linux/drivers/net/wireless/ralink/rt2x00/rt2500usb.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20        Module: rt2500usb
  21        Abstract: rt2500usb device specific routines.
  22        Supported chipsets: RT2570.
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/etherdevice.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/slab.h>
  30#include <linux/usb.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00usb.h"
  34#include "rt2500usb.h"
  35
  36/*
  37 * Allow hardware encryption to be disabled.
  38 */
  39static bool modparam_nohwcrypt;
  40module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  41MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  42
  43/*
  44 * Register access.
  45 * All access to the CSR registers will go through the methods
  46 * rt2500usb_register_read and rt2500usb_register_write.
  47 * BBP and RF register require indirect register access,
  48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  49 * These indirect registers work with busy bits,
  50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
  51 * the register while taking a REGISTER_BUSY_DELAY us delay
  52 * between each attampt. When the busy bit is still set at that time,
  53 * the access attempt is considered to have failed,
  54 * and we will print an error.
  55 * If the csr_mutex is already held then the _lock variants must
  56 * be used instead.
  57 */
  58static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  59                                   const unsigned int offset)
  60{
  61        __le16 reg;
  62        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  63                                      USB_VENDOR_REQUEST_IN, offset,
  64                                      &reg, sizeof(reg));
  65        return le16_to_cpu(reg);
  66}
  67
  68static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  69                                        const unsigned int offset)
  70{
  71        __le16 reg;
  72        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  73                                       USB_VENDOR_REQUEST_IN, offset,
  74                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
  75        return le16_to_cpu(reg);
  76}
  77
  78static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  79                                            const unsigned int offset,
  80                                            u16 value)
  81{
  82        __le16 reg = cpu_to_le16(value);
  83        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  84                                      USB_VENDOR_REQUEST_OUT, offset,
  85                                      &reg, sizeof(reg));
  86}
  87
  88static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  89                                                 const unsigned int offset,
  90                                                 u16 value)
  91{
  92        __le16 reg = cpu_to_le16(value);
  93        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  94                                       USB_VENDOR_REQUEST_OUT, offset,
  95                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
  96}
  97
  98static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  99                                                 const unsigned int offset,
 100                                                 void *value, const u16 length)
 101{
 102        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
 103                                      USB_VENDOR_REQUEST_OUT, offset,
 104                                      value, length);
 105}
 106
 107static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
 108                                  const unsigned int offset,
 109                                  struct rt2x00_field16 field,
 110                                  u16 *reg)
 111{
 112        unsigned int i;
 113
 114        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 115                *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
 116                if (!rt2x00_get_field16(*reg, field))
 117                        return 1;
 118                udelay(REGISTER_BUSY_DELAY);
 119        }
 120
 121        rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 122                   offset, *reg);
 123        *reg = ~0;
 124
 125        return 0;
 126}
 127
 128#define WAIT_FOR_BBP(__dev, __reg) \
 129        rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 130#define WAIT_FOR_RF(__dev, __reg) \
 131        rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 132
 133static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 134                                const unsigned int word, const u8 value)
 135{
 136        u16 reg;
 137
 138        mutex_lock(&rt2x00dev->csr_mutex);
 139
 140        /*
 141         * Wait until the BBP becomes available, afterwards we
 142         * can safely write the new data into the register.
 143         */
 144        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 145                reg = 0;
 146                rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 147                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 148                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 149
 150                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 151        }
 152
 153        mutex_unlock(&rt2x00dev->csr_mutex);
 154}
 155
 156static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 157                             const unsigned int word)
 158{
 159        u16 reg;
 160        u8 value;
 161
 162        mutex_lock(&rt2x00dev->csr_mutex);
 163
 164        /*
 165         * Wait until the BBP becomes available, afterwards we
 166         * can safely write the read request into the register.
 167         * After the data has been written, we wait until hardware
 168         * returns the correct value, if at any time the register
 169         * doesn't become available in time, reg will be 0xffffffff
 170         * which means we return 0xff to the caller.
 171         */
 172        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 173                reg = 0;
 174                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 175                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 176
 177                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 178
 179                if (WAIT_FOR_BBP(rt2x00dev, &reg))
 180                        reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
 181        }
 182
 183        value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 184
 185        mutex_unlock(&rt2x00dev->csr_mutex);
 186
 187        return value;
 188}
 189
 190static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 191                               const unsigned int word, const u32 value)
 192{
 193        u16 reg;
 194
 195        mutex_lock(&rt2x00dev->csr_mutex);
 196
 197        /*
 198         * Wait until the RF becomes available, afterwards we
 199         * can safely write the new data into the register.
 200         */
 201        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 202                reg = 0;
 203                rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 204                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 205
 206                reg = 0;
 207                rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 208                rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 209                rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 210                rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 211
 212                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 213                rt2x00_rf_write(rt2x00dev, word, value);
 214        }
 215
 216        mutex_unlock(&rt2x00dev->csr_mutex);
 217}
 218
 219#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 220static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 221                                     const unsigned int offset)
 222{
 223        return rt2500usb_register_read(rt2x00dev, offset);
 224}
 225
 226static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 227                                      const unsigned int offset,
 228                                      u32 value)
 229{
 230        rt2500usb_register_write(rt2x00dev, offset, value);
 231}
 232
 233static const struct rt2x00debug rt2500usb_rt2x00debug = {
 234        .owner  = THIS_MODULE,
 235        .csr    = {
 236                .read           = _rt2500usb_register_read,
 237                .write          = _rt2500usb_register_write,
 238                .flags          = RT2X00DEBUGFS_OFFSET,
 239                .word_base      = CSR_REG_BASE,
 240                .word_size      = sizeof(u16),
 241                .word_count     = CSR_REG_SIZE / sizeof(u16),
 242        },
 243        .eeprom = {
 244                .read           = rt2x00_eeprom_read,
 245                .write          = rt2x00_eeprom_write,
 246                .word_base      = EEPROM_BASE,
 247                .word_size      = sizeof(u16),
 248                .word_count     = EEPROM_SIZE / sizeof(u16),
 249        },
 250        .bbp    = {
 251                .read           = rt2500usb_bbp_read,
 252                .write          = rt2500usb_bbp_write,
 253                .word_base      = BBP_BASE,
 254                .word_size      = sizeof(u8),
 255                .word_count     = BBP_SIZE / sizeof(u8),
 256        },
 257        .rf     = {
 258                .read           = rt2x00_rf_read,
 259                .write          = rt2500usb_rf_write,
 260                .word_base      = RF_BASE,
 261                .word_size      = sizeof(u32),
 262                .word_count     = RF_SIZE / sizeof(u32),
 263        },
 264};
 265#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 266
 267static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 268{
 269        u16 reg;
 270
 271        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
 272        return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 273}
 274
 275#ifdef CONFIG_RT2X00_LIB_LEDS
 276static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 277                                     enum led_brightness brightness)
 278{
 279        struct rt2x00_led *led =
 280            container_of(led_cdev, struct rt2x00_led, led_dev);
 281        unsigned int enabled = brightness != LED_OFF;
 282        u16 reg;
 283
 284        reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
 285
 286        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 287                rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 288        else if (led->type == LED_TYPE_ACTIVITY)
 289                rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 290
 291        rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 292}
 293
 294static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 295                               unsigned long *delay_on,
 296                               unsigned long *delay_off)
 297{
 298        struct rt2x00_led *led =
 299            container_of(led_cdev, struct rt2x00_led, led_dev);
 300        u16 reg;
 301
 302        reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
 303        rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 304        rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 305        rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 306
 307        return 0;
 308}
 309
 310static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 311                               struct rt2x00_led *led,
 312                               enum led_type type)
 313{
 314        led->rt2x00dev = rt2x00dev;
 315        led->type = type;
 316        led->led_dev.brightness_set = rt2500usb_brightness_set;
 317        led->led_dev.blink_set = rt2500usb_blink_set;
 318        led->flags = LED_INITIALIZED;
 319}
 320#endif /* CONFIG_RT2X00_LIB_LEDS */
 321
 322/*
 323 * Configuration handlers.
 324 */
 325
 326/*
 327 * rt2500usb does not differentiate between shared and pairwise
 328 * keys, so we should use the same function for both key types.
 329 */
 330static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 331                                struct rt2x00lib_crypto *crypto,
 332                                struct ieee80211_key_conf *key)
 333{
 334        u32 mask;
 335        u16 reg;
 336        enum cipher curr_cipher;
 337
 338        if (crypto->cmd == SET_KEY) {
 339                /*
 340                 * Disallow to set WEP key other than with index 0,
 341                 * it is known that not work at least on some hardware.
 342                 * SW crypto will be used in that case.
 343                 */
 344                if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 345                     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 346                    key->keyidx != 0)
 347                        return -EOPNOTSUPP;
 348
 349                /*
 350                 * Pairwise key will always be entry 0, but this
 351                 * could collide with a shared key on the same
 352                 * position...
 353                 */
 354                mask = TXRX_CSR0_KEY_ID.bit_mask;
 355
 356                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 357                curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 358                reg &= mask;
 359
 360                if (reg && reg == mask)
 361                        return -ENOSPC;
 362
 363                reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 364
 365                key->hw_key_idx += reg ? ffz(reg) : 0;
 366                /*
 367                 * Hardware requires that all keys use the same cipher
 368                 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 369                 * If this is not the first key, compare the cipher with the
 370                 * first one and fall back to SW crypto if not the same.
 371                 */
 372                if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 373                        return -EOPNOTSUPP;
 374
 375                rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 376                                              crypto->key, sizeof(crypto->key));
 377
 378                /*
 379                 * The driver does not support the IV/EIV generation
 380                 * in hardware. However it demands the data to be provided
 381                 * both separately as well as inside the frame.
 382                 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 383                 * to ensure rt2x00lib will not strip the data from the
 384                 * frame after the copy, now we must tell mac80211
 385                 * to generate the IV/EIV data.
 386                 */
 387                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 388                key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 389        }
 390
 391        /*
 392         * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 393         * a particular key is valid.
 394         */
 395        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 396        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 397        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 398
 399        mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 400        if (crypto->cmd == SET_KEY)
 401                mask |= 1 << key->hw_key_idx;
 402        else if (crypto->cmd == DISABLE_KEY)
 403                mask &= ~(1 << key->hw_key_idx);
 404        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 405        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 406
 407        return 0;
 408}
 409
 410static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 411                                    const unsigned int filter_flags)
 412{
 413        u16 reg;
 414
 415        /*
 416         * Start configuration steps.
 417         * Note that the version error will always be dropped
 418         * and broadcast frames will always be accepted since
 419         * there is no filter for it at this time.
 420         */
 421        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 422        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 423                           !(filter_flags & FIF_FCSFAIL));
 424        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 425                           !(filter_flags & FIF_PLCPFAIL));
 426        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 427                           !(filter_flags & FIF_CONTROL));
 428        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 429                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 430        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 431                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 432                           !rt2x00dev->intf_ap_count);
 433        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 434        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 435                           !(filter_flags & FIF_ALLMULTI));
 436        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 437        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 438}
 439
 440static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 441                                  struct rt2x00_intf *intf,
 442                                  struct rt2x00intf_conf *conf,
 443                                  const unsigned int flags)
 444{
 445        unsigned int bcn_preload;
 446        u16 reg;
 447
 448        if (flags & CONFIG_UPDATE_TYPE) {
 449                /*
 450                 * Enable beacon config
 451                 */
 452                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 453                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
 454                rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 455                rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 456                                   2 * (conf->type != NL80211_IFTYPE_STATION));
 457                rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 458
 459                /*
 460                 * Enable synchronisation.
 461                 */
 462                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 463                rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 464                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 465
 466                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 467                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 468                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 469        }
 470
 471        if (flags & CONFIG_UPDATE_MAC)
 472                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 473                                              (3 * sizeof(__le16)));
 474
 475        if (flags & CONFIG_UPDATE_BSSID)
 476                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 477                                              (3 * sizeof(__le16)));
 478}
 479
 480static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 481                                 struct rt2x00lib_erp *erp,
 482                                 u32 changed)
 483{
 484        u16 reg;
 485
 486        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 487                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
 488                rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 489                                   !!erp->short_preamble);
 490                rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 491        }
 492
 493        if (changed & BSS_CHANGED_BASIC_RATES)
 494                rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 495                                         erp->basic_rates);
 496
 497        if (changed & BSS_CHANGED_BEACON_INT) {
 498                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 499                rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 500                                   erp->beacon_int * 4);
 501                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 502        }
 503
 504        if (changed & BSS_CHANGED_ERP_SLOT) {
 505                rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 506                rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 507                rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 508        }
 509}
 510
 511static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 512                                 struct antenna_setup *ant)
 513{
 514        u8 r2;
 515        u8 r14;
 516        u16 csr5;
 517        u16 csr6;
 518
 519        /*
 520         * We should never come here because rt2x00lib is supposed
 521         * to catch this and send us the correct antenna explicitely.
 522         */
 523        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 524               ant->tx == ANTENNA_SW_DIVERSITY);
 525
 526        r2 = rt2500usb_bbp_read(rt2x00dev, 2);
 527        r14 = rt2500usb_bbp_read(rt2x00dev, 14);
 528        csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
 529        csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
 530
 531        /*
 532         * Configure the TX antenna.
 533         */
 534        switch (ant->tx) {
 535        case ANTENNA_HW_DIVERSITY:
 536                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 537                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 538                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 539                break;
 540        case ANTENNA_A:
 541                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 542                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 543                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 544                break;
 545        case ANTENNA_B:
 546        default:
 547                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 548                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 549                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 550                break;
 551        }
 552
 553        /*
 554         * Configure the RX antenna.
 555         */
 556        switch (ant->rx) {
 557        case ANTENNA_HW_DIVERSITY:
 558                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 559                break;
 560        case ANTENNA_A:
 561                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 562                break;
 563        case ANTENNA_B:
 564        default:
 565                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 566                break;
 567        }
 568
 569        /*
 570         * RT2525E and RT5222 need to flip TX I/Q
 571         */
 572        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 573                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 574                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 575                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 576
 577                /*
 578                 * RT2525E does not need RX I/Q Flip.
 579                 */
 580                if (rt2x00_rf(rt2x00dev, RF2525E))
 581                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 582        } else {
 583                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 584                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 585        }
 586
 587        rt2500usb_bbp_write(rt2x00dev, 2, r2);
 588        rt2500usb_bbp_write(rt2x00dev, 14, r14);
 589        rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 590        rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 591}
 592
 593static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 594                                     struct rf_channel *rf, const int txpower)
 595{
 596        /*
 597         * Set TXpower.
 598         */
 599        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 600
 601        /*
 602         * For RT2525E we should first set the channel to half band higher.
 603         */
 604        if (rt2x00_rf(rt2x00dev, RF2525E)) {
 605                static const u32 vals[] = {
 606                        0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 607                        0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 608                        0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 609                        0x00000902, 0x00000906
 610                };
 611
 612                rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 613                if (rf->rf4)
 614                        rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 615        }
 616
 617        rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 618        rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 619        rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 620        if (rf->rf4)
 621                rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 622}
 623
 624static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 625                                     const int txpower)
 626{
 627        u32 rf3;
 628
 629        rf3 = rt2x00_rf_read(rt2x00dev, 3);
 630        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 631        rt2500usb_rf_write(rt2x00dev, 3, rf3);
 632}
 633
 634static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 635                                struct rt2x00lib_conf *libconf)
 636{
 637        enum dev_state state =
 638            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 639                STATE_SLEEP : STATE_AWAKE;
 640        u16 reg;
 641
 642        if (state == STATE_SLEEP) {
 643                reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 644                rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 645                                   rt2x00dev->beacon_int - 20);
 646                rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 647                                   libconf->conf->listen_interval - 1);
 648
 649                /* We must first disable autowake before it can be enabled */
 650                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 651                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 652
 653                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 654                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 655        } else {
 656                reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 657                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 658                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 659        }
 660
 661        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 662}
 663
 664static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 665                             struct rt2x00lib_conf *libconf,
 666                             const unsigned int flags)
 667{
 668        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 669                rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 670                                         libconf->conf->power_level);
 671        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 672            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 673                rt2500usb_config_txpower(rt2x00dev,
 674                                         libconf->conf->power_level);
 675        if (flags & IEEE80211_CONF_CHANGE_PS)
 676                rt2500usb_config_ps(rt2x00dev, libconf);
 677}
 678
 679/*
 680 * Link tuning
 681 */
 682static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 683                                 struct link_qual *qual)
 684{
 685        u16 reg;
 686
 687        /*
 688         * Update FCS error count from register.
 689         */
 690        reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
 691        qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 692
 693        /*
 694         * Update False CCA count from register.
 695         */
 696        reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
 697        qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 698}
 699
 700static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 701                                  struct link_qual *qual)
 702{
 703        u16 eeprom;
 704        u16 value;
 705
 706        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
 707        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 708        rt2500usb_bbp_write(rt2x00dev, 24, value);
 709
 710        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
 711        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 712        rt2500usb_bbp_write(rt2x00dev, 25, value);
 713
 714        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
 715        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 716        rt2500usb_bbp_write(rt2x00dev, 61, value);
 717
 718        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
 719        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 720        rt2500usb_bbp_write(rt2x00dev, 17, value);
 721
 722        qual->vgc_level = value;
 723}
 724
 725/*
 726 * Queue handlers.
 727 */
 728static void rt2500usb_start_queue(struct data_queue *queue)
 729{
 730        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 731        u16 reg;
 732
 733        switch (queue->qid) {
 734        case QID_RX:
 735                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 736                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 737                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 738                break;
 739        case QID_BEACON:
 740                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 741                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 742                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 743                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 744                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 745                break;
 746        default:
 747                break;
 748        }
 749}
 750
 751static void rt2500usb_stop_queue(struct data_queue *queue)
 752{
 753        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 754        u16 reg;
 755
 756        switch (queue->qid) {
 757        case QID_RX:
 758                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 759                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 760                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 761                break;
 762        case QID_BEACON:
 763                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 764                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 765                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 766                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 767                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 768                break;
 769        default:
 770                break;
 771        }
 772}
 773
 774/*
 775 * Initialization functions.
 776 */
 777static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 778{
 779        u16 reg;
 780
 781        rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 782                                    USB_MODE_TEST, REGISTER_TIMEOUT);
 783        rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 784                                    0x00f0, REGISTER_TIMEOUT);
 785
 786        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 787        rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 788        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 789
 790        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 791        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 792
 793        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 794        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 795        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 796        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 797        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 798
 799        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 800        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 801        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 802        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 803        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 804
 805        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
 806        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 807        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 808        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 809        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 810        rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 811
 812        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
 813        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 814        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 815        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 816        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 817        rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 818
 819        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
 820        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 821        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 822        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 823        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 824        rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 825
 826        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
 827        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 828        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 829        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 830        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 831        rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 832
 833        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 834        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 835        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 836        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 837        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 838        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 839
 840        rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 841        rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 842
 843        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 844                return -EBUSY;
 845
 846        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 847        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 848        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 849        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 850        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 851
 852        if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 853                reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
 854                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 855        } else {
 856                reg = 0;
 857                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 858                rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 859        }
 860        rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 861
 862        rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 863        rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 864        rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 865        rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 866
 867        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
 868        rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 869                           rt2x00dev->rx->data_size);
 870        rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 871
 872        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 873        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 874        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 875        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 876        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 877
 878        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 879        rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 880        rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 881
 882        reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
 883        rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 884        rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 885
 886        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
 887        rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 888        rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 889
 890        return 0;
 891}
 892
 893static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 894{
 895        unsigned int i;
 896        u8 value;
 897
 898        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 899                value = rt2500usb_bbp_read(rt2x00dev, 0);
 900                if ((value != 0xff) && (value != 0x00))
 901                        return 0;
 902                udelay(REGISTER_BUSY_DELAY);
 903        }
 904
 905        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 906        return -EACCES;
 907}
 908
 909static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 910{
 911        unsigned int i;
 912        u16 eeprom;
 913        u8 value;
 914        u8 reg_id;
 915
 916        if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 917                return -EACCES;
 918
 919        rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 920        rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 921        rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 922        rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 923        rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 924        rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 925        rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 926        rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 927        rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 928        rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 929        rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 930        rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 931        rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 932        rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 933        rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 934        rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 935        rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 936        rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 937        rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 938        rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 939        rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 940        rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 941        rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 942        rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 943        rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 944        rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 945        rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 946        rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 947        rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 948        rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 949        rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 950
 951        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 952                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 953
 954                if (eeprom != 0xffff && eeprom != 0x0000) {
 955                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 956                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 957                        rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 958                }
 959        }
 960
 961        return 0;
 962}
 963
 964/*
 965 * Device state switch handlers.
 966 */
 967static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 968{
 969        /*
 970         * Initialize all registers.
 971         */
 972        if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 973                     rt2500usb_init_bbp(rt2x00dev)))
 974                return -EIO;
 975
 976        return 0;
 977}
 978
 979static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 980{
 981        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 982        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 983
 984        /*
 985         * Disable synchronisation.
 986         */
 987        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
 988
 989        rt2x00usb_disable_radio(rt2x00dev);
 990}
 991
 992static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
 993                               enum dev_state state)
 994{
 995        u16 reg;
 996        u16 reg2;
 997        unsigned int i;
 998        char put_to_sleep;
 999        char bbp_state;
1000        char rf_state;
1001
1002        put_to_sleep = (state != STATE_AWAKE);
1003
1004        reg = 0;
1005        rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1006        rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1007        rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1008        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1009        rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1010        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1011
1012        /*
1013         * Device is not guaranteed to be in the requested state yet.
1014         * We must wait until the register indicates that the
1015         * device has entered the correct state.
1016         */
1017        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1018                reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1019                bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1020                rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1021                if (bbp_state == state && rf_state == state)
1022                        return 0;
1023                rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1024                msleep(30);
1025        }
1026
1027        return -EBUSY;
1028}
1029
1030static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1031                                      enum dev_state state)
1032{
1033        int retval = 0;
1034
1035        switch (state) {
1036        case STATE_RADIO_ON:
1037                retval = rt2500usb_enable_radio(rt2x00dev);
1038                break;
1039        case STATE_RADIO_OFF:
1040                rt2500usb_disable_radio(rt2x00dev);
1041                break;
1042        case STATE_RADIO_IRQ_ON:
1043        case STATE_RADIO_IRQ_OFF:
1044                /* No support, but no error either */
1045                break;
1046        case STATE_DEEP_SLEEP:
1047        case STATE_SLEEP:
1048        case STATE_STANDBY:
1049        case STATE_AWAKE:
1050                retval = rt2500usb_set_state(rt2x00dev, state);
1051                break;
1052        default:
1053                retval = -ENOTSUPP;
1054                break;
1055        }
1056
1057        if (unlikely(retval))
1058                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1059                           state, retval);
1060
1061        return retval;
1062}
1063
1064/*
1065 * TX descriptor initialization
1066 */
1067static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1068                                    struct txentry_desc *txdesc)
1069{
1070        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1071        __le32 *txd = (__le32 *) entry->skb->data;
1072        u32 word;
1073
1074        /*
1075         * Start writing the descriptor words.
1076         */
1077        word = rt2x00_desc_read(txd, 0);
1078        rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1079        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1080                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1081        rt2x00_set_field32(&word, TXD_W0_ACK,
1082                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1083        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1084                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1085        rt2x00_set_field32(&word, TXD_W0_OFDM,
1086                           (txdesc->rate_mode == RATE_MODE_OFDM));
1087        rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1088                           test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1089        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1090        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1091        rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1092        rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1093        rt2x00_desc_write(txd, 0, word);
1094
1095        word = rt2x00_desc_read(txd, 1);
1096        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1097        rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1098        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1099        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1100        rt2x00_desc_write(txd, 1, word);
1101
1102        word = rt2x00_desc_read(txd, 2);
1103        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1104        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1105        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1106                           txdesc->u.plcp.length_low);
1107        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1108                           txdesc->u.plcp.length_high);
1109        rt2x00_desc_write(txd, 2, word);
1110
1111        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1112                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1113                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1114        }
1115
1116        /*
1117         * Register descriptor details in skb frame descriptor.
1118         */
1119        skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1120        skbdesc->desc = txd;
1121        skbdesc->desc_len = TXD_DESC_SIZE;
1122}
1123
1124/*
1125 * TX data initialization
1126 */
1127static void rt2500usb_beacondone(struct urb *urb);
1128
1129static void rt2500usb_write_beacon(struct queue_entry *entry,
1130                                   struct txentry_desc *txdesc)
1131{
1132        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1133        struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1134        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1135        int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1136        int length;
1137        u16 reg, reg0;
1138
1139        /*
1140         * Disable beaconing while we are reloading the beacon data,
1141         * otherwise we might be sending out invalid data.
1142         */
1143        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1144        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1145        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1146
1147        /*
1148         * Add space for the descriptor in front of the skb.
1149         */
1150        skb_push(entry->skb, TXD_DESC_SIZE);
1151        memset(entry->skb->data, 0, TXD_DESC_SIZE);
1152
1153        /*
1154         * Write the TX descriptor for the beacon.
1155         */
1156        rt2500usb_write_tx_desc(entry, txdesc);
1157
1158        /*
1159         * Dump beacon to userspace through debugfs.
1160         */
1161        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1162
1163        /*
1164         * USB devices cannot blindly pass the skb->len as the
1165         * length of the data to usb_fill_bulk_urb. Pass the skb
1166         * to the driver to determine what the length should be.
1167         */
1168        length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1169
1170        usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1171                          entry->skb->data, length, rt2500usb_beacondone,
1172                          entry);
1173
1174        /*
1175         * Second we need to create the guardian byte.
1176         * We only need a single byte, so lets recycle
1177         * the 'flags' field we are not using for beacons.
1178         */
1179        bcn_priv->guardian_data = 0;
1180        usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1181                          &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1182                          entry);
1183
1184        /*
1185         * Send out the guardian byte.
1186         */
1187        usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1188
1189        /*
1190         * Enable beaconing again.
1191         */
1192        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1193        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1194        reg0 = reg;
1195        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1196        /*
1197         * Beacon generation will fail initially.
1198         * To prevent this we need to change the TXRX_CSR19
1199         * register several times (reg0 is the same as reg
1200         * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1201         * and 1 in reg).
1202         */
1203        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1204        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1205        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1206        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1207        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1208}
1209
1210static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1211{
1212        int length;
1213
1214        /*
1215         * The length _must_ be a multiple of 2,
1216         * but it must _not_ be a multiple of the USB packet size.
1217         */
1218        length = roundup(entry->skb->len, 2);
1219        length += (2 * !(length % entry->queue->usb_maxpacket));
1220
1221        return length;
1222}
1223
1224/*
1225 * RX control handlers
1226 */
1227static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1228                                  struct rxdone_entry_desc *rxdesc)
1229{
1230        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1231        struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1232        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1233        __le32 *rxd =
1234            (__le32 *)(entry->skb->data +
1235                       (entry_priv->urb->actual_length -
1236                        entry->queue->desc_size));
1237        u32 word0;
1238        u32 word1;
1239
1240        /*
1241         * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1242         * frame data in rt2x00usb.
1243         */
1244        memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1245        rxd = (__le32 *)skbdesc->desc;
1246
1247        /*
1248         * It is now safe to read the descriptor on all architectures.
1249         */
1250        word0 = rt2x00_desc_read(rxd, 0);
1251        word1 = rt2x00_desc_read(rxd, 1);
1252
1253        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1254                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1255        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1256                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1257
1258        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1259        if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1260                rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1261
1262        if (rxdesc->cipher != CIPHER_NONE) {
1263                rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1264                rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1265                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1266
1267                /* ICV is located at the end of frame */
1268
1269                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1270                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1271                        rxdesc->flags |= RX_FLAG_DECRYPTED;
1272                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1273                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1274        }
1275
1276        /*
1277         * Obtain the status about this packet.
1278         * When frame was received with an OFDM bitrate,
1279         * the signal is the PLCP value. If it was received with
1280         * a CCK bitrate the signal is the rate in 100kbit/s.
1281         */
1282        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1283        rxdesc->rssi =
1284            rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1285        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1286
1287        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1288                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1289        else
1290                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1291        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1292                rxdesc->dev_flags |= RXDONE_MY_BSS;
1293
1294        /*
1295         * Adjust the skb memory window to the frame boundaries.
1296         */
1297        skb_trim(entry->skb, rxdesc->size);
1298}
1299
1300/*
1301 * Interrupt functions.
1302 */
1303static void rt2500usb_beacondone(struct urb *urb)
1304{
1305        struct queue_entry *entry = (struct queue_entry *)urb->context;
1306        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1307
1308        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1309                return;
1310
1311        /*
1312         * Check if this was the guardian beacon,
1313         * if that was the case we need to send the real beacon now.
1314         * Otherwise we should free the sk_buffer, the device
1315         * should be doing the rest of the work now.
1316         */
1317        if (bcn_priv->guardian_urb == urb) {
1318                usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1319        } else if (bcn_priv->urb == urb) {
1320                dev_kfree_skb(entry->skb);
1321                entry->skb = NULL;
1322        }
1323}
1324
1325/*
1326 * Device probe functions.
1327 */
1328static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1329{
1330        u16 word;
1331        u8 *mac;
1332        u8 bbp;
1333
1334        rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1335
1336        /*
1337         * Start validation of the data that has been read.
1338         */
1339        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1340        rt2x00lib_set_mac_address(rt2x00dev, mac);
1341
1342        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1343        if (word == 0xffff) {
1344                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1345                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1346                                   ANTENNA_SW_DIVERSITY);
1347                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1348                                   ANTENNA_SW_DIVERSITY);
1349                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1350                                   LED_MODE_DEFAULT);
1351                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1352                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1353                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1354                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1355                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1356        }
1357
1358        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1359        if (word == 0xffff) {
1360                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1361                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1362                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1363                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1364                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1365        }
1366
1367        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1368        if (word == 0xffff) {
1369                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1370                                   DEFAULT_RSSI_OFFSET);
1371                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1372                rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1373                                  word);
1374        }
1375
1376        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1377        if (word == 0xffff) {
1378                rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1379                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1380                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1381        }
1382
1383        /*
1384         * Switch lower vgc bound to current BBP R17 value,
1385         * lower the value a bit for better quality.
1386         */
1387        bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1388        bbp -= 6;
1389
1390        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1391        if (word == 0xffff) {
1392                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1393                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1394                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1395                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1396        } else {
1397                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1398                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1399        }
1400
1401        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1402        if (word == 0xffff) {
1403                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1404                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1405                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1406                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1407        }
1408
1409        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1410        if (word == 0xffff) {
1411                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1412                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1413                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1414                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1415        }
1416
1417        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1418        if (word == 0xffff) {
1419                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1420                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1421                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1422                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1423        }
1424
1425        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1426        if (word == 0xffff) {
1427                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1428                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1429                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1430                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1431        }
1432
1433        return 0;
1434}
1435
1436static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1437{
1438        u16 reg;
1439        u16 value;
1440        u16 eeprom;
1441
1442        /*
1443         * Read EEPROM word for configuration.
1444         */
1445        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1446
1447        /*
1448         * Identify RF chipset.
1449         */
1450        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1451        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1452        rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1453
1454        if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1455                rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1456                return -ENODEV;
1457        }
1458
1459        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1460            !rt2x00_rf(rt2x00dev, RF2523) &&
1461            !rt2x00_rf(rt2x00dev, RF2524) &&
1462            !rt2x00_rf(rt2x00dev, RF2525) &&
1463            !rt2x00_rf(rt2x00dev, RF2525E) &&
1464            !rt2x00_rf(rt2x00dev, RF5222)) {
1465                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1466                return -ENODEV;
1467        }
1468
1469        /*
1470         * Identify default antenna configuration.
1471         */
1472        rt2x00dev->default_ant.tx =
1473            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1474        rt2x00dev->default_ant.rx =
1475            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1476
1477        /*
1478         * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1479         * I am not 100% sure about this, but the legacy drivers do not
1480         * indicate antenna swapping in software is required when
1481         * diversity is enabled.
1482         */
1483        if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1484                rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1485        if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1486                rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1487
1488        /*
1489         * Store led mode, for correct led behaviour.
1490         */
1491#ifdef CONFIG_RT2X00_LIB_LEDS
1492        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1493
1494        rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1495        if (value == LED_MODE_TXRX_ACTIVITY ||
1496            value == LED_MODE_DEFAULT ||
1497            value == LED_MODE_ASUS)
1498                rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1499                                   LED_TYPE_ACTIVITY);
1500#endif /* CONFIG_RT2X00_LIB_LEDS */
1501
1502        /*
1503         * Detect if this device has an hardware controlled radio.
1504         */
1505        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1506                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1507
1508        /*
1509         * Read the RSSI <-> dBm offset information.
1510         */
1511        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1512        rt2x00dev->rssi_offset =
1513            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1514
1515        return 0;
1516}
1517
1518/*
1519 * RF value list for RF2522
1520 * Supports: 2.4 GHz
1521 */
1522static const struct rf_channel rf_vals_bg_2522[] = {
1523        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1524        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1525        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1526        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1527        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1528        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1529        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1530        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1531        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1532        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1533        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1534        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1535        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1536        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1537};
1538
1539/*
1540 * RF value list for RF2523
1541 * Supports: 2.4 GHz
1542 */
1543static const struct rf_channel rf_vals_bg_2523[] = {
1544        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1545        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1546        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1547        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1548        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1549        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1550        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1551        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1552        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1553        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1554        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1555        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1556        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1557        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1558};
1559
1560/*
1561 * RF value list for RF2524
1562 * Supports: 2.4 GHz
1563 */
1564static const struct rf_channel rf_vals_bg_2524[] = {
1565        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1566        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1567        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1568        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1569        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1570        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1571        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1572        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1573        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1574        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1575        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1576        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1577        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1578        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1579};
1580
1581/*
1582 * RF value list for RF2525
1583 * Supports: 2.4 GHz
1584 */
1585static const struct rf_channel rf_vals_bg_2525[] = {
1586        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1587        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1588        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1589        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1590        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1591        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1592        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1593        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1594        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1595        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1596        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1597        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1598        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1599        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1600};
1601
1602/*
1603 * RF value list for RF2525e
1604 * Supports: 2.4 GHz
1605 */
1606static const struct rf_channel rf_vals_bg_2525e[] = {
1607        { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1608        { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1609        { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1610        { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1611        { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1612        { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1613        { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1614        { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1615        { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1616        { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1617        { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1618        { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1619        { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1620        { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1621};
1622
1623/*
1624 * RF value list for RF5222
1625 * Supports: 2.4 GHz & 5.2 GHz
1626 */
1627static const struct rf_channel rf_vals_5222[] = {
1628        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1629        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1630        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1631        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1632        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1633        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1634        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1635        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1636        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1637        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1638        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1639        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1640        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1641        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1642
1643        /* 802.11 UNI / HyperLan 2 */
1644        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1645        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1646        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1647        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1648        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1649        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1650        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1651        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1652
1653        /* 802.11 HyperLan 2 */
1654        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1655        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1656        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1657        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1658        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1659        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1660        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1661        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1662        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1663        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1664
1665        /* 802.11 UNII */
1666        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1667        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1668        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1669        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1670        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1671};
1672
1673static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1674{
1675        struct hw_mode_spec *spec = &rt2x00dev->spec;
1676        struct channel_info *info;
1677        char *tx_power;
1678        unsigned int i;
1679
1680        /*
1681         * Initialize all hw fields.
1682         *
1683         * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1684         * capable of sending the buffered frames out after the DTIM
1685         * transmission using rt2x00lib_beacondone. This will send out
1686         * multicast and broadcast traffic immediately instead of buffering it
1687         * infinitly and thus dropping it after some time.
1688         */
1689        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1690        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1691        ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1692        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1693
1694        /*
1695         * Disable powersaving as default.
1696         */
1697        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1698
1699        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1700        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1701                                rt2x00_eeprom_addr(rt2x00dev,
1702                                                   EEPROM_MAC_ADDR_0));
1703
1704        /*
1705         * Initialize hw_mode information.
1706         */
1707        spec->supported_bands = SUPPORT_BAND_2GHZ;
1708        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1709
1710        if (rt2x00_rf(rt2x00dev, RF2522)) {
1711                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1712                spec->channels = rf_vals_bg_2522;
1713        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1714                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1715                spec->channels = rf_vals_bg_2523;
1716        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1717                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1718                spec->channels = rf_vals_bg_2524;
1719        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1720                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1721                spec->channels = rf_vals_bg_2525;
1722        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1723                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1724                spec->channels = rf_vals_bg_2525e;
1725        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1726                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1727                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1728                spec->channels = rf_vals_5222;
1729        }
1730
1731        /*
1732         * Create channel information array
1733         */
1734        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1735        if (!info)
1736                return -ENOMEM;
1737
1738        spec->channels_info = info;
1739
1740        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1741        for (i = 0; i < 14; i++) {
1742                info[i].max_power = MAX_TXPOWER;
1743                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1744        }
1745
1746        if (spec->num_channels > 14) {
1747                for (i = 14; i < spec->num_channels; i++) {
1748                        info[i].max_power = MAX_TXPOWER;
1749                        info[i].default_power1 = DEFAULT_TXPOWER;
1750                }
1751        }
1752
1753        return 0;
1754}
1755
1756static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1757{
1758        int retval;
1759        u16 reg;
1760
1761        /*
1762         * Allocate eeprom data.
1763         */
1764        retval = rt2500usb_validate_eeprom(rt2x00dev);
1765        if (retval)
1766                return retval;
1767
1768        retval = rt2500usb_init_eeprom(rt2x00dev);
1769        if (retval)
1770                return retval;
1771
1772        /*
1773         * Enable rfkill polling by setting GPIO direction of the
1774         * rfkill switch GPIO pin correctly.
1775         */
1776        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1777        rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1778        rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1779
1780        /*
1781         * Initialize hw specifications.
1782         */
1783        retval = rt2500usb_probe_hw_mode(rt2x00dev);
1784        if (retval)
1785                return retval;
1786
1787        /*
1788         * This device requires the atim queue
1789         */
1790        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1791        __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1792        if (!modparam_nohwcrypt) {
1793                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1794                __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1795        }
1796        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1797        __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1798
1799        /*
1800         * Set the rssi offset.
1801         */
1802        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1803
1804        return 0;
1805}
1806
1807static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1808        .tx                     = rt2x00mac_tx,
1809        .start                  = rt2x00mac_start,
1810        .stop                   = rt2x00mac_stop,
1811        .add_interface          = rt2x00mac_add_interface,
1812        .remove_interface       = rt2x00mac_remove_interface,
1813        .config                 = rt2x00mac_config,
1814        .configure_filter       = rt2x00mac_configure_filter,
1815        .set_tim                = rt2x00mac_set_tim,
1816        .set_key                = rt2x00mac_set_key,
1817        .sw_scan_start          = rt2x00mac_sw_scan_start,
1818        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1819        .get_stats              = rt2x00mac_get_stats,
1820        .bss_info_changed       = rt2x00mac_bss_info_changed,
1821        .conf_tx                = rt2x00mac_conf_tx,
1822        .rfkill_poll            = rt2x00mac_rfkill_poll,
1823        .flush                  = rt2x00mac_flush,
1824        .set_antenna            = rt2x00mac_set_antenna,
1825        .get_antenna            = rt2x00mac_get_antenna,
1826        .get_ringparam          = rt2x00mac_get_ringparam,
1827        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1828};
1829
1830static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1831        .probe_hw               = rt2500usb_probe_hw,
1832        .initialize             = rt2x00usb_initialize,
1833        .uninitialize           = rt2x00usb_uninitialize,
1834        .clear_entry            = rt2x00usb_clear_entry,
1835        .set_device_state       = rt2500usb_set_device_state,
1836        .rfkill_poll            = rt2500usb_rfkill_poll,
1837        .link_stats             = rt2500usb_link_stats,
1838        .reset_tuner            = rt2500usb_reset_tuner,
1839        .watchdog               = rt2x00usb_watchdog,
1840        .start_queue            = rt2500usb_start_queue,
1841        .kick_queue             = rt2x00usb_kick_queue,
1842        .stop_queue             = rt2500usb_stop_queue,
1843        .flush_queue            = rt2x00usb_flush_queue,
1844        .write_tx_desc          = rt2500usb_write_tx_desc,
1845        .write_beacon           = rt2500usb_write_beacon,
1846        .get_tx_data_len        = rt2500usb_get_tx_data_len,
1847        .fill_rxdone            = rt2500usb_fill_rxdone,
1848        .config_shared_key      = rt2500usb_config_key,
1849        .config_pairwise_key    = rt2500usb_config_key,
1850        .config_filter          = rt2500usb_config_filter,
1851        .config_intf            = rt2500usb_config_intf,
1852        .config_erp             = rt2500usb_config_erp,
1853        .config_ant             = rt2500usb_config_ant,
1854        .config                 = rt2500usb_config,
1855};
1856
1857static void rt2500usb_queue_init(struct data_queue *queue)
1858{
1859        switch (queue->qid) {
1860        case QID_RX:
1861                queue->limit = 32;
1862                queue->data_size = DATA_FRAME_SIZE;
1863                queue->desc_size = RXD_DESC_SIZE;
1864                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1865                break;
1866
1867        case QID_AC_VO:
1868        case QID_AC_VI:
1869        case QID_AC_BE:
1870        case QID_AC_BK:
1871                queue->limit = 32;
1872                queue->data_size = DATA_FRAME_SIZE;
1873                queue->desc_size = TXD_DESC_SIZE;
1874                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1875                break;
1876
1877        case QID_BEACON:
1878                queue->limit = 1;
1879                queue->data_size = MGMT_FRAME_SIZE;
1880                queue->desc_size = TXD_DESC_SIZE;
1881                queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1882                break;
1883
1884        case QID_ATIM:
1885                queue->limit = 8;
1886                queue->data_size = DATA_FRAME_SIZE;
1887                queue->desc_size = TXD_DESC_SIZE;
1888                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1889                break;
1890
1891        default:
1892                BUG();
1893                break;
1894        }
1895}
1896
1897static const struct rt2x00_ops rt2500usb_ops = {
1898        .name                   = KBUILD_MODNAME,
1899        .max_ap_intf            = 1,
1900        .eeprom_size            = EEPROM_SIZE,
1901        .rf_size                = RF_SIZE,
1902        .tx_queues              = NUM_TX_QUEUES,
1903        .queue_init             = rt2500usb_queue_init,
1904        .lib                    = &rt2500usb_rt2x00_ops,
1905        .hw                     = &rt2500usb_mac80211_ops,
1906#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1907        .debugfs                = &rt2500usb_rt2x00debug,
1908#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1909};
1910
1911/*
1912 * rt2500usb module information.
1913 */
1914static const struct usb_device_id rt2500usb_device_table[] = {
1915        /* ASUS */
1916        { USB_DEVICE(0x0b05, 0x1706) },
1917        { USB_DEVICE(0x0b05, 0x1707) },
1918        /* Belkin */
1919        { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1920        { USB_DEVICE(0x050d, 0x7051) },
1921        /* Cisco Systems */
1922        { USB_DEVICE(0x13b1, 0x000d) },
1923        { USB_DEVICE(0x13b1, 0x0011) },
1924        { USB_DEVICE(0x13b1, 0x001a) },
1925        /* Conceptronic */
1926        { USB_DEVICE(0x14b2, 0x3c02) },
1927        /* D-LINK */
1928        { USB_DEVICE(0x2001, 0x3c00) },
1929        /* Gigabyte */
1930        { USB_DEVICE(0x1044, 0x8001) },
1931        { USB_DEVICE(0x1044, 0x8007) },
1932        /* Hercules */
1933        { USB_DEVICE(0x06f8, 0xe000) },
1934        /* Melco */
1935        { USB_DEVICE(0x0411, 0x005e) },
1936        { USB_DEVICE(0x0411, 0x0066) },
1937        { USB_DEVICE(0x0411, 0x0067) },
1938        { USB_DEVICE(0x0411, 0x008b) },
1939        { USB_DEVICE(0x0411, 0x0097) },
1940        /* MSI */
1941        { USB_DEVICE(0x0db0, 0x6861) },
1942        { USB_DEVICE(0x0db0, 0x6865) },
1943        { USB_DEVICE(0x0db0, 0x6869) },
1944        /* Ralink */
1945        { USB_DEVICE(0x148f, 0x1706) },
1946        { USB_DEVICE(0x148f, 0x2570) },
1947        { USB_DEVICE(0x148f, 0x9020) },
1948        /* Sagem */
1949        { USB_DEVICE(0x079b, 0x004b) },
1950        /* Siemens */
1951        { USB_DEVICE(0x0681, 0x3c06) },
1952        /* SMC */
1953        { USB_DEVICE(0x0707, 0xee13) },
1954        /* Spairon */
1955        { USB_DEVICE(0x114b, 0x0110) },
1956        /* SURECOM */
1957        { USB_DEVICE(0x0769, 0x11f3) },
1958        /* Trust */
1959        { USB_DEVICE(0x0eb0, 0x9020) },
1960        /* VTech */
1961        { USB_DEVICE(0x0f88, 0x3012) },
1962        /* Zinwell */
1963        { USB_DEVICE(0x5a57, 0x0260) },
1964        { 0, }
1965};
1966
1967MODULE_AUTHOR(DRV_PROJECT);
1968MODULE_VERSION(DRV_VERSION);
1969MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1970MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1971MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1972MODULE_LICENSE("GPL");
1973
1974static int rt2500usb_probe(struct usb_interface *usb_intf,
1975                           const struct usb_device_id *id)
1976{
1977        return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1978}
1979
1980static struct usb_driver rt2500usb_driver = {
1981        .name           = KBUILD_MODNAME,
1982        .id_table       = rt2500usb_device_table,
1983        .probe          = rt2500usb_probe,
1984        .disconnect     = rt2x00usb_disconnect,
1985        .suspend        = rt2x00usb_suspend,
1986        .resume         = rt2x00usb_resume,
1987        .reset_resume   = rt2x00usb_resume,
1988        .disable_hub_initiated_lpm = 1,
1989};
1990
1991module_usb_driver(rt2500usb_driver);
1992