linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/aer.h>
  16#include <linux/bitops.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/blk-mq-pci.h>
  20#include <linux/dmi.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/mm.h>
  25#include <linux/module.h>
  26#include <linux/mutex.h>
  27#include <linux/once.h>
  28#include <linux/pci.h>
  29#include <linux/poison.h>
  30#include <linux/t10-pi.h>
  31#include <linux/timer.h>
  32#include <linux/types.h>
  33#include <linux/io-64-nonatomic-lo-hi.h>
  34#include <asm/unaligned.h>
  35#include <linux/sed-opal.h>
  36
  37#include "nvme.h"
  38
  39#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  40#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  41
  42/*
  43 * We handle AEN commands ourselves and don't even let the
  44 * block layer know about them.
  45 */
  46#define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
  47
  48static int use_threaded_interrupts;
  49module_param(use_threaded_interrupts, int, 0);
  50
  51static bool use_cmb_sqes = true;
  52module_param(use_cmb_sqes, bool, 0644);
  53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  54
  55static unsigned int max_host_mem_size_mb = 128;
  56module_param(max_host_mem_size_mb, uint, 0444);
  57MODULE_PARM_DESC(max_host_mem_size_mb,
  58        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  59
  60static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  61static const struct kernel_param_ops io_queue_depth_ops = {
  62        .set = io_queue_depth_set,
  63        .get = param_get_int,
  64};
  65
  66static int io_queue_depth = 1024;
  67module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  68MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  69
  70struct nvme_dev;
  71struct nvme_queue;
  72
  73static void nvme_process_cq(struct nvme_queue *nvmeq);
  74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  75
  76/*
  77 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  78 */
  79struct nvme_dev {
  80        struct nvme_queue **queues;
  81        struct blk_mq_tag_set tagset;
  82        struct blk_mq_tag_set admin_tagset;
  83        u32 __iomem *dbs;
  84        struct device *dev;
  85        struct dma_pool *prp_page_pool;
  86        struct dma_pool *prp_small_pool;
  87        unsigned online_queues;
  88        unsigned max_qid;
  89        int q_depth;
  90        u32 db_stride;
  91        void __iomem *bar;
  92        unsigned long bar_mapped_size;
  93        struct work_struct remove_work;
  94        struct mutex shutdown_lock;
  95        bool subsystem;
  96        void __iomem *cmb;
  97        pci_bus_addr_t cmb_bus_addr;
  98        u64 cmb_size;
  99        u32 cmbsz;
 100        u32 cmbloc;
 101        struct nvme_ctrl ctrl;
 102        struct completion ioq_wait;
 103
 104        /* shadow doorbell buffer support: */
 105        u32 *dbbuf_dbs;
 106        dma_addr_t dbbuf_dbs_dma_addr;
 107        u32 *dbbuf_eis;
 108        dma_addr_t dbbuf_eis_dma_addr;
 109
 110        /* host memory buffer support: */
 111        u64 host_mem_size;
 112        u32 nr_host_mem_descs;
 113        dma_addr_t host_mem_descs_dma;
 114        struct nvme_host_mem_buf_desc *host_mem_descs;
 115        void **host_mem_desc_bufs;
 116};
 117
 118static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 119{
 120        int n = 0, ret;
 121
 122        ret = kstrtoint(val, 10, &n);
 123        if (ret != 0 || n < 2)
 124                return -EINVAL;
 125
 126        return param_set_int(val, kp);
 127}
 128
 129static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 130{
 131        return qid * 2 * stride;
 132}
 133
 134static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 135{
 136        return (qid * 2 + 1) * stride;
 137}
 138
 139static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 140{
 141        return container_of(ctrl, struct nvme_dev, ctrl);
 142}
 143
 144/*
 145 * An NVM Express queue.  Each device has at least two (one for admin
 146 * commands and one for I/O commands).
 147 */
 148struct nvme_queue {
 149        struct device *q_dmadev;
 150        struct nvme_dev *dev;
 151        spinlock_t q_lock;
 152        struct nvme_command *sq_cmds;
 153        struct nvme_command __iomem *sq_cmds_io;
 154        volatile struct nvme_completion *cqes;
 155        struct blk_mq_tags **tags;
 156        dma_addr_t sq_dma_addr;
 157        dma_addr_t cq_dma_addr;
 158        u32 __iomem *q_db;
 159        u16 q_depth;
 160        s16 cq_vector;
 161        u16 sq_tail;
 162        u16 cq_head;
 163        u16 qid;
 164        u8 cq_phase;
 165        u8 cqe_seen;
 166        u32 *dbbuf_sq_db;
 167        u32 *dbbuf_cq_db;
 168        u32 *dbbuf_sq_ei;
 169        u32 *dbbuf_cq_ei;
 170};
 171
 172/*
 173 * The nvme_iod describes the data in an I/O, including the list of PRP
 174 * entries.  You can't see it in this data structure because C doesn't let
 175 * me express that.  Use nvme_init_iod to ensure there's enough space
 176 * allocated to store the PRP list.
 177 */
 178struct nvme_iod {
 179        struct nvme_request req;
 180        struct nvme_queue *nvmeq;
 181        int aborted;
 182        int npages;             /* In the PRP list. 0 means small pool in use */
 183        int nents;              /* Used in scatterlist */
 184        int length;             /* Of data, in bytes */
 185        dma_addr_t first_dma;
 186        struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
 187        struct scatterlist *sg;
 188        struct scatterlist inline_sg[0];
 189};
 190
 191/*
 192 * Check we didin't inadvertently grow the command struct
 193 */
 194static inline void _nvme_check_size(void)
 195{
 196        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 197        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 198        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 199        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 200        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 201        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 202        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 203        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 204        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
 205        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
 206        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 207        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 208        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
 209}
 210
 211static inline unsigned int nvme_dbbuf_size(u32 stride)
 212{
 213        return ((num_possible_cpus() + 1) * 8 * stride);
 214}
 215
 216static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 217{
 218        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 219
 220        if (dev->dbbuf_dbs)
 221                return 0;
 222
 223        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 224                                            &dev->dbbuf_dbs_dma_addr,
 225                                            GFP_KERNEL);
 226        if (!dev->dbbuf_dbs)
 227                return -ENOMEM;
 228        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 229                                            &dev->dbbuf_eis_dma_addr,
 230                                            GFP_KERNEL);
 231        if (!dev->dbbuf_eis) {
 232                dma_free_coherent(dev->dev, mem_size,
 233                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 234                dev->dbbuf_dbs = NULL;
 235                return -ENOMEM;
 236        }
 237
 238        return 0;
 239}
 240
 241static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 242{
 243        unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 244
 245        if (dev->dbbuf_dbs) {
 246                dma_free_coherent(dev->dev, mem_size,
 247                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 248                dev->dbbuf_dbs = NULL;
 249        }
 250        if (dev->dbbuf_eis) {
 251                dma_free_coherent(dev->dev, mem_size,
 252                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 253                dev->dbbuf_eis = NULL;
 254        }
 255}
 256
 257static void nvme_dbbuf_init(struct nvme_dev *dev,
 258                            struct nvme_queue *nvmeq, int qid)
 259{
 260        if (!dev->dbbuf_dbs || !qid)
 261                return;
 262
 263        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 264        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 265        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 266        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 267}
 268
 269static void nvme_dbbuf_set(struct nvme_dev *dev)
 270{
 271        struct nvme_command c;
 272
 273        if (!dev->dbbuf_dbs)
 274                return;
 275
 276        memset(&c, 0, sizeof(c));
 277        c.dbbuf.opcode = nvme_admin_dbbuf;
 278        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 279        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 280
 281        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 282                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 283                /* Free memory and continue on */
 284                nvme_dbbuf_dma_free(dev);
 285        }
 286}
 287
 288static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 289{
 290        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 291}
 292
 293/* Update dbbuf and return true if an MMIO is required */
 294static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 295                                              volatile u32 *dbbuf_ei)
 296{
 297        if (dbbuf_db) {
 298                u16 old_value;
 299
 300                /*
 301                 * Ensure that the queue is written before updating
 302                 * the doorbell in memory
 303                 */
 304                wmb();
 305
 306                old_value = *dbbuf_db;
 307                *dbbuf_db = value;
 308
 309                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 310                        return false;
 311        }
 312
 313        return true;
 314}
 315
 316/*
 317 * Max size of iod being embedded in the request payload
 318 */
 319#define NVME_INT_PAGES          2
 320#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
 321
 322/*
 323 * Will slightly overestimate the number of pages needed.  This is OK
 324 * as it only leads to a small amount of wasted memory for the lifetime of
 325 * the I/O.
 326 */
 327static int nvme_npages(unsigned size, struct nvme_dev *dev)
 328{
 329        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 330                                      dev->ctrl.page_size);
 331        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 332}
 333
 334static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
 335                unsigned int size, unsigned int nseg)
 336{
 337        return sizeof(__le64 *) * nvme_npages(size, dev) +
 338                        sizeof(struct scatterlist) * nseg;
 339}
 340
 341static unsigned int nvme_cmd_size(struct nvme_dev *dev)
 342{
 343        return sizeof(struct nvme_iod) +
 344                nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
 345}
 346
 347static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 348                                unsigned int hctx_idx)
 349{
 350        struct nvme_dev *dev = data;
 351        struct nvme_queue *nvmeq = dev->queues[0];
 352
 353        WARN_ON(hctx_idx != 0);
 354        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 355        WARN_ON(nvmeq->tags);
 356
 357        hctx->driver_data = nvmeq;
 358        nvmeq->tags = &dev->admin_tagset.tags[0];
 359        return 0;
 360}
 361
 362static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 363{
 364        struct nvme_queue *nvmeq = hctx->driver_data;
 365
 366        nvmeq->tags = NULL;
 367}
 368
 369static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 370                          unsigned int hctx_idx)
 371{
 372        struct nvme_dev *dev = data;
 373        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 374
 375        if (!nvmeq->tags)
 376                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 377
 378        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 379        hctx->driver_data = nvmeq;
 380        return 0;
 381}
 382
 383static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 384                unsigned int hctx_idx, unsigned int numa_node)
 385{
 386        struct nvme_dev *dev = set->driver_data;
 387        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 388        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 389        struct nvme_queue *nvmeq = dev->queues[queue_idx];
 390
 391        BUG_ON(!nvmeq);
 392        iod->nvmeq = nvmeq;
 393        return 0;
 394}
 395
 396static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 397{
 398        struct nvme_dev *dev = set->driver_data;
 399
 400        return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
 401}
 402
 403/**
 404 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 405 * @nvmeq: The queue to use
 406 * @cmd: The command to send
 407 *
 408 * Safe to use from interrupt context
 409 */
 410static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
 411                                                struct nvme_command *cmd)
 412{
 413        u16 tail = nvmeq->sq_tail;
 414
 415        if (nvmeq->sq_cmds_io)
 416                memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
 417        else
 418                memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 419
 420        if (++tail == nvmeq->q_depth)
 421                tail = 0;
 422        if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
 423                                              nvmeq->dbbuf_sq_ei))
 424                writel(tail, nvmeq->q_db);
 425        nvmeq->sq_tail = tail;
 426}
 427
 428static __le64 **iod_list(struct request *req)
 429{
 430        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 431        return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
 432}
 433
 434static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
 435{
 436        struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
 437        int nseg = blk_rq_nr_phys_segments(rq);
 438        unsigned int size = blk_rq_payload_bytes(rq);
 439
 440        if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
 441                iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
 442                if (!iod->sg)
 443                        return BLK_STS_RESOURCE;
 444        } else {
 445                iod->sg = iod->inline_sg;
 446        }
 447
 448        iod->aborted = 0;
 449        iod->npages = -1;
 450        iod->nents = 0;
 451        iod->length = size;
 452
 453        return BLK_STS_OK;
 454}
 455
 456static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
 457{
 458        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 459        const int last_prp = dev->ctrl.page_size / 8 - 1;
 460        int i;
 461        __le64 **list = iod_list(req);
 462        dma_addr_t prp_dma = iod->first_dma;
 463
 464        if (iod->npages == 0)
 465                dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 466        for (i = 0; i < iod->npages; i++) {
 467                __le64 *prp_list = list[i];
 468                dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 469                dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 470                prp_dma = next_prp_dma;
 471        }
 472
 473        if (iod->sg != iod->inline_sg)
 474                kfree(iod->sg);
 475}
 476
 477#ifdef CONFIG_BLK_DEV_INTEGRITY
 478static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 479{
 480        if (be32_to_cpu(pi->ref_tag) == v)
 481                pi->ref_tag = cpu_to_be32(p);
 482}
 483
 484static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 485{
 486        if (be32_to_cpu(pi->ref_tag) == p)
 487                pi->ref_tag = cpu_to_be32(v);
 488}
 489
 490/**
 491 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 492 *
 493 * The virtual start sector is the one that was originally submitted by the
 494 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
 495 * start sector may be different. Remap protection information to match the
 496 * physical LBA on writes, and back to the original seed on reads.
 497 *
 498 * Type 0 and 3 do not have a ref tag, so no remapping required.
 499 */
 500static void nvme_dif_remap(struct request *req,
 501                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 502{
 503        struct nvme_ns *ns = req->rq_disk->private_data;
 504        struct bio_integrity_payload *bip;
 505        struct t10_pi_tuple *pi;
 506        void *p, *pmap;
 507        u32 i, nlb, ts, phys, virt;
 508
 509        if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
 510                return;
 511
 512        bip = bio_integrity(req->bio);
 513        if (!bip)
 514                return;
 515
 516        pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
 517
 518        p = pmap;
 519        virt = bip_get_seed(bip);
 520        phys = nvme_block_nr(ns, blk_rq_pos(req));
 521        nlb = (blk_rq_bytes(req) >> ns->lba_shift);
 522        ts = ns->disk->queue->integrity.tuple_size;
 523
 524        for (i = 0; i < nlb; i++, virt++, phys++) {
 525                pi = (struct t10_pi_tuple *)p;
 526                dif_swap(phys, virt, pi);
 527                p += ts;
 528        }
 529        kunmap_atomic(pmap);
 530}
 531#else /* CONFIG_BLK_DEV_INTEGRITY */
 532static void nvme_dif_remap(struct request *req,
 533                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 534{
 535}
 536static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 537{
 538}
 539static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 540{
 541}
 542#endif
 543
 544static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 545{
 546        int i;
 547        struct scatterlist *sg;
 548
 549        for_each_sg(sgl, sg, nents, i) {
 550                dma_addr_t phys = sg_phys(sg);
 551                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 552                        "dma_address:%pad dma_length:%d\n",
 553                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 554                        sg_dma_len(sg));
 555        }
 556}
 557
 558static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
 559{
 560        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 561        struct dma_pool *pool;
 562        int length = blk_rq_payload_bytes(req);
 563        struct scatterlist *sg = iod->sg;
 564        int dma_len = sg_dma_len(sg);
 565        u64 dma_addr = sg_dma_address(sg);
 566        u32 page_size = dev->ctrl.page_size;
 567        int offset = dma_addr & (page_size - 1);
 568        __le64 *prp_list;
 569        __le64 **list = iod_list(req);
 570        dma_addr_t prp_dma;
 571        int nprps, i;
 572
 573        length -= (page_size - offset);
 574        if (length <= 0) {
 575                iod->first_dma = 0;
 576                return BLK_STS_OK;
 577        }
 578
 579        dma_len -= (page_size - offset);
 580        if (dma_len) {
 581                dma_addr += (page_size - offset);
 582        } else {
 583                sg = sg_next(sg);
 584                dma_addr = sg_dma_address(sg);
 585                dma_len = sg_dma_len(sg);
 586        }
 587
 588        if (length <= page_size) {
 589                iod->first_dma = dma_addr;
 590                return BLK_STS_OK;
 591        }
 592
 593        nprps = DIV_ROUND_UP(length, page_size);
 594        if (nprps <= (256 / 8)) {
 595                pool = dev->prp_small_pool;
 596                iod->npages = 0;
 597        } else {
 598                pool = dev->prp_page_pool;
 599                iod->npages = 1;
 600        }
 601
 602        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 603        if (!prp_list) {
 604                iod->first_dma = dma_addr;
 605                iod->npages = -1;
 606                return BLK_STS_RESOURCE;
 607        }
 608        list[0] = prp_list;
 609        iod->first_dma = prp_dma;
 610        i = 0;
 611        for (;;) {
 612                if (i == page_size >> 3) {
 613                        __le64 *old_prp_list = prp_list;
 614                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 615                        if (!prp_list)
 616                                return BLK_STS_RESOURCE;
 617                        list[iod->npages++] = prp_list;
 618                        prp_list[0] = old_prp_list[i - 1];
 619                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 620                        i = 1;
 621                }
 622                prp_list[i++] = cpu_to_le64(dma_addr);
 623                dma_len -= page_size;
 624                dma_addr += page_size;
 625                length -= page_size;
 626                if (length <= 0)
 627                        break;
 628                if (dma_len > 0)
 629                        continue;
 630                if (unlikely(dma_len < 0))
 631                        goto bad_sgl;
 632                sg = sg_next(sg);
 633                dma_addr = sg_dma_address(sg);
 634                dma_len = sg_dma_len(sg);
 635        }
 636
 637        return BLK_STS_OK;
 638
 639 bad_sgl:
 640        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 641                        "Invalid SGL for payload:%d nents:%d\n",
 642                        blk_rq_payload_bytes(req), iod->nents);
 643        return BLK_STS_IOERR;
 644}
 645
 646static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 647                struct nvme_command *cmnd)
 648{
 649        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 650        struct request_queue *q = req->q;
 651        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 652                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 653        blk_status_t ret = BLK_STS_IOERR;
 654
 655        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 656        iod->nents = blk_rq_map_sg(q, req, iod->sg);
 657        if (!iod->nents)
 658                goto out;
 659
 660        ret = BLK_STS_RESOURCE;
 661        if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
 662                                DMA_ATTR_NO_WARN))
 663                goto out;
 664
 665        ret = nvme_setup_prps(dev, req);
 666        if (ret != BLK_STS_OK)
 667                goto out_unmap;
 668
 669        ret = BLK_STS_IOERR;
 670        if (blk_integrity_rq(req)) {
 671                if (blk_rq_count_integrity_sg(q, req->bio) != 1)
 672                        goto out_unmap;
 673
 674                sg_init_table(&iod->meta_sg, 1);
 675                if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
 676                        goto out_unmap;
 677
 678                if (req_op(req) == REQ_OP_WRITE)
 679                        nvme_dif_remap(req, nvme_dif_prep);
 680
 681                if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
 682                        goto out_unmap;
 683        }
 684
 685        cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 686        cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
 687        if (blk_integrity_rq(req))
 688                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
 689        return BLK_STS_OK;
 690
 691out_unmap:
 692        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 693out:
 694        return ret;
 695}
 696
 697static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 698{
 699        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 700        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 701                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 702
 703        if (iod->nents) {
 704                dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 705                if (blk_integrity_rq(req)) {
 706                        if (req_op(req) == REQ_OP_READ)
 707                                nvme_dif_remap(req, nvme_dif_complete);
 708                        dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
 709                }
 710        }
 711
 712        nvme_cleanup_cmd(req);
 713        nvme_free_iod(dev, req);
 714}
 715
 716/*
 717 * NOTE: ns is NULL when called on the admin queue.
 718 */
 719static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 720                         const struct blk_mq_queue_data *bd)
 721{
 722        struct nvme_ns *ns = hctx->queue->queuedata;
 723        struct nvme_queue *nvmeq = hctx->driver_data;
 724        struct nvme_dev *dev = nvmeq->dev;
 725        struct request *req = bd->rq;
 726        struct nvme_command cmnd;
 727        blk_status_t ret;
 728
 729        ret = nvme_setup_cmd(ns, req, &cmnd);
 730        if (ret)
 731                return ret;
 732
 733        ret = nvme_init_iod(req, dev);
 734        if (ret)
 735                goto out_free_cmd;
 736
 737        if (blk_rq_nr_phys_segments(req)) {
 738                ret = nvme_map_data(dev, req, &cmnd);
 739                if (ret)
 740                        goto out_cleanup_iod;
 741        }
 742
 743        blk_mq_start_request(req);
 744
 745        spin_lock_irq(&nvmeq->q_lock);
 746        if (unlikely(nvmeq->cq_vector < 0)) {
 747                ret = BLK_STS_IOERR;
 748                spin_unlock_irq(&nvmeq->q_lock);
 749                goto out_cleanup_iod;
 750        }
 751        __nvme_submit_cmd(nvmeq, &cmnd);
 752        nvme_process_cq(nvmeq);
 753        spin_unlock_irq(&nvmeq->q_lock);
 754        return BLK_STS_OK;
 755out_cleanup_iod:
 756        nvme_free_iod(dev, req);
 757out_free_cmd:
 758        nvme_cleanup_cmd(req);
 759        return ret;
 760}
 761
 762static void nvme_pci_complete_rq(struct request *req)
 763{
 764        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 765
 766        nvme_unmap_data(iod->nvmeq->dev, req);
 767        nvme_complete_rq(req);
 768}
 769
 770/* We read the CQE phase first to check if the rest of the entry is valid */
 771static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
 772                u16 phase)
 773{
 774        return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
 775}
 776
 777static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 778{
 779        u16 head = nvmeq->cq_head;
 780
 781        if (likely(nvmeq->cq_vector >= 0)) {
 782                if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 783                                                      nvmeq->dbbuf_cq_ei))
 784                        writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 785        }
 786}
 787
 788static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
 789                struct nvme_completion *cqe)
 790{
 791        struct request *req;
 792
 793        if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 794                dev_warn(nvmeq->dev->ctrl.device,
 795                        "invalid id %d completed on queue %d\n",
 796                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 797                return;
 798        }
 799
 800        /*
 801         * AEN requests are special as they don't time out and can
 802         * survive any kind of queue freeze and often don't respond to
 803         * aborts.  We don't even bother to allocate a struct request
 804         * for them but rather special case them here.
 805         */
 806        if (unlikely(nvmeq->qid == 0 &&
 807                        cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
 808                nvme_complete_async_event(&nvmeq->dev->ctrl,
 809                                cqe->status, &cqe->result);
 810                return;
 811        }
 812
 813        nvmeq->cqe_seen = 1;
 814        req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
 815        nvme_end_request(req, cqe->status, cqe->result);
 816}
 817
 818static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
 819                struct nvme_completion *cqe)
 820{
 821        if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
 822                *cqe = nvmeq->cqes[nvmeq->cq_head];
 823
 824                if (++nvmeq->cq_head == nvmeq->q_depth) {
 825                        nvmeq->cq_head = 0;
 826                        nvmeq->cq_phase = !nvmeq->cq_phase;
 827                }
 828                return true;
 829        }
 830        return false;
 831}
 832
 833static void nvme_process_cq(struct nvme_queue *nvmeq)
 834{
 835        struct nvme_completion cqe;
 836        int consumed = 0;
 837
 838        while (nvme_read_cqe(nvmeq, &cqe)) {
 839                nvme_handle_cqe(nvmeq, &cqe);
 840                consumed++;
 841        }
 842
 843        if (consumed)
 844                nvme_ring_cq_doorbell(nvmeq);
 845}
 846
 847static irqreturn_t nvme_irq(int irq, void *data)
 848{
 849        irqreturn_t result;
 850        struct nvme_queue *nvmeq = data;
 851        spin_lock(&nvmeq->q_lock);
 852        nvme_process_cq(nvmeq);
 853        result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 854        nvmeq->cqe_seen = 0;
 855        spin_unlock(&nvmeq->q_lock);
 856        return result;
 857}
 858
 859static irqreturn_t nvme_irq_check(int irq, void *data)
 860{
 861        struct nvme_queue *nvmeq = data;
 862        if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
 863                return IRQ_WAKE_THREAD;
 864        return IRQ_NONE;
 865}
 866
 867static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
 868{
 869        struct nvme_completion cqe;
 870        int found = 0, consumed = 0;
 871
 872        if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
 873                return 0;
 874
 875        spin_lock_irq(&nvmeq->q_lock);
 876        while (nvme_read_cqe(nvmeq, &cqe)) {
 877                nvme_handle_cqe(nvmeq, &cqe);
 878                consumed++;
 879
 880                if (tag == cqe.command_id) {
 881                        found = 1;
 882                        break;
 883                }
 884       }
 885
 886        if (consumed)
 887                nvme_ring_cq_doorbell(nvmeq);
 888        spin_unlock_irq(&nvmeq->q_lock);
 889
 890        return found;
 891}
 892
 893static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
 894{
 895        struct nvme_queue *nvmeq = hctx->driver_data;
 896
 897        return __nvme_poll(nvmeq, tag);
 898}
 899
 900static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
 901{
 902        struct nvme_dev *dev = to_nvme_dev(ctrl);
 903        struct nvme_queue *nvmeq = dev->queues[0];
 904        struct nvme_command c;
 905
 906        memset(&c, 0, sizeof(c));
 907        c.common.opcode = nvme_admin_async_event;
 908        c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
 909
 910        spin_lock_irq(&nvmeq->q_lock);
 911        __nvme_submit_cmd(nvmeq, &c);
 912        spin_unlock_irq(&nvmeq->q_lock);
 913}
 914
 915static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 916{
 917        struct nvme_command c;
 918
 919        memset(&c, 0, sizeof(c));
 920        c.delete_queue.opcode = opcode;
 921        c.delete_queue.qid = cpu_to_le16(id);
 922
 923        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 924}
 925
 926static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
 927                                                struct nvme_queue *nvmeq)
 928{
 929        struct nvme_command c;
 930        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 931
 932        /*
 933         * Note: we (ab)use the fact the the prp fields survive if no data
 934         * is attached to the request.
 935         */
 936        memset(&c, 0, sizeof(c));
 937        c.create_cq.opcode = nvme_admin_create_cq;
 938        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
 939        c.create_cq.cqid = cpu_to_le16(qid);
 940        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 941        c.create_cq.cq_flags = cpu_to_le16(flags);
 942        c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 943
 944        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 945}
 946
 947static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
 948                                                struct nvme_queue *nvmeq)
 949{
 950        struct nvme_command c;
 951        int flags = NVME_QUEUE_PHYS_CONTIG;
 952
 953        /*
 954         * Note: we (ab)use the fact the the prp fields survive if no data
 955         * is attached to the request.
 956         */
 957        memset(&c, 0, sizeof(c));
 958        c.create_sq.opcode = nvme_admin_create_sq;
 959        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
 960        c.create_sq.sqid = cpu_to_le16(qid);
 961        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 962        c.create_sq.sq_flags = cpu_to_le16(flags);
 963        c.create_sq.cqid = cpu_to_le16(qid);
 964
 965        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 966}
 967
 968static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
 969{
 970        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
 971}
 972
 973static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
 974{
 975        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
 976}
 977
 978static void abort_endio(struct request *req, blk_status_t error)
 979{
 980        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 981        struct nvme_queue *nvmeq = iod->nvmeq;
 982
 983        dev_warn(nvmeq->dev->ctrl.device,
 984                 "Abort status: 0x%x", nvme_req(req)->status);
 985        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
 986        blk_mq_free_request(req);
 987}
 988
 989static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
 990{
 991
 992        /* If true, indicates loss of adapter communication, possibly by a
 993         * NVMe Subsystem reset.
 994         */
 995        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
 996
 997        /* If there is a reset ongoing, we shouldn't reset again. */
 998        if (dev->ctrl.state == NVME_CTRL_RESETTING)
 999                return false;
1000
1001        /* We shouldn't reset unless the controller is on fatal error state
1002         * _or_ if we lost the communication with it.
1003         */
1004        if (!(csts & NVME_CSTS_CFS) && !nssro)
1005                return false;
1006
1007        /* If PCI error recovery process is happening, we cannot reset or
1008         * the recovery mechanism will surely fail.
1009         */
1010        if (pci_channel_offline(to_pci_dev(dev->dev)))
1011                return false;
1012
1013        return true;
1014}
1015
1016static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1017{
1018        /* Read a config register to help see what died. */
1019        u16 pci_status;
1020        int result;
1021
1022        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1023                                      &pci_status);
1024        if (result == PCIBIOS_SUCCESSFUL)
1025                dev_warn(dev->ctrl.device,
1026                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1027                         csts, pci_status);
1028        else
1029                dev_warn(dev->ctrl.device,
1030                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1031                         csts, result);
1032}
1033
1034static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1035{
1036        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1037        struct nvme_queue *nvmeq = iod->nvmeq;
1038        struct nvme_dev *dev = nvmeq->dev;
1039        struct request *abort_req;
1040        struct nvme_command cmd;
1041        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1042
1043        /*
1044         * Reset immediately if the controller is failed
1045         */
1046        if (nvme_should_reset(dev, csts)) {
1047                nvme_warn_reset(dev, csts);
1048                nvme_dev_disable(dev, false);
1049                nvme_reset_ctrl(&dev->ctrl);
1050                return BLK_EH_HANDLED;
1051        }
1052
1053        /*
1054         * Did we miss an interrupt?
1055         */
1056        if (__nvme_poll(nvmeq, req->tag)) {
1057                dev_warn(dev->ctrl.device,
1058                         "I/O %d QID %d timeout, completion polled\n",
1059                         req->tag, nvmeq->qid);
1060                return BLK_EH_HANDLED;
1061        }
1062
1063        /*
1064         * Shutdown immediately if controller times out while starting. The
1065         * reset work will see the pci device disabled when it gets the forced
1066         * cancellation error. All outstanding requests are completed on
1067         * shutdown, so we return BLK_EH_HANDLED.
1068         */
1069        if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1070                dev_warn(dev->ctrl.device,
1071                         "I/O %d QID %d timeout, disable controller\n",
1072                         req->tag, nvmeq->qid);
1073                nvme_dev_disable(dev, false);
1074                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1075                return BLK_EH_HANDLED;
1076        }
1077
1078        /*
1079         * Shutdown the controller immediately and schedule a reset if the
1080         * command was already aborted once before and still hasn't been
1081         * returned to the driver, or if this is the admin queue.
1082         */
1083        if (!nvmeq->qid || iod->aborted) {
1084                dev_warn(dev->ctrl.device,
1085                         "I/O %d QID %d timeout, reset controller\n",
1086                         req->tag, nvmeq->qid);
1087                nvme_dev_disable(dev, false);
1088                nvme_reset_ctrl(&dev->ctrl);
1089
1090                /*
1091                 * Mark the request as handled, since the inline shutdown
1092                 * forces all outstanding requests to complete.
1093                 */
1094                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1095                return BLK_EH_HANDLED;
1096        }
1097
1098        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1099                atomic_inc(&dev->ctrl.abort_limit);
1100                return BLK_EH_RESET_TIMER;
1101        }
1102        iod->aborted = 1;
1103
1104        memset(&cmd, 0, sizeof(cmd));
1105        cmd.abort.opcode = nvme_admin_abort_cmd;
1106        cmd.abort.cid = req->tag;
1107        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1108
1109        dev_warn(nvmeq->dev->ctrl.device,
1110                "I/O %d QID %d timeout, aborting\n",
1111                 req->tag, nvmeq->qid);
1112
1113        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1114                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1115        if (IS_ERR(abort_req)) {
1116                atomic_inc(&dev->ctrl.abort_limit);
1117                return BLK_EH_RESET_TIMER;
1118        }
1119
1120        abort_req->timeout = ADMIN_TIMEOUT;
1121        abort_req->end_io_data = NULL;
1122        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1123
1124        /*
1125         * The aborted req will be completed on receiving the abort req.
1126         * We enable the timer again. If hit twice, it'll cause a device reset,
1127         * as the device then is in a faulty state.
1128         */
1129        return BLK_EH_RESET_TIMER;
1130}
1131
1132static void nvme_free_queue(struct nvme_queue *nvmeq)
1133{
1134        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136        if (nvmeq->sq_cmds)
1137                dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1138                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1139        kfree(nvmeq);
1140}
1141
1142static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1143{
1144        int i;
1145
1146        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1147                struct nvme_queue *nvmeq = dev->queues[i];
1148                dev->ctrl.queue_count--;
1149                dev->queues[i] = NULL;
1150                nvme_free_queue(nvmeq);
1151        }
1152}
1153
1154/**
1155 * nvme_suspend_queue - put queue into suspended state
1156 * @nvmeq - queue to suspend
1157 */
1158static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1159{
1160        int vector;
1161
1162        spin_lock_irq(&nvmeq->q_lock);
1163        if (nvmeq->cq_vector == -1) {
1164                spin_unlock_irq(&nvmeq->q_lock);
1165                return 1;
1166        }
1167        vector = nvmeq->cq_vector;
1168        nvmeq->dev->online_queues--;
1169        nvmeq->cq_vector = -1;
1170        spin_unlock_irq(&nvmeq->q_lock);
1171
1172        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1173                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1174
1175        pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1176
1177        return 0;
1178}
1179
1180static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1181{
1182        struct nvme_queue *nvmeq = dev->queues[0];
1183
1184        if (!nvmeq)
1185                return;
1186        if (nvme_suspend_queue(nvmeq))
1187                return;
1188
1189        if (shutdown)
1190                nvme_shutdown_ctrl(&dev->ctrl);
1191        else
1192                nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1193
1194        spin_lock_irq(&nvmeq->q_lock);
1195        nvme_process_cq(nvmeq);
1196        spin_unlock_irq(&nvmeq->q_lock);
1197}
1198
1199static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1200                                int entry_size)
1201{
1202        int q_depth = dev->q_depth;
1203        unsigned q_size_aligned = roundup(q_depth * entry_size,
1204                                          dev->ctrl.page_size);
1205
1206        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1207                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1208                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1209                q_depth = div_u64(mem_per_q, entry_size);
1210
1211                /*
1212                 * Ensure the reduced q_depth is above some threshold where it
1213                 * would be better to map queues in system memory with the
1214                 * original depth
1215                 */
1216                if (q_depth < 64)
1217                        return -ENOMEM;
1218        }
1219
1220        return q_depth;
1221}
1222
1223static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1224                                int qid, int depth)
1225{
1226        if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1227                unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1228                                                      dev->ctrl.page_size);
1229                nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1230                nvmeq->sq_cmds_io = dev->cmb + offset;
1231        } else {
1232                nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1233                                        &nvmeq->sq_dma_addr, GFP_KERNEL);
1234                if (!nvmeq->sq_cmds)
1235                        return -ENOMEM;
1236        }
1237
1238        return 0;
1239}
1240
1241static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1242                                                        int depth, int node)
1243{
1244        struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1245                                                        node);
1246        if (!nvmeq)
1247                return NULL;
1248
1249        nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1250                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1251        if (!nvmeq->cqes)
1252                goto free_nvmeq;
1253
1254        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1255                goto free_cqdma;
1256
1257        nvmeq->q_dmadev = dev->dev;
1258        nvmeq->dev = dev;
1259        spin_lock_init(&nvmeq->q_lock);
1260        nvmeq->cq_head = 0;
1261        nvmeq->cq_phase = 1;
1262        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1263        nvmeq->q_depth = depth;
1264        nvmeq->qid = qid;
1265        nvmeq->cq_vector = -1;
1266        dev->queues[qid] = nvmeq;
1267        dev->ctrl.queue_count++;
1268
1269        return nvmeq;
1270
1271 free_cqdma:
1272        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1273                                                        nvmeq->cq_dma_addr);
1274 free_nvmeq:
1275        kfree(nvmeq);
1276        return NULL;
1277}
1278
1279static int queue_request_irq(struct nvme_queue *nvmeq)
1280{
1281        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1282        int nr = nvmeq->dev->ctrl.instance;
1283
1284        if (use_threaded_interrupts) {
1285                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1286                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1287        } else {
1288                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1289                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1290        }
1291}
1292
1293static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1294{
1295        struct nvme_dev *dev = nvmeq->dev;
1296
1297        spin_lock_irq(&nvmeq->q_lock);
1298        nvmeq->sq_tail = 0;
1299        nvmeq->cq_head = 0;
1300        nvmeq->cq_phase = 1;
1301        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1302        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1303        nvme_dbbuf_init(dev, nvmeq, qid);
1304        dev->online_queues++;
1305        spin_unlock_irq(&nvmeq->q_lock);
1306}
1307
1308static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1309{
1310        struct nvme_dev *dev = nvmeq->dev;
1311        int result;
1312
1313        nvmeq->cq_vector = qid - 1;
1314        result = adapter_alloc_cq(dev, qid, nvmeq);
1315        if (result < 0)
1316                return result;
1317
1318        result = adapter_alloc_sq(dev, qid, nvmeq);
1319        if (result < 0)
1320                goto release_cq;
1321
1322        nvme_init_queue(nvmeq, qid);
1323        result = queue_request_irq(nvmeq);
1324        if (result < 0)
1325                goto release_sq;
1326
1327        return result;
1328
1329 release_sq:
1330        adapter_delete_sq(dev, qid);
1331 release_cq:
1332        adapter_delete_cq(dev, qid);
1333        return result;
1334}
1335
1336static const struct blk_mq_ops nvme_mq_admin_ops = {
1337        .queue_rq       = nvme_queue_rq,
1338        .complete       = nvme_pci_complete_rq,
1339        .init_hctx      = nvme_admin_init_hctx,
1340        .exit_hctx      = nvme_admin_exit_hctx,
1341        .init_request   = nvme_init_request,
1342        .timeout        = nvme_timeout,
1343};
1344
1345static const struct blk_mq_ops nvme_mq_ops = {
1346        .queue_rq       = nvme_queue_rq,
1347        .complete       = nvme_pci_complete_rq,
1348        .init_hctx      = nvme_init_hctx,
1349        .init_request   = nvme_init_request,
1350        .map_queues     = nvme_pci_map_queues,
1351        .timeout        = nvme_timeout,
1352        .poll           = nvme_poll,
1353};
1354
1355static void nvme_dev_remove_admin(struct nvme_dev *dev)
1356{
1357        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1358                /*
1359                 * If the controller was reset during removal, it's possible
1360                 * user requests may be waiting on a stopped queue. Start the
1361                 * queue to flush these to completion.
1362                 */
1363                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1364                blk_cleanup_queue(dev->ctrl.admin_q);
1365                blk_mq_free_tag_set(&dev->admin_tagset);
1366        }
1367}
1368
1369static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1370{
1371        if (!dev->ctrl.admin_q) {
1372                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1373                dev->admin_tagset.nr_hw_queues = 1;
1374
1375                /*
1376                 * Subtract one to leave an empty queue entry for 'Full Queue'
1377                 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1378                 */
1379                dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1380                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1381                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1382                dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1383                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1384                dev->admin_tagset.driver_data = dev;
1385
1386                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1387                        return -ENOMEM;
1388                dev->ctrl.admin_tagset = &dev->admin_tagset;
1389
1390                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1391                if (IS_ERR(dev->ctrl.admin_q)) {
1392                        blk_mq_free_tag_set(&dev->admin_tagset);
1393                        return -ENOMEM;
1394                }
1395                if (!blk_get_queue(dev->ctrl.admin_q)) {
1396                        nvme_dev_remove_admin(dev);
1397                        dev->ctrl.admin_q = NULL;
1398                        return -ENODEV;
1399                }
1400        } else
1401                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1402
1403        return 0;
1404}
1405
1406static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1407{
1408        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1409}
1410
1411static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1412{
1413        struct pci_dev *pdev = to_pci_dev(dev->dev);
1414
1415        if (size <= dev->bar_mapped_size)
1416                return 0;
1417        if (size > pci_resource_len(pdev, 0))
1418                return -ENOMEM;
1419        if (dev->bar)
1420                iounmap(dev->bar);
1421        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1422        if (!dev->bar) {
1423                dev->bar_mapped_size = 0;
1424                return -ENOMEM;
1425        }
1426        dev->bar_mapped_size = size;
1427        dev->dbs = dev->bar + NVME_REG_DBS;
1428
1429        return 0;
1430}
1431
1432static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1433{
1434        int result;
1435        u32 aqa;
1436        struct nvme_queue *nvmeq;
1437
1438        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1439        if (result < 0)
1440                return result;
1441
1442        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1443                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1444
1445        if (dev->subsystem &&
1446            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1447                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1448
1449        result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1450        if (result < 0)
1451                return result;
1452
1453        nvmeq = dev->queues[0];
1454        if (!nvmeq) {
1455                nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1456                                        dev_to_node(dev->dev));
1457                if (!nvmeq)
1458                        return -ENOMEM;
1459        }
1460
1461        aqa = nvmeq->q_depth - 1;
1462        aqa |= aqa << 16;
1463
1464        writel(aqa, dev->bar + NVME_REG_AQA);
1465        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1466        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1467
1468        result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1469        if (result)
1470                return result;
1471
1472        nvmeq->cq_vector = 0;
1473        nvme_init_queue(nvmeq, 0);
1474        result = queue_request_irq(nvmeq);
1475        if (result) {
1476                nvmeq->cq_vector = -1;
1477                return result;
1478        }
1479
1480        return result;
1481}
1482
1483static int nvme_create_io_queues(struct nvme_dev *dev)
1484{
1485        unsigned i, max;
1486        int ret = 0;
1487
1488        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1489                /* vector == qid - 1, match nvme_create_queue */
1490                if (!nvme_alloc_queue(dev, i, dev->q_depth,
1491                     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1492                        ret = -ENOMEM;
1493                        break;
1494                }
1495        }
1496
1497        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1498        for (i = dev->online_queues; i <= max; i++) {
1499                ret = nvme_create_queue(dev->queues[i], i);
1500                if (ret)
1501                        break;
1502        }
1503
1504        /*
1505         * Ignore failing Create SQ/CQ commands, we can continue with less
1506         * than the desired aount of queues, and even a controller without
1507         * I/O queues an still be used to issue admin commands.  This might
1508         * be useful to upgrade a buggy firmware for example.
1509         */
1510        return ret >= 0 ? 0 : ret;
1511}
1512
1513static ssize_t nvme_cmb_show(struct device *dev,
1514                             struct device_attribute *attr,
1515                             char *buf)
1516{
1517        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1518
1519        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1520                       ndev->cmbloc, ndev->cmbsz);
1521}
1522static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1523
1524static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1525{
1526        u64 szu, size, offset;
1527        resource_size_t bar_size;
1528        struct pci_dev *pdev = to_pci_dev(dev->dev);
1529        void __iomem *cmb;
1530        int bar;
1531
1532        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1533        if (!(NVME_CMB_SZ(dev->cmbsz)))
1534                return NULL;
1535        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1536
1537        if (!use_cmb_sqes)
1538                return NULL;
1539
1540        szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1541        size = szu * NVME_CMB_SZ(dev->cmbsz);
1542        offset = szu * NVME_CMB_OFST(dev->cmbloc);
1543        bar = NVME_CMB_BIR(dev->cmbloc);
1544        bar_size = pci_resource_len(pdev, bar);
1545
1546        if (offset > bar_size)
1547                return NULL;
1548
1549        /*
1550         * Controllers may support a CMB size larger than their BAR,
1551         * for example, due to being behind a bridge. Reduce the CMB to
1552         * the reported size of the BAR
1553         */
1554        if (size > bar_size - offset)
1555                size = bar_size - offset;
1556
1557        cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1558        if (!cmb)
1559                return NULL;
1560
1561        dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1562        dev->cmb_size = size;
1563        return cmb;
1564}
1565
1566static inline void nvme_release_cmb(struct nvme_dev *dev)
1567{
1568        if (dev->cmb) {
1569                iounmap(dev->cmb);
1570                dev->cmb = NULL;
1571                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1572                                             &dev_attr_cmb.attr, NULL);
1573                dev->cmbsz = 0;
1574        }
1575}
1576
1577static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1578{
1579        u64 dma_addr = dev->host_mem_descs_dma;
1580        struct nvme_command c;
1581        int ret;
1582
1583        memset(&c, 0, sizeof(c));
1584        c.features.opcode       = nvme_admin_set_features;
1585        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1586        c.features.dword11      = cpu_to_le32(bits);
1587        c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1588                                              ilog2(dev->ctrl.page_size));
1589        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1590        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1591        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1592
1593        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1594        if (ret) {
1595                dev_warn(dev->ctrl.device,
1596                         "failed to set host mem (err %d, flags %#x).\n",
1597                         ret, bits);
1598        }
1599        return ret;
1600}
1601
1602static void nvme_free_host_mem(struct nvme_dev *dev)
1603{
1604        int i;
1605
1606        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1607                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1608                size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1609
1610                dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1611                                le64_to_cpu(desc->addr));
1612        }
1613
1614        kfree(dev->host_mem_desc_bufs);
1615        dev->host_mem_desc_bufs = NULL;
1616        dma_free_coherent(dev->dev,
1617                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1618                        dev->host_mem_descs, dev->host_mem_descs_dma);
1619        dev->host_mem_descs = NULL;
1620}
1621
1622static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1623                u32 chunk_size)
1624{
1625        struct nvme_host_mem_buf_desc *descs;
1626        u32 max_entries, len;
1627        dma_addr_t descs_dma;
1628        int i = 0;
1629        void **bufs;
1630        u64 size = 0, tmp;
1631
1632        tmp = (preferred + chunk_size - 1);
1633        do_div(tmp, chunk_size);
1634        max_entries = tmp;
1635
1636        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1637                max_entries = dev->ctrl.hmmaxd;
1638
1639        descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1640                        &descs_dma, GFP_KERNEL);
1641        if (!descs)
1642                goto out;
1643
1644        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1645        if (!bufs)
1646                goto out_free_descs;
1647
1648        for (size = 0; size < preferred; size += len) {
1649                dma_addr_t dma_addr;
1650
1651                len = min_t(u64, chunk_size, preferred - size);
1652                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1653                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1654                if (!bufs[i])
1655                        break;
1656
1657                descs[i].addr = cpu_to_le64(dma_addr);
1658                descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1659                i++;
1660        }
1661
1662        if (!size)
1663                goto out_free_bufs;
1664
1665        dev->nr_host_mem_descs = i;
1666        dev->host_mem_size = size;
1667        dev->host_mem_descs = descs;
1668        dev->host_mem_descs_dma = descs_dma;
1669        dev->host_mem_desc_bufs = bufs;
1670        return 0;
1671
1672out_free_bufs:
1673        while (--i >= 0) {
1674                size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1675
1676                dma_free_coherent(dev->dev, size, bufs[i],
1677                                le64_to_cpu(descs[i].addr));
1678        }
1679
1680        kfree(bufs);
1681out_free_descs:
1682        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1683                        descs_dma);
1684out:
1685        dev->host_mem_descs = NULL;
1686        return -ENOMEM;
1687}
1688
1689static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1690{
1691        u32 chunk_size;
1692
1693        /* start big and work our way down */
1694        for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1695             chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1696             chunk_size /= 2) {
1697                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1698                        if (!min || dev->host_mem_size >= min)
1699                                return 0;
1700                        nvme_free_host_mem(dev);
1701                }
1702        }
1703
1704        return -ENOMEM;
1705}
1706
1707static int nvme_setup_host_mem(struct nvme_dev *dev)
1708{
1709        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1710        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1711        u64 min = (u64)dev->ctrl.hmmin * 4096;
1712        u32 enable_bits = NVME_HOST_MEM_ENABLE;
1713        int ret = 0;
1714
1715        preferred = min(preferred, max);
1716        if (min > max) {
1717                dev_warn(dev->ctrl.device,
1718                        "min host memory (%lld MiB) above limit (%d MiB).\n",
1719                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
1720                nvme_free_host_mem(dev);
1721                return 0;
1722        }
1723
1724        /*
1725         * If we already have a buffer allocated check if we can reuse it.
1726         */
1727        if (dev->host_mem_descs) {
1728                if (dev->host_mem_size >= min)
1729                        enable_bits |= NVME_HOST_MEM_RETURN;
1730                else
1731                        nvme_free_host_mem(dev);
1732        }
1733
1734        if (!dev->host_mem_descs) {
1735                if (nvme_alloc_host_mem(dev, min, preferred)) {
1736                        dev_warn(dev->ctrl.device,
1737                                "failed to allocate host memory buffer.\n");
1738                        return 0; /* controller must work without HMB */
1739                }
1740
1741                dev_info(dev->ctrl.device,
1742                        "allocated %lld MiB host memory buffer.\n",
1743                        dev->host_mem_size >> ilog2(SZ_1M));
1744        }
1745
1746        ret = nvme_set_host_mem(dev, enable_bits);
1747        if (ret)
1748                nvme_free_host_mem(dev);
1749        return ret;
1750}
1751
1752static int nvme_setup_io_queues(struct nvme_dev *dev)
1753{
1754        struct nvme_queue *adminq = dev->queues[0];
1755        struct pci_dev *pdev = to_pci_dev(dev->dev);
1756        int result, nr_io_queues;
1757        unsigned long size;
1758
1759        nr_io_queues = num_present_cpus();
1760        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1761        if (result < 0)
1762                return result;
1763
1764        if (nr_io_queues == 0)
1765                return 0;
1766
1767        if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1768                result = nvme_cmb_qdepth(dev, nr_io_queues,
1769                                sizeof(struct nvme_command));
1770                if (result > 0)
1771                        dev->q_depth = result;
1772                else
1773                        nvme_release_cmb(dev);
1774        }
1775
1776        do {
1777                size = db_bar_size(dev, nr_io_queues);
1778                result = nvme_remap_bar(dev, size);
1779                if (!result)
1780                        break;
1781                if (!--nr_io_queues)
1782                        return -ENOMEM;
1783        } while (1);
1784        adminq->q_db = dev->dbs;
1785
1786        /* Deregister the admin queue's interrupt */
1787        pci_free_irq(pdev, 0, adminq);
1788
1789        /*
1790         * If we enable msix early due to not intx, disable it again before
1791         * setting up the full range we need.
1792         */
1793        pci_free_irq_vectors(pdev);
1794        nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1795                        PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1796        if (nr_io_queues <= 0)
1797                return -EIO;
1798        dev->max_qid = nr_io_queues;
1799
1800        /*
1801         * Should investigate if there's a performance win from allocating
1802         * more queues than interrupt vectors; it might allow the submission
1803         * path to scale better, even if the receive path is limited by the
1804         * number of interrupts.
1805         */
1806
1807        result = queue_request_irq(adminq);
1808        if (result) {
1809                adminq->cq_vector = -1;
1810                return result;
1811        }
1812        return nvme_create_io_queues(dev);
1813}
1814
1815static void nvme_del_queue_end(struct request *req, blk_status_t error)
1816{
1817        struct nvme_queue *nvmeq = req->end_io_data;
1818
1819        blk_mq_free_request(req);
1820        complete(&nvmeq->dev->ioq_wait);
1821}
1822
1823static void nvme_del_cq_end(struct request *req, blk_status_t error)
1824{
1825        struct nvme_queue *nvmeq = req->end_io_data;
1826
1827        if (!error) {
1828                unsigned long flags;
1829
1830                /*
1831                 * We might be called with the AQ q_lock held
1832                 * and the I/O queue q_lock should always
1833                 * nest inside the AQ one.
1834                 */
1835                spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1836                                        SINGLE_DEPTH_NESTING);
1837                nvme_process_cq(nvmeq);
1838                spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1839        }
1840
1841        nvme_del_queue_end(req, error);
1842}
1843
1844static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1845{
1846        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1847        struct request *req;
1848        struct nvme_command cmd;
1849
1850        memset(&cmd, 0, sizeof(cmd));
1851        cmd.delete_queue.opcode = opcode;
1852        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1853
1854        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1855        if (IS_ERR(req))
1856                return PTR_ERR(req);
1857
1858        req->timeout = ADMIN_TIMEOUT;
1859        req->end_io_data = nvmeq;
1860
1861        blk_execute_rq_nowait(q, NULL, req, false,
1862                        opcode == nvme_admin_delete_cq ?
1863                                nvme_del_cq_end : nvme_del_queue_end);
1864        return 0;
1865}
1866
1867static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1868{
1869        int pass;
1870        unsigned long timeout;
1871        u8 opcode = nvme_admin_delete_sq;
1872
1873        for (pass = 0; pass < 2; pass++) {
1874                int sent = 0, i = queues;
1875
1876                reinit_completion(&dev->ioq_wait);
1877 retry:
1878                timeout = ADMIN_TIMEOUT;
1879                for (; i > 0; i--, sent++)
1880                        if (nvme_delete_queue(dev->queues[i], opcode))
1881                                break;
1882
1883                while (sent--) {
1884                        timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1885                        if (timeout == 0)
1886                                return;
1887                        if (i)
1888                                goto retry;
1889                }
1890                opcode = nvme_admin_delete_cq;
1891        }
1892}
1893
1894/*
1895 * Return: error value if an error occurred setting up the queues or calling
1896 * Identify Device.  0 if these succeeded, even if adding some of the
1897 * namespaces failed.  At the moment, these failures are silent.  TBD which
1898 * failures should be reported.
1899 */
1900static int nvme_dev_add(struct nvme_dev *dev)
1901{
1902        if (!dev->ctrl.tagset) {
1903                dev->tagset.ops = &nvme_mq_ops;
1904                dev->tagset.nr_hw_queues = dev->online_queues - 1;
1905                dev->tagset.timeout = NVME_IO_TIMEOUT;
1906                dev->tagset.numa_node = dev_to_node(dev->dev);
1907                dev->tagset.queue_depth =
1908                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1909                dev->tagset.cmd_size = nvme_cmd_size(dev);
1910                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1911                dev->tagset.driver_data = dev;
1912
1913                if (blk_mq_alloc_tag_set(&dev->tagset))
1914                        return 0;
1915                dev->ctrl.tagset = &dev->tagset;
1916
1917                nvme_dbbuf_set(dev);
1918        } else {
1919                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1920
1921                /* Free previously allocated queues that are no longer usable */
1922                nvme_free_queues(dev, dev->online_queues);
1923        }
1924
1925        return 0;
1926}
1927
1928static int nvme_pci_enable(struct nvme_dev *dev)
1929{
1930        int result = -ENOMEM;
1931        struct pci_dev *pdev = to_pci_dev(dev->dev);
1932
1933        if (pci_enable_device_mem(pdev))
1934                return result;
1935
1936        pci_set_master(pdev);
1937
1938        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1939            dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1940                goto disable;
1941
1942        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1943                result = -ENODEV;
1944                goto disable;
1945        }
1946
1947        /*
1948         * Some devices and/or platforms don't advertise or work with INTx
1949         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1950         * adjust this later.
1951         */
1952        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1953        if (result < 0)
1954                return result;
1955
1956        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1957
1958        dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1959                                io_queue_depth);
1960        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1961        dev->dbs = dev->bar + 4096;
1962
1963        /*
1964         * Temporary fix for the Apple controller found in the MacBook8,1 and
1965         * some MacBook7,1 to avoid controller resets and data loss.
1966         */
1967        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1968                dev->q_depth = 2;
1969                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1970                        "set queue depth=%u to work around controller resets\n",
1971                        dev->q_depth);
1972        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1973                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1974                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1975                dev->q_depth = 64;
1976                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1977                        "set queue depth=%u\n", dev->q_depth);
1978        }
1979
1980        /*
1981         * CMBs can currently only exist on >=1.2 PCIe devices. We only
1982         * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1983         * has no name we can pass NULL as final argument to
1984         * sysfs_add_file_to_group.
1985         */
1986
1987        if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1988                dev->cmb = nvme_map_cmb(dev);
1989                if (dev->cmb) {
1990                        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1991                                                    &dev_attr_cmb.attr, NULL))
1992                                dev_warn(dev->ctrl.device,
1993                                         "failed to add sysfs attribute for CMB\n");
1994                }
1995        }
1996
1997        pci_enable_pcie_error_reporting(pdev);
1998        pci_save_state(pdev);
1999        return 0;
2000
2001 disable:
2002        pci_disable_device(pdev);
2003        return result;
2004}
2005
2006static void nvme_dev_unmap(struct nvme_dev *dev)
2007{
2008        if (dev->bar)
2009                iounmap(dev->bar);
2010        pci_release_mem_regions(to_pci_dev(dev->dev));
2011}
2012
2013static void nvme_pci_disable(struct nvme_dev *dev)
2014{
2015        struct pci_dev *pdev = to_pci_dev(dev->dev);
2016
2017        nvme_release_cmb(dev);
2018        pci_free_irq_vectors(pdev);
2019
2020        if (pci_is_enabled(pdev)) {
2021                pci_disable_pcie_error_reporting(pdev);
2022                pci_disable_device(pdev);
2023        }
2024}
2025
2026static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2027{
2028        int i, queues;
2029        bool dead = true;
2030        struct pci_dev *pdev = to_pci_dev(dev->dev);
2031
2032        mutex_lock(&dev->shutdown_lock);
2033        if (pci_is_enabled(pdev)) {
2034                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2035
2036                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2037                    dev->ctrl.state == NVME_CTRL_RESETTING)
2038                        nvme_start_freeze(&dev->ctrl);
2039                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2040                        pdev->error_state  != pci_channel_io_normal);
2041        }
2042
2043        /*
2044         * Give the controller a chance to complete all entered requests if
2045         * doing a safe shutdown.
2046         */
2047        if (!dead) {
2048                if (shutdown)
2049                        nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2050
2051                /*
2052                 * If the controller is still alive tell it to stop using the
2053                 * host memory buffer.  In theory the shutdown / reset should
2054                 * make sure that it doesn't access the host memoery anymore,
2055                 * but I'd rather be safe than sorry..
2056                 */
2057                if (dev->host_mem_descs)
2058                        nvme_set_host_mem(dev, 0);
2059
2060        }
2061        nvme_stop_queues(&dev->ctrl);
2062
2063        queues = dev->online_queues - 1;
2064        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2065                nvme_suspend_queue(dev->queues[i]);
2066
2067        if (dead) {
2068                /* A device might become IO incapable very soon during
2069                 * probe, before the admin queue is configured. Thus,
2070                 * queue_count can be 0 here.
2071                 */
2072                if (dev->ctrl.queue_count)
2073                        nvme_suspend_queue(dev->queues[0]);
2074        } else {
2075                nvme_disable_io_queues(dev, queues);
2076                nvme_disable_admin_queue(dev, shutdown);
2077        }
2078        nvme_pci_disable(dev);
2079
2080        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2081        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2082
2083        /*
2084         * The driver will not be starting up queues again if shutting down so
2085         * must flush all entered requests to their failed completion to avoid
2086         * deadlocking blk-mq hot-cpu notifier.
2087         */
2088        if (shutdown)
2089                nvme_start_queues(&dev->ctrl);
2090        mutex_unlock(&dev->shutdown_lock);
2091}
2092
2093static int nvme_setup_prp_pools(struct nvme_dev *dev)
2094{
2095        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2096                                                PAGE_SIZE, PAGE_SIZE, 0);
2097        if (!dev->prp_page_pool)
2098                return -ENOMEM;
2099
2100        /* Optimisation for I/Os between 4k and 128k */
2101        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2102                                                256, 256, 0);
2103        if (!dev->prp_small_pool) {
2104                dma_pool_destroy(dev->prp_page_pool);
2105                return -ENOMEM;
2106        }
2107        return 0;
2108}
2109
2110static void nvme_release_prp_pools(struct nvme_dev *dev)
2111{
2112        dma_pool_destroy(dev->prp_page_pool);
2113        dma_pool_destroy(dev->prp_small_pool);
2114}
2115
2116static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2117{
2118        struct nvme_dev *dev = to_nvme_dev(ctrl);
2119
2120        nvme_dbbuf_dma_free(dev);
2121        put_device(dev->dev);
2122        if (dev->tagset.tags)
2123                blk_mq_free_tag_set(&dev->tagset);
2124        if (dev->ctrl.admin_q)
2125                blk_put_queue(dev->ctrl.admin_q);
2126        kfree(dev->queues);
2127        free_opal_dev(dev->ctrl.opal_dev);
2128        kfree(dev);
2129}
2130
2131static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2132{
2133        dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2134
2135        kref_get(&dev->ctrl.kref);
2136        nvme_dev_disable(dev, false);
2137        if (!schedule_work(&dev->remove_work))
2138                nvme_put_ctrl(&dev->ctrl);
2139}
2140
2141static void nvme_reset_work(struct work_struct *work)
2142{
2143        struct nvme_dev *dev =
2144                container_of(work, struct nvme_dev, ctrl.reset_work);
2145        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2146        int result = -ENODEV;
2147
2148        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2149                goto out;
2150
2151        /*
2152         * If we're called to reset a live controller first shut it down before
2153         * moving on.
2154         */
2155        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2156                nvme_dev_disable(dev, false);
2157
2158        result = nvme_pci_enable(dev);
2159        if (result)
2160                goto out;
2161
2162        result = nvme_pci_configure_admin_queue(dev);
2163        if (result)
2164                goto out;
2165
2166        result = nvme_alloc_admin_tags(dev);
2167        if (result)
2168                goto out;
2169
2170        result = nvme_init_identify(&dev->ctrl);
2171        if (result)
2172                goto out;
2173
2174        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2175                if (!dev->ctrl.opal_dev)
2176                        dev->ctrl.opal_dev =
2177                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2178                else if (was_suspend)
2179                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2180        } else {
2181                free_opal_dev(dev->ctrl.opal_dev);
2182                dev->ctrl.opal_dev = NULL;
2183        }
2184
2185        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2186                result = nvme_dbbuf_dma_alloc(dev);
2187                if (result)
2188                        dev_warn(dev->dev,
2189                                 "unable to allocate dma for dbbuf\n");
2190        }
2191
2192        if (dev->ctrl.hmpre) {
2193                result = nvme_setup_host_mem(dev);
2194                if (result < 0)
2195                        goto out;
2196        }
2197
2198        result = nvme_setup_io_queues(dev);
2199        if (result)
2200                goto out;
2201
2202        /*
2203         * Keep the controller around but remove all namespaces if we don't have
2204         * any working I/O queue.
2205         */
2206        if (dev->online_queues < 2) {
2207                dev_warn(dev->ctrl.device, "IO queues not created\n");
2208                nvme_kill_queues(&dev->ctrl);
2209                nvme_remove_namespaces(&dev->ctrl);
2210        } else {
2211                nvme_start_queues(&dev->ctrl);
2212                nvme_wait_freeze(&dev->ctrl);
2213                nvme_dev_add(dev);
2214                nvme_unfreeze(&dev->ctrl);
2215        }
2216
2217        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2218                dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2219                goto out;
2220        }
2221
2222        nvme_start_ctrl(&dev->ctrl);
2223        return;
2224
2225 out:
2226        nvme_remove_dead_ctrl(dev, result);
2227}
2228
2229static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2230{
2231        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2232        struct pci_dev *pdev = to_pci_dev(dev->dev);
2233
2234        nvme_kill_queues(&dev->ctrl);
2235        if (pci_get_drvdata(pdev))
2236                device_release_driver(&pdev->dev);
2237        nvme_put_ctrl(&dev->ctrl);
2238}
2239
2240static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2241{
2242        *val = readl(to_nvme_dev(ctrl)->bar + off);
2243        return 0;
2244}
2245
2246static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2247{
2248        writel(val, to_nvme_dev(ctrl)->bar + off);
2249        return 0;
2250}
2251
2252static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2253{
2254        *val = readq(to_nvme_dev(ctrl)->bar + off);
2255        return 0;
2256}
2257
2258static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2259        .name                   = "pcie",
2260        .module                 = THIS_MODULE,
2261        .flags                  = NVME_F_METADATA_SUPPORTED,
2262        .reg_read32             = nvme_pci_reg_read32,
2263        .reg_write32            = nvme_pci_reg_write32,
2264        .reg_read64             = nvme_pci_reg_read64,
2265        .free_ctrl              = nvme_pci_free_ctrl,
2266        .submit_async_event     = nvme_pci_submit_async_event,
2267};
2268
2269static int nvme_dev_map(struct nvme_dev *dev)
2270{
2271        struct pci_dev *pdev = to_pci_dev(dev->dev);
2272
2273        if (pci_request_mem_regions(pdev, "nvme"))
2274                return -ENODEV;
2275
2276        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2277                goto release;
2278
2279        return 0;
2280  release:
2281        pci_release_mem_regions(pdev);
2282        return -ENODEV;
2283}
2284
2285static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2286{
2287        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2288                /*
2289                 * Several Samsung devices seem to drop off the PCIe bus
2290                 * randomly when APST is on and uses the deepest sleep state.
2291                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2292                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2293                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2294                 * laptops.
2295                 */
2296                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2297                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2298                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2299                        return NVME_QUIRK_NO_DEEPEST_PS;
2300        }
2301
2302        return 0;
2303}
2304
2305static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2306{
2307        int node, result = -ENOMEM;
2308        struct nvme_dev *dev;
2309        unsigned long quirks = id->driver_data;
2310
2311        node = dev_to_node(&pdev->dev);
2312        if (node == NUMA_NO_NODE)
2313                set_dev_node(&pdev->dev, first_memory_node);
2314
2315        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2316        if (!dev)
2317                return -ENOMEM;
2318        dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2319                                                        GFP_KERNEL, node);
2320        if (!dev->queues)
2321                goto free;
2322
2323        dev->dev = get_device(&pdev->dev);
2324        pci_set_drvdata(pdev, dev);
2325
2326        result = nvme_dev_map(dev);
2327        if (result)
2328                goto put_pci;
2329
2330        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2331        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2332        mutex_init(&dev->shutdown_lock);
2333        init_completion(&dev->ioq_wait);
2334
2335        result = nvme_setup_prp_pools(dev);
2336        if (result)
2337                goto unmap;
2338
2339        quirks |= check_dell_samsung_bug(pdev);
2340
2341        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2342                        quirks);
2343        if (result)
2344                goto release_pools;
2345
2346        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2347        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2348
2349        queue_work(nvme_wq, &dev->ctrl.reset_work);
2350        return 0;
2351
2352 release_pools:
2353        nvme_release_prp_pools(dev);
2354 unmap:
2355        nvme_dev_unmap(dev);
2356 put_pci:
2357        put_device(dev->dev);
2358 free:
2359        kfree(dev->queues);
2360        kfree(dev);
2361        return result;
2362}
2363
2364static void nvme_reset_prepare(struct pci_dev *pdev)
2365{
2366        struct nvme_dev *dev = pci_get_drvdata(pdev);
2367        nvme_dev_disable(dev, false);
2368}
2369
2370static void nvme_reset_done(struct pci_dev *pdev)
2371{
2372        struct nvme_dev *dev = pci_get_drvdata(pdev);
2373        nvme_reset_ctrl(&dev->ctrl);
2374}
2375
2376static void nvme_shutdown(struct pci_dev *pdev)
2377{
2378        struct nvme_dev *dev = pci_get_drvdata(pdev);
2379        nvme_dev_disable(dev, true);
2380}
2381
2382/*
2383 * The driver's remove may be called on a device in a partially initialized
2384 * state. This function must not have any dependencies on the device state in
2385 * order to proceed.
2386 */
2387static void nvme_remove(struct pci_dev *pdev)
2388{
2389        struct nvme_dev *dev = pci_get_drvdata(pdev);
2390
2391        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2392
2393        cancel_work_sync(&dev->ctrl.reset_work);
2394        pci_set_drvdata(pdev, NULL);
2395
2396        if (!pci_device_is_present(pdev)) {
2397                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2398                nvme_dev_disable(dev, false);
2399        }
2400
2401        flush_work(&dev->ctrl.reset_work);
2402        nvme_stop_ctrl(&dev->ctrl);
2403        nvme_remove_namespaces(&dev->ctrl);
2404        nvme_dev_disable(dev, true);
2405        nvme_free_host_mem(dev);
2406        nvme_dev_remove_admin(dev);
2407        nvme_free_queues(dev, 0);
2408        nvme_uninit_ctrl(&dev->ctrl);
2409        nvme_release_prp_pools(dev);
2410        nvme_dev_unmap(dev);
2411        nvme_put_ctrl(&dev->ctrl);
2412}
2413
2414static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2415{
2416        int ret = 0;
2417
2418        if (numvfs == 0) {
2419                if (pci_vfs_assigned(pdev)) {
2420                        dev_warn(&pdev->dev,
2421                                "Cannot disable SR-IOV VFs while assigned\n");
2422                        return -EPERM;
2423                }
2424                pci_disable_sriov(pdev);
2425                return 0;
2426        }
2427
2428        ret = pci_enable_sriov(pdev, numvfs);
2429        return ret ? ret : numvfs;
2430}
2431
2432#ifdef CONFIG_PM_SLEEP
2433static int nvme_suspend(struct device *dev)
2434{
2435        struct pci_dev *pdev = to_pci_dev(dev);
2436        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2437
2438        nvme_dev_disable(ndev, true);
2439        return 0;
2440}
2441
2442static int nvme_resume(struct device *dev)
2443{
2444        struct pci_dev *pdev = to_pci_dev(dev);
2445        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2446
2447        nvme_reset_ctrl(&ndev->ctrl);
2448        return 0;
2449}
2450#endif
2451
2452static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2453
2454static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2455                                                pci_channel_state_t state)
2456{
2457        struct nvme_dev *dev = pci_get_drvdata(pdev);
2458
2459        /*
2460         * A frozen channel requires a reset. When detected, this method will
2461         * shutdown the controller to quiesce. The controller will be restarted
2462         * after the slot reset through driver's slot_reset callback.
2463         */
2464        switch (state) {
2465        case pci_channel_io_normal:
2466                return PCI_ERS_RESULT_CAN_RECOVER;
2467        case pci_channel_io_frozen:
2468                dev_warn(dev->ctrl.device,
2469                        "frozen state error detected, reset controller\n");
2470                nvme_dev_disable(dev, false);
2471                return PCI_ERS_RESULT_NEED_RESET;
2472        case pci_channel_io_perm_failure:
2473                dev_warn(dev->ctrl.device,
2474                        "failure state error detected, request disconnect\n");
2475                return PCI_ERS_RESULT_DISCONNECT;
2476        }
2477        return PCI_ERS_RESULT_NEED_RESET;
2478}
2479
2480static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2481{
2482        struct nvme_dev *dev = pci_get_drvdata(pdev);
2483
2484        dev_info(dev->ctrl.device, "restart after slot reset\n");
2485        pci_restore_state(pdev);
2486        nvme_reset_ctrl(&dev->ctrl);
2487        return PCI_ERS_RESULT_RECOVERED;
2488}
2489
2490static void nvme_error_resume(struct pci_dev *pdev)
2491{
2492        pci_cleanup_aer_uncorrect_error_status(pdev);
2493}
2494
2495static const struct pci_error_handlers nvme_err_handler = {
2496        .error_detected = nvme_error_detected,
2497        .slot_reset     = nvme_slot_reset,
2498        .resume         = nvme_error_resume,
2499        .reset_prepare  = nvme_reset_prepare,
2500        .reset_done     = nvme_reset_done,
2501};
2502
2503static const struct pci_device_id nvme_id_table[] = {
2504        { PCI_VDEVICE(INTEL, 0x0953),
2505                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2506                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2507        { PCI_VDEVICE(INTEL, 0x0a53),
2508                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2509                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2510        { PCI_VDEVICE(INTEL, 0x0a54),
2511                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2512                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2513        { PCI_VDEVICE(INTEL, 0x0a55),
2514                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2515                                NVME_QUIRK_DEALLOCATE_ZEROES, },
2516        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2517                .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2518        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2519                .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2520        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2521                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2522        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2523                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2524        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2525                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2526        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2527                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2528        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2529                .driver_data = NVME_QUIRK_LIGHTNVM, },
2530        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2531                .driver_data = NVME_QUIRK_LIGHTNVM, },
2532        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2533        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2534        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2535        { 0, }
2536};
2537MODULE_DEVICE_TABLE(pci, nvme_id_table);
2538
2539static struct pci_driver nvme_driver = {
2540        .name           = "nvme",
2541        .id_table       = nvme_id_table,
2542        .probe          = nvme_probe,
2543        .remove         = nvme_remove,
2544        .shutdown       = nvme_shutdown,
2545        .driver         = {
2546                .pm     = &nvme_dev_pm_ops,
2547        },
2548        .sriov_configure = nvme_pci_sriov_configure,
2549        .err_handler    = &nvme_err_handler,
2550};
2551
2552static int __init nvme_init(void)
2553{
2554        return pci_register_driver(&nvme_driver);
2555}
2556
2557static void __exit nvme_exit(void)
2558{
2559        pci_unregister_driver(&nvme_driver);
2560        _nvme_check_size();
2561}
2562
2563MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2564MODULE_LICENSE("GPL");
2565MODULE_VERSION("1.0");
2566module_init(nvme_init);
2567module_exit(nvme_exit);
2568