1123        cancel_delayed_work_sync(&efx->monitor_work);
1124        ef4_selftest_async_cancel(efx);
1125        cancel_work_sync(&efx->mac_work);
1126}
1127
1128static void ef4_fini_port(struct ef4_nic *efx)
1129{
1130        netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1131
1132        if (!efx->port_initialized)
1133                return;
1134
1135        efx->phy_op->fini(efx);
1136        efx->port_initialized = false;
1137
1138        efx->link_state.up = false;
1139        ef4_link_status_changed(efx);
1140}
1141
1142static void ef4_remove_port(struct ef4_nic *efx)
1143{
1144        netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1145
1146        efx->type->remove_port(efx);
1147}
1148
1149/**************************************************************************
1150 *
1151 * NIC handling
1152 *
1153 **************************************************************************/
1154
1155static LIST_HEAD(ef4_primary_list);
1156static LIST_HEAD(ef4_unassociated_list);
1157
1158static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1159{
1160        return left->type == right->type &&
1161                left->vpd_sn && right->vpd_sn &&
1162                !strcmp(left->vpd_sn, right->vpd_sn);
1163}
1164
1165static void ef4_associate(struct ef4_nic *efx)
1166{
1167        struct ef4_nic *other, *next;
1168
1169        if (efx->primary == efx) {
1170                /* Adding primary function; look for secondaries */
1171
1172                netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1173                list_add_tail(&efx->node, &ef4_primary_list);
1174
1175                list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1176                                         node) {
1177                        if (ef4_same_controller(efx, other)) {
1178                                list_del(&other->node);
1179                                netif_dbg(other, probe, other->net_dev,
1180                                          "moving to secondary list of %s %s\n",
1181                                          pci_name(efx->pci_dev),
1182                                          efx->net_dev->name);
1183                                list_add_tail(&other->node,
1184                                              &efx->secondary_list);
1185                                other->primary = efx;
1186                        }
1187                }
1188        } else {
1189                /* Adding secondary function; look for primary */
1190
1191                list_for_each_entry(other, &ef4_primary_list, node) {
1192                        if (ef4_same_controller(efx, other)) {
1193                                netif_dbg(efx, probe, efx->net_dev,
1194                                          "adding to secondary list of %s %s\n",
1195                                          pci_name(other->pci_dev),
1196                                          other->net_dev->name);
1197                                list_add_tail(&efx->node,
1198                                              &other->secondary_list);
1199                                efx->primary = other;
1200                                return;
1201                        }
1202                }
1203
1204                netif_dbg(efx, probe, efx->net_dev,
1205                          "adding to unassociated list\n");
1206                list_add_tail(&efx->node, &ef4_unassociated_list);
1207        }
1208}
1209
1210static void ef4_dissociate(struct ef4_nic *efx)
1211{
1212        struct ef4_nic *other, *next;
1213
1214        list_del(&efx->node);
1215        efx->primary = NULL;
1216
1217        list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1218                list_del(&other->node);
1219                netif_dbg(other, probe, other->net_dev,
1220                          "moving to unassociated list\n");
1221                list_add_tail(&other->node, &ef4_unassociated_list);
1222                other->primary = NULL;
1223        }
1224}
1225
1226/* This configures the PCI device to enable I/O and DMA. */
1227static int ef4_init_io(struct ef4_nic *efx)
1228{
1229        struct pci_dev *pci_dev = efx->pci_dev;
1230        dma_addr_t dma_mask = efx->type->max_dma_mask;
1231        unsigned int mem_map_size = efx->type->mem_map_size(efx);
1232        int rc, bar;
1233
1234        netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1235
1236        bar = efx->type->mem_bar;
1237
1238        rc = pci_enable_device(pci_dev);
1239        if (rc) {
1240                netif_err(efx, probe, efx->net_dev,
1241                          "failed to enable PCI device\n");
1242                goto fail1;
1243        }
1244
1245        pci_set_master(pci_dev);
1246
1247        /* Set the PCI DMA mask.  Try all possibilities from our
1248         * genuine mask down to 32 bits, because some architectures
1249         * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1250         * masks event though they reject 46 bit masks.
1251         */
1252        while (dma_mask > 0x7fffffffUL) {
1253                rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1254                if (rc == 0)
1255                        break;
1256                dma_mask >>= 1;
1257        }
1258        if (rc) {
1259                netif_err(efx, probe, efx->net_dev,
1260                          "could not find a suitable DMA mask\n");
1261                goto fail2;
1262        }
1263        netif_dbg(efx, probe, efx->net_dev,
1264                  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1265
1266        efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1267        rc = pci_request_region(pci_dev, bar, "sfc");
1268        if (rc) {
1269                netif_err(efx, probe, efx->net_dev,
1270                          "request for memory BAR failed\n");
1271                rc = -EIO;
1272                goto fail3;
1273        }
1274        efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1275        if (!efx->membase) {
1276                netif_err(efx, probe, efx->net_dev,
1277                          "could not map memory BAR at %llx+%x\n",
1278                          (unsigned long long)efx->membase_phys, mem_map_size);
1279                rc = -ENOMEM;
1280                goto fail4;
1281        }
1282        netif_dbg(efx, probe, efx->net_dev,
1283                  "memory BAR at %llx+%x (virtual %p)\n",
1284                  (unsigned long long)efx->membase_phys, mem_map_size,
1285                  efx->membase);
1286
1287        return 0;
1288
1289 fail4:
1290        pci_release_region(efx->pci_dev, bar);
1291 fail3:
1292        efx->membase_phys = 0;
1293 fail2:
1294        pci_disable_device(efx->pci_dev);
1295 fail1:
1296        return rc;
1297}
1298
1299static void ef4_fini_io(struct ef4_nic *efx)
1300{
1301        int bar;
1302
1303        netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1304
1305        if (efx->membase) {
1306                iounmap(efx->membase);
1307                efx->membase = NULL;
1308        }
1309
1310        if (efx->membase_phys) {
1311                bar = efx->type->mem_bar;
1312                pci_release_region(efx->pci_dev, bar);
1313                efx->membase_phys = 0;
1314        }
1315
1316        /* Don't disable bus-mastering if VFs are assigned */
1317        if (!pci_vfs_assigned(efx->pci_dev))
1318                pci_disable_device(efx->pci_dev);
1319}
1320
1321void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1322{
1323        size_t i;
1324
1325        for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1326                efx->rx_indir_table[i] =
1327                        ethtool_rxfh_indir_default(i, efx->rss_spread);
1328}
1329
1330static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1331{
1332        cpumask_var_t thread_mask;
1333        unsigned int count;
1334        int cpu;
1335
1336        if (rss_cpus) {
1337                count = rss_cpus;
1338        } else {
1339                if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1340                        netif_warn(efx, probe, efx->net_dev,
1341                                   "RSS disabled due to allocation failure\n");
1342                        return 1;
1343                }
1344
1345                count = 0;
1346                for_each_online_cpu(cpu) {
1347                        if (!cpumask_test_cpu(cpu, thread_mask)) {
1348                                ++count;
1349                                cpumask_or(thread_mask, thread_mask,
1350                                           topology_sibling_cpumask(cpu));
1351                        }
1352                }
1353
1354                free_cpumask_var(thread_mask);
1355        }
1356
1357        if (count > EF4_MAX_RX_QUEUES) {
1358                netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1359                               "Reducing number of rx queues from %u to %u.\n",
1360                               count, EF4_MAX_RX_QUEUES);
1361                count = EF4_MAX_RX_QUEUES;
1362        }
1363
1364        return count;
1365}
1366
1367/* Probe the number and type of interrupts we are able to obtain, and
1368 * the resulting numbers of channels and RX queues.
1369 */
1370static int ef4_probe_interrupts(struct ef4_nic *efx)
1371{
1372        unsigned int extra_channels = 0;
1373        unsigned int i, j;
1374        int rc;
1375
1376        for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1377                if (efx->extra_channel_type[i])
1378                        ++extra_channels;
1379
1380        if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1381                struct msix_entry xentries[EF4_MAX_CHANNELS];
1382                unsigned int n_channels;
1383
1384                n_channels = ef4_wanted_parallelism(efx);
1385                if (ef4_separate_tx_channels)
1386                        n_channels *= 2;
1387                n_channels += extra_channels;
1388                n_channels = min(n_channels, efx->max_channels);
1389
1390                for (i = 0; i < n_channels; i++)
1391                        xentries[i].entry = i;
1392                rc = pci_enable_msix_range(efx->pci_dev,
1393                                           xentries, 1, n_channels);
1394                if (rc < 0) {
1395                        /* Fall back to single channel MSI */
1396                        efx->interrupt_mode = EF4_INT_MODE_MSI;
1397                        netif_err(efx, drv, efx->net_dev,
1398                                  "could not enable MSI-X\n");
1399                } else if (rc < n_channels) {
1400                        netif_err(efx, drv, efx->net_dev,
1401                                  "WARNING: Insufficient MSI-X vectors"
1402                                  " available (%d < %u).\n", rc, n_channels);
1403                        netif_err(efx, drv, efx->net_dev,
1404                                  "WARNING: Performance may be reduced.\n");
1405                        n_channels = rc;
1406                }
1407
1408                if (rc > 0) {
1409                        efx->n_channels = n_channels;
1410                        if (n_channels > extra_channels)
1411                                n_channels -= extra_channels;
1412                        if (ef4_separate_tx_channels) {
1413                                efx->n_tx_channels = min(max(n_channels / 2,
1414                                                             1U),
1415                                                         efx->max_tx_channels);
1416                                efx->n_rx_channels = max(n_channels -
1417                                                         efx->n_tx_channels,
1418                                                         1U);
1419                        } else {
1420                                efx->n_tx_channels = min(n_channels,
1421                                                         efx->max_tx_channels);
1422                                efx->n_rx_channels = n_channels;
1423                        }
1424                        for (i = 0; i < efx->n_channels; i++)
1425                                ef4_get_channel(efx, i)->irq =
1426                                        xentries[i].vector;
1427                }
1428        }
1429
1430        /* Try single interrupt MSI */
1431        if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1432                efx->n_channels = 1;
1433                efx->n_rx_channels = 1;
1434                efx->n_tx_channels = 1;
1435                rc = pci_enable_msi(efx->pci_dev);
1436                if (rc == 0) {
1437                        ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1438                } else {
1439                        netif_err(efx, drv, efx->net_dev,
1440                                  "could not enable MSI\n");
1441                        efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1442                }
1443        }
1444
1445        /* Assume legacy interrupts */
1446        if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1447                efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1448                efx->n_rx_channels = 1;
1449                efx->n_tx_channels = 1;
1450                efx->legacy_irq = efx->pci_dev->irq;
1451        }
1452
1453        /* Assign extra channels if possible */
1454        j = efx->n_channels;
1455        for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1456                if (!efx->extra_channel_type[i])
1457                        continue;
1458                if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1459                    efx->n_channels <= extra_channels) {
1460                        efx->extra_channel_type[i]->handle_no_channel(efx);
1461                } else {
1462                        --j;
1463                        ef4_get_channel(efx, j)->type =
1464                                efx->extra_channel_type[i];
1465                }
1466        }
1467
1468        efx->rss_spread = efx->n_rx_channels;
1469
1470        return 0;
1471}
1472
1473static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1474{
1475        struct ef4_channel *channel, *end_channel;
1476        int rc;
1477
1478        BUG_ON(efx->state == STATE_DISABLED);
1479
1480        efx->irq_soft_enabled = true;
1481        smp_wmb();
1482
1483        ef4_for_each_channel(channel, efx) {
1484                if (!channel->type->keep_eventq) {
1485                        rc = ef4_init_eventq(channel);
1486                        if (rc)
1487                                goto fail;
1488                }
1489                ef4_start_eventq(channel);
1490        }
1491
1492        return 0;
1493fail:
1494        end_channel = channel;
1495        ef4_for_each_channel(channel, efx) {
1496                if (channel == end_channel)
1497                        break;
1498                ef4_stop_eventq(channel);
1499                if (!channel->type->keep_eventq)
1500                        ef4_fini_eventq(channel);
1501        }
1502
1503        return rc;
1504}
1505
1506static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1507{
1508        struct ef4_channel *channel;
1509
1510        if (efx->state == STATE_DISABLED)
1511                return;
1512
1513        efx->irq_soft_enabled = false;
1514        smp_wmb();
1515
1516        if (efx->legacy_irq)
1517                synchronize_irq(efx->legacy_irq);
1518
1519        ef4_for_each_channel(channel, efx) {
1520                if (channel->irq)
1521                        synchronize_irq(channel->irq);
1522
1523                ef4_stop_eventq(channel);
1524                if (!channel->type->keep_eventq)
1525                        ef4_fini_eventq(channel);
1526        }
1527}
1528
1529static int ef4_enable_interrupts(struct ef4_nic *efx)
1530{
1531        struct ef4_channel *channel, *end_channel;
1532        int rc;
1533
1534        BUG_ON(efx->state == STATE_DISABLED);
1535
1536        if (efx->eeh_disabled_legacy_irq) {
1537                enable_irq(efx->legacy_irq);
1538                efx->eeh_disabled_legacy_irq = false;
1539        }
1540
1541        efx->type->irq_enable_master(efx);
1542
1543        ef4_for_each_channel(channel, efx) {
1544                if (channel->type->keep_eventq) {
1545                        rc = ef4_init_eventq(channel);
1546                        if (rc)
1547                                goto fail;
1548                }
1549        }
1550
1551        rc = ef4_soft_enable_interrupts(efx);
1552        if (rc)
1553                goto fail;
1554
1555        return 0;
1556
1557fail:
1558        end_channel = channel;
1559        ef4_for_each_channel(channel, efx) {
1560                if (channel == end_channel)
1561                        break;
1562                if (channel->type->keep_eventq)
1563                        ef4_fini_eventq(channel);
1564        }
1565
1566        efx->type->irq_disable_non_ev(efx);
1567
1568        return rc;
1569}
1570
1571static void ef4_disable_interrupts(struct ef4_nic *efx)
1572{
1573        struct ef4_channel *channel;
1574
1575        ef4_soft_disable_interrupts(efx);
1576
1577        ef4_for_each_channel(channel, efx) {
1578                if (channel->type->keep_eventq)
1579                        ef4_fini_eventq(channel);
1580        }
1581
1582        efx->type->irq_disable_non_ev(efx);
1583}
1584
1585static void ef4_remove_interrupts(struct ef4_nic *efx)
1586{
1587        struct ef4_channel *channel;
1588
1589        /* Remove MSI/MSI-X interrupts */
1590        ef4_for_each_channel(channel, efx)
1591                channel->irq = 0;
1592        pci_disable_msi(efx->pci_dev);
1593        pci_disable_msix(efx->pci_dev);
1594
1595        /* Remove legacy interrupt */
1596        efx->legacy_irq = 0;
1597}
1598
1599static void ef4_set_channels(struct ef4_nic *efx)
1600{
1601        struct ef4_channel *channel;
1602        struct ef4_tx_queue *tx_queue;
1603
1604        efx->tx_channel_offset =
1605                ef4_separate_tx_channels ?
1606                efx->n_channels - efx->n_tx_channels : 0;
1607
1608        /* We need to mark which channels really have RX and TX
1609         * queues, and adjust the TX queue numbers if we have separate
1610         * RX-only and TX-only channels.
1611         */
1612        ef4_for_each_channel(channel, efx) {
1613                if (channel->channel < efx->n_rx_channels)
1614                        channel->rx_queue.core_index = channel->channel;
1615                else
1616                        channel->rx_queue.core_index = -1;
1617
1618                ef4_for_each_channel_tx_queue(tx_queue, channel)
1619                        tx_queue->queue -= (efx->tx_channel_offset *
1620                                            EF4_TXQ_TYPES);
1621        }
1622}
1623
1624static int ef4_probe_nic(struct ef4_nic *efx)
1625{
1626        int rc;
1627
1628        netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1629
1630        /* Carry out hardware-type specific initialisation */
1631        rc = efx->type->probe(efx);
1632        if (rc)
1633                return rc;
1634
1635        do {
1636                if (!efx->max_channels || !efx->max_tx_channels) {
1637                        netif_err(efx, drv, efx->net_dev,
1638                                  "Insufficient resources to allocate"
1639                                  " any channels\n");
1640                        rc = -ENOSPC;
1641                        goto fail1;
1642                }
1643
1644                /* Determine the number of channels and queues by trying
1645                 * to hook in MSI-X interrupts.
1646                 */
1647                rc = ef4_probe_interrupts(efx);
1648                if (rc)
1649                        goto fail1;
1650
1651                ef4_set_channels(efx);
1652
1653                /* dimension_resources can fail with EAGAIN */
1654                rc = efx->type->dimension_resources(efx);
1655                if (rc != 0 && rc != -EAGAIN)
1656                        goto fail2;
1657
1658                if (rc == -EAGAIN)
1659                        /* try again with new max_channels */
1660                        ef4_remove_interrupts(efx);
1661
1662        } while (rc == -EAGAIN);
1663
1664        if (efx->n_channels > 1)
1665                netdev_rss_key_fill(&efx->rx_hash_key,
1666                                    sizeof(efx->rx_hash_key));
1667        ef4_set_default_rx_indir_table(efx);
1668
1669        netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1670        netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1671
1672        /* Initialise the interrupt moderation settings */
1673        efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1674        ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1675                                true);
1676
1677        return 0;
1678
1679fail2:
1680        ef4_remove_interrupts(efx);
1681fail1:
1682        efx->type->remove(efx);
1683        return rc;
1684}
1685
1686static void ef4_remove_nic(struct ef4_nic *efx)
1687{
1688        netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1689
1690        ef4_remove_interrupts(efx);
1691        efx->type->remove(efx);
1692}
1693
1694static int ef4_probe_filters(struct ef4_nic *efx)
1695{
1696        int rc;
1697
1698        spin_lock_init(&efx->filter_lock);
1699        init_rwsem(&efx->filter_sem);
1700        mutex_lock(&efx->mac_lock);
1701        down_write(&efx->filter_sem);
1702        rc = efx->type->filter_table_probe(efx);
1703        if (rc)
1704                goto out_unlock;
1705
1706#ifdef CONFIG_RFS_ACCEL
1707        if (efx->type->offload_features & NETIF_F_NTUPLE) {
1708                struct ef4_channel *channel;
1709                int i, success = 1;
1710
1711                ef4_for_each_channel(channel, efx) {
1712                        channel->rps_flow_id =
1713                                kcalloc(efx->type->max_rx_ip_filters,
1714                                        sizeof(*channel->rps_flow_id),
1715                                        GFP_KERNEL);
1716                        if (!channel->rps_flow_id)
1717                                success = 0;
1718                        else
1719                                for (i = 0;
1720                                     i < efx->type->max_rx_ip_filters;
1721                                     ++i)
1722                                        channel->rps_flow_id[i] =
1723                                                RPS_FLOW_ID_INVALID;
1724                }
1725
1726                if (!success) {
1727                        ef4_for_each_channel(channel, efx)
1728                                kfree(channel->rps_flow_id);
1729                        efx->type->filter_table_remove(efx);
1730                        rc = -ENOMEM;
1731                        goto out_unlock;
1732                }
1733
1734                efx->rps_expire_index = efx->rps_expire_channel = 0;
1735        }
1736#endif
1737out_unlock:
1738        up_write(&efx->filter_sem);
1739        mutex_unlock(&efx->mac_lock);
1740        return rc;
1741}
1742
1743static void ef4_remove_filters(struct ef4_nic *efx)
1744{
1745#ifdef CONFIG_RFS_ACCEL
1746        struct ef4_channel *channel;
1747
1748        ef4_for_each_channel(channel, efx)
1749                kfree(channel->rps_flow_id);
1750#endif
1751        down_write(&efx->filter_sem);
1752        efx->type->filter_table_remove(efx);
1753        up_write(&efx->filter_sem);
1754}
1755
1756static void ef4_restore_filters(struct ef4_nic *efx)
1757{
1758        down_read(&efx->filter_sem);
1759        efx->type->filter_table_restore(efx);
1760        up_read(&efx->filter_sem);
1761}
1762
1763/**************************************************************************
1764 *
1765 * NIC startup/shutdown
1766 *
1767 *************************************************************************/
1768
1769static int ef4_probe_all(struct ef4_nic *efx)
1770{
1771        int rc;
1772
1773        rc = ef4_probe_nic(efx);
1774        if (rc) {
1775                netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1776                goto fail1;
1777        }
1778
1779        rc = ef4_probe_port(efx);
1780        if (rc) {
1781                netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1782                goto fail2;
1783        }
1784
1785        BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1786        if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1787                rc = -EINVAL;
1788                goto fail3;
1789        }
1790        efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1791
1792        rc = ef4_probe_filters(efx);
1793        if (rc) {
1794                netif_err(efx, probe, efx->net_dev,
1795                          "failed to create filter tables\n");
1796                goto fail4;
1797        }
1798
1799        rc = ef4_probe_channels(efx);
1800        if (rc)
1801                goto fail5;
1802
1803        return 0;
1804
1805 fail5:
1806        ef4_remove_filters(efx);
1807 fail4:
1808 fail3:
1809        ef4_remove_port(efx);
1810 fail2:
1811        ef4_remove_nic(efx);
1812 fail1:
1813        return rc;
1814}
1815
1816/* If the interface is supposed to be running but is not, start
1817 * the hardware and software data path, regular activity for the port
1818 * (MAC statistics, link polling, etc.) and schedule the port to be
1819 * reconfigured.  Interrupts must already be enabled.  This function
1820 * is safe to call multiple times, so long as the NIC is not disabled.
1821 * Requires the RTNL lock.
1822 */
1823static void ef4_start_all(struct ef4_nic *efx)
1824{
1825        EF4_ASSERT_RESET_SERIALISED(efx);
1826        BUG_ON(efx->state == STATE_DISABLED);
1827
1828        /* Check that it is appropriate to restart the interface. All
1829         * of these flags are safe to read under just the rtnl lock */
1830        if (efx->port_enabled || !netif_running(efx->net_dev) ||
1831            efx->reset_pending)
1832                return;
1833
1834        ef4_start_port(efx);
1835        ef4_start_datapath(efx);
1836
1837        /* Start the hardware monitor if there is one */
1838        if (efx->type->monitor != NULL)
1839                queue_delayed_work(efx->workqueue, &efx->monitor_work,
1840                                   ef4_monitor_interval);
1841
1842        efx->type->start_stats(efx);
1843        efx->type->pull_stats(efx);
1844        spin_lock_bh(&efx->stats_lock);
1845        efx->type->update_stats(efx, NULL, NULL);
1846        spin_unlock_bh(&efx->stats_lock);
1847}
1848
1849/* Quiesce the hardware and software data path, and regular activity
1850 * for the port without bringing the link down.  Safe to call multiple
1851 * times with the NIC in almost any state, but interrupts should be
1852 * enabled.  Requires the RTNL lock.
1853 */
1854static void ef4_stop_all(struct ef4_nic *efx)
1855{
1856        EF4_ASSERT_RESET_SERIALISED(efx);
1857
1858        /* port_enabled can be read safely under the rtnl lock */
1859        if (!efx->port_enabled)
1860                return;
1861
1862        /* update stats before we go down so we can accurately count
1863         * rx_nodesc_drops
1864         */
1865        efx->type->pull_stats(efx);
1866        spin_lock_bh(&efx->stats_lock);
1867        efx->type->update_stats(efx, NULL, NULL);
1868        spin_unlock_bh(&efx->stats_lock);
1869        efx->type->stop_stats(efx);
1870        ef4_stop_port(efx);
1871
1872        /* Stop the kernel transmit interface.  This is only valid if
1873         * the device is stopped or detached; otherwise the watchdog
1874         * may fire immediately.
1875         */
1876        WARN_ON(netif_running(efx->net_dev) &&
1877                netif_device_present(efx->net_dev));
1878        netif_tx_disable(efx->net_dev);
1879
1880        ef4_stop_datapath(efx);
1881}
1882
1883static void ef4_remove_all(struct ef4_nic *efx)
1884{
1885        ef4_remove_channels(efx);
1886        ef4_remove_filters(efx);
1887        ef4_remove_port(efx);
1888        ef4_remove_nic(efx);
1889}
1890
1891/**************************************************************************
1892 *
1893 * Interrupt moderation
1894 *
1895 **************************************************************************/
1896unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1897{
1898        if (usecs == 0)
1899                return 0;
1900        if (usecs * 1000 < efx->timer_quantum_ns)
1901                return 1; /* never round down to 0 */
1902        return usecs * 1000 / efx->timer_quantum_ns;
1903}
1904
1905unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1906{
1907        /* We must round up when converting ticks to microseconds
1908         * because we round down when converting the other way.
1909         */
1910        return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1911}
1912
1913/* Set interrupt moderation parameters */
1914int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1915                            unsigned int rx_usecs, bool rx_adaptive,
1916                            bool rx_may_override_tx)
1917{
1918        struct ef4_channel *channel;
1919        unsigned int timer_max_us;
1920
1921        EF4_ASSERT_RESET_SERIALISED(efx);
1922
1923        timer_max_us = efx->timer_max_ns / 1000;
1924
1925        if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1926                return -EINVAL;
1927
1928        if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1929            !rx_may_override_tx) {
1930                netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1931                          "RX and TX IRQ moderation must be equal\n");
1932                return -EINVAL;
1933        }
1934
1935        efx->irq_rx_adaptive = rx_adaptive;
1936        efx->irq_rx_moderation_us = rx_usecs;
1937        ef4_for_each_channel(channel, efx) {
1938                if (ef4_channel_has_rx_queue(channel))
1939                        channel->irq_moderation_us = rx_usecs;
1940                else if (ef4_channel_has_tx_queues(channel))
1941                        channel->irq_moderation_us = tx_usecs;
1942        }
1943
1944        return 0;
1945}
1946
1947void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1948                            unsigned int *rx_usecs, bool *rx_adaptive)
1949{
1950        *rx_adaptive = efx->irq_rx_adaptive;
1951        *rx_usecs = efx->irq_rx_moderation_us;
1952
1953        /* If channels are shared between RX and TX, so is IRQ
1954         * moderation.  Otherwise, IRQ moderation is the same for all
1955         * TX channels and is not adaptive.
1956         */
1957        if (efx->tx_channel_offset == 0) {
1958                *tx_usecs = *rx_usecs;
1959        } else {
1960                struct ef4_channel *tx_channel;
1961
1962                tx_channel = efx->channel[efx->tx_channel_offset];
1963                *tx_usecs = tx_channel->irq_moderation_us;
1964        }
1965}
1966
1967/**************************************************************************
1968 *
1969 * Hardware monitor
1970 *
1971 **************************************************************************/
1972
1973/* Run periodically off the general workqueue */
1974static void ef4_monitor(struct work_struct *data)
1975{
1976        struct ef4_nic *efx = container_of(data, struct ef4_nic,
1977                                           monitor_work.work);
1978
1979        netif_vdbg(efx, timer, efx->net_dev,
1980                   "hardware monitor executing on CPU %d\n",
1981                   raw_smp_processor_id());
1982        BUG_ON(efx->type->monitor == NULL);
1983
1984        /* If the mac_lock is already held then it is likely a port
1985         * reconfiguration is already in place, which will likely do
1986         * most of the work of monitor() anyway. */
1987        if (mutex_trylock(&efx->mac_lock)) {
1988                if (efx->port_enabled)
1989                        efx->type->monitor(efx);
1990                mutex_unlock(&efx->mac_lock);
1991        }
1992
1993        queue_delayed_work(efx->workqueue, &efx->monitor_work,
1994                           ef4_monitor_interval);
1995}
1996
1997/**************************************************************************
1998 *
1999 * ioctls
2000 *
2001 *************************************************************************/
2002
2003/* Net device ioctl
2004 * Context: process, rtnl_lock() held.
2005 */
2006static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2007{
2008        struct ef4_nic *efx = netdev_priv(net_dev);
2009        struct mii_ioctl_data *data = if_mii(ifr);
2010
2011        /* Convert phy_id from older PRTAD/DEVAD format */
2012        if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2013            (data->phy_id & 0xfc00) == 0x0400)
2014                data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2015
2016        return mdio_mii_ioctl(&efx->mdio, data, cmd);
2017}
2018
2019/**************************************************************************
2020 *
2021 * NAPI interface
2022 *
2023 **************************************************************************/
2024
2025static void ef4_init_napi_channel(struct ef4_channel *channel)
2026{
2027        struct ef4_nic *efx = channel->efx;
2028
2029        channel->napi_dev = efx->net_dev;
2030        netif_napi_add(channel->napi_dev, &channel->napi_str,
2031                       ef4_poll, napi_weight);
2032}
2033
2034static void ef4_init_napi(struct ef4_nic *efx)
2035{
2036        struct ef4_channel *channel;
2037
2038        ef4_for_each_channel(channel, efx)
2039                ef4_init_napi_channel(channel);
2040}
2041
2042static void ef4_fini_napi_channel(struct ef4_channel *channel)
2043{
2044        if (channel->napi_dev)
2045                netif_napi_del(&channel->napi_str);
2046
2047        channel->napi_dev = NULL;
2048}
2049
2050static void ef4_fini_napi(struct ef4_nic *efx)
2051{
2052        struct ef4_channel *channel;
2053
2054        ef4_for_each_channel(channel, efx)
2055                ef4_fini_napi_channel(channel);
2056}
2057
2058/**************************************************************************
2059 *
2060 * Kernel netpoll interface
2061 *
2062 *************************************************************************/
2063
2064#ifdef CONFIG_NET_POLL_CONTROLLER
2065
2066/* Although in the common case interrupts will be disabled, this is not
2067 * guaranteed. However, all our work happens inside the NAPI callback,
2068 * so no locking is required.
2069 */
2070static void ef4_netpoll(struct net_device *net_dev)
2071{
2072        struct ef4_nic *efx = netdev_priv(net_dev);
2073        struct ef4_channel *channel;
2074
2075        ef4_for_each_channel(channel, efx)
2076                ef4_schedule_channel(channel);
2077}
2078
2079#endif
2080
2081/**************************************************************************
2082 *
2083 * Kernel net device interface
2084 *
2085 *************************************************************************/
2086
2087/* Context: process, rtnl_lock() held. */
2088int ef4_net_open(struct net_device *net_dev)
2089{
2090        struct ef4_nic *efx = netdev_priv(net_dev);
2091        int rc;
2092
2093        netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2094                  raw_smp_processor_id());
2095
2096        rc = ef4_check_disabled(efx);
2097        if (rc)
2098                return rc;
2099        if (efx->phy_mode & PHY_MODE_SPECIAL)
2100                return -EBUSY;
2101
2102        /* Notify the kernel of the link state polled during driver load,
2103         * before the monitor starts running */
2104        ef4_link_status_changed(efx);
2105
2106        ef4_start_all(efx);
2107        ef4_selftest_async_start(efx);
2108        return 0;
2109}
2110
2111/* Context: process, rtnl_lock() held.
2112 * Note that the kernel will ignore our return code; this method
2113 * should really be a void.
2114 */
2115int ef4_net_stop(struct net_device *net_dev)
2116{
2117        struct ef4_nic *efx = netdev_priv(net_dev);
2118
2119        netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2120                  raw_smp_processor_id());
2121
2122        /* Stop the device and flush all the channels */
2123        ef4_stop_all(efx);
2124
2125        return 0;
2126}
2127
2128/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2129static void ef4_net_stats(struct net_device *net_dev,
2130                          struct rtnl_link_stats64 *stats)
2131{
2132        struct ef4_nic *efx = netdev_priv(net_dev);
2133
2134        spin_lock_bh(&efx->stats_lock);
2135        efx->type->update_stats(efx, NULL, stats);
2136        spin_unlock_bh(&efx->stats_lock);
2137}
2138
2139/* Context: netif_tx_lock held, BHs disabled. */
2140static void ef4_watchdog(struct net_device *net_dev)
2141{
2142        struct ef4_nic *efx = netdev_priv(net_dev);
2143
2144        netif_err(efx, tx_err, efx->net_dev,
2145                  "TX stuck with port_enabled=%d: resetting channels\n",
2146                  efx->port_enabled);
2147
2148        ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2149}
2150
2151
2152/* Context: process, rtnl_lock() held. */
2153static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2154{
2155        struct ef4_nic *efx = netdev_priv(net_dev);
2156        int rc;
2157
2158        rc = ef4_check_disabled(efx);
2159        if (rc)
2160                return rc;
2161
2162        netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2163
2164        ef4_device_detach_sync(efx);
2165        ef4_stop_all(efx);
2166
2167        mutex_lock(&efx->mac_lock);
2168        net_dev->mtu = new_mtu;
2169        ef4_mac_reconfigure(efx);
2170        mutex_unlock(&efx->mac_lock);
2171
2172        ef4_start_all(efx);
2173        netif_device_attach(efx->net_dev);
2174        return 0;
2175}
2176
2177static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2178{
2179        struct ef4_nic *efx = netdev_priv(net_dev);
2180        struct sockaddr *addr = data;
2181        u8 *new_addr = addr->sa_data;
2182        u8 old_addr[6];
2183        int rc;
2184
2185        if (!is_valid_ether_addr(new_addr)) {
2186                netif_err(efx, drv, efx->net_dev,
2187                          "invalid ethernet MAC address requested: %pM\n",
2188                          new_addr);
2189                return -EADDRNOTAVAIL;
2190        }
2191
2192        /* save old address */
2193        ether_addr_copy(old_addr, net_dev->dev_addr);
2194        ether_addr_copy(net_dev->dev_addr, new_addr);
2195        if (efx->type->set_mac_address) {
2196                rc = efx->type->set_mac_address(efx);
2197                if (rc) {
2198                        ether_addr_copy(net_dev->dev_addr, old_addr);
2199                        return rc;
2200                }
2201        }
2202
2203        /* Reconfigure the MAC */
2204        mutex_lock(&efx->mac_lock);
2205        ef4_mac_reconfigure(efx);
2206        mutex_unlock(&efx->mac_lock);
2207
2208        return 0;
2209}
2210
2211/* Context: netif_addr_lock held, BHs disabled. */
2212static void ef4_set_rx_mode(struct net_device *net_dev)
2213{
2214        struct ef4_nic *efx = netdev_priv(net_dev);
2215
2216        if (efx->port_enabled)
2217                queue_work(efx->workqueue, &efx->mac_work);
2218        /* Otherwise ef4_start_port() will do this */
2219}
2220
2221static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2222{
2223        struct ef4_nic *efx = netdev_priv(net_dev);
2224        int rc;
2225
2226        /* If disabling RX n-tuple filtering, clear existing filters */
2227        if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2228                rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2229                if (rc)
2230                        return rc;
2231        }
2232
2233        /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2234        if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2235                /* ef4_set_rx_mode() will schedule MAC work to update filters
2236                 * when a new features are finally set in net_dev.
2237                 */
2238                ef4_set_rx_mode(net_dev);
2239        }
2240
2241        return 0;
2242}
2243
2244static const struct net_device_ops ef4_netdev_ops = {
2245        .ndo_open               = ef4_net_open,
2246        .ndo_stop               = ef4_net_stop,
2247        .ndo_get_stats64        = ef4_net_stats,
2248        .ndo_tx_timeout         = ef4_watchdog,
2249        .ndo_start_xmit         = ef4_hard_start_xmit,
2250        .ndo_validate_addr      = eth_validate_addr,
2251        .ndo_do_ioctl           = ef4_ioctl,
2252        .ndo_change_mtu         = ef4_change_mtu,
2253        .ndo_set_mac_address    = ef4_set_mac_address,
2254        .ndo_set_rx_mode        = ef4_set_rx_mode,
2255        .ndo_set_features       = ef4_set_features,
2256#ifdef CONFIG_NET_POLL_CONTROLLER
2257        .ndo_poll_controller = ef4_netpoll,
2258#endif
2259        .ndo_setup_tc           = ef4_setup_tc,
2260#ifdef CONFIG_RFS_ACCEL
2261        .ndo_rx_flow_steer      = ef4_filter_rfs,
2262#endif
2263};
2264
2265static void ef4_update_name(struct ef4_nic *efx)
2266{
2267        strcpy(efx->name, efx->net_dev->name);
2268        ef4_mtd_rename(efx);
2269        ef4_set_channel_names(efx);
2270}
2271
2272static int ef4_netdev_event(struct notifier_block *this,
2273                            unsigned long event, void *ptr)
2274{
2275        struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2276
2277        if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2278            event == NETDEV_CHANGENAME)
2279                ef4_update_name(netdev_priv(net_dev));
2280
2281        return NOTIFY_DONE;
2282}
2283
2284static struct notifier_block ef4_netdev_notifier = {
2285        .notifier_call = ef4_netdev_event,
2286};
2287
2288static ssize_t
2289show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2290{
2291        struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2292        return sprintf(buf, "%d\n", efx->phy_type);
2293}
2294static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2295
2296static int ef4_register_netdev(struct ef4_nic *efx)
2297{
2298        struct net_device *net_dev = efx->net_dev;
2299        struct ef4_channel *channel;
2300        int rc;
2301
2302        net_dev->watchdog_timeo = 5 * HZ;
2303        net_dev->irq = efx->pci_dev->irq;
2304        net_dev->netdev_ops = &ef4_netdev_ops;
2305        net_dev->ethtool_ops = &ef4_ethtool_ops;
2306        net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2307        net_dev->min_mtu = EF4_MIN_MTU;
2308        net_dev->max_mtu = EF4_MAX_MTU;
2309
2310        rtnl_lock();
2311
2312        /* Enable resets to be scheduled and check whether any were
2313         * already requested.  If so, the NIC is probably hosed so we
2314         * abort.
2315         */
2316        efx->state = STATE_READY;
2317        smp_mb(); /* ensure we change state before checking reset_pending */
2318        if (efx->reset_pending) {
2319                netif_err(efx, probe, efx->net_dev,
2320                          "aborting probe due to scheduled reset\n");
2321                rc = -EIO;
2322                goto fail_locked;
2323        }
2324
2325        rc = dev_alloc_name(net_dev, net_dev->name);
2326        if (rc < 0)
2327                goto fail_locked;
2328        ef4_update_name(efx);
2329
2330        /* Always start with carrier off; PHY events will detect the link */
2331        netif_carrier_off(net_dev);
2332
2333        rc = register_netdevice(net_dev);
2334        if (rc)
2335                goto fail_locked;
2336
2337        ef4_for_each_channel(channel, efx) {
2338                struct ef4_tx_queue *tx_queue;
2339                ef4_for_each_channel_tx_queue(tx_queue, channel)
2340                        ef4_init_tx_queue_core_txq(tx_queue);
2341        }
2342
2343        ef4_associate(efx);
2344
2345        rtnl_unlock();
2346
2347        rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2348        if (rc) {
2349                netif_err(efx, drv, efx->net_dev,
2350                          "failed to init net dev attributes\n");
2351                goto fail_registered;
2352        }
2353        return 0;
2354
2355fail_registered:
2356        rtnl_lock();
2357        ef4_dissociate(efx);
2358        unregister_netdevice(net_dev);
2359fail_locked:
2360        efx->state = STATE_UNINIT;
2361        rtnl_unlock();
2362        netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2363        return rc;
2364}
2365
2366static void ef4_unregister_netdev(struct ef4_nic *efx)
2367{
2368        if (!efx->net_dev)
2369                return;
2370
2371        BUG_ON(netdev_priv(efx->net_dev) != efx);
2372
2373        if (ef4_dev_registered(efx)) {
2374                strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2375                device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2376                unregister_netdev(efx->net_dev);
2377        }
2378}
2379
2380/**************************************************************************
2381 *
2382 * Device reset and suspend
2383 *
2384 **************************************************************************/
2385
2386/* Tears down the entire software state and most of the hardware state
2387 * before reset.  */
2388void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2389{
2390        EF4_ASSERT_RESET_SERIALISED(efx);
2391
2392        ef4_stop_all(efx);
2393        ef4_disable_interrupts(efx);
2394
2395        mutex_lock(&efx->mac_lock);
2396        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2397            method != RESET_TYPE_DATAPATH)
2398                efx->phy_op->fini(efx);
2399        efx->type->fini(efx);
2400}
2401
2402/* This function will always ensure that the locks acquired in
2403 * ef4_reset_down() are released. A failure return code indicates
2404 * that we were unable to reinitialise the hardware, and the
2405 * driver should be disabled. If ok is false, then the rx and tx
2406 * engines are not restarted, pending a RESET_DISABLE. */
2407int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2408{
2409        int rc;
2410
2411        EF4_ASSERT_RESET_SERIALISED(efx);
2412
2413        /* Ensure that SRAM is initialised even if we're disabling the device */
2414        rc = efx->type->init(efx);
2415        if (rc) {
2416                netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2417                goto fail;
2418        }
2419
2420        if (!ok)
2421                goto fail;
2422
2423        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2424            method != RESET_TYPE_DATAPATH) {
2425                rc = efx->phy_op->init(efx);
2426                if (rc)
2427                        goto fail;
2428                rc = efx->phy_op->reconfigure(efx);
2429                if (rc && rc != -EPERM)
2430                        netif_err(efx, drv, efx->net_dev,
2431                                  "could not restore PHY settings\n");
2432        }
2433
2434        rc = ef4_enable_interrupts(efx);
2435        if (rc)
2436                goto fail;
2437
2438        down_read(&efx->filter_sem);
2439        ef4_restore_filters(efx);
2440        up_read(&efx->filter_sem);
2441
2442        mutex_unlock(&efx->mac_lock);
2443
2444        ef4_start_all(efx);
2445
2446        return 0;
2447
2448fail:
2449        efx->port_initialized = false;
2450
2451        mutex_unlock(&efx->mac_lock);
2452
2453        return rc;
2454}
2455
2456/* Reset the NIC using the specified method.  Note that the reset may
2457 * fail, in which case the card will be left in an unusable state.
2458 *
2459 * Caller must hold the rtnl_lock.
2460 */
2461int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2462{
2463        int rc, rc2;
2464        bool disabled;
2465
2466        netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2467                   RESET_TYPE(method));
2468
2469        ef4_device_detach_sync(efx);
2470        ef4_reset_down(efx, method);
2471
2472        rc = efx->type->reset(efx, method);
2473        if (rc) {
2474                netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2475                goto out;
2476        }
2477
2478        /* Clear flags for the scopes we covered.  We assume the NIC and
2479         * driver are now quiescent so that there is no race here.
2480         */
2481        if (method < RESET_TYPE_MAX_METHOD)
2482                efx->reset_pending &= -(1 << (method + 1));
2483        else /* it doesn't fit into the well-ordered scope hierarchy */
2484                __clear_bit(method, &efx->reset_pending);
2485
2486        /* Reinitialise bus-mastering, which may have been turned off before
2487         * the reset was scheduled. This is still appropriate, even in the
2488         * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2489         * can respond to requests. */
2490        pci_set_master(efx->pci_dev);
2491
2492out:
2493        /* Leave device stopped if necessary */
2494        disabled = rc ||
2495                method == RESET_TYPE_DISABLE ||
2496                method == RESET_TYPE_RECOVER_OR_DISABLE;
2497        rc2 = ef4_reset_up(efx, method, !disabled);
2498        if (rc2) {
2499                disabled = true;
2500                if (!rc)
2501                        rc = rc2;
2502        }
2503
2504        if (disabled) {
2505                dev_close(efx->net_dev);
2506                netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2507                efx->state = STATE_DISABLED;
2508        } else {
2509                netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2510                netif_device_attach(efx->net_dev);
2511        }
2512        return rc;
2513}
2514
2515/* Try recovery mechanisms.
2516 * For now only EEH is supported.
2517 * Returns 0 if the recovery mechanisms are unsuccessful.
2518 * Returns a non-zero value otherwise.
2519 */
2520int ef4_try_recovery(struct ef4_nic *efx)
2521{
2522#ifdef CONFIG_EEH
2523        /* A PCI error can occur and not be seen by EEH because nothing
2524         * happens on the PCI bus. In this case the driver may fail and
2525         * schedule a 'recover or reset', leading to this recovery handler.
2526         * Manually call the eeh failure check function.
2527         */
2528        struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2529        if (eeh_dev_check_failure(eehdev)) {
2530                /* The EEH mechanisms will handle the error and reset the
2531                 * device if necessary.
2532                 */
2533                return 1;
2534        }
2535#endif
2536        return 0;
2537}
2538
2539/* The worker thread exists so that code that cannot sleep can
2540 * schedule a reset for later.
2541 */
2542static void ef4_reset_work(struct work_struct *data)
2543{
2544        struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2545        unsigned long pending;
2546        enum reset_type method;
2547
2548        pending = ACCESS_ONCE(efx->reset_pending);
2549        method = fls(pending) - 1;
2550
2551        if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2552             method == RESET_TYPE_RECOVER_OR_ALL) &&
2553            ef4_try_recovery(efx))
2554                return;
2555
2556        if (!pending)
2557                return;
2558
2559        rtnl_lock();
2560
2561        /* We checked the state in ef4_schedule_reset() but it may
2562         * have changed by now.  Now that we have the RTNL lock,
2563         * it cannot change again.
2564         */
2565        if (efx->state == STATE_READY)
2566                (void)ef4_reset(efx, method);
2567
2568        rtnl_unlock();
2569}
2570
2571void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2572{
2573        enum reset_type method;
2574
2575        if (efx->state == STATE_RECOVERY) {
2576                netif_dbg(efx, drv, efx->net_dev,
2577                          "recovering: skip scheduling %s reset\n",
2578                          RESET_TYPE(type));
2579                return;
2580        }
2581
2582        switch (type) {
2583        case RESET_TYPE_INVISIBLE:
2584        case RESET_TYPE_ALL:
2585        case RESET_TYPE_RECOVER_OR_ALL:
2586        case RESET_TYPE_WORLD:
2587        case RESET_TYPE_DISABLE:
2588        case RESET_TYPE_RECOVER_OR_DISABLE:
2589        case RESET_TYPE_DATAPATH:
2590                method = type;
2591                netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2592                          RESET_TYPE(method));
2593                break;
2594        default:
2595                method = efx->type->map_reset_reason(type);
2596                netif_dbg(efx, drv, efx->net_dev,
2597                          "scheduling %s reset for %s\n",
2598                          RESET_TYPE(method), RESET_TYPE(type));
2599                break;
2600        }
2601
2602        set_bit(method, &efx->reset_pending);
2603        smp_mb(); /* ensure we change reset_pending before checking state */
2604
2605        /* If we're not READY then just leave the flags set as the cue
2606         * to abort probing or reschedule the reset later.
2607         */
2608        if (ACCESS_ONCE(efx->state) != STATE_READY)
2609                return;
2610
2611        queue_work(reset_workqueue, &efx->reset_work);
2612}
2613
2614/**************************************************************************
2615 *
2616 * List of NICs we support
2617 *
2618 **************************************************************************/
2619
2620/* PCI device ID table */
2621static const struct pci_device_id ef4_pci_table[] = {
2622        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2623                    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2624         .driver_data = (unsigned long) &falcon_a1_nic_type},
2625        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2626                    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2627         .driver_data = (unsigned long) &falcon_b0_nic_type},
2628        {0}                     /* end of list */
2629};
2630
2631/**************************************************************************
2632 *
2633 * Dummy PHY/MAC operations
2634 *
2635 * Can be used for some unimplemented operations
2636 * Needed so all function pointers are valid and do not have to be tested
2637 * before use
2638 *
2639 **************************************************************************/
2640int ef4_port_dummy_op_int(struct ef4_nic *efx)
2641{
2642        return 0;
2643}
2644void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2645
2646static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2647{
2648        return false;
2649}
2650
2651static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2652        .init            = ef4_port_dummy_op_int,
2653        .reconfigure     = ef4_port_dummy_op_int,
2654        .poll            = ef4_port_dummy_op_poll,
2655        .fini            = ef4_port_dummy_op_void,
2656};
2657
2658/**************************************************************************
2659 *
2660 * Data housekeeping
2661 *
2662 **************************************************************************/
2663
2664/* This zeroes out and then fills in the invariants in a struct
2665 * ef4_nic (including all sub-structures).
2666 */
2667static int ef4_init_struct(struct ef4_nic *efx,
2668                           struct pci_dev *pci_dev, struct net_device *net_dev)
2669{
2670        int i;
2671
2672        /* Initialise common structures */
2673        INIT_LIST_HEAD(&efx->node);
2674        INIT_LIST_HEAD(&efx->secondary_list);
2675        spin_lock_init(&efx->biu_lock);
2676#ifdef CONFIG_SFC_FALCON_MTD
2677        INIT_LIST_HEAD(&efx->mtd_list);
2678#endif
2679        INIT_WORK(&efx->reset_work, ef4_reset_work);
2680        INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2681        INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2682        efx->pci_dev = pci_dev;
2683        efx->msg_enable = debug;
2684        efx->state = STATE_UNINIT;
2685        strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2686
2687        efx->net_dev = net_dev;
2688        efx->rx_prefix_size = efx->type->rx_prefix_size;
2689        efx->rx_ip_align =
2690                NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2691        efx->rx_packet_hash_offset =
2692                efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2693        efx->rx_packet_ts_offset =
2694                efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2695        spin_lock_init(&efx->stats_lock);
2696        mutex_init(&efx->mac_lock);
2697        efx->phy_op = &ef4_dummy_phy_operations;
2698        efx->mdio.dev = net_dev;
2699        INIT_WORK(&efx->mac_work, ef4_mac_work);
2700        init_waitqueue_head(&efx->flush_wq);
2701
2702        for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2703                efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2704                if (!efx->channel[i])
2705                        goto fail;
2706                efx->msi_context[i].efx = efx;
2707                efx->msi_context[i].index = i;
2708        }
2709
2710        /* Higher numbered interrupt modes are less capable! */
2711        efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2712                                  interrupt_mode);
2713
2714        /* Would be good to use the net_dev name, but we're too early */
2715        snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2716                 pci_name(pci_dev));
2717        efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2718        if (!efx->workqueue)
2719                goto fail;
2720
2721        return 0;
2722
2723fail:
2724        ef4_fini_struct(efx);
2725        return -ENOMEM;
2726}
2727
2728static void ef4_fini_struct(struct ef4_nic *efx)
2729{
2730        int i;
2731
2732        for (i = 0; i < EF4_MAX_CHANNELS; i++)
2733                kfree(efx->channel[i]);
2734
2735        kfree(efx->vpd_sn);
2736
2737        if (efx->workqueue) {
2738                destroy_workqueue(efx->workqueue);
2739                efx->workqueue = NULL;
2740        }
2741}
2742
2743void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2744{
2745        u64 n_rx_nodesc_trunc = 0;
2746        struct ef4_channel *channel;
2747
2748        ef4_for_each_channel(channel, efx)
2749                n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2750        stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2751        stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2752}
2753
2754/**************************************************************************
2755 *
2756 * PCI interface
2757 *
2758 **************************************************************************/
2759
2760/* Main body of final NIC shutdown code
2761 * This is called only at module unload (or hotplug removal).
2762 */
2763static void ef4_pci_remove_main(struct ef4_nic *efx)
2764{
2765        /* Flush reset_work. It can no longer be scheduled since we
2766         * are not READY.
2767         */
2768        BUG_ON(efx->state == STATE_READY);
2769        cancel_work_sync(&efx->reset_work);
2770
2771        ef4_disable_interrupts(efx);
2772        ef4_nic_fini_interrupt(efx);
2773        ef4_fini_port(efx);
2774        efx->type->fini(efx);
2775        ef4_fini_napi(efx);
2776        ef4_remove_all(efx);
2777}
2778
2779/* Final NIC shutdown
2780 * This is called only at module unload (or hotplug removal).  A PF can call
2781 * this on its VFs to ensure they are unbound first.
2782 */
2783static void ef4_pci_remove(struct pci_dev *pci_dev)
2784{
2785        struct ef4_nic *efx;
2786
2787        efx = pci_get_drvdata(pci_dev);
2788        if (!efx)
2789                return;
2790
2791        /* Mark the NIC as fini, then stop the interface */
2792        rtnl_lock();
2793        ef4_dissociate(efx);
2794        dev_close(efx->net_dev);
2795        ef4_disable_interrupts(efx);
2796        efx->state = STATE_UNINIT;
2797        rtnl_unlock();
2798
2799        ef4_unregister_netdev(efx);
2800
2801        ef4_mtd_remove(efx);
2802
2803        ef4_pci_remove_main(efx);
2804
2805        ef4_fini_io(efx);
2806        netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2807
2808        ef4_fini_struct(efx);
2809        free_netdev(efx->net_dev);
2810
2811        pci_disable_pcie_error_reporting(pci_dev);
2812};
2813
2814/* NIC VPD information
2815 * Called during probe to display the part number of the
2816 * installed NIC.  VPD is potentially very large but this should
2817 * always appear within the first 512 bytes.
2818 */
2819#define SFC_VPD_LEN 512
2820static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2821{
2822        struct pci_dev *dev = efx->pci_dev;
2823        char vpd_data[SFC_VPD_LEN];
2824        ssize_t vpd_size;
2825        int ro_start, ro_size, i, j;
2826
2827        /* Get the vpd data from the device */
2828        vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2829        if (vpd_size <= 0) {
2830                netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2831                return;
2832        }
2833
2834        /* Get the Read only section */
2835        ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2836        if (ro_start < 0) {
2837                netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2838                return;
2839        }
2840
2841        ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2842        j = ro_size;
2843        i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2844        if (i + j > vpd_size)
2845                j = vpd_size - i;
2846
2847        /* Get the Part number */
2848        i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2849        if (i < 0) {
2850                netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2851                return;
2852        }
2853
2854        j = pci_vpd_info_field_size(&vpd_data[i]);
2855        i += PCI_VPD_INFO_FLD_HDR_SIZE;
2856        if (i + j > vpd_size) {
2857                netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2858                return;
2859        }
2860
2861        netif_info(efx, drv, efx->net_dev,
2862                   "Part Number : %.*s\n", j, &vpd_data[i]);
2863
2864        i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2865        j = ro_size;
2866        i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2867        if (i < 0) {
2868                netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2869                return;
2870        }
2871
2872        j = pci_vpd_info_field_size(&vpd_data[i]);
2873        i += PCI_VPD_INFO_FLD_HDR_SIZE;
2874        if (i + j > vpd_size) {
2875                netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2876                return;
2877        }
2878
2879        efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2880        if (!efx->vpd_sn)
2881                return;
2882
2883        snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2884}
2885
2886
2887/* Main body of NIC initialisation
2888 * This is called at module load (or hotplug insertion, theoretically).
2889 */
2890static int ef4_pci_probe_main(struct ef4_nic *efx)
2891{
2892        int rc;
2893
2894        /* Do start-of-day initialisation */
2895        rc = ef4_probe_all(efx);
2896        if (rc)
2897                goto fail1;
2898
2899        ef4_init_napi(efx);
2900
2901        rc = efx->type->init(efx);
2902        if (rc) {
2903                netif_err(efx, probe, efx->net_dev,
2904                          "failed to initialise NIC\n");
2905                goto fail3;
2906        }
2907
2908        rc = ef4_init_port(efx);
2909        if (rc) {
2910                netif_err(efx, probe, efx->net_dev,
2911                          "failed to initialise port\n");
2912                goto fail4;
2913        }
2914
2915        rc = ef4_nic_init_interrupt(efx);
2916        if (rc)
2917                goto fail5;
2918        rc = ef4_enable_interrupts(efx);
2919        if (rc)
2920                goto fail6;
2921
2922        return 0;
2923
2924 fail6:
2925        ef4_nic_fini_interrupt(efx);
2926 fail5:
2927        ef4_fini_port(efx);
2928 fail4:
2929        efx->type->fini(efx);
2930 fail3:
2931        ef4_fini_napi(efx);
2932        ef4_remove_all(efx);
2933 fail1:
2934        return rc;
2935}
2936
2937/* NIC initialisation
2938 *
2939 * This is called at module load (or hotplug insertion,
2940 * theoretically).  It sets up PCI mappings, resets the NIC,
2941 * sets up and registers the network devices with the kernel and hooks
2942 * the interrupt service routine.  It does not prepare the device for
2943 * transmission; this is left to the first time one of the network
2944 * interfaces is brought up (i.e. ef4_net_open).
2945 */
2946static int ef4_pci_probe(struct pci_dev *pci_dev,
2947                         const struct pci_device_id *entry)
2948{
2949        struct net_device *net_dev;
2950        struct ef4_nic *efx;
2951        int rc;
2952
2953        /* Allocate and initialise a struct net_device and struct ef4_nic */
2954        net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2955                                     EF4_MAX_RX_QUEUES);
2956        if (!net_dev)
2957                return -ENOMEM;
2958        efx = netdev_priv(net_dev);
2959        efx->type = (const struct ef4_nic_type *) entry->driver_data;
2960        efx->fixed_features |= NETIF_F_HIGHDMA;
2961
2962        pci_set_drvdata(pci_dev, efx);
2963        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2964        rc = ef4_init_struct(efx, pci_dev, net_dev);
2965        if (rc)
2966                goto fail1;
2967
2968        netif_info(efx, probe, efx->net_dev,
2969                   "Solarflare NIC detected\n");
2970
2971        ef4_probe_vpd_strings(efx);
2972
2973        /* Set up basic I/O (BAR mappings etc) */
2974        rc = ef4_init_io(efx);
2975        if (rc)
2976                goto fail2;
2977
2978        rc = ef4_pci_probe_main(efx);
2979        if (rc)
2980                goto fail3;
2981
2982        net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2983                              NETIF_F_RXCSUM);
2984        /* Mask for features that also apply to VLAN devices */
2985        net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2986                                   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2987
2988        net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2989
2990        /* Disable VLAN filtering by default.  It may be enforced if
2991         * the feature is fixed (i.e. VLAN filters are required to
2992         * receive VLAN tagged packets due to vPort restrictions).
2993         */
2994        net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2995        net_dev->features |= efx->fixed_features;
2996
2997        rc = ef4_register_netdev(efx);
2998        if (rc)
2999                goto fail4;
3000
3001        netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3002
3003        /* Try to create MTDs, but allow this to fail */
3004        rtnl_lock();
3005        rc = ef4_mtd_probe(efx);
3006        rtnl_unlock();
3007        if (rc && rc != -EPERM)
3008                netif_warn(efx, probe, efx->net_dev,
3009                           "failed to create MTDs (%d)\n", rc);
3010
3011        rc = pci_enable_pcie_error_reporting(pci_dev);
3012        if (rc && rc != -EINVAL)
3013                netif_notice(efx, probe, efx->net_dev,
3014                             "PCIE error reporting unavailable (%d).\n",
3015                             rc);
3016
3017        return 0;
3018
3019 fail4:
3020        ef4_pci_remove_main(efx);
3021 fail3:
3022        ef4_fini_io(efx);
3023 fail2:
3024        ef4_fini_struct(efx);
3025 fail1:
3026        WARN_ON(rc > 0);
3027        netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3028        free_netdev(net_dev);
3029        return rc;
3030}
3031
3032static int ef4_pm_freeze(struct device *dev)
3033{
3034        struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3035
3036        rtnl_lock();
3037
3038        if (efx->state != STATE_DISABLED) {
3039                efx->state = STATE_UNINIT;
3040
3041                ef4_device_detach_sync(efx);
3042
3043                ef4_stop_all(efx);
3044                ef4_disable_interrupts(efx);
3045        }
3046
3047        rtnl_unlock();
3048
3049        return 0;
3050}
3051
3052static int ef4_pm_thaw(struct device *dev)
3053{
3054        int rc;
3055        struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3056
3057        rtnl_lock();
3058
3059        if (efx->state != STATE_DISABLED) {
3060                rc = ef4_enable_interrupts(efx);
3061                if (rc)
3062                        goto fail;
3063
3064                mutex_lock(&efx->mac_lock);
3065                efx->phy_op->reconfigure(efx);
3066                mutex_unlock(&efx->mac_lock);
3067
3068                ef4_start_all(efx);
3069
3070                netif_device_attach(efx->net_dev);
3071
3072                efx->state = STATE_READY;
3073
3074                efx->type->resume_wol(efx);
3075        }
3076
3077        rtnl_unlock();
3078
3079        /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3080        queue_work(reset_workqueue, &efx->reset_work);
3081
3082        return 0;
3083
3084fail:
3085        rtnl_unlock();
3086
3087        return rc;
3088}
3089
3090static int ef4_pm_poweroff(struct device *dev)
3091{
3092        struct pci_dev *pci_dev = to_pci_dev(dev);
3093        struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3094
3095        efx->type->fini(efx);
3096
3097        efx->reset_pending = 0;
3098
3099        pci_save_state(pci_dev);
3100        return pci_set_power_state(pci_dev, PCI_D3hot);
3101}
3102
3103/* Used for both resume and restore */
3104static int ef4_pm_resume(struct device *dev)
3105{
3106        struct pci_dev *pci_dev = to_pci_dev(dev);
3107        struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3108        int rc;
3109
3110        rc = pci_set_power_state(pci_dev, PCI_D0);
3111        if (rc)
3112                return rc;
3113        pci_restore_state(pci_dev);
3114        rc = pci_enable_device(pci_dev);
3115        if (rc)
3116                return rc;
3117        pci_set_master(efx->pci_dev);
3118        rc = efx->type->reset(efx, RESET_TYPE_ALL);
3119        if (rc)
3120                return rc;
3121        rc = efx->type->init(efx);
3122        if (rc)
3123                return rc;
3124        rc = ef4_pm_thaw(dev);
3125        return rc;
3126}
3127
3128static int ef4_pm_suspend(struct device *dev)
3129{
3130        int rc;
3131
3132        ef4_pm_freeze(dev);
3133        rc = ef4_pm_poweroff(dev);
3134        if (rc)
3135                ef4_pm_resume(dev);
3136        return rc;
3137}
3138
3139static const struct dev_pm_ops ef4_pm_ops = {
3140        .suspend        = ef4_pm_suspend,
3141        .resume         = ef4_pm_resume,
3142        .freeze         = ef4_pm_freeze,
3143        .thaw           = ef4_pm_thaw,
3144        .poweroff       = ef4_pm_poweroff,
3145        .restore        = ef4_pm_resume,
3146};
3147
3148/* A PCI error affecting this device was detected.
3149 * At this point MMIO and DMA may be disabled.
3150 * Stop the software path and request a slot reset.
3151 */
3152static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3153                                              enum pci_channel_state state)
3154{
3155        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3156        struct ef4_nic *efx = pci_get_drvdata(pdev);
3157
3158        if (state == pci_channel_io_perm_failure)
3159                return PCI_ERS_RESULT_DISCONNECT;
3160
3161        rtnl_lock();
3162
3163        if (efx->state != STATE_DISABLED) {
3164                efx->state = STATE_RECOVERY;
3165                efx->reset_pending = 0;
3166
3167                ef4_device_detach_sync(efx);
3168
3169                ef4_stop_all(efx);
3170                ef4_disable_interrupts(efx);
3171
3172                status = PCI_ERS_RESULT_NEED_RESET;
3173        } else {
3174                /* If the interface is disabled we don't want to do anything
3175                 * with it.
3176                 */
3177                status = PCI_ERS_RESULT_RECOVERED;
3178        }
3179
3180        rtnl_unlock();
3181
3182        pci_disable_device(pdev);
3183
3184        return status;
3185}
3186
3187/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3188static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3189{
3190        struct ef4_nic *efx = pci_get_drvdata(pdev);
3191        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3192        int rc;
3193
3194        if (pci_enable_device(pdev)) {
3195                netif_err(efx, hw, efx->net_dev,
3196                          "Cannot re-enable PCI device after reset.\n");
3197                status =  PCI_ERS_RESULT_DISCONNECT;
3198        }
3199
3200        rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3201        if (rc) {
3202                netif_err(efx, hw, efx->net_dev,
3203                "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3204                /* Non-fatal error. Continue. */
3205        }
3206
3207        return status;
3208}
3209
3210/* Perform the actual reset and resume I/O operations. */
3211static void ef4_io_resume(struct pci_dev *pdev)
3212{
3213        struct ef4_nic *efx = pci_get_drvdata(pdev);
3214        int rc;
3215
3216        rtnl_lock();
3217
3218        if (efx->state == STATE_DISABLED)
3219                goto out;
3220
3221        rc = ef4_reset(efx, RESET_TYPE_ALL);
3222        if (rc) {
3223                netif_err(efx, hw, efx->net_dev,
3224                          "ef4_reset failed after PCI error (%d)\n", rc);
3225        } else {
3226                efx->state = STATE_READY;
3227                netif_dbg(efx, hw, efx->net_dev,
3228                          "Done resetting and resuming IO after PCI error.\n");
3229        }
3230
3231out:
3232        rtnl_unlock();
3233}
3234
3235/* For simplicity and reliability, we always require a slot reset and try to
3236 * reset the hardware when a pci error affecting the device is detected.
3237 * We leave both the link_reset and mmio_enabled callback unimplemented:
3238 * with our request for slot reset the mmio_enabled callback will never be
3239 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3240 */
3241static const struct pci_error_handlers ef4_err_handlers = {
3242        .error_detected = ef4_io_error_detected,
3243        .slot_reset     = ef4_io_slot_reset,
3244        .resume         = ef4_io_resume,
3245};
3246
3247static struct pci_driver ef4_pci_driver = {
3248        .name           = KBUILD_MODNAME,
3249        .id_table       = ef4_pci_table,
3250        .probe          = ef4_pci_probe,
3251        .remove         = ef4_pci_remove,
3252        .driver.pm      = &ef4_pm_ops,
3253        .err_handler    = &ef4_err_handlers,
3254};
3255
3256/**************************************************************************
3257 *
3258 * Kernel module interface
3259 *
3260 *************************************************************************/
3261
3262module_param(interrupt_mode, uint, 0444);
3263MODULE_PARM_DESC(interrupt_mode,
3264                 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3265
3266static int __init ef4_init_module(void)
3267{
3268        int rc;
3269
3270        printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3271
3272        rc = register_netdevice_notifier(&ef4_netdev_notifier);
3273        if (rc)
3274                goto err_notifier;
3275
3276        reset_workqueue = create_singlethread_workqueue("sfc_reset");
3277        if (!reset_workqueue) {
3278                rc = -ENOMEM;
3279                goto err_reset;
3280        }
3281
3282        rc = pci_register_driver(&ef4_pci_driver);
3283        if (rc < 0)
3284                goto err_pci;
3285
3286        return 0;
3287
3288 err_pci:
3289        destroy_workqueue(reset_workqueue);
3290 err_reset:
3291        unregister_netdevice_notifier(&ef4_netdev_notifier);
3292 err_notifier:
3293        return rc;
3294}
3295
3296static void __exit ef4_exit_module(void)
3297{
3298        printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3299
3300        pci_unregister_driver(&ef4_pci_driver);
3301        destroy_workqueue(reset_workqueue);
3302        unregister_netdevice_notifier(&ef4_netdev_notifier);
3303
3304}
3305
3306module_init(ef4_init_module);
3307module_exit(ef4_exit_module);
3308
3309MODULE_AUTHOR("Solarflare Communications and "
3310              "Michael Brown <mbrown@fensystems.co.uk>");
3311MODULE_DESCRIPTION("Solarflare Falcon network driver");
3312MODULE_LICENSE("GPL");
3313MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3314MODULE_VERSION(EF4_DRIVER_VERSION);
3315