linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4        <http://rt2x00.serialmonkey.com>
   5
   6        This program is free software; you can redistribute it and/or modify
   7        it under the terms of the GNU General Public License as published by
   8        the Free Software Foundation; either version 2 of the License, or
   9        (at your option) any later version.
  10
  11        This program is distributed in the hope that it will be useful,
  12        but WITHOUT ANY WARRANTY; without even the implied warranty of
  13        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14        GNU General Public License for more details.
  15
  16        You should have received a copy of the GNU General Public License
  17        along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20/*
  21        Module: rt2x00lib
  22        Abstract: rt2x00 generic device routines.
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/log2.h>
  29#include <linux/of.h>
  30#include <linux/of_net.h>
  31
  32#include "rt2x00.h"
  33#include "rt2x00lib.h"
  34
  35/*
  36 * Utility functions.
  37 */
  38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  39                         struct ieee80211_vif *vif)
  40{
  41        /*
  42         * When in STA mode, bssidx is always 0 otherwise local_address[5]
  43         * contains the bss number, see BSS_ID_MASK comments for details.
  44         */
  45        if (rt2x00dev->intf_sta_count)
  46                return 0;
  47        return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  48}
  49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  50
  51/*
  52 * Radio control handlers.
  53 */
  54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  55{
  56        int status;
  57
  58        /*
  59         * Don't enable the radio twice.
  60         * And check if the hardware button has been disabled.
  61         */
  62        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  63                return 0;
  64
  65        /*
  66         * Initialize all data queues.
  67         */
  68        rt2x00queue_init_queues(rt2x00dev);
  69
  70        /*
  71         * Enable radio.
  72         */
  73        status =
  74            rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  75        if (status)
  76                return status;
  77
  78        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  79
  80        rt2x00leds_led_radio(rt2x00dev, true);
  81        rt2x00led_led_activity(rt2x00dev, true);
  82
  83        set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  84
  85        /*
  86         * Enable queues.
  87         */
  88        rt2x00queue_start_queues(rt2x00dev);
  89        rt2x00link_start_tuner(rt2x00dev);
  90
  91        /*
  92         * Start watchdog monitoring.
  93         */
  94        rt2x00link_start_watchdog(rt2x00dev);
  95
  96        return 0;
  97}
  98
  99void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
 100{
 101        if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 102                return;
 103
 104        /*
 105         * Stop watchdog monitoring.
 106         */
 107        rt2x00link_stop_watchdog(rt2x00dev);
 108
 109        /*
 110         * Stop all queues
 111         */
 112        rt2x00link_stop_tuner(rt2x00dev);
 113        rt2x00queue_stop_queues(rt2x00dev);
 114        rt2x00queue_flush_queues(rt2x00dev, true);
 115
 116        /*
 117         * Disable radio.
 118         */
 119        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 120        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 121        rt2x00led_led_activity(rt2x00dev, false);
 122        rt2x00leds_led_radio(rt2x00dev, false);
 123}
 124
 125static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 126                                          struct ieee80211_vif *vif)
 127{
 128        struct rt2x00_dev *rt2x00dev = data;
 129        struct rt2x00_intf *intf = vif_to_intf(vif);
 130
 131        /*
 132         * It is possible the radio was disabled while the work had been
 133         * scheduled. If that happens we should return here immediately,
 134         * note that in the spinlock protected area above the delayed_flags
 135         * have been cleared correctly.
 136         */
 137        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 138                return;
 139
 140        if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
 141                mutex_lock(&intf->beacon_skb_mutex);
 142                rt2x00queue_update_beacon(rt2x00dev, vif);
 143                mutex_unlock(&intf->beacon_skb_mutex);
 144        }
 145}
 146
 147static void rt2x00lib_intf_scheduled(struct work_struct *work)
 148{
 149        struct rt2x00_dev *rt2x00dev =
 150            container_of(work, struct rt2x00_dev, intf_work);
 151
 152        /*
 153         * Iterate over each interface and perform the
 154         * requested configurations.
 155         */
 156        ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 157                                            IEEE80211_IFACE_ITER_RESUME_ALL,
 158                                            rt2x00lib_intf_scheduled_iter,
 159                                            rt2x00dev);
 160}
 161
 162static void rt2x00lib_autowakeup(struct work_struct *work)
 163{
 164        struct rt2x00_dev *rt2x00dev =
 165            container_of(work, struct rt2x00_dev, autowakeup_work.work);
 166
 167        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 168                return;
 169
 170        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 171                rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
 172        clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 173}
 174
 175/*
 176 * Interrupt context handlers.
 177 */
 178static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 179                                     struct ieee80211_vif *vif)
 180{
 181        struct ieee80211_tx_control control = {};
 182        struct rt2x00_dev *rt2x00dev = data;
 183        struct sk_buff *skb;
 184
 185        /*
 186         * Only AP mode interfaces do broad- and multicast buffering
 187         */
 188        if (vif->type != NL80211_IFTYPE_AP)
 189                return;
 190
 191        /*
 192         * Send out buffered broad- and multicast frames
 193         */
 194        skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 195        while (skb) {
 196                rt2x00mac_tx(rt2x00dev->hw, &control, skb);
 197                skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 198        }
 199}
 200
 201static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 202                                        struct ieee80211_vif *vif)
 203{
 204        struct rt2x00_dev *rt2x00dev = data;
 205
 206        if (vif->type != NL80211_IFTYPE_AP &&
 207            vif->type != NL80211_IFTYPE_ADHOC &&
 208            vif->type != NL80211_IFTYPE_MESH_POINT &&
 209            vif->type != NL80211_IFTYPE_WDS)
 210                return;
 211
 212        /*
 213         * Update the beacon without locking. This is safe on PCI devices
 214         * as they only update the beacon periodically here. This should
 215         * never be called for USB devices.
 216         */
 217        WARN_ON(rt2x00_is_usb(rt2x00dev));
 218        rt2x00queue_update_beacon(rt2x00dev, vif);
 219}
 220
 221void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 222{
 223        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 224                return;
 225
 226        /* send buffered bc/mc frames out for every bssid */
 227        ieee80211_iterate_active_interfaces_atomic(
 228                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 229                rt2x00lib_bc_buffer_iter, rt2x00dev);
 230        /*
 231         * Devices with pre tbtt interrupt don't need to update the beacon
 232         * here as they will fetch the next beacon directly prior to
 233         * transmission.
 234         */
 235        if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
 236                return;
 237
 238        /* fetch next beacon */
 239        ieee80211_iterate_active_interfaces_atomic(
 240                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 241                rt2x00lib_beaconupdate_iter, rt2x00dev);
 242}
 243EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 244
 245void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 246{
 247        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 248                return;
 249
 250        /* fetch next beacon */
 251        ieee80211_iterate_active_interfaces_atomic(
 252                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 253                rt2x00lib_beaconupdate_iter, rt2x00dev);
 254}
 255EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 256
 257void rt2x00lib_dmastart(struct queue_entry *entry)
 258{
 259        set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 260        rt2x00queue_index_inc(entry, Q_INDEX);
 261}
 262EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 263
 264void rt2x00lib_dmadone(struct queue_entry *entry)
 265{
 266        set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 267        clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 268        rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 269}
 270EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 271
 272static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
 273{
 274        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 275        struct ieee80211_bar *bar = (void *) entry->skb->data;
 276        struct rt2x00_bar_list_entry *bar_entry;
 277        int ret;
 278
 279        if (likely(!ieee80211_is_back_req(bar->frame_control)))
 280                return 0;
 281
 282        /*
 283         * Unlike all other frames, the status report for BARs does
 284         * not directly come from the hardware as it is incapable of
 285         * matching a BA to a previously send BAR. The hardware will
 286         * report all BARs as if they weren't acked at all.
 287         *
 288         * Instead the RX-path will scan for incoming BAs and set the
 289         * block_acked flag if it sees one that was likely caused by
 290         * a BAR from us.
 291         *
 292         * Remove remaining BARs here and return their status for
 293         * TX done processing.
 294         */
 295        ret = 0;
 296        rcu_read_lock();
 297        list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
 298                if (bar_entry->entry != entry)
 299                        continue;
 300
 301                spin_lock_bh(&rt2x00dev->bar_list_lock);
 302                /* Return whether this BAR was blockacked or not */
 303                ret = bar_entry->block_acked;
 304                /* Remove the BAR from our checklist */
 305                list_del_rcu(&bar_entry->list);
 306                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 307                kfree_rcu(bar_entry, head);
 308
 309                break;
 310        }
 311        rcu_read_unlock();
 312
 313        return ret;
 314}
 315
 316static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
 317                                     struct ieee80211_tx_info *tx_info,
 318                                     struct skb_frame_desc *skbdesc,
 319                                     struct txdone_entry_desc *txdesc,
 320                                     bool success)
 321{
 322        u8 rate_idx, rate_flags, retry_rates;
 323        int i;
 324
 325        rate_idx = skbdesc->tx_rate_idx;
 326        rate_flags = skbdesc->tx_rate_flags;
 327        retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 328            (txdesc->retry + 1) : 1;
 329
 330        /*
 331         * Initialize TX status
 332         */
 333        memset(&tx_info->status, 0, sizeof(tx_info->status));
 334        tx_info->status.ack_signal = 0;
 335
 336        /*
 337         * Frame was send with retries, hardware tried
 338         * different rates to send out the frame, at each
 339         * retry it lowered the rate 1 step except when the
 340         * lowest rate was used.
 341         */
 342        for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 343                tx_info->status.rates[i].idx = rate_idx - i;
 344                tx_info->status.rates[i].flags = rate_flags;
 345
 346                if (rate_idx - i == 0) {
 347                        /*
 348                         * The lowest rate (index 0) was used until the
 349                         * number of max retries was reached.
 350                         */
 351                        tx_info->status.rates[i].count = retry_rates - i;
 352                        i++;
 353                        break;
 354                }
 355                tx_info->status.rates[i].count = 1;
 356        }
 357        if (i < (IEEE80211_TX_MAX_RATES - 1))
 358                tx_info->status.rates[i].idx = -1; /* terminate */
 359
 360        if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
 361                tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
 362
 363        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 364                if (success)
 365                        tx_info->flags |= IEEE80211_TX_STAT_ACK;
 366                else
 367                        rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 368        }
 369
 370        /*
 371         * Every single frame has it's own tx status, hence report
 372         * every frame as ampdu of size 1.
 373         *
 374         * TODO: if we can find out how many frames were aggregated
 375         * by the hw we could provide the real ampdu_len to mac80211
 376         * which would allow the rc algorithm to better decide on
 377         * which rates are suitable.
 378         */
 379        if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 380            tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 381                tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
 382                                  IEEE80211_TX_CTL_AMPDU;
 383                tx_info->status.ampdu_len = 1;
 384                tx_info->status.ampdu_ack_len = success ? 1 : 0;
 385
 386                if (!success)
 387                        tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
 388        }
 389
 390        if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 391                if (success)
 392                        rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 393                else
 394                        rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 395        }
 396}
 397
 398static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
 399                                  struct queue_entry *entry)
 400{
 401        /*
 402         * Make this entry available for reuse.
 403         */
 404        entry->skb = NULL;
 405        entry->flags = 0;
 406
 407        rt2x00dev->ops->lib->clear_entry(entry);
 408
 409        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 410
 411        /*
 412         * If the data queue was below the threshold before the txdone
 413         * handler we must make sure the packet queue in the mac80211 stack
 414         * is reenabled when the txdone handler has finished. This has to be
 415         * serialized with rt2x00mac_tx(), otherwise we can wake up queue
 416         * before it was stopped.
 417         */
 418        spin_lock_bh(&entry->queue->tx_lock);
 419        if (!rt2x00queue_threshold(entry->queue))
 420                rt2x00queue_unpause_queue(entry->queue);
 421        spin_unlock_bh(&entry->queue->tx_lock);
 422}
 423
 424void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
 425                              struct txdone_entry_desc *txdesc)
 426{
 427        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 428        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 429        struct ieee80211_tx_info txinfo = {};
 430        bool success;
 431
 432        /*
 433         * Unmap the skb.
 434         */
 435        rt2x00queue_unmap_skb(entry);
 436
 437        /*
 438         * Signal that the TX descriptor is no longer in the skb.
 439         */
 440        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 441
 442        /*
 443         * Send frame to debugfs immediately, after this call is completed
 444         * we are going to overwrite the skb->cb array.
 445         */
 446        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
 447
 448        /*
 449         * Determine if the frame has been successfully transmitted and
 450         * remove BARs from our check list while checking for their
 451         * TX status.
 452         */
 453        success =
 454            rt2x00lib_txdone_bar_status(entry) ||
 455            test_bit(TXDONE_SUCCESS, &txdesc->flags);
 456
 457        if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
 458                /*
 459                 * Update TX statistics.
 460                 */
 461                rt2x00dev->link.qual.tx_success += success;
 462                rt2x00dev->link.qual.tx_failed += !success;
 463
 464                rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
 465                                         success);
 466                ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
 467        }
 468
 469        dev_kfree_skb_any(entry->skb);
 470        rt2x00lib_clear_entry(rt2x00dev, entry);
 471}
 472EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
 473
 474void rt2x00lib_txdone(struct queue_entry *entry,
 475                      struct txdone_entry_desc *txdesc)
 476{
 477        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 478        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 479        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 480        u8 skbdesc_flags = skbdesc->flags;
 481        unsigned int header_length;
 482        bool success;
 483
 484        /*
 485         * Unmap the skb.
 486         */
 487        rt2x00queue_unmap_skb(entry);
 488
 489        /*
 490         * Remove the extra tx headroom from the skb.
 491         */
 492        skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
 493
 494        /*
 495         * Signal that the TX descriptor is no longer in the skb.
 496         */
 497        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 498
 499        /*
 500         * Determine the length of 802.11 header.
 501         */
 502        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 503
 504        /*
 505         * Remove L2 padding which was added during
 506         */
 507        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
 508                rt2x00queue_remove_l2pad(entry->skb, header_length);
 509
 510        /*
 511         * If the IV/EIV data was stripped from the frame before it was
 512         * passed to the hardware, we should now reinsert it again because
 513         * mac80211 will expect the same data to be present it the
 514         * frame as it was passed to us.
 515         */
 516        if (rt2x00_has_cap_hw_crypto(rt2x00dev))
 517                rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 518
 519        /*
 520         * Send frame to debugfs immediately, after this call is completed
 521         * we are going to overwrite the skb->cb array.
 522         */
 523        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
 524
 525        /*
 526         * Determine if the frame has been successfully transmitted and
 527         * remove BARs from our check list while checking for their
 528         * TX status.
 529         */
 530        success =
 531            rt2x00lib_txdone_bar_status(entry) ||
 532            test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 533            test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 534
 535        /*
 536         * Update TX statistics.
 537         */
 538        rt2x00dev->link.qual.tx_success += success;
 539        rt2x00dev->link.qual.tx_failed += !success;
 540
 541        rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
 542
 543        /*
 544         * Only send the status report to mac80211 when it's a frame
 545         * that originated in mac80211. If this was a extra frame coming
 546         * through a mac80211 library call (RTS/CTS) then we should not
 547         * send the status report back.
 548         */
 549        if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 550                if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
 551                        ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 552                else
 553                        ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 554        } else {
 555                dev_kfree_skb_any(entry->skb);
 556        }
 557
 558        rt2x00lib_clear_entry(rt2x00dev, entry);
 559}
 560EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 561
 562void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 563{
 564        struct txdone_entry_desc txdesc;
 565
 566        txdesc.flags = 0;
 567        __set_bit(status, &txdesc.flags);
 568        txdesc.retry = 0;
 569
 570        rt2x00lib_txdone(entry, &txdesc);
 571}
 572EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 573
 574static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 575{
 576        struct ieee80211_mgmt *mgmt = (void *)data;
 577        u8 *pos, *end;
 578
 579        pos = (u8 *)mgmt->u.beacon.variable;
 580        end = data + len;
 581        while (pos < end) {
 582                if (pos + 2 + pos[1] > end)
 583                        return NULL;
 584
 585                if (pos[0] == ie)
 586                        return pos;
 587
 588                pos += 2 + pos[1];
 589        }
 590
 591        return NULL;
 592}
 593
 594static void rt2x00lib_sleep(struct work_struct *work)
 595{
 596        struct rt2x00_dev *rt2x00dev =
 597            container_of(work, struct rt2x00_dev, sleep_work);
 598
 599        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 600                return;
 601
 602        /*
 603         * Check again is powersaving is enabled, to prevent races from delayed
 604         * work execution.
 605         */
 606        if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 607                rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 608                                 IEEE80211_CONF_CHANGE_PS);
 609}
 610
 611static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
 612                                      struct sk_buff *skb,
 613                                      struct rxdone_entry_desc *rxdesc)
 614{
 615        struct rt2x00_bar_list_entry *entry;
 616        struct ieee80211_bar *ba = (void *)skb->data;
 617
 618        if (likely(!ieee80211_is_back(ba->frame_control)))
 619                return;
 620
 621        if (rxdesc->size < sizeof(*ba) + FCS_LEN)
 622                return;
 623
 624        rcu_read_lock();
 625        list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
 626
 627                if (ba->start_seq_num != entry->start_seq_num)
 628                        continue;
 629
 630#define TID_CHECK(a, b) (                                               \
 631        ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
 632        ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
 633
 634                if (!TID_CHECK(ba->control, entry->control))
 635                        continue;
 636
 637#undef TID_CHECK
 638
 639                if (!ether_addr_equal_64bits(ba->ra, entry->ta))
 640                        continue;
 641
 642                if (!ether_addr_equal_64bits(ba->ta, entry->ra))
 643                        continue;
 644
 645                /* Mark BAR since we received the according BA */
 646                spin_lock_bh(&rt2x00dev->bar_list_lock);
 647                entry->block_acked = 1;
 648                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 649                break;
 650        }
 651        rcu_read_unlock();
 652
 653}
 654
 655static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 656                                      struct sk_buff *skb,
 657                                      struct rxdone_entry_desc *rxdesc)
 658{
 659        struct ieee80211_hdr *hdr = (void *) skb->data;
 660        struct ieee80211_tim_ie *tim_ie;
 661        u8 *tim;
 662        u8 tim_len;
 663        bool cam;
 664
 665        /* If this is not a beacon, or if mac80211 has no powersaving
 666         * configured, or if the device is already in powersaving mode
 667         * we can exit now. */
 668        if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 669                   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 670                return;
 671
 672        /* min. beacon length + FCS_LEN */
 673        if (skb->len <= 40 + FCS_LEN)
 674                return;
 675
 676        /* and only beacons from the associated BSSID, please */
 677        if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 678            !rt2x00dev->aid)
 679                return;
 680
 681        rt2x00dev->last_beacon = jiffies;
 682
 683        tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 684        if (!tim)
 685                return;
 686
 687        if (tim[1] < sizeof(*tim_ie))
 688                return;
 689
 690        tim_len = tim[1];
 691        tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 692
 693        /* Check whenever the PHY can be turned off again. */
 694
 695        /* 1. What about buffered unicast traffic for our AID? */
 696        cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 697
 698        /* 2. Maybe the AP wants to send multicast/broadcast data? */
 699        cam |= (tim_ie->bitmap_ctrl & 0x01);
 700
 701        if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 702                queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
 703}
 704
 705static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 706                                        struct rxdone_entry_desc *rxdesc)
 707{
 708        struct ieee80211_supported_band *sband;
 709        const struct rt2x00_rate *rate;
 710        unsigned int i;
 711        int signal = rxdesc->signal;
 712        int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 713
 714        switch (rxdesc->rate_mode) {
 715        case RATE_MODE_CCK:
 716        case RATE_MODE_OFDM:
 717                /*
 718                 * For non-HT rates the MCS value needs to contain the
 719                 * actually used rate modulation (CCK or OFDM).
 720                 */
 721                if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 722                        signal = RATE_MCS(rxdesc->rate_mode, signal);
 723
 724                sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 725                for (i = 0; i < sband->n_bitrates; i++) {
 726                        rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 727                        if (((type == RXDONE_SIGNAL_PLCP) &&
 728                             (rate->plcp == signal)) ||
 729                            ((type == RXDONE_SIGNAL_BITRATE) &&
 730                              (rate->bitrate == signal)) ||
 731                            ((type == RXDONE_SIGNAL_MCS) &&
 732                              (rate->mcs == signal))) {
 733                                return i;
 734                        }
 735                }
 736                break;
 737        case RATE_MODE_HT_MIX:
 738        case RATE_MODE_HT_GREENFIELD:
 739                if (signal >= 0 && signal <= 76)
 740                        return signal;
 741                break;
 742        default:
 743                break;
 744        }
 745
 746        rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
 747                    rxdesc->rate_mode, signal, type);
 748        return 0;
 749}
 750
 751void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
 752{
 753        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 754        struct rxdone_entry_desc rxdesc;
 755        struct sk_buff *skb;
 756        struct ieee80211_rx_status *rx_status;
 757        unsigned int header_length;
 758        int rate_idx;
 759
 760        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 761            !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 762                goto submit_entry;
 763
 764        if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 765                goto submit_entry;
 766
 767        /*
 768         * Allocate a new sk_buffer. If no new buffer available, drop the
 769         * received frame and reuse the existing buffer.
 770         */
 771        skb = rt2x00queue_alloc_rxskb(entry, gfp);
 772        if (!skb)
 773                goto submit_entry;
 774
 775        /*
 776         * Unmap the skb.
 777         */
 778        rt2x00queue_unmap_skb(entry);
 779
 780        /*
 781         * Extract the RXD details.
 782         */
 783        memset(&rxdesc, 0, sizeof(rxdesc));
 784        rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 785
 786        /*
 787         * Check for valid size in case we get corrupted descriptor from
 788         * hardware.
 789         */
 790        if (unlikely(rxdesc.size == 0 ||
 791                     rxdesc.size > entry->queue->data_size)) {
 792                rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
 793                           rxdesc.size, entry->queue->data_size);
 794                dev_kfree_skb(entry->skb);
 795                goto renew_skb;
 796        }
 797
 798        /*
 799         * The data behind the ieee80211 header must be
 800         * aligned on a 4 byte boundary.
 801         */
 802        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 803
 804        /*
 805         * Hardware might have stripped the IV/EIV/ICV data,
 806         * in that case it is possible that the data was
 807         * provided separately (through hardware descriptor)
 808         * in which case we should reinsert the data into the frame.
 809         */
 810        if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 811            (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 812                rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 813                                          &rxdesc);
 814        else if (header_length &&
 815                 (rxdesc.size > header_length) &&
 816                 (rxdesc.dev_flags & RXDONE_L2PAD))
 817                rt2x00queue_remove_l2pad(entry->skb, header_length);
 818
 819        /* Trim buffer to correct size */
 820        skb_trim(entry->skb, rxdesc.size);
 821
 822        /*
 823         * Translate the signal to the correct bitrate index.
 824         */
 825        rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 826        if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 827            rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 828                rxdesc.encoding = RX_ENC_HT;
 829
 830        /*
 831         * Check if this is a beacon, and more frames have been
 832         * buffered while we were in powersaving mode.
 833         */
 834        rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 835
 836        /*
 837         * Check for incoming BlockAcks to match to the BlockAckReqs
 838         * we've send out.
 839         */
 840        rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
 841
 842        /*
 843         * Update extra components
 844         */
 845        rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 846        rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 847        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
 848
 849        /*
 850         * Initialize RX status information, and send frame
 851         * to mac80211.
 852         */
 853        rx_status = IEEE80211_SKB_RXCB(entry->skb);
 854
 855        /* Ensure that all fields of rx_status are initialized
 856         * properly. The skb->cb array was used for driver
 857         * specific informations, so rx_status might contain
 858         * garbage.
 859         */
 860        memset(rx_status, 0, sizeof(*rx_status));
 861
 862        rx_status->mactime = rxdesc.timestamp;
 863        rx_status->band = rt2x00dev->curr_band;
 864        rx_status->freq = rt2x00dev->curr_freq;
 865        rx_status->rate_idx = rate_idx;
 866        rx_status->signal = rxdesc.rssi;
 867        rx_status->flag = rxdesc.flags;
 868        rx_status->enc_flags = rxdesc.enc_flags;
 869        rx_status->encoding = rxdesc.encoding;
 870        rx_status->bw = rxdesc.bw;
 871        rx_status->antenna = rt2x00dev->link.ant.active.rx;
 872
 873        ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 874
 875renew_skb:
 876        /*
 877         * Replace the skb with the freshly allocated one.
 878         */
 879        entry->skb = skb;
 880
 881submit_entry:
 882        entry->flags = 0;
 883        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 884        if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 885            test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 886                rt2x00dev->ops->lib->clear_entry(entry);
 887}
 888EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 889
 890/*
 891 * Driver initialization handlers.
 892 */
 893const struct rt2x00_rate rt2x00_supported_rates[12] = {
 894        {
 895                .flags = DEV_RATE_CCK,
 896                .bitrate = 10,
 897                .ratemask = BIT(0),
 898                .plcp = 0x00,
 899                .mcs = RATE_MCS(RATE_MODE_CCK, 0),
 900        },
 901        {
 902                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 903                .bitrate = 20,
 904                .ratemask = BIT(1),
 905                .plcp = 0x01,
 906                .mcs = RATE_MCS(RATE_MODE_CCK, 1),
 907        },
 908        {
 909                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 910                .bitrate = 55,
 911                .ratemask = BIT(2),
 912                .plcp = 0x02,
 913                .mcs = RATE_MCS(RATE_MODE_CCK, 2),
 914        },
 915        {
 916                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 917                .bitrate = 110,
 918                .ratemask = BIT(3),
 919                .plcp = 0x03,
 920                .mcs = RATE_MCS(RATE_MODE_CCK, 3),
 921        },
 922        {
 923                .flags = DEV_RATE_OFDM,
 924                .bitrate = 60,
 925                .ratemask = BIT(4),
 926                .plcp = 0x0b,
 927                .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 928        },
 929        {
 930                .flags = DEV_RATE_OFDM,
 931                .bitrate = 90,
 932                .ratemask = BIT(5),
 933                .plcp = 0x0f,
 934                .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 935        },
 936        {
 937                .flags = DEV_RATE_OFDM,
 938                .bitrate = 120,
 939                .ratemask = BIT(6),
 940                .plcp = 0x0a,
 941                .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 942        },
 943        {
 944                .flags = DEV_RATE_OFDM,
 945                .bitrate = 180,
 946                .ratemask = BIT(7),
 947                .plcp = 0x0e,
 948                .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 949        },
 950        {
 951                .flags = DEV_RATE_OFDM,
 952                .bitrate = 240,
 953                .ratemask = BIT(8),
 954                .plcp = 0x09,
 955                .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 956        },
 957        {
 958                .flags = DEV_RATE_OFDM,
 959                .bitrate = 360,
 960                .ratemask = BIT(9),
 961                .plcp = 0x0d,
 962                .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 963        },
 964        {
 965                .flags = DEV_RATE_OFDM,
 966                .bitrate = 480,
 967                .ratemask = BIT(10),
 968                .plcp = 0x08,
 969                .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 970        },
 971        {
 972                .flags = DEV_RATE_OFDM,
 973                .bitrate = 540,
 974                .ratemask = BIT(11),
 975                .plcp = 0x0c,
 976                .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 977        },
 978};
 979
 980static void rt2x00lib_channel(struct ieee80211_channel *entry,
 981                              const int channel, const int tx_power,
 982                              const int value)
 983{
 984        /* XXX: this assumption about the band is wrong for 802.11j */
 985        entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
 986        entry->center_freq = ieee80211_channel_to_frequency(channel,
 987                                                            entry->band);
 988        entry->hw_value = value;
 989        entry->max_power = tx_power;
 990        entry->max_antenna_gain = 0xff;
 991}
 992
 993static void rt2x00lib_rate(struct ieee80211_rate *entry,
 994                           const u16 index, const struct rt2x00_rate *rate)
 995{
 996        entry->flags = 0;
 997        entry->bitrate = rate->bitrate;
 998        entry->hw_value = index;
 999        entry->hw_value_short = index;
1000
1001        if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
1002                entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
1003}
1004
1005void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
1006{
1007        const char *mac_addr;
1008
1009        mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
1010        if (mac_addr)
1011                ether_addr_copy(eeprom_mac_addr, mac_addr);
1012
1013        if (!is_valid_ether_addr(eeprom_mac_addr)) {
1014                eth_random_addr(eeprom_mac_addr);
1015                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1016        }
1017}
1018EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1019
1020static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1021                                    struct hw_mode_spec *spec)
1022{
1023        struct ieee80211_hw *hw = rt2x00dev->hw;
1024        struct ieee80211_channel *channels;
1025        struct ieee80211_rate *rates;
1026        unsigned int num_rates;
1027        unsigned int i;
1028
1029        num_rates = 0;
1030        if (spec->supported_rates & SUPPORT_RATE_CCK)
1031                num_rates += 4;
1032        if (spec->supported_rates & SUPPORT_RATE_OFDM)
1033                num_rates += 8;
1034
1035        channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1036        if (!channels)
1037                return -ENOMEM;
1038
1039        rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1040        if (!rates)
1041                goto exit_free_channels;
1042
1043        /*
1044         * Initialize Rate list.
1045         */
1046        for (i = 0; i < num_rates; i++)
1047                rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1048
1049        /*
1050         * Initialize Channel list.
1051         */
1052        for (i = 0; i < spec->num_channels; i++) {
1053                rt2x00lib_channel(&channels[i],
1054                                  spec->channels[i].channel,
1055                                  spec->channels_info[i].max_power, i);
1056        }
1057
1058        /*
1059         * Intitialize 802.11b, 802.11g
1060         * Rates: CCK, OFDM.
1061         * Channels: 2.4 GHz
1062         */
1063        if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1064                rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1065                rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1066                rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1067                rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1068                hw->wiphy->bands[NL80211_BAND_2GHZ] =
1069                    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1070                memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1071                       &spec->ht, sizeof(spec->ht));
1072        }
1073
1074        /*
1075         * Intitialize 802.11a
1076         * Rates: OFDM.
1077         * Channels: OFDM, UNII, HiperLAN2.
1078         */
1079        if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1080                rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1081                    spec->num_channels - 14;
1082                rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1083                    num_rates - 4;
1084                rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1085                rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1086                hw->wiphy->bands[NL80211_BAND_5GHZ] =
1087                    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1088                memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1089                       &spec->ht, sizeof(spec->ht));
1090        }
1091
1092        return 0;
1093
1094 exit_free_channels:
1095        kfree(channels);
1096        rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1097        return -ENOMEM;
1098}
1099
1100static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1101{
1102        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1103                ieee80211_unregister_hw(rt2x00dev->hw);
1104
1105        if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1106                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1107                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1108                rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1109                rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1110        }
1111
1112        kfree(rt2x00dev->spec.channels_info);
1113}
1114
1115static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1116{
1117        struct hw_mode_spec *spec = &rt2x00dev->spec;
1118        int status;
1119
1120        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1121                return 0;
1122
1123        /*
1124         * Initialize HW modes.
1125         */
1126        status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1127        if (status)
1128                return status;
1129
1130        /*
1131         * Initialize HW fields.
1132         */
1133        rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1134
1135        /*
1136         * Initialize extra TX headroom required.
1137         */
1138        rt2x00dev->hw->extra_tx_headroom =
1139                max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1140                      rt2x00dev->extra_tx_headroom);
1141
1142        /*
1143         * Take TX headroom required for alignment into account.
1144         */
1145        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1146                rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1147        else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1148                rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1149
1150        /*
1151         * Tell mac80211 about the size of our private STA structure.
1152         */
1153        rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1154
1155        /*
1156         * Allocate tx status FIFO for driver use.
1157         */
1158        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1159                /*
1160                 * Allocate the txstatus fifo. In the worst case the tx
1161                 * status fifo has to hold the tx status of all entries
1162                 * in all tx queues. Hence, calculate the kfifo size as
1163                 * tx_queues * entry_num and round up to the nearest
1164                 * power of 2.
1165                 */
1166                int kfifo_size =
1167                        roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1168                                           rt2x00dev->tx->limit *
1169                                           sizeof(u32));
1170
1171                status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1172                                     GFP_KERNEL);
1173                if (status)
1174                        return status;
1175        }
1176
1177        /*
1178         * Initialize tasklets if used by the driver. Tasklets are
1179         * disabled until the interrupts are turned on. The driver
1180         * has to handle that.
1181         */
1182#define RT2X00_TASKLET_INIT(taskletname) \
1183        if (rt2x00dev->ops->lib->taskletname) { \
1184                tasklet_init(&rt2x00dev->taskletname, \
1185                             rt2x00dev->ops->lib->taskletname, \
1186                             (unsigned long)rt2x00dev); \
1187        }
1188
1189        RT2X00_TASKLET_INIT(txstatus_tasklet);
1190        RT2X00_TASKLET_INIT(pretbtt_tasklet);
1191        RT2X00_TASKLET_INIT(tbtt_tasklet);
1192        RT2X00_TASKLET_INIT(rxdone_tasklet);
1193        RT2X00_TASKLET_INIT(autowake_tasklet);
1194
1195#undef RT2X00_TASKLET_INIT
1196
1197        /*
1198         * Register HW.
1199         */
1200        status = ieee80211_register_hw(rt2x00dev->hw);
1201        if (status)
1202                return status;
1203
1204        set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205
1206        return 0;
1207}
1208
1209/*
1210 * Initialization/uninitialization handlers.
1211 */
1212static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213{
1214        if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215                return;
1216
1217        /*
1218         * Stop rfkill polling.
1219         */
1220        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221                rt2x00rfkill_unregister(rt2x00dev);
1222
1223        /*
1224         * Allow the HW to uninitialize.
1225         */
1226        rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227
1228        /*
1229         * Free allocated queue entries.
1230         */
1231        rt2x00queue_uninitialize(rt2x00dev);
1232}
1233
1234static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235{
1236        int status;
1237
1238        if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239                return 0;
1240
1241        /*
1242         * Allocate all queue entries.
1243         */
1244        status = rt2x00queue_initialize(rt2x00dev);
1245        if (status)
1246                return status;
1247
1248        /*
1249         * Initialize the device.
1250         */
1251        status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252        if (status) {
1253                rt2x00queue_uninitialize(rt2x00dev);
1254                return status;
1255        }
1256
1257        set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258
1259        /*
1260         * Start rfkill polling.
1261         */
1262        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263                rt2x00rfkill_register(rt2x00dev);
1264
1265        return 0;
1266}
1267
1268int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269{
1270        int retval;
1271
1272        if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1273                return 0;
1274
1275        /*
1276         * If this is the first interface which is added,
1277         * we should load the firmware now.
1278         */
1279        retval = rt2x00lib_load_firmware(rt2x00dev);
1280        if (retval)
1281                return retval;
1282
1283        /*
1284         * Initialize the device.
1285         */
1286        retval = rt2x00lib_initialize(rt2x00dev);
1287        if (retval)
1288                return retval;
1289
1290        rt2x00dev->intf_ap_count = 0;
1291        rt2x00dev->intf_sta_count = 0;
1292        rt2x00dev->intf_associated = 0;
1293
1294        /* Enable the radio */
1295        retval = rt2x00lib_enable_radio(rt2x00dev);
1296        if (retval)
1297                return retval;
1298
1299        set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1300
1301        return 0;
1302}
1303
1304void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1305{
1306        if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1307                return;
1308
1309        /*
1310         * Perhaps we can add something smarter here,
1311         * but for now just disabling the radio should do.
1312         */
1313        rt2x00lib_disable_radio(rt2x00dev);
1314
1315        rt2x00dev->intf_ap_count = 0;
1316        rt2x00dev->intf_sta_count = 0;
1317        rt2x00dev->intf_associated = 0;
1318}
1319
1320static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321{
1322        struct ieee80211_iface_limit *if_limit;
1323        struct ieee80211_iface_combination *if_combination;
1324
1325        if (rt2x00dev->ops->max_ap_intf < 2)
1326                return;
1327
1328        /*
1329         * Build up AP interface limits structure.
1330         */
1331        if_limit = &rt2x00dev->if_limits_ap;
1332        if_limit->max = rt2x00dev->ops->max_ap_intf;
1333        if_limit->types = BIT(NL80211_IFTYPE_AP);
1334#ifdef CONFIG_MAC80211_MESH
1335        if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336#endif
1337
1338        /*
1339         * Build up AP interface combinations structure.
1340         */
1341        if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342        if_combination->limits = if_limit;
1343        if_combination->n_limits = 1;
1344        if_combination->max_interfaces = if_limit->max;
1345        if_combination->num_different_channels = 1;
1346
1347        /*
1348         * Finally, specify the possible combinations to mac80211.
1349         */
1350        rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351        rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352}
1353
1354static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355{
1356        if (WARN_ON(!rt2x00dev->tx))
1357                return 0;
1358
1359        if (rt2x00_is_usb(rt2x00dev))
1360                return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361
1362        return rt2x00dev->tx[0].winfo_size;
1363}
1364
1365/*
1366 * driver allocation handlers.
1367 */
1368int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369{
1370        int retval = -ENOMEM;
1371
1372        /*
1373         * Set possible interface combinations.
1374         */
1375        rt2x00lib_set_if_combinations(rt2x00dev);
1376
1377        /*
1378         * Allocate the driver data memory, if necessary.
1379         */
1380        if (rt2x00dev->ops->drv_data_size > 0) {
1381                rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382                                              GFP_KERNEL);
1383                if (!rt2x00dev->drv_data) {
1384                        retval = -ENOMEM;
1385                        goto exit;
1386                }
1387        }
1388
1389        spin_lock_init(&rt2x00dev->irqmask_lock);
1390        mutex_init(&rt2x00dev->csr_mutex);
1391        mutex_init(&rt2x00dev->conf_mutex);
1392        INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393        spin_lock_init(&rt2x00dev->bar_list_lock);
1394
1395        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1396
1397        /*
1398         * Make room for rt2x00_intf inside the per-interface
1399         * structure ieee80211_vif.
1400         */
1401        rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1402
1403        /*
1404         * rt2x00 devices can only use the last n bits of the MAC address
1405         * for virtual interfaces.
1406         */
1407        rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1408                (rt2x00dev->ops->max_ap_intf - 1);
1409
1410        /*
1411         * Initialize work.
1412         */
1413        rt2x00dev->workqueue =
1414            alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1415        if (!rt2x00dev->workqueue) {
1416                retval = -ENOMEM;
1417                goto exit;
1418        }
1419
1420        INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1421        INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1422        INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1423
1424        /*
1425         * Let the driver probe the device to detect the capabilities.
1426         */
1427        retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1428        if (retval) {
1429                rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1430                goto exit;
1431        }
1432
1433        /*
1434         * Allocate queue array.
1435         */
1436        retval = rt2x00queue_allocate(rt2x00dev);
1437        if (retval)
1438                goto exit;
1439
1440        /* Cache TX headroom value */
1441        rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1442
1443        /*
1444         * Determine which operating modes are supported, all modes
1445         * which require beaconing, depend on the availability of
1446         * beacon entries.
1447         */
1448        rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1449        if (rt2x00dev->bcn->limit > 0)
1450                rt2x00dev->hw->wiphy->interface_modes |=
1451                    BIT(NL80211_IFTYPE_ADHOC) |
1452#ifdef CONFIG_MAC80211_MESH
1453                    BIT(NL80211_IFTYPE_MESH_POINT) |
1454#endif
1455#ifdef CONFIG_WIRELESS_WDS
1456                    BIT(NL80211_IFTYPE_WDS) |
1457#endif
1458                    BIT(NL80211_IFTYPE_AP);
1459
1460        rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1461
1462        wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1463                              NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1464
1465        /*
1466         * Initialize ieee80211 structure.
1467         */
1468        retval = rt2x00lib_probe_hw(rt2x00dev);
1469        if (retval) {
1470                rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1471                goto exit;
1472        }
1473
1474        /*
1475         * Register extra components.
1476         */
1477        rt2x00link_register(rt2x00dev);
1478        rt2x00leds_register(rt2x00dev);
1479        rt2x00debug_register(rt2x00dev);
1480
1481        /*
1482         * Start rfkill polling.
1483         */
1484        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1485                rt2x00rfkill_register(rt2x00dev);
1486
1487        return 0;
1488
1489exit:
1490        rt2x00lib_remove_dev(rt2x00dev);
1491
1492        return retval;
1493}
1494EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1495
1496void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1497{
1498        clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1499
1500        /*
1501         * Stop rfkill polling.
1502         */
1503        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1504                rt2x00rfkill_unregister(rt2x00dev);
1505
1506        /*
1507         * Disable radio.
1508         */
1509        rt2x00lib_disable_radio(rt2x00dev);
1510
1511        /*
1512         * Stop all work.
1513         */
1514        cancel_work_sync(&rt2x00dev->intf_work);
1515        cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1516        cancel_work_sync(&rt2x00dev->sleep_work);
1517
1518        /*
1519         * Kill the tx status tasklet.
1520         */
1521        tasklet_kill(&rt2x00dev->txstatus_tasklet);
1522        tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1523        tasklet_kill(&rt2x00dev->tbtt_tasklet);
1524        tasklet_kill(&rt2x00dev->rxdone_tasklet);
1525        tasklet_kill(&rt2x00dev->autowake_tasklet);
1526
1527        /*
1528         * Uninitialize device.
1529         */
1530        rt2x00lib_uninitialize(rt2x00dev);
1531
1532        if (rt2x00dev->workqueue)
1533                destroy_workqueue(rt2x00dev->workqueue);
1534
1535        /*
1536         * Free the tx status fifo.
1537         */
1538        kfifo_free(&rt2x00dev->txstatus_fifo);
1539
1540        /*
1541         * Free extra components
1542         */
1543        rt2x00debug_deregister(rt2x00dev);
1544        rt2x00leds_unregister(rt2x00dev);
1545
1546        /*
1547         * Free ieee80211_hw memory.
1548         */
1549        rt2x00lib_remove_hw(rt2x00dev);
1550
1551        /*
1552         * Free firmware image.
1553         */
1554        rt2x00lib_free_firmware(rt2x00dev);
1555
1556        /*
1557         * Free queue structures.
1558         */
1559        rt2x00queue_free(rt2x00dev);
1560
1561        /*
1562         * Free the driver data.
1563         */
1564        kfree(rt2x00dev->drv_data);
1565}
1566EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1567
1568/*
1569 * Device state handlers
1570 */
1571#ifdef CONFIG_PM
1572int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1573{
1574        rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575
1576        /*
1577         * Prevent mac80211 from accessing driver while suspended.
1578         */
1579        if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580                return 0;
1581
1582        /*
1583         * Cleanup as much as possible.
1584         */
1585        rt2x00lib_uninitialize(rt2x00dev);
1586
1587        /*
1588         * Suspend/disable extra components.
1589         */
1590        rt2x00leds_suspend(rt2x00dev);
1591        rt2x00debug_deregister(rt2x00dev);
1592
1593        /*
1594         * Set device mode to sleep for power management,
1595         * on some hardware this call seems to consistently fail.
1596         * From the specifications it is hard to tell why it fails,
1597         * and if this is a "bad thing".
1598         * Overall it is safe to just ignore the failure and
1599         * continue suspending. The only downside is that the
1600         * device will not be in optimal power save mode, but with
1601         * the radio and the other components already disabled the
1602         * device is as good as disabled.
1603         */
1604        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605                rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606
1607        return 0;
1608}
1609EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610
1611int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612{
1613        rt2x00_dbg(rt2x00dev, "Waking up\n");
1614
1615        /*
1616         * Restore/enable extra components.
1617         */
1618        rt2x00debug_register(rt2x00dev);
1619        rt2x00leds_resume(rt2x00dev);
1620
1621        /*
1622         * We are ready again to receive requests from mac80211.
1623         */
1624        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625
1626        return 0;
1627}
1628EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629#endif /* CONFIG_PM */
1630
1631/*
1632 * rt2x00lib module information.
1633 */
1634MODULE_AUTHOR(DRV_PROJECT);
1635MODULE_VERSION(DRV_VERSION);
1636MODULE_DESCRIPTION("rt2x00 library");
1637MODULE_LICENSE("GPL");
1638