linux/drivers/usb/host/fotg210-hcd.c
<<
>>
Prefs
   1/* Faraday FOTG210 EHCI-like driver
   2 *
   3 * Copyright (c) 2013 Faraday Technology Corporation
   4 *
   5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   6 *         Feng-Hsin Chiang <john453@faraday-tech.com>
   7 *         Po-Yu Chuang <ratbert.chuang@gmail.com>
   8 *
   9 * Most of code borrowed from the Linux-3.7 EHCI driver
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2 of the License, or (at your
  14 * option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  18 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  19 * for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software Foundation,
  23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25#include <linux/module.h>
  26#include <linux/device.h>
  27#include <linux/dmapool.h>
  28#include <linux/kernel.h>
  29#include <linux/delay.h>
  30#include <linux/ioport.h>
  31#include <linux/sched.h>
  32#include <linux/vmalloc.h>
  33#include <linux/errno.h>
  34#include <linux/init.h>
  35#include <linux/hrtimer.h>
  36#include <linux/list.h>
  37#include <linux/interrupt.h>
  38#include <linux/usb.h>
  39#include <linux/usb/hcd.h>
  40#include <linux/moduleparam.h>
  41#include <linux/dma-mapping.h>
  42#include <linux/debugfs.h>
  43#include <linux/slab.h>
  44#include <linux/uaccess.h>
  45#include <linux/platform_device.h>
  46#include <linux/io.h>
  47
  48#include <asm/byteorder.h>
  49#include <asm/irq.h>
  50#include <asm/unaligned.h>
  51
  52#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  53#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  54static const char hcd_name[] = "fotg210_hcd";
  55
  56#undef FOTG210_URB_TRACE
  57#define FOTG210_STATS
  58
  59/* magic numbers that can affect system performance */
  60#define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
  61#define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
  62#define FOTG210_TUNE_RL_TT      0
  63#define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
  64#define FOTG210_TUNE_MULT_TT    1
  65
  66/* Some drivers think it's safe to schedule isochronous transfers more than 256
  67 * ms into the future (partly as a result of an old bug in the scheduling
  68 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  69 * length of 512 frames instead of 256.
  70 */
  71#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  72
  73/* Initial IRQ latency:  faster than hw default */
  74static int log2_irq_thresh; /* 0 to 6 */
  75module_param(log2_irq_thresh, int, S_IRUGO);
  76MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  77
  78/* initial park setting:  slower than hw default */
  79static unsigned park;
  80module_param(park, uint, S_IRUGO);
  81MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  82
  83/* for link power management(LPM) feature */
  84static unsigned int hird;
  85module_param(hird, int, S_IRUGO);
  86MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  87
  88#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  89
  90#include "fotg210.h"
  91
  92#define fotg210_dbg(fotg210, fmt, args...) \
  93        dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  94#define fotg210_err(fotg210, fmt, args...) \
  95        dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  96#define fotg210_info(fotg210, fmt, args...) \
  97        dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  98#define fotg210_warn(fotg210, fmt, args...) \
  99        dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
 100
 101/* check the values in the HCSPARAMS register (host controller _Structural_
 102 * parameters) see EHCI spec, Table 2-4 for each value
 103 */
 104static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
 105{
 106        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 107
 108        fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
 109                        HCS_N_PORTS(params));
 110}
 111
 112/* check the values in the HCCPARAMS register (host controller _Capability_
 113 * parameters) see EHCI Spec, Table 2-5 for each value
 114 */
 115static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 116{
 117        u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 118
 119        fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 120                        params,
 121                        HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 122                        HCC_CANPARK(params) ? " park" : "");
 123}
 124
 125static void __maybe_unused
 126dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 127{
 128        fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 129                        hc32_to_cpup(fotg210, &qtd->hw_next),
 130                        hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 131                        hc32_to_cpup(fotg210, &qtd->hw_token),
 132                        hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 133        if (qtd->hw_buf[1])
 134                fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 135                                hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 136                                hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 137                                hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 138                                hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 139}
 140
 141static void __maybe_unused
 142dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 143{
 144        struct fotg210_qh_hw *hw = qh->hw;
 145
 146        fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 147                        hw->hw_next, hw->hw_info1, hw->hw_info2,
 148                        hw->hw_current);
 149
 150        dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 151}
 152
 153static void __maybe_unused
 154dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 155{
 156        fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 157                        itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 158                        itd->urb);
 159
 160        fotg210_dbg(fotg210,
 161                        "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 162                        hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 163                        hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 164                        hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 165                        hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 166                        hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 167                        hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 168                        hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 169                        hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 170
 171        fotg210_dbg(fotg210,
 172                        "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 173                        hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 174                        hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 175                        hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 176                        hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 177                        hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 178                        hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 179                        hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 180
 181        fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 182                        itd->index[0], itd->index[1], itd->index[2],
 183                        itd->index[3], itd->index[4], itd->index[5],
 184                        itd->index[6], itd->index[7]);
 185}
 186
 187static int __maybe_unused
 188dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 189{
 190        return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 191                        label, label[0] ? " " : "", status,
 192                        (status & STS_ASS) ? " Async" : "",
 193                        (status & STS_PSS) ? " Periodic" : "",
 194                        (status & STS_RECL) ? " Recl" : "",
 195                        (status & STS_HALT) ? " Halt" : "",
 196                        (status & STS_IAA) ? " IAA" : "",
 197                        (status & STS_FATAL) ? " FATAL" : "",
 198                        (status & STS_FLR) ? " FLR" : "",
 199                        (status & STS_PCD) ? " PCD" : "",
 200                        (status & STS_ERR) ? " ERR" : "",
 201                        (status & STS_INT) ? " INT" : "");
 202}
 203
 204static int __maybe_unused
 205dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 206{
 207        return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 208                        label, label[0] ? " " : "", enable,
 209                        (enable & STS_IAA) ? " IAA" : "",
 210                        (enable & STS_FATAL) ? " FATAL" : "",
 211                        (enable & STS_FLR) ? " FLR" : "",
 212                        (enable & STS_PCD) ? " PCD" : "",
 213                        (enable & STS_ERR) ? " ERR" : "",
 214                        (enable & STS_INT) ? " INT" : "");
 215}
 216
 217static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 218
 219static int dbg_command_buf(char *buf, unsigned len, const char *label,
 220                u32 command)
 221{
 222        return scnprintf(buf, len,
 223                        "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 224                        label, label[0] ? " " : "", command,
 225                        (command & CMD_PARK) ? " park" : "(park)",
 226                        CMD_PARK_CNT(command),
 227                        (command >> 16) & 0x3f,
 228                        (command & CMD_IAAD) ? " IAAD" : "",
 229                        (command & CMD_ASE) ? " Async" : "",
 230                        (command & CMD_PSE) ? " Periodic" : "",
 231                        fls_strings[(command >> 2) & 0x3],
 232                        (command & CMD_RESET) ? " Reset" : "",
 233                        (command & CMD_RUN) ? "RUN" : "HALT");
 234}
 235
 236static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 237                u32 status)
 238{
 239        char *sig;
 240
 241        /* signaling state */
 242        switch (status & (3 << 10)) {
 243        case 0 << 10:
 244                sig = "se0";
 245                break;
 246        case 1 << 10:
 247                sig = "k";
 248                break; /* low speed */
 249        case 2 << 10:
 250                sig = "j";
 251                break;
 252        default:
 253                sig = "?";
 254                break;
 255        }
 256
 257        scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 258                        label, label[0] ? " " : "", port, status,
 259                        status >> 25, /*device address */
 260                        sig,
 261                        (status & PORT_RESET) ? " RESET" : "",
 262                        (status & PORT_SUSPEND) ? " SUSPEND" : "",
 263                        (status & PORT_RESUME) ? " RESUME" : "",
 264                        (status & PORT_PEC) ? " PEC" : "",
 265                        (status & PORT_PE) ? " PE" : "",
 266                        (status & PORT_CSC) ? " CSC" : "",
 267                        (status & PORT_CONNECT) ? " CONNECT" : "");
 268
 269        return buf;
 270}
 271
 272/* functions have the "wrong" filename when they're output... */
 273#define dbg_status(fotg210, label, status) {                    \
 274        char _buf[80];                                          \
 275        dbg_status_buf(_buf, sizeof(_buf), label, status);      \
 276        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 277}
 278
 279#define dbg_cmd(fotg210, label, command) {                      \
 280        char _buf[80];                                          \
 281        dbg_command_buf(_buf, sizeof(_buf), label, command);    \
 282        fotg210_dbg(fotg210, "%s\n", _buf);                     \
 283}
 284
 285#define dbg_port(fotg210, label, port, status) {                               \
 286        char _buf[80];                                                         \
 287        fotg210_dbg(fotg210, "%s\n",                                           \
 288                        dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 289}
 290
 291/* troubleshooting help: expose state in debugfs */
 292static int debug_async_open(struct inode *, struct file *);
 293static int debug_periodic_open(struct inode *, struct file *);
 294static int debug_registers_open(struct inode *, struct file *);
 295static int debug_async_open(struct inode *, struct file *);
 296
 297static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 298static int debug_close(struct inode *, struct file *);
 299
 300static const struct file_operations debug_async_fops = {
 301        .owner          = THIS_MODULE,
 302        .open           = debug_async_open,
 303        .read           = debug_output,
 304        .release        = debug_close,
 305        .llseek         = default_llseek,
 306};
 307static const struct file_operations debug_periodic_fops = {
 308        .owner          = THIS_MODULE,
 309        .open           = debug_periodic_open,
 310        .read           = debug_output,
 311        .release        = debug_close,
 312        .llseek         = default_llseek,
 313};
 314static const struct file_operations debug_registers_fops = {
 315        .owner          = THIS_MODULE,
 316        .open           = debug_registers_open,
 317        .read           = debug_output,
 318        .release        = debug_close,
 319        .llseek         = default_llseek,
 320};
 321
 322static struct dentry *fotg210_debug_root;
 323
 324struct debug_buffer {
 325        ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
 326        struct usb_bus *bus;
 327        struct mutex mutex;     /* protect filling of buffer */
 328        size_t count;           /* number of characters filled into buffer */
 329        char *output_buf;
 330        size_t alloc_size;
 331};
 332
 333static inline char speed_char(u32 scratch)
 334{
 335        switch (scratch & (3 << 12)) {
 336        case QH_FULL_SPEED:
 337                return 'f';
 338
 339        case QH_LOW_SPEED:
 340                return 'l';
 341
 342        case QH_HIGH_SPEED:
 343                return 'h';
 344
 345        default:
 346                return '?';
 347        }
 348}
 349
 350static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 351{
 352        __u32 v = hc32_to_cpu(fotg210, token);
 353
 354        if (v & QTD_STS_ACTIVE)
 355                return '*';
 356        if (v & QTD_STS_HALT)
 357                return '-';
 358        if (!IS_SHORT_READ(v))
 359                return ' ';
 360        /* tries to advance through hw_alt_next */
 361        return '/';
 362}
 363
 364static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 365                char **nextp, unsigned *sizep)
 366{
 367        u32 scratch;
 368        u32 hw_curr;
 369        struct fotg210_qtd *td;
 370        unsigned temp;
 371        unsigned size = *sizep;
 372        char *next = *nextp;
 373        char mark;
 374        __le32 list_end = FOTG210_LIST_END(fotg210);
 375        struct fotg210_qh_hw *hw = qh->hw;
 376
 377        if (hw->hw_qtd_next == list_end) /* NEC does this */
 378                mark = '@';
 379        else
 380                mark = token_mark(fotg210, hw->hw_token);
 381        if (mark == '/') { /* qh_alt_next controls qh advance? */
 382                if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 383                    fotg210->async->hw->hw_alt_next)
 384                        mark = '#'; /* blocked */
 385                else if (hw->hw_alt_next == list_end)
 386                        mark = '.'; /* use hw_qtd_next */
 387                /* else alt_next points to some other qtd */
 388        }
 389        scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 390        hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 391        temp = scnprintf(next, size,
 392                        "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 393                        qh, scratch & 0x007f,
 394                        speed_char(scratch),
 395                        (scratch >> 8) & 0x000f,
 396                        scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 397                        hc32_to_cpup(fotg210, &hw->hw_token), mark,
 398                        (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 399                                ? "data1" : "data0",
 400                        (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 401        size -= temp;
 402        next += temp;
 403
 404        /* hc may be modifying the list as we read it ... */
 405        list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 406                scratch = hc32_to_cpup(fotg210, &td->hw_token);
 407                mark = ' ';
 408                if (hw_curr == td->qtd_dma)
 409                        mark = '*';
 410                else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 411                        mark = '+';
 412                else if (QTD_LENGTH(scratch)) {
 413                        if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 414                                mark = '#';
 415                        else if (td->hw_alt_next != list_end)
 416                                mark = '/';
 417                }
 418                temp = snprintf(next, size,
 419                                "\n\t%p%c%s len=%d %08x urb %p",
 420                                td, mark, ({ char *tmp;
 421                                 switch ((scratch>>8)&0x03) {
 422                                 case 0:
 423                                        tmp = "out";
 424                                        break;
 425                                 case 1:
 426                                        tmp = "in";
 427                                        break;
 428                                 case 2:
 429                                        tmp = "setup";
 430                                        break;
 431                                 default:
 432                                        tmp = "?";
 433                                        break;
 434                                 } tmp; }),
 435                                (scratch >> 16) & 0x7fff,
 436                                scratch,
 437                                td->urb);
 438                if (size < temp)
 439                        temp = size;
 440                size -= temp;
 441                next += temp;
 442                if (temp == size)
 443                        goto done;
 444        }
 445
 446        temp = snprintf(next, size, "\n");
 447        if (size < temp)
 448                temp = size;
 449
 450        size -= temp;
 451        next += temp;
 452
 453done:
 454        *sizep = size;
 455        *nextp = next;
 456}
 457
 458static ssize_t fill_async_buffer(struct debug_buffer *buf)
 459{
 460        struct usb_hcd *hcd;
 461        struct fotg210_hcd *fotg210;
 462        unsigned long flags;
 463        unsigned temp, size;
 464        char *next;
 465        struct fotg210_qh *qh;
 466
 467        hcd = bus_to_hcd(buf->bus);
 468        fotg210 = hcd_to_fotg210(hcd);
 469        next = buf->output_buf;
 470        size = buf->alloc_size;
 471
 472        *next = 0;
 473
 474        /* dumps a snapshot of the async schedule.
 475         * usually empty except for long-term bulk reads, or head.
 476         * one QH per line, and TDs we know about
 477         */
 478        spin_lock_irqsave(&fotg210->lock, flags);
 479        for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 480                        qh = qh->qh_next.qh)
 481                qh_lines(fotg210, qh, &next, &size);
 482        if (fotg210->async_unlink && size > 0) {
 483                temp = scnprintf(next, size, "\nunlink =\n");
 484                size -= temp;
 485                next += temp;
 486
 487                for (qh = fotg210->async_unlink; size > 0 && qh;
 488                                qh = qh->unlink_next)
 489                        qh_lines(fotg210, qh, &next, &size);
 490        }
 491        spin_unlock_irqrestore(&fotg210->lock, flags);
 492
 493        return strlen(buf->output_buf);
 494}
 495
 496/* count tds, get ep direction */
 497static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 498                struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 499{
 500        u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 501        struct fotg210_qtd *qtd;
 502        char *type = "";
 503        unsigned temp = 0;
 504
 505        /* count tds, get ep direction */
 506        list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 507                temp++;
 508                switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 509                case 0:
 510                        type = "out";
 511                        continue;
 512                case 1:
 513                        type = "in";
 514                        continue;
 515                }
 516        }
 517
 518        return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 519                        speed_char(scratch), scratch & 0x007f,
 520                        (scratch >> 8) & 0x000f, type, qh->usecs,
 521                        qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 522}
 523
 524#define DBG_SCHED_LIMIT 64
 525static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 526{
 527        struct usb_hcd *hcd;
 528        struct fotg210_hcd *fotg210;
 529        unsigned long flags;
 530        union fotg210_shadow p, *seen;
 531        unsigned temp, size, seen_count;
 532        char *next;
 533        unsigned i;
 534        __hc32 tag;
 535
 536        seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 537        if (!seen)
 538                return 0;
 539
 540        seen_count = 0;
 541
 542        hcd = bus_to_hcd(buf->bus);
 543        fotg210 = hcd_to_fotg210(hcd);
 544        next = buf->output_buf;
 545        size = buf->alloc_size;
 546
 547        temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 548        size -= temp;
 549        next += temp;
 550
 551        /* dump a snapshot of the periodic schedule.
 552         * iso changes, interrupt usually doesn't.
 553         */
 554        spin_lock_irqsave(&fotg210->lock, flags);
 555        for (i = 0; i < fotg210->periodic_size; i++) {
 556                p = fotg210->pshadow[i];
 557                if (likely(!p.ptr))
 558                        continue;
 559
 560                tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 561
 562                temp = scnprintf(next, size, "%4d: ", i);
 563                size -= temp;
 564                next += temp;
 565
 566                do {
 567                        struct fotg210_qh_hw *hw;
 568
 569                        switch (hc32_to_cpu(fotg210, tag)) {
 570                        case Q_TYPE_QH:
 571                                hw = p.qh->hw;
 572                                temp = scnprintf(next, size, " qh%d-%04x/%p",
 573                                                p.qh->period,
 574                                                hc32_to_cpup(fotg210,
 575                                                        &hw->hw_info2)
 576                                                        /* uframe masks */
 577                                                        & (QH_CMASK | QH_SMASK),
 578                                                p.qh);
 579                                size -= temp;
 580                                next += temp;
 581                                /* don't repeat what follows this qh */
 582                                for (temp = 0; temp < seen_count; temp++) {
 583                                        if (seen[temp].ptr != p.ptr)
 584                                                continue;
 585                                        if (p.qh->qh_next.ptr) {
 586                                                temp = scnprintf(next, size,
 587                                                                " ...");
 588                                                size -= temp;
 589                                                next += temp;
 590                                        }
 591                                        break;
 592                                }
 593                                /* show more info the first time around */
 594                                if (temp == seen_count) {
 595                                        temp = output_buf_tds_dir(next,
 596                                                        fotg210, hw,
 597                                                        p.qh, size);
 598
 599                                        if (seen_count < DBG_SCHED_LIMIT)
 600                                                seen[seen_count++].qh = p.qh;
 601                                } else
 602                                        temp = 0;
 603                                tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 604                                p = p.qh->qh_next;
 605                                break;
 606                        case Q_TYPE_FSTN:
 607                                temp = scnprintf(next, size,
 608                                                " fstn-%8x/%p",
 609                                                p.fstn->hw_prev, p.fstn);
 610                                tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 611                                p = p.fstn->fstn_next;
 612                                break;
 613                        case Q_TYPE_ITD:
 614                                temp = scnprintf(next, size,
 615                                                " itd/%p", p.itd);
 616                                tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 617                                p = p.itd->itd_next;
 618                                break;
 619                        }
 620                        size -= temp;
 621                        next += temp;
 622                } while (p.ptr);
 623
 624                temp = scnprintf(next, size, "\n");
 625                size -= temp;
 626                next += temp;
 627        }
 628        spin_unlock_irqrestore(&fotg210->lock, flags);
 629        kfree(seen);
 630
 631        return buf->alloc_size - size;
 632}
 633#undef DBG_SCHED_LIMIT
 634
 635static const char *rh_state_string(struct fotg210_hcd *fotg210)
 636{
 637        switch (fotg210->rh_state) {
 638        case FOTG210_RH_HALTED:
 639                return "halted";
 640        case FOTG210_RH_SUSPENDED:
 641                return "suspended";
 642        case FOTG210_RH_RUNNING:
 643                return "running";
 644        case FOTG210_RH_STOPPING:
 645                return "stopping";
 646        }
 647        return "?";
 648}
 649
 650static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 651{
 652        struct usb_hcd *hcd;
 653        struct fotg210_hcd *fotg210;
 654        unsigned long flags;
 655        unsigned temp, size, i;
 656        char *next, scratch[80];
 657        static const char fmt[] = "%*s\n";
 658        static const char label[] = "";
 659
 660        hcd = bus_to_hcd(buf->bus);
 661        fotg210 = hcd_to_fotg210(hcd);
 662        next = buf->output_buf;
 663        size = buf->alloc_size;
 664
 665        spin_lock_irqsave(&fotg210->lock, flags);
 666
 667        if (!HCD_HW_ACCESSIBLE(hcd)) {
 668                size = scnprintf(next, size,
 669                                "bus %s, device %s\n"
 670                                "%s\n"
 671                                "SUSPENDED(no register access)\n",
 672                                hcd->self.controller->bus->name,
 673                                dev_name(hcd->self.controller),
 674                                hcd->product_desc);
 675                goto done;
 676        }
 677
 678        /* Capability Registers */
 679        i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 680                        &fotg210->caps->hc_capbase));
 681        temp = scnprintf(next, size,
 682                        "bus %s, device %s\n"
 683                        "%s\n"
 684                        "EHCI %x.%02x, rh state %s\n",
 685                        hcd->self.controller->bus->name,
 686                        dev_name(hcd->self.controller),
 687                        hcd->product_desc,
 688                        i >> 8, i & 0x0ff, rh_state_string(fotg210));
 689        size -= temp;
 690        next += temp;
 691
 692        /* FIXME interpret both types of params */
 693        i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 694        temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 695        size -= temp;
 696        next += temp;
 697
 698        i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 699        temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 700        size -= temp;
 701        next += temp;
 702
 703        /* Operational Registers */
 704        temp = dbg_status_buf(scratch, sizeof(scratch), label,
 705                        fotg210_readl(fotg210, &fotg210->regs->status));
 706        temp = scnprintf(next, size, fmt, temp, scratch);
 707        size -= temp;
 708        next += temp;
 709
 710        temp = dbg_command_buf(scratch, sizeof(scratch), label,
 711                        fotg210_readl(fotg210, &fotg210->regs->command));
 712        temp = scnprintf(next, size, fmt, temp, scratch);
 713        size -= temp;
 714        next += temp;
 715
 716        temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 717                        fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 718        temp = scnprintf(next, size, fmt, temp, scratch);
 719        size -= temp;
 720        next += temp;
 721
 722        temp = scnprintf(next, size, "uframe %04x\n",
 723                        fotg210_read_frame_index(fotg210));
 724        size -= temp;
 725        next += temp;
 726
 727        if (fotg210->async_unlink) {
 728                temp = scnprintf(next, size, "async unlink qh %p\n",
 729                                fotg210->async_unlink);
 730                size -= temp;
 731                next += temp;
 732        }
 733
 734#ifdef FOTG210_STATS
 735        temp = scnprintf(next, size,
 736                        "irq normal %ld err %ld iaa %ld(lost %ld)\n",
 737                        fotg210->stats.normal, fotg210->stats.error,
 738                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
 739        size -= temp;
 740        next += temp;
 741
 742        temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 743                        fotg210->stats.complete, fotg210->stats.unlink);
 744        size -= temp;
 745        next += temp;
 746#endif
 747
 748done:
 749        spin_unlock_irqrestore(&fotg210->lock, flags);
 750
 751        return buf->alloc_size - size;
 752}
 753
 754static struct debug_buffer
 755*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 756{
 757        struct debug_buffer *buf;
 758
 759        buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 760
 761        if (buf) {
 762                buf->bus = bus;
 763                buf->fill_func = fill_func;
 764                mutex_init(&buf->mutex);
 765                buf->alloc_size = PAGE_SIZE;
 766        }
 767
 768        return buf;
 769}
 770
 771static int fill_buffer(struct debug_buffer *buf)
 772{
 773        int ret = 0;
 774
 775        if (!buf->output_buf)
 776                buf->output_buf = vmalloc(buf->alloc_size);
 777
 778        if (!buf->output_buf) {
 779                ret = -ENOMEM;
 780                goto out;
 781        }
 782
 783        ret = buf->fill_func(buf);
 784
 785        if (ret >= 0) {
 786                buf->count = ret;
 787                ret = 0;
 788        }
 789
 790out:
 791        return ret;
 792}
 793
 794static ssize_t debug_output(struct file *file, char __user *user_buf,
 795                size_t len, loff_t *offset)
 796{
 797        struct debug_buffer *buf = file->private_data;
 798        int ret = 0;
 799
 800        mutex_lock(&buf->mutex);
 801        if (buf->count == 0) {
 802                ret = fill_buffer(buf);
 803                if (ret != 0) {
 804                        mutex_unlock(&buf->mutex);
 805                        goto out;
 806                }
 807        }
 808        mutex_unlock(&buf->mutex);
 809
 810        ret = simple_read_from_buffer(user_buf, len, offset,
 811                        buf->output_buf, buf->count);
 812
 813out:
 814        return ret;
 815
 816}
 817
 818static int debug_close(struct inode *inode, struct file *file)
 819{
 820        struct debug_buffer *buf = file->private_data;
 821
 822        if (buf) {
 823                vfree(buf->output_buf);
 824                kfree(buf);
 825        }
 826
 827        return 0;
 828}
 829static int debug_async_open(struct inode *inode, struct file *file)
 830{
 831        file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 832
 833        return file->private_data ? 0 : -ENOMEM;
 834}
 835
 836static int debug_periodic_open(struct inode *inode, struct file *file)
 837{
 838        struct debug_buffer *buf;
 839
 840        buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 841        if (!buf)
 842                return -ENOMEM;
 843
 844        buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 845        file->private_data = buf;
 846        return 0;
 847}
 848
 849static int debug_registers_open(struct inode *inode, struct file *file)
 850{
 851        file->private_data = alloc_buffer(inode->i_private,
 852                        fill_registers_buffer);
 853
 854        return file->private_data ? 0 : -ENOMEM;
 855}
 856
 857static inline void create_debug_files(struct fotg210_hcd *fotg210)
 858{
 859        struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 860
 861        fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
 862                        fotg210_debug_root);
 863        if (!fotg210->debug_dir)
 864                return;
 865
 866        if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
 867                        &debug_async_fops))
 868                goto file_error;
 869
 870        if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
 871                        &debug_periodic_fops))
 872                goto file_error;
 873
 874        if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
 875                        &debug_registers_fops))
 876                goto file_error;
 877
 878        return;
 879
 880file_error:
 881        debugfs_remove_recursive(fotg210->debug_dir);
 882}
 883
 884static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 885{
 886        debugfs_remove_recursive(fotg210->debug_dir);
 887}
 888
 889/* handshake - spin reading hc until handshake completes or fails
 890 * @ptr: address of hc register to be read
 891 * @mask: bits to look at in result of read
 892 * @done: value of those bits when handshake succeeds
 893 * @usec: timeout in microseconds
 894 *
 895 * Returns negative errno, or zero on success
 896 *
 897 * Success happens when the "mask" bits have the specified value (hardware
 898 * handshake done).  There are two failure modes:  "usec" have passed (major
 899 * hardware flakeout), or the register reads as all-ones (hardware removed).
 900 *
 901 * That last failure should_only happen in cases like physical cardbus eject
 902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 903 * bridge shutdown:  shutting down the bridge before the devices using it.
 904 */
 905static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 906                u32 mask, u32 done, int usec)
 907{
 908        u32 result;
 909
 910        do {
 911                result = fotg210_readl(fotg210, ptr);
 912                if (result == ~(u32)0)          /* card removed */
 913                        return -ENODEV;
 914                result &= mask;
 915                if (result == done)
 916                        return 0;
 917                udelay(1);
 918                usec--;
 919        } while (usec > 0);
 920        return -ETIMEDOUT;
 921}
 922
 923/* Force HC to halt state from unknown (EHCI spec section 2.3).
 924 * Must be called with interrupts enabled and the lock not held.
 925 */
 926static int fotg210_halt(struct fotg210_hcd *fotg210)
 927{
 928        u32 temp;
 929
 930        spin_lock_irq(&fotg210->lock);
 931
 932        /* disable any irqs left enabled by previous code */
 933        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 934
 935        /*
 936         * This routine gets called during probe before fotg210->command
 937         * has been initialized, so we can't rely on its value.
 938         */
 939        fotg210->command &= ~CMD_RUN;
 940        temp = fotg210_readl(fotg210, &fotg210->regs->command);
 941        temp &= ~(CMD_RUN | CMD_IAAD);
 942        fotg210_writel(fotg210, temp, &fotg210->regs->command);
 943
 944        spin_unlock_irq(&fotg210->lock);
 945        synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 946
 947        return handshake(fotg210, &fotg210->regs->status,
 948                        STS_HALT, STS_HALT, 16 * 125);
 949}
 950
 951/* Reset a non-running (STS_HALT == 1) controller.
 952 * Must be called with interrupts enabled and the lock not held.
 953 */
 954static int fotg210_reset(struct fotg210_hcd *fotg210)
 955{
 956        int retval;
 957        u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 958
 959        /* If the EHCI debug controller is active, special care must be
 960         * taken before and after a host controller reset
 961         */
 962        if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 963                fotg210->debug = NULL;
 964
 965        command |= CMD_RESET;
 966        dbg_cmd(fotg210, "reset", command);
 967        fotg210_writel(fotg210, command, &fotg210->regs->command);
 968        fotg210->rh_state = FOTG210_RH_HALTED;
 969        fotg210->next_statechange = jiffies;
 970        retval = handshake(fotg210, &fotg210->regs->command,
 971                        CMD_RESET, 0, 250 * 1000);
 972
 973        if (retval)
 974                return retval;
 975
 976        if (fotg210->debug)
 977                dbgp_external_startup(fotg210_to_hcd(fotg210));
 978
 979        fotg210->port_c_suspend = fotg210->suspended_ports =
 980                        fotg210->resuming_ports = 0;
 981        return retval;
 982}
 983
 984/* Idle the controller (turn off the schedules).
 985 * Must be called with interrupts enabled and the lock not held.
 986 */
 987static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 988{
 989        u32 temp;
 990
 991        if (fotg210->rh_state != FOTG210_RH_RUNNING)
 992                return;
 993
 994        /* wait for any schedule enables/disables to take effect */
 995        temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 996        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 997                        16 * 125);
 998
 999        /* then disable anything that's still active */
1000        spin_lock_irq(&fotg210->lock);
1001        fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003        spin_unlock_irq(&fotg210->lock);
1004
1005        /* hardware can take 16 microframes to turn off ... */
1006        handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007                        16 * 125);
1008}
1009
1010static void end_unlink_async(struct fotg210_hcd *fotg210);
1011static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012static void fotg210_work(struct fotg210_hcd *fotg210);
1013static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014                              struct fotg210_qh *qh);
1015static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016
1017/* Set a bit in the USBCMD register */
1018static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019{
1020        fotg210->command |= bit;
1021        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022
1023        /* unblock posted write */
1024        fotg210_readl(fotg210, &fotg210->regs->command);
1025}
1026
1027/* Clear a bit in the USBCMD register */
1028static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029{
1030        fotg210->command &= ~bit;
1031        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032
1033        /* unblock posted write */
1034        fotg210_readl(fotg210, &fotg210->regs->command);
1035}
1036
1037/* EHCI timer support...  Now using hrtimers.
1038 *
1039 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1045 *
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1050 *
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay.  This doesn't
1053 * matter, because none of the events are especially time-critical.  The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay.  In addition to this, we
1056 * allow for an expiration range of 1 ms.
1057 */
1058
1059/* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062 */
1063static unsigned event_delays_ns[] = {
1064        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1065        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1066        1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1067        1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1068        2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1069        6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1071        10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072        15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1073        100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1074};
1075
1076/* Enable a pending hrtimer event */
1077static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078                bool resched)
1079{
1080        ktime_t *timeout = &fotg210->hr_timeouts[event];
1081
1082        if (resched)
1083                *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1084        fotg210->enabled_hrtimer_events |= (1 << event);
1085
1086        /* Track only the lowest-numbered pending event */
1087        if (event < fotg210->next_hrtimer_event) {
1088                fotg210->next_hrtimer_event = event;
1089                hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1090                                NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1091        }
1092}
1093
1094
1095/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1096static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1097{
1098        unsigned actual, want;
1099
1100        /* Don't enable anything if the controller isn't running (e.g., died) */
1101        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1102                return;
1103
1104        want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1105        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1106
1107        if (want != actual) {
1108
1109                /* Poll again later, but give up after about 20 ms */
1110                if (fotg210->ASS_poll_count++ < 20) {
1111                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1112                                        true);
1113                        return;
1114                }
1115                fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1116                                want, actual);
1117        }
1118        fotg210->ASS_poll_count = 0;
1119
1120        /* The status is up-to-date; restart or stop the schedule as needed */
1121        if (want == 0) {        /* Stopped */
1122                if (fotg210->async_count > 0)
1123                        fotg210_set_command_bit(fotg210, CMD_ASE);
1124
1125        } else {                /* Running */
1126                if (fotg210->async_count == 0) {
1127
1128                        /* Turn off the schedule after a while */
1129                        fotg210_enable_event(fotg210,
1130                                        FOTG210_HRTIMER_DISABLE_ASYNC,
1131                                        true);
1132                }
1133        }
1134}
1135
1136/* Turn off the async schedule after a brief delay */
1137static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1138{
1139        fotg210_clear_command_bit(fotg210, CMD_ASE);
1140}
1141
1142
1143/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1144static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1145{
1146        unsigned actual, want;
1147
1148        /* Don't do anything if the controller isn't running (e.g., died) */
1149        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1150                return;
1151
1152        want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1153        actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1154
1155        if (want != actual) {
1156
1157                /* Poll again later, but give up after about 20 ms */
1158                if (fotg210->PSS_poll_count++ < 20) {
1159                        fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1160                                        true);
1161                        return;
1162                }
1163                fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1164                                want, actual);
1165        }
1166        fotg210->PSS_poll_count = 0;
1167
1168        /* The status is up-to-date; restart or stop the schedule as needed */
1169        if (want == 0) {        /* Stopped */
1170                if (fotg210->periodic_count > 0)
1171                        fotg210_set_command_bit(fotg210, CMD_PSE);
1172
1173        } else {                /* Running */
1174                if (fotg210->periodic_count == 0) {
1175
1176                        /* Turn off the schedule after a while */
1177                        fotg210_enable_event(fotg210,
1178                                        FOTG210_HRTIMER_DISABLE_PERIODIC,
1179                                        true);
1180                }
1181        }
1182}
1183
1184/* Turn off the periodic schedule after a brief delay */
1185static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1186{
1187        fotg210_clear_command_bit(fotg210, CMD_PSE);
1188}
1189
1190
1191/* Poll the STS_HALT status bit; see when a dead controller stops */
1192static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1193{
1194        if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1195
1196                /* Give up after a few milliseconds */
1197                if (fotg210->died_poll_count++ < 5) {
1198                        /* Try again later */
1199                        fotg210_enable_event(fotg210,
1200                                        FOTG210_HRTIMER_POLL_DEAD, true);
1201                        return;
1202                }
1203                fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1204        }
1205
1206        /* Clean up the mess */
1207        fotg210->rh_state = FOTG210_RH_HALTED;
1208        fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1209        fotg210_work(fotg210);
1210        end_unlink_async(fotg210);
1211
1212        /* Not in process context, so don't try to reset the controller */
1213}
1214
1215
1216/* Handle unlinked interrupt QHs once they are gone from the hardware */
1217static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1218{
1219        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1220
1221        /*
1222         * Process all the QHs on the intr_unlink list that were added
1223         * before the current unlink cycle began.  The list is in
1224         * temporal order, so stop when we reach the first entry in the
1225         * current cycle.  But if the root hub isn't running then
1226         * process all the QHs on the list.
1227         */
1228        fotg210->intr_unlinking = true;
1229        while (fotg210->intr_unlink) {
1230                struct fotg210_qh *qh = fotg210->intr_unlink;
1231
1232                if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1233                        break;
1234                fotg210->intr_unlink = qh->unlink_next;
1235                qh->unlink_next = NULL;
1236                end_unlink_intr(fotg210, qh);
1237        }
1238
1239        /* Handle remaining entries later */
1240        if (fotg210->intr_unlink) {
1241                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1242                                true);
1243                ++fotg210->intr_unlink_cycle;
1244        }
1245        fotg210->intr_unlinking = false;
1246}
1247
1248
1249/* Start another free-iTDs/siTDs cycle */
1250static void start_free_itds(struct fotg210_hcd *fotg210)
1251{
1252        if (!(fotg210->enabled_hrtimer_events &
1253                        BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1254                fotg210->last_itd_to_free = list_entry(
1255                                fotg210->cached_itd_list.prev,
1256                                struct fotg210_itd, itd_list);
1257                fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1258        }
1259}
1260
1261/* Wait for controller to stop using old iTDs and siTDs */
1262static void end_free_itds(struct fotg210_hcd *fotg210)
1263{
1264        struct fotg210_itd *itd, *n;
1265
1266        if (fotg210->rh_state < FOTG210_RH_RUNNING)
1267                fotg210->last_itd_to_free = NULL;
1268
1269        list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1270                list_del(&itd->itd_list);
1271                dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1272                if (itd == fotg210->last_itd_to_free)
1273                        break;
1274        }
1275
1276        if (!list_empty(&fotg210->cached_itd_list))
1277                start_free_itds(fotg210);
1278}
1279
1280
1281/* Handle lost (or very late) IAA interrupts */
1282static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1283{
1284        if (fotg210->rh_state != FOTG210_RH_RUNNING)
1285                return;
1286
1287        /*
1288         * Lost IAA irqs wedge things badly; seen first with a vt8235.
1289         * So we need this watchdog, but must protect it against both
1290         * (a) SMP races against real IAA firing and retriggering, and
1291         * (b) clean HC shutdown, when IAA watchdog was pending.
1292         */
1293        if (fotg210->async_iaa) {
1294                u32 cmd, status;
1295
1296                /* If we get here, IAA is *REALLY* late.  It's barely
1297                 * conceivable that the system is so busy that CMD_IAAD
1298                 * is still legitimately set, so let's be sure it's
1299                 * clear before we read STS_IAA.  (The HC should clear
1300                 * CMD_IAAD when it sets STS_IAA.)
1301                 */
1302                cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1303
1304                /*
1305                 * If IAA is set here it either legitimately triggered
1306                 * after the watchdog timer expired (_way_ late, so we'll
1307                 * still count it as lost) ... or a silicon erratum:
1308                 * - VIA seems to set IAA without triggering the IRQ;
1309                 * - IAAD potentially cleared without setting IAA.
1310                 */
1311                status = fotg210_readl(fotg210, &fotg210->regs->status);
1312                if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1313                        COUNT(fotg210->stats.lost_iaa);
1314                        fotg210_writel(fotg210, STS_IAA,
1315                                        &fotg210->regs->status);
1316                }
1317
1318                fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1319                                status, cmd);
1320                end_unlink_async(fotg210);
1321        }
1322}
1323
1324
1325/* Enable the I/O watchdog, if appropriate */
1326static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1327{
1328        /* Not needed if the controller isn't running or it's already enabled */
1329        if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1330                        (fotg210->enabled_hrtimer_events &
1331                        BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1332                return;
1333
1334        /*
1335         * Isochronous transfers always need the watchdog.
1336         * For other sorts we use it only if the flag is set.
1337         */
1338        if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1339                        fotg210->async_count + fotg210->intr_count > 0))
1340                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1341                                true);
1342}
1343
1344
1345/* Handler functions for the hrtimer event types.
1346 * Keep this array in the same order as the event types indexed by
1347 * enum fotg210_hrtimer_event in fotg210.h.
1348 */
1349static void (*event_handlers[])(struct fotg210_hcd *) = {
1350        fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1351        fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1352        fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1353        fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1354        end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1355        unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1356        fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1357        fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1358        fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1359        fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1360};
1361
1362static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1363{
1364        struct fotg210_hcd *fotg210 =
1365                        container_of(t, struct fotg210_hcd, hrtimer);
1366        ktime_t now;
1367        unsigned long events;
1368        unsigned long flags;
1369        unsigned e;
1370
1371        spin_lock_irqsave(&fotg210->lock, flags);
1372
1373        events = fotg210->enabled_hrtimer_events;
1374        fotg210->enabled_hrtimer_events = 0;
1375        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1376
1377        /*
1378         * Check each pending event.  If its time has expired, handle
1379         * the event; otherwise re-enable it.
1380         */
1381        now = ktime_get();
1382        for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1383                if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1384                        event_handlers[e](fotg210);
1385                else
1386                        fotg210_enable_event(fotg210, e, false);
1387        }
1388
1389        spin_unlock_irqrestore(&fotg210->lock, flags);
1390        return HRTIMER_NORESTART;
1391}
1392
1393#define fotg210_bus_suspend NULL
1394#define fotg210_bus_resume NULL
1395
1396static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1397                u32 __iomem *status_reg, int port_status)
1398{
1399        if (!(port_status & PORT_CONNECT))
1400                return port_status;
1401
1402        /* if reset finished and it's still not enabled -- handoff */
1403        if (!(port_status & PORT_PE))
1404                /* with integrated TT, there's nobody to hand it to! */
1405                fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1406                                index + 1);
1407        else
1408                fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1409                                index + 1);
1410
1411        return port_status;
1412}
1413
1414
1415/* build "status change" packet (one or two bytes) from HC registers */
1416
1417static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1418{
1419        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1420        u32 temp, status;
1421        u32 mask;
1422        int retval = 1;
1423        unsigned long flags;
1424
1425        /* init status to no-changes */
1426        buf[0] = 0;
1427
1428        /* Inform the core about resumes-in-progress by returning
1429         * a non-zero value even if there are no status changes.
1430         */
1431        status = fotg210->resuming_ports;
1432
1433        mask = PORT_CSC | PORT_PEC;
1434        /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1435
1436        /* no hub change reports (bit 0) for now (power, ...) */
1437
1438        /* port N changes (bit N)? */
1439        spin_lock_irqsave(&fotg210->lock, flags);
1440
1441        temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1442
1443        /*
1444         * Return status information even for ports with OWNER set.
1445         * Otherwise hub_wq wouldn't see the disconnect event when a
1446         * high-speed device is switched over to the companion
1447         * controller by the user.
1448         */
1449
1450        if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1451                        (fotg210->reset_done[0] &&
1452                        time_after_eq(jiffies, fotg210->reset_done[0]))) {
1453                buf[0] |= 1 << 1;
1454                status = STS_PCD;
1455        }
1456        /* FIXME autosuspend idle root hubs */
1457        spin_unlock_irqrestore(&fotg210->lock, flags);
1458        return status ? retval : 0;
1459}
1460
1461static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1462                struct usb_hub_descriptor *desc)
1463{
1464        int ports = HCS_N_PORTS(fotg210->hcs_params);
1465        u16 temp;
1466
1467        desc->bDescriptorType = USB_DT_HUB;
1468        desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1469        desc->bHubContrCurrent = 0;
1470
1471        desc->bNbrPorts = ports;
1472        temp = 1 + (ports / 8);
1473        desc->bDescLength = 7 + 2 * temp;
1474
1475        /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1476        memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1477        memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1478
1479        temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1480        temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1481        desc->wHubCharacteristics = cpu_to_le16(temp);
1482}
1483
1484static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1485                u16 wIndex, char *buf, u16 wLength)
1486{
1487        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1488        int ports = HCS_N_PORTS(fotg210->hcs_params);
1489        u32 __iomem *status_reg = &fotg210->regs->port_status;
1490        u32 temp, temp1, status;
1491        unsigned long flags;
1492        int retval = 0;
1493        unsigned selector;
1494
1495        /*
1496         * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1497         * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1498         * (track current state ourselves) ... blink for diagnostics,
1499         * power, "this is the one", etc.  EHCI spec supports this.
1500         */
1501
1502        spin_lock_irqsave(&fotg210->lock, flags);
1503        switch (typeReq) {
1504        case ClearHubFeature:
1505                switch (wValue) {
1506                case C_HUB_LOCAL_POWER:
1507                case C_HUB_OVER_CURRENT:
1508                        /* no hub-wide feature/status flags */
1509                        break;
1510                default:
1511                        goto error;
1512                }
1513                break;
1514        case ClearPortFeature:
1515                if (!wIndex || wIndex > ports)
1516                        goto error;
1517                wIndex--;
1518                temp = fotg210_readl(fotg210, status_reg);
1519                temp &= ~PORT_RWC_BITS;
1520
1521                /*
1522                 * Even if OWNER is set, so the port is owned by the
1523                 * companion controller, hub_wq needs to be able to clear
1524                 * the port-change status bits (especially
1525                 * USB_PORT_STAT_C_CONNECTION).
1526                 */
1527
1528                switch (wValue) {
1529                case USB_PORT_FEAT_ENABLE:
1530                        fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1531                        break;
1532                case USB_PORT_FEAT_C_ENABLE:
1533                        fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1534                        break;
1535                case USB_PORT_FEAT_SUSPEND:
1536                        if (temp & PORT_RESET)
1537                                goto error;
1538                        if (!(temp & PORT_SUSPEND))
1539                                break;
1540                        if ((temp & PORT_PE) == 0)
1541                                goto error;
1542
1543                        /* resume signaling for 20 msec */
1544                        fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1545                        fotg210->reset_done[wIndex] = jiffies
1546                                        + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1547                        break;
1548                case USB_PORT_FEAT_C_SUSPEND:
1549                        clear_bit(wIndex, &fotg210->port_c_suspend);
1550                        break;
1551                case USB_PORT_FEAT_C_CONNECTION:
1552                        fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1553                        break;
1554                case USB_PORT_FEAT_C_OVER_CURRENT:
1555                        fotg210_writel(fotg210, temp | OTGISR_OVC,
1556                                        &fotg210->regs->otgisr);
1557                        break;
1558                case USB_PORT_FEAT_C_RESET:
1559                        /* GetPortStatus clears reset */
1560                        break;
1561                default:
1562                        goto error;
1563                }
1564                fotg210_readl(fotg210, &fotg210->regs->command);
1565                break;
1566        case GetHubDescriptor:
1567                fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1568                                buf);
1569                break;
1570        case GetHubStatus:
1571                /* no hub-wide feature/status flags */
1572                memset(buf, 0, 4);
1573                /*cpu_to_le32s ((u32 *) buf); */
1574                break;
1575        case GetPortStatus:
1576                if (!wIndex || wIndex > ports)
1577                        goto error;
1578                wIndex--;
1579                status = 0;
1580                temp = fotg210_readl(fotg210, status_reg);
1581
1582                /* wPortChange bits */
1583                if (temp & PORT_CSC)
1584                        status |= USB_PORT_STAT_C_CONNECTION << 16;
1585                if (temp & PORT_PEC)
1586                        status |= USB_PORT_STAT_C_ENABLE << 16;
1587
1588                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1589                if (temp1 & OTGISR_OVC)
1590                        status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1591
1592                /* whoever resumes must GetPortStatus to complete it!! */
1593                if (temp & PORT_RESUME) {
1594
1595                        /* Remote Wakeup received? */
1596                        if (!fotg210->reset_done[wIndex]) {
1597                                /* resume signaling for 20 msec */
1598                                fotg210->reset_done[wIndex] = jiffies
1599                                                + msecs_to_jiffies(20);
1600                                /* check the port again */
1601                                mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1602                                                fotg210->reset_done[wIndex]);
1603                        }
1604
1605                        /* resume completed? */
1606                        else if (time_after_eq(jiffies,
1607                                        fotg210->reset_done[wIndex])) {
1608                                clear_bit(wIndex, &fotg210->suspended_ports);
1609                                set_bit(wIndex, &fotg210->port_c_suspend);
1610                                fotg210->reset_done[wIndex] = 0;
1611
1612                                /* stop resume signaling */
1613                                temp = fotg210_readl(fotg210, status_reg);
1614                                fotg210_writel(fotg210, temp &
1615                                                ~(PORT_RWC_BITS | PORT_RESUME),
1616                                                status_reg);
1617                                clear_bit(wIndex, &fotg210->resuming_ports);
1618                                retval = handshake(fotg210, status_reg,
1619                                                PORT_RESUME, 0, 2000);/* 2ms */
1620                                if (retval != 0) {
1621                                        fotg210_err(fotg210,
1622                                                        "port %d resume error %d\n",
1623                                                        wIndex + 1, retval);
1624                                        goto error;
1625                                }
1626                                temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1627                        }
1628                }
1629
1630                /* whoever resets must GetPortStatus to complete it!! */
1631                if ((temp & PORT_RESET) && time_after_eq(jiffies,
1632                                fotg210->reset_done[wIndex])) {
1633                        status |= USB_PORT_STAT_C_RESET << 16;
1634                        fotg210->reset_done[wIndex] = 0;
1635                        clear_bit(wIndex, &fotg210->resuming_ports);
1636
1637                        /* force reset to complete */
1638                        fotg210_writel(fotg210,
1639                                        temp & ~(PORT_RWC_BITS | PORT_RESET),
1640                                        status_reg);
1641                        /* REVISIT:  some hardware needs 550+ usec to clear
1642                         * this bit; seems too long to spin routinely...
1643                         */
1644                        retval = handshake(fotg210, status_reg,
1645                                        PORT_RESET, 0, 1000);
1646                        if (retval != 0) {
1647                                fotg210_err(fotg210, "port %d reset error %d\n",
1648                                                wIndex + 1, retval);
1649                                goto error;
1650                        }
1651
1652                        /* see what we found out */
1653                        temp = check_reset_complete(fotg210, wIndex, status_reg,
1654                                        fotg210_readl(fotg210, status_reg));
1655                }
1656
1657                if (!(temp & (PORT_RESUME|PORT_RESET))) {
1658                        fotg210->reset_done[wIndex] = 0;
1659                        clear_bit(wIndex, &fotg210->resuming_ports);
1660                }
1661
1662                /* transfer dedicated ports to the companion hc */
1663                if ((temp & PORT_CONNECT) &&
1664                                test_bit(wIndex, &fotg210->companion_ports)) {
1665                        temp &= ~PORT_RWC_BITS;
1666                        fotg210_writel(fotg210, temp, status_reg);
1667                        fotg210_dbg(fotg210, "port %d --> companion\n",
1668                                        wIndex + 1);
1669                        temp = fotg210_readl(fotg210, status_reg);
1670                }
1671
1672                /*
1673                 * Even if OWNER is set, there's no harm letting hub_wq
1674                 * see the wPortStatus values (they should all be 0 except
1675                 * for PORT_POWER anyway).
1676                 */
1677
1678                if (temp & PORT_CONNECT) {
1679                        status |= USB_PORT_STAT_CONNECTION;
1680                        status |= fotg210_port_speed(fotg210, temp);
1681                }
1682                if (temp & PORT_PE)
1683                        status |= USB_PORT_STAT_ENABLE;
1684
1685                /* maybe the port was unsuspended without our knowledge */
1686                if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1687                        status |= USB_PORT_STAT_SUSPEND;
1688                } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1689                        clear_bit(wIndex, &fotg210->suspended_ports);
1690                        clear_bit(wIndex, &fotg210->resuming_ports);
1691                        fotg210->reset_done[wIndex] = 0;
1692                        if (temp & PORT_PE)
1693                                set_bit(wIndex, &fotg210->port_c_suspend);
1694                }
1695
1696                temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1697                if (temp1 & OTGISR_OVC)
1698                        status |= USB_PORT_STAT_OVERCURRENT;
1699                if (temp & PORT_RESET)
1700                        status |= USB_PORT_STAT_RESET;
1701                if (test_bit(wIndex, &fotg210->port_c_suspend))
1702                        status |= USB_PORT_STAT_C_SUSPEND << 16;
1703
1704                if (status & ~0xffff)   /* only if wPortChange is interesting */
1705                        dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1706                put_unaligned_le32(status, buf);
1707                break;
1708        case SetHubFeature:
1709                switch (wValue) {
1710                case C_HUB_LOCAL_POWER:
1711                case C_HUB_OVER_CURRENT:
1712                        /* no hub-wide feature/status flags */
1713                        break;
1714                default:
1715                        goto error;
1716                }
1717                break;
1718        case SetPortFeature:
1719                selector = wIndex >> 8;
1720                wIndex &= 0xff;
1721
1722                if (!wIndex || wIndex > ports)
1723                        goto error;
1724                wIndex--;
1725                temp = fotg210_readl(fotg210, status_reg);
1726                temp &= ~PORT_RWC_BITS;
1727                switch (wValue) {
1728                case USB_PORT_FEAT_SUSPEND:
1729                        if ((temp & PORT_PE) == 0
1730                                        || (temp & PORT_RESET) != 0)
1731                                goto error;
1732
1733                        /* After above check the port must be connected.
1734                         * Set appropriate bit thus could put phy into low power
1735                         * mode if we have hostpc feature
1736                         */
1737                        fotg210_writel(fotg210, temp | PORT_SUSPEND,
1738                                        status_reg);
1739                        set_bit(wIndex, &fotg210->suspended_ports);
1740                        break;
1741                case USB_PORT_FEAT_RESET:
1742                        if (temp & PORT_RESUME)
1743                                goto error;
1744                        /* line status bits may report this as low speed,
1745                         * which can be fine if this root hub has a
1746                         * transaction translator built in.
1747                         */
1748                        fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1749                        temp |= PORT_RESET;
1750                        temp &= ~PORT_PE;
1751
1752                        /*
1753                         * caller must wait, then call GetPortStatus
1754                         * usb 2.0 spec says 50 ms resets on root
1755                         */
1756                        fotg210->reset_done[wIndex] = jiffies
1757                                        + msecs_to_jiffies(50);
1758                        fotg210_writel(fotg210, temp, status_reg);
1759                        break;
1760
1761                /* For downstream facing ports (these):  one hub port is put
1762                 * into test mode according to USB2 11.24.2.13, then the hub
1763                 * must be reset (which for root hub now means rmmod+modprobe,
1764                 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1765                 * about the EHCI-specific stuff.
1766                 */
1767                case USB_PORT_FEAT_TEST:
1768                        if (!selector || selector > 5)
1769                                goto error;
1770                        spin_unlock_irqrestore(&fotg210->lock, flags);
1771                        fotg210_quiesce(fotg210);
1772                        spin_lock_irqsave(&fotg210->lock, flags);
1773
1774                        /* Put all enabled ports into suspend */
1775                        temp = fotg210_readl(fotg210, status_reg) &
1776                                ~PORT_RWC_BITS;
1777                        if (temp & PORT_PE)
1778                                fotg210_writel(fotg210, temp | PORT_SUSPEND,
1779                                                status_reg);
1780
1781                        spin_unlock_irqrestore(&fotg210->lock, flags);
1782                        fotg210_halt(fotg210);
1783                        spin_lock_irqsave(&fotg210->lock, flags);
1784
1785                        temp = fotg210_readl(fotg210, status_reg);
1786                        temp |= selector << 16;
1787                        fotg210_writel(fotg210, temp, status_reg);
1788                        break;
1789
1790                default:
1791                        goto error;
1792                }
1793                fotg210_readl(fotg210, &fotg210->regs->command);
1794                break;
1795
1796        default:
1797error:
1798                /* "stall" on error */
1799                retval = -EPIPE;
1800        }
1801        spin_unlock_irqrestore(&fotg210->lock, flags);
1802        return retval;
1803}
1804
1805static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1806                int portnum)
1807{
1808        return;
1809}
1810
1811static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1812                int portnum)
1813{
1814        return 0;
1815}
1816
1817/* There's basically three types of memory:
1818 *      - data used only by the HCD ... kmalloc is fine
1819 *      - async and periodic schedules, shared by HC and HCD ... these
1820 *        need to use dma_pool or dma_alloc_coherent
1821 *      - driver buffers, read/written by HC ... single shot DMA mapped
1822 *
1823 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1824 * No memory seen by this driver is pageable.
1825 */
1826
1827/* Allocate the key transfer structures from the previously allocated pool */
1828static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1829                struct fotg210_qtd *qtd, dma_addr_t dma)
1830{
1831        memset(qtd, 0, sizeof(*qtd));
1832        qtd->qtd_dma = dma;
1833        qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1834        qtd->hw_next = FOTG210_LIST_END(fotg210);
1835        qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1836        INIT_LIST_HEAD(&qtd->qtd_list);
1837}
1838
1839static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1840                gfp_t flags)
1841{
1842        struct fotg210_qtd *qtd;
1843        dma_addr_t dma;
1844
1845        qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1846        if (qtd != NULL)
1847                fotg210_qtd_init(fotg210, qtd, dma);
1848
1849        return qtd;
1850}
1851
1852static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1853                struct fotg210_qtd *qtd)
1854{
1855        dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1856}
1857
1858
1859static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1860{
1861        /* clean qtds first, and know this is not linked */
1862        if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1863                fotg210_dbg(fotg210, "unused qh not empty!\n");
1864                BUG();
1865        }
1866        if (qh->dummy)
1867                fotg210_qtd_free(fotg210, qh->dummy);
1868        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1869        kfree(qh);
1870}
1871
1872static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1873                gfp_t flags)
1874{
1875        struct fotg210_qh *qh;
1876        dma_addr_t dma;
1877
1878        qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1879        if (!qh)
1880                goto done;
1881        qh->hw = (struct fotg210_qh_hw *)
1882                dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1883        if (!qh->hw)
1884                goto fail;
1885        memset(qh->hw, 0, sizeof(*qh->hw));
1886        qh->qh_dma = dma;
1887        INIT_LIST_HEAD(&qh->qtd_list);
1888
1889        /* dummy td enables safe urb queuing */
1890        qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1891        if (qh->dummy == NULL) {
1892                fotg210_dbg(fotg210, "no dummy td\n");
1893                goto fail1;
1894        }
1895done:
1896        return qh;
1897fail1:
1898        dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1899fail:
1900        kfree(qh);
1901        return NULL;
1902}
1903
1904/* The queue heads and transfer descriptors are managed from pools tied
1905 * to each of the "per device" structures.
1906 * This is the initialisation and cleanup code.
1907 */
1908
1909static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1910{
1911        if (fotg210->async)
1912                qh_destroy(fotg210, fotg210->async);
1913        fotg210->async = NULL;
1914
1915        if (fotg210->dummy)
1916                qh_destroy(fotg210, fotg210->dummy);
1917        fotg210->dummy = NULL;
1918
1919        /* DMA consistent memory and pools */
1920        dma_pool_destroy(fotg210->qtd_pool);
1921        fotg210->qtd_pool = NULL;
1922
1923        dma_pool_destroy(fotg210->qh_pool);
1924        fotg210->qh_pool = NULL;
1925
1926        dma_pool_destroy(fotg210->itd_pool);
1927        fotg210->itd_pool = NULL;
1928
1929        if (fotg210->periodic)
1930                dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1931                                fotg210->periodic_size * sizeof(u32),
1932                                fotg210->periodic, fotg210->periodic_dma);
1933        fotg210->periodic = NULL;
1934
1935        /* shadow periodic table */
1936        kfree(fotg210->pshadow);
1937        fotg210->pshadow = NULL;
1938}
1939
1940/* remember to add cleanup code (above) if you add anything here */
1941static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1942{
1943        int i;
1944
1945        /* QTDs for control/bulk/intr transfers */
1946        fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1947                        fotg210_to_hcd(fotg210)->self.controller,
1948                        sizeof(struct fotg210_qtd),
1949                        32 /* byte alignment (for hw parts) */,
1950                        4096 /* can't cross 4K */);
1951        if (!fotg210->qtd_pool)
1952                goto fail;
1953
1954        /* QHs for control/bulk/intr transfers */
1955        fotg210->qh_pool = dma_pool_create("fotg210_qh",
1956                        fotg210_to_hcd(fotg210)->self.controller,
1957                        sizeof(struct fotg210_qh_hw),
1958                        32 /* byte alignment (for hw parts) */,
1959                        4096 /* can't cross 4K */);
1960        if (!fotg210->qh_pool)
1961                goto fail;
1962
1963        fotg210->async = fotg210_qh_alloc(fotg210, flags);
1964        if (!fotg210->async)
1965                goto fail;
1966
1967        /* ITD for high speed ISO transfers */
1968        fotg210->itd_pool = dma_pool_create("fotg210_itd",
1969                        fotg210_to_hcd(fotg210)->self.controller,
1970                        sizeof(struct fotg210_itd),
1971                        64 /* byte alignment (for hw parts) */,
1972                        4096 /* can't cross 4K */);
1973        if (!fotg210->itd_pool)
1974                goto fail;
1975
1976        /* Hardware periodic table */
1977        fotg210->periodic = (__le32 *)
1978                dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1979                                fotg210->periodic_size * sizeof(__le32),
1980                                &fotg210->periodic_dma, 0);
1981        if (fotg210->periodic == NULL)
1982                goto fail;
1983
1984        for (i = 0; i < fotg210->periodic_size; i++)
1985                fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1986
1987        /* software shadow of hardware table */
1988        fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1989                        flags);
1990        if (fotg210->pshadow != NULL)
1991                return 0;
1992
1993fail:
1994        fotg210_dbg(fotg210, "couldn't init memory\n");
1995        fotg210_mem_cleanup(fotg210);
1996        return -ENOMEM;
1997}
1998/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1999 *
2000 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2001 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2002 * buffers needed for the larger number).  We use one QH per endpoint, queue
2003 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2004 *
2005 * ISO traffic uses "ISO TD" (itd) records, and (along with
2006 * interrupts) needs careful scheduling.  Performance improvements can be
2007 * an ongoing challenge.  That's in "ehci-sched.c".
2008 *
2009 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2010 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2011 * (b) special fields in qh entries or (c) split iso entries.  TTs will
2012 * buffer low/full speed data so the host collects it at high speed.
2013 */
2014
2015/* fill a qtd, returning how much of the buffer we were able to queue up */
2016static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2017                dma_addr_t buf, size_t len, int token, int maxpacket)
2018{
2019        int i, count;
2020        u64 addr = buf;
2021
2022        /* one buffer entry per 4K ... first might be short or unaligned */
2023        qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2024        qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2025        count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2026        if (likely(len < count))                /* ... iff needed */
2027                count = len;
2028        else {
2029                buf +=  0x1000;
2030                buf &= ~0x0fff;
2031
2032                /* per-qtd limit: from 16K to 20K (best alignment) */
2033                for (i = 1; count < len && i < 5; i++) {
2034                        addr = buf;
2035                        qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2036                        qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2037                                        (u32)(addr >> 32));
2038                        buf += 0x1000;
2039                        if ((count + 0x1000) < len)
2040                                count += 0x1000;
2041                        else
2042                                count = len;
2043                }
2044
2045                /* short packets may only terminate transfers */
2046                if (count != len)
2047                        count -= (count % maxpacket);
2048        }
2049        qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2050        qtd->length = count;
2051
2052        return count;
2053}
2054
2055static inline void qh_update(struct fotg210_hcd *fotg210,
2056                struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2057{
2058        struct fotg210_qh_hw *hw = qh->hw;
2059
2060        /* writes to an active overlay are unsafe */
2061        BUG_ON(qh->qh_state != QH_STATE_IDLE);
2062
2063        hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2064        hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2065
2066        /* Except for control endpoints, we make hardware maintain data
2067         * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2068         * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2069         * ever clear it.
2070         */
2071        if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2072                unsigned is_out, epnum;
2073
2074                is_out = qh->is_out;
2075                epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2076                if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2077                        hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2078                        usb_settoggle(qh->dev, epnum, is_out, 1);
2079                }
2080        }
2081
2082        hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2083}
2084
2085/* if it weren't for a common silicon quirk (writing the dummy into the qh
2086 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2087 * recovery (including urb dequeue) would need software changes to a QH...
2088 */
2089static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2090{
2091        struct fotg210_qtd *qtd;
2092
2093        if (list_empty(&qh->qtd_list))
2094                qtd = qh->dummy;
2095        else {
2096                qtd = list_entry(qh->qtd_list.next,
2097                                struct fotg210_qtd, qtd_list);
2098                /*
2099                 * first qtd may already be partially processed.
2100                 * If we come here during unlink, the QH overlay region
2101                 * might have reference to the just unlinked qtd. The
2102                 * qtd is updated in qh_completions(). Update the QH
2103                 * overlay here.
2104                 */
2105                if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2106                        qh->hw->hw_qtd_next = qtd->hw_next;
2107                        qtd = NULL;
2108                }
2109        }
2110
2111        if (qtd)
2112                qh_update(fotg210, qh, qtd);
2113}
2114
2115static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2116
2117static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2118                struct usb_host_endpoint *ep)
2119{
2120        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2121        struct fotg210_qh *qh = ep->hcpriv;
2122        unsigned long flags;
2123
2124        spin_lock_irqsave(&fotg210->lock, flags);
2125        qh->clearing_tt = 0;
2126        if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2127                        && fotg210->rh_state == FOTG210_RH_RUNNING)
2128                qh_link_async(fotg210, qh);
2129        spin_unlock_irqrestore(&fotg210->lock, flags);
2130}
2131
2132static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2133                struct fotg210_qh *qh, struct urb *urb, u32 token)
2134{
2135
2136        /* If an async split transaction gets an error or is unlinked,
2137         * the TT buffer may be left in an indeterminate state.  We
2138         * have to clear the TT buffer.
2139         *
2140         * Note: this routine is never called for Isochronous transfers.
2141         */
2142        if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2143                struct usb_device *tt = urb->dev->tt->hub;
2144
2145                dev_dbg(&tt->dev,
2146                                "clear tt buffer port %d, a%d ep%d t%08x\n",
2147                                urb->dev->ttport, urb->dev->devnum,
2148                                usb_pipeendpoint(urb->pipe), token);
2149
2150                if (urb->dev->tt->hub !=
2151                                fotg210_to_hcd(fotg210)->self.root_hub) {
2152                        if (usb_hub_clear_tt_buffer(urb) == 0)
2153                                qh->clearing_tt = 1;
2154                }
2155        }
2156}
2157
2158static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2159                size_t length, u32 token)
2160{
2161        int status = -EINPROGRESS;
2162
2163        /* count IN/OUT bytes, not SETUP (even short packets) */
2164        if (likely(QTD_PID(token) != 2))
2165                urb->actual_length += length - QTD_LENGTH(token);
2166
2167        /* don't modify error codes */
2168        if (unlikely(urb->unlinked))
2169                return status;
2170
2171        /* force cleanup after short read; not always an error */
2172        if (unlikely(IS_SHORT_READ(token)))
2173                status = -EREMOTEIO;
2174
2175        /* serious "can't proceed" faults reported by the hardware */
2176        if (token & QTD_STS_HALT) {
2177                if (token & QTD_STS_BABBLE) {
2178                        /* FIXME "must" disable babbling device's port too */
2179                        status = -EOVERFLOW;
2180                /* CERR nonzero + halt --> stall */
2181                } else if (QTD_CERR(token)) {
2182                        status = -EPIPE;
2183
2184                /* In theory, more than one of the following bits can be set
2185                 * since they are sticky and the transaction is retried.
2186                 * Which to test first is rather arbitrary.
2187                 */
2188                } else if (token & QTD_STS_MMF) {
2189                        /* fs/ls interrupt xfer missed the complete-split */
2190                        status = -EPROTO;
2191                } else if (token & QTD_STS_DBE) {
2192                        status = (QTD_PID(token) == 1) /* IN ? */
2193                                ? -ENOSR  /* hc couldn't read data */
2194                                : -ECOMM; /* hc couldn't write data */
2195                } else if (token & QTD_STS_XACT) {
2196                        /* timeout, bad CRC, wrong PID, etc */
2197                        fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2198                                        urb->dev->devpath,
2199                                        usb_pipeendpoint(urb->pipe),
2200                                        usb_pipein(urb->pipe) ? "in" : "out");
2201                        status = -EPROTO;
2202                } else {        /* unknown */
2203                        status = -EPROTO;
2204                }
2205
2206                fotg210_dbg(fotg210,
2207                                "dev%d ep%d%s qtd token %08x --> status %d\n",
2208                                usb_pipedevice(urb->pipe),
2209                                usb_pipeendpoint(urb->pipe),
2210                                usb_pipein(urb->pipe) ? "in" : "out",
2211                                token, status);
2212        }
2213
2214        return status;
2215}
2216
2217static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2218                int status)
2219__releases(fotg210->lock)
2220__acquires(fotg210->lock)
2221{
2222        if (likely(urb->hcpriv != NULL)) {
2223                struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2224
2225                /* S-mask in a QH means it's an interrupt urb */
2226                if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2227
2228                        /* ... update hc-wide periodic stats (for usbfs) */
2229                        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2230                }
2231        }
2232
2233        if (unlikely(urb->unlinked)) {
2234                COUNT(fotg210->stats.unlink);
2235        } else {
2236                /* report non-error and short read status as zero */
2237                if (status == -EINPROGRESS || status == -EREMOTEIO)
2238                        status = 0;
2239                COUNT(fotg210->stats.complete);
2240        }
2241
2242#ifdef FOTG210_URB_TRACE
2243        fotg210_dbg(fotg210,
2244                        "%s %s urb %p ep%d%s status %d len %d/%d\n",
2245                        __func__, urb->dev->devpath, urb,
2246                        usb_pipeendpoint(urb->pipe),
2247                        usb_pipein(urb->pipe) ? "in" : "out",
2248                        status,
2249                        urb->actual_length, urb->transfer_buffer_length);
2250#endif
2251
2252        /* complete() can reenter this HCD */
2253        usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2254        spin_unlock(&fotg210->lock);
2255        usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2256        spin_lock(&fotg210->lock);
2257}
2258
2259static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2260
2261/* Process and free completed qtds for a qh, returning URBs to drivers.
2262 * Chases up to qh->hw_current.  Returns number of completions called,
2263 * indicating how much "real" work we did.
2264 */
2265static unsigned qh_completions(struct fotg210_hcd *fotg210,
2266                struct fotg210_qh *qh)
2267{
2268        struct fotg210_qtd *last, *end = qh->dummy;
2269        struct fotg210_qtd *qtd, *tmp;
2270        int last_status;
2271        int stopped;
2272        unsigned count = 0;
2273        u8 state;
2274        struct fotg210_qh_hw *hw = qh->hw;
2275
2276        if (unlikely(list_empty(&qh->qtd_list)))
2277                return count;
2278
2279        /* completions (or tasks on other cpus) must never clobber HALT
2280         * till we've gone through and cleaned everything up, even when
2281         * they add urbs to this qh's queue or mark them for unlinking.
2282         *
2283         * NOTE:  unlinking expects to be done in queue order.
2284         *
2285         * It's a bug for qh->qh_state to be anything other than
2286         * QH_STATE_IDLE, unless our caller is scan_async() or
2287         * scan_intr().
2288         */
2289        state = qh->qh_state;
2290        qh->qh_state = QH_STATE_COMPLETING;
2291        stopped = (state == QH_STATE_IDLE);
2292
2293rescan:
2294        last = NULL;
2295        last_status = -EINPROGRESS;
2296        qh->needs_rescan = 0;
2297
2298        /* remove de-activated QTDs from front of queue.
2299         * after faults (including short reads), cleanup this urb
2300         * then let the queue advance.
2301         * if queue is stopped, handles unlinks.
2302         */
2303        list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2304                struct urb *urb;
2305                u32 token = 0;
2306
2307                urb = qtd->urb;
2308
2309                /* clean up any state from previous QTD ...*/
2310                if (last) {
2311                        if (likely(last->urb != urb)) {
2312                                fotg210_urb_done(fotg210, last->urb,
2313                                                last_status);
2314                                count++;
2315                                last_status = -EINPROGRESS;
2316                        }
2317                        fotg210_qtd_free(fotg210, last);
2318                        last = NULL;
2319                }
2320
2321                /* ignore urbs submitted during completions we reported */
2322                if (qtd == end)
2323                        break;
2324
2325                /* hardware copies qtd out of qh overlay */
2326                rmb();
2327                token = hc32_to_cpu(fotg210, qtd->hw_token);
2328
2329                /* always clean up qtds the hc de-activated */
2330retry_xacterr:
2331                if ((token & QTD_STS_ACTIVE) == 0) {
2332
2333                        /* Report Data Buffer Error: non-fatal but useful */
2334                        if (token & QTD_STS_DBE)
2335                                fotg210_dbg(fotg210,
2336                                        "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2337                                        urb, usb_endpoint_num(&urb->ep->desc),
2338                                        usb_endpoint_dir_in(&urb->ep->desc)
2339                                                ? "in" : "out",
2340                                        urb->transfer_buffer_length, qtd, qh);
2341
2342                        /* on STALL, error, and short reads this urb must
2343                         * complete and all its qtds must be recycled.
2344                         */
2345                        if ((token & QTD_STS_HALT) != 0) {
2346
2347                                /* retry transaction errors until we
2348                                 * reach the software xacterr limit
2349                                 */
2350                                if ((token & QTD_STS_XACT) &&
2351                                                QTD_CERR(token) == 0 &&
2352                                                ++qh->xacterrs < QH_XACTERR_MAX &&
2353                                                !urb->unlinked) {
2354                                        fotg210_dbg(fotg210,
2355                                                "detected XactErr len %zu/%zu retry %d\n",
2356                                                qtd->length - QTD_LENGTH(token),
2357                                                qtd->length,
2358                                                qh->xacterrs);
2359
2360                                        /* reset the token in the qtd and the
2361                                         * qh overlay (which still contains
2362                                         * the qtd) so that we pick up from
2363                                         * where we left off
2364                                         */
2365                                        token &= ~QTD_STS_HALT;
2366                                        token |= QTD_STS_ACTIVE |
2367                                                 (FOTG210_TUNE_CERR << 10);
2368                                        qtd->hw_token = cpu_to_hc32(fotg210,
2369                                                        token);
2370                                        wmb();
2371                                        hw->hw_token = cpu_to_hc32(fotg210,
2372                                                        token);
2373                                        goto retry_xacterr;
2374                                }
2375                                stopped = 1;
2376
2377                        /* magic dummy for some short reads; qh won't advance.
2378                         * that silicon quirk can kick in with this dummy too.
2379                         *
2380                         * other short reads won't stop the queue, including
2381                         * control transfers (status stage handles that) or
2382                         * most other single-qtd reads ... the queue stops if
2383                         * URB_SHORT_NOT_OK was set so the driver submitting
2384                         * the urbs could clean it up.
2385                         */
2386                        } else if (IS_SHORT_READ(token) &&
2387                                        !(qtd->hw_alt_next &
2388                                        FOTG210_LIST_END(fotg210))) {
2389                                stopped = 1;
2390                        }
2391
2392                /* stop scanning when we reach qtds the hc is using */
2393                } else if (likely(!stopped
2394                                && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2395                        break;
2396
2397                /* scan the whole queue for unlinks whenever it stops */
2398                } else {
2399                        stopped = 1;
2400
2401                        /* cancel everything if we halt, suspend, etc */
2402                        if (fotg210->rh_state < FOTG210_RH_RUNNING)
2403                                last_status = -ESHUTDOWN;
2404
2405                        /* this qtd is active; skip it unless a previous qtd
2406                         * for its urb faulted, or its urb was canceled.
2407                         */
2408                        else if (last_status == -EINPROGRESS && !urb->unlinked)
2409                                continue;
2410
2411                        /* qh unlinked; token in overlay may be most current */
2412                        if (state == QH_STATE_IDLE &&
2413                                        cpu_to_hc32(fotg210, qtd->qtd_dma)
2414                                        == hw->hw_current) {
2415                                token = hc32_to_cpu(fotg210, hw->hw_token);
2416
2417                                /* An unlink may leave an incomplete
2418                                 * async transaction in the TT buffer.
2419                                 * We have to clear it.
2420                                 */
2421                                fotg210_clear_tt_buffer(fotg210, qh, urb,
2422                                                token);
2423                        }
2424                }
2425
2426                /* unless we already know the urb's status, collect qtd status
2427                 * and update count of bytes transferred.  in common short read
2428                 * cases with only one data qtd (including control transfers),
2429                 * queue processing won't halt.  but with two or more qtds (for
2430                 * example, with a 32 KB transfer), when the first qtd gets a
2431                 * short read the second must be removed by hand.
2432                 */
2433                if (last_status == -EINPROGRESS) {
2434                        last_status = qtd_copy_status(fotg210, urb,
2435                                        qtd->length, token);
2436                        if (last_status == -EREMOTEIO &&
2437                                        (qtd->hw_alt_next &
2438                                        FOTG210_LIST_END(fotg210)))
2439                                last_status = -EINPROGRESS;
2440
2441                        /* As part of low/full-speed endpoint-halt processing
2442                         * we must clear the TT buffer (11.17.5).
2443                         */
2444                        if (unlikely(last_status != -EINPROGRESS &&
2445                                        last_status != -EREMOTEIO)) {
2446                                /* The TT's in some hubs malfunction when they
2447                                 * receive this request following a STALL (they
2448                                 * stop sending isochronous packets).  Since a
2449                                 * STALL can't leave the TT buffer in a busy
2450                                 * state (if you believe Figures 11-48 - 11-51
2451                                 * in the USB 2.0 spec), we won't clear the TT
2452                                 * buffer in this case.  Strictly speaking this
2453                                 * is a violation of the spec.
2454                                 */
2455                                if (last_status != -EPIPE)
2456                                        fotg210_clear_tt_buffer(fotg210, qh,
2457                                                        urb, token);
2458                        }
2459                }
2460
2461                /* if we're removing something not at the queue head,
2462                 * patch the hardware queue pointer.
2463                 */
2464                if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2465                        last = list_entry(qtd->qtd_list.prev,
2466                                        struct fotg210_qtd, qtd_list);
2467                        last->hw_next = qtd->hw_next;
2468                }
2469
2470                /* remove qtd; it's recycled after possible urb completion */
2471                list_del(&qtd->qtd_list);
2472                last = qtd;
2473
2474                /* reinit the xacterr counter for the next qtd */
2475                qh->xacterrs = 0;
2476        }
2477
2478        /* last urb's completion might still need calling */
2479        if (likely(last != NULL)) {
2480                fotg210_urb_done(fotg210, last->urb, last_status);
2481                count++;
2482                fotg210_qtd_free(fotg210, last);
2483        }
2484
2485        /* Do we need to rescan for URBs dequeued during a giveback? */
2486        if (unlikely(qh->needs_rescan)) {
2487                /* If the QH is already unlinked, do the rescan now. */
2488                if (state == QH_STATE_IDLE)
2489                        goto rescan;
2490
2491                /* Otherwise we have to wait until the QH is fully unlinked.
2492                 * Our caller will start an unlink if qh->needs_rescan is
2493                 * set.  But if an unlink has already started, nothing needs
2494                 * to be done.
2495                 */
2496                if (state != QH_STATE_LINKED)
2497                        qh->needs_rescan = 0;
2498        }
2499
2500        /* restore original state; caller must unlink or relink */
2501        qh->qh_state = state;
2502
2503        /* be sure the hardware's done with the qh before refreshing
2504         * it after fault cleanup, or recovering from silicon wrongly
2505         * overlaying the dummy qtd (which reduces DMA chatter).
2506         */
2507        if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2508                switch (state) {
2509                case QH_STATE_IDLE:
2510                        qh_refresh(fotg210, qh);
2511                        break;
2512                case QH_STATE_LINKED:
2513                        /* We won't refresh a QH that's linked (after the HC
2514                         * stopped the queue).  That avoids a race:
2515                         *  - HC reads first part of QH;
2516                         *  - CPU updates that first part and the token;
2517                         *  - HC reads rest of that QH, including token
2518                         * Result:  HC gets an inconsistent image, and then
2519                         * DMAs to/from the wrong memory (corrupting it).
2520                         *
2521                         * That should be rare for interrupt transfers,
2522                         * except maybe high bandwidth ...
2523                         */
2524
2525                        /* Tell the caller to start an unlink */
2526                        qh->needs_rescan = 1;
2527                        break;
2528                /* otherwise, unlink already started */
2529                }
2530        }
2531
2532        return count;
2533}
2534
2535/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2536#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2537/* ... and packet size, for any kind of endpoint descriptor */
2538#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2539
2540/* reverse of qh_urb_transaction:  free a list of TDs.
2541 * used for cleanup after errors, before HC sees an URB's TDs.
2542 */
2543static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2544                struct list_head *head)
2545{
2546        struct fotg210_qtd *qtd, *temp;
2547
2548        list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2549                list_del(&qtd->qtd_list);
2550                fotg210_qtd_free(fotg210, qtd);
2551        }
2552}
2553
2554/* create a list of filled qtds for this URB; won't link into qh.
2555 */
2556static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2557                struct urb *urb, struct list_head *head, gfp_t flags)
2558{
2559        struct fotg210_qtd *qtd, *qtd_prev;
2560        dma_addr_t buf;
2561        int len, this_sg_len, maxpacket;
2562        int is_input;
2563        u32 token;
2564        int i;
2565        struct scatterlist *sg;
2566
2567        /*
2568         * URBs map to sequences of QTDs:  one logical transaction
2569         */
2570        qtd = fotg210_qtd_alloc(fotg210, flags);
2571        if (unlikely(!qtd))
2572                return NULL;
2573        list_add_tail(&qtd->qtd_list, head);
2574        qtd->urb = urb;
2575
2576        token = QTD_STS_ACTIVE;
2577        token |= (FOTG210_TUNE_CERR << 10);
2578        /* for split transactions, SplitXState initialized to zero */
2579
2580        len = urb->transfer_buffer_length;
2581        is_input = usb_pipein(urb->pipe);
2582        if (usb_pipecontrol(urb->pipe)) {
2583                /* SETUP pid */
2584                qtd_fill(fotg210, qtd, urb->setup_dma,
2585                                sizeof(struct usb_ctrlrequest),
2586                                token | (2 /* "setup" */ << 8), 8);
2587
2588                /* ... and always at least one more pid */
2589                token ^= QTD_TOGGLE;
2590                qtd_prev = qtd;
2591                qtd = fotg210_qtd_alloc(fotg210, flags);
2592                if (unlikely(!qtd))
2593                        goto cleanup;
2594                qtd->urb = urb;
2595                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2596                list_add_tail(&qtd->qtd_list, head);
2597
2598                /* for zero length DATA stages, STATUS is always IN */
2599                if (len == 0)
2600                        token |= (1 /* "in" */ << 8);
2601        }
2602
2603        /*
2604         * data transfer stage:  buffer setup
2605         */
2606        i = urb->num_mapped_sgs;
2607        if (len > 0 && i > 0) {
2608                sg = urb->sg;
2609                buf = sg_dma_address(sg);
2610
2611                /* urb->transfer_buffer_length may be smaller than the
2612                 * size of the scatterlist (or vice versa)
2613                 */
2614                this_sg_len = min_t(int, sg_dma_len(sg), len);
2615        } else {
2616                sg = NULL;
2617                buf = urb->transfer_dma;
2618                this_sg_len = len;
2619        }
2620
2621        if (is_input)
2622                token |= (1 /* "in" */ << 8);
2623        /* else it's already initted to "out" pid (0 << 8) */
2624
2625        maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2626
2627        /*
2628         * buffer gets wrapped in one or more qtds;
2629         * last one may be "short" (including zero len)
2630         * and may serve as a control status ack
2631         */
2632        for (;;) {
2633                int this_qtd_len;
2634
2635                this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2636                                maxpacket);
2637                this_sg_len -= this_qtd_len;
2638                len -= this_qtd_len;
2639                buf += this_qtd_len;
2640
2641                /*
2642                 * short reads advance to a "magic" dummy instead of the next
2643                 * qtd ... that forces the queue to stop, for manual cleanup.
2644                 * (this will usually be overridden later.)
2645                 */
2646                if (is_input)
2647                        qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2648
2649                /* qh makes control packets use qtd toggle; maybe switch it */
2650                if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2651                        token ^= QTD_TOGGLE;
2652
2653                if (likely(this_sg_len <= 0)) {
2654                        if (--i <= 0 || len <= 0)
2655                                break;
2656                        sg = sg_next(sg);
2657                        buf = sg_dma_address(sg);
2658                        this_sg_len = min_t(int, sg_dma_len(sg), len);
2659                }
2660
2661                qtd_prev = qtd;
2662                qtd = fotg210_qtd_alloc(fotg210, flags);
2663                if (unlikely(!qtd))
2664                        goto cleanup;
2665                qtd->urb = urb;
2666                qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2667                list_add_tail(&qtd->qtd_list, head);
2668        }
2669
2670        /*
2671         * unless the caller requires manual cleanup after short reads,
2672         * have the alt_next mechanism keep the queue running after the
2673         * last data qtd (the only one, for control and most other cases).
2674         */
2675        if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2676                        usb_pipecontrol(urb->pipe)))
2677                qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2678
2679        /*
2680         * control requests may need a terminating data "status" ack;
2681         * other OUT ones may need a terminating short packet
2682         * (zero length).
2683         */
2684        if (likely(urb->transfer_buffer_length != 0)) {
2685                int one_more = 0;
2686
2687                if (usb_pipecontrol(urb->pipe)) {
2688                        one_more = 1;
2689                        token ^= 0x0100;        /* "in" <--> "out"  */
2690                        token |= QTD_TOGGLE;    /* force DATA1 */
2691                } else if (usb_pipeout(urb->pipe)
2692                                && (urb->transfer_flags & URB_ZERO_PACKET)
2693                                && !(urb->transfer_buffer_length % maxpacket)) {
2694                        one_more = 1;
2695                }
2696                if (one_more) {
2697                        qtd_prev = qtd;
2698                        qtd = fotg210_qtd_alloc(fotg210, flags);
2699                        if (unlikely(!qtd))
2700                                goto cleanup;
2701                        qtd->urb = urb;
2702                        qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2703                        list_add_tail(&qtd->qtd_list, head);
2704
2705                        /* never any data in such packets */
2706                        qtd_fill(fotg210, qtd, 0, 0, token, 0);
2707                }
2708        }
2709
2710        /* by default, enable interrupt on urb completion */
2711        if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2712                qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2713        return head;
2714
2715cleanup:
2716        qtd_list_free(fotg210, urb, head);
2717        return NULL;
2718}
2719
2720/* Would be best to create all qh's from config descriptors,
2721 * when each interface/altsetting is established.  Unlink
2722 * any previous qh and cancel its urbs first; endpoints are
2723 * implicitly reset then (data toggle too).
2724 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2725*/
2726
2727
2728/* Each QH holds a qtd list; a QH is used for everything except iso.
2729 *
2730 * For interrupt urbs, the scheduler must set the microframe scheduling
2731 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2732 * just one microframe in the s-mask.  For split interrupt transactions
2733 * there are additional complications: c-mask, maybe FSTNs.
2734 */
2735static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2736                gfp_t flags)
2737{
2738        struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2739        u32 info1 = 0, info2 = 0;
2740        int is_input, type;
2741        int maxp = 0;
2742        struct usb_tt *tt = urb->dev->tt;
2743        struct fotg210_qh_hw *hw;
2744
2745        if (!qh)
2746                return qh;
2747
2748        /*
2749         * init endpoint/device data for this QH
2750         */
2751        info1 |= usb_pipeendpoint(urb->pipe) << 8;
2752        info1 |= usb_pipedevice(urb->pipe) << 0;
2753
2754        is_input = usb_pipein(urb->pipe);
2755        type = usb_pipetype(urb->pipe);
2756        maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2757
2758        /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2759         * acts like up to 3KB, but is built from smaller packets.
2760         */
2761        if (max_packet(maxp) > 1024) {
2762                fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2763                                max_packet(maxp));
2764                goto done;
2765        }
2766
2767        /* Compute interrupt scheduling parameters just once, and save.
2768         * - allowing for high bandwidth, how many nsec/uframe are used?
2769         * - split transactions need a second CSPLIT uframe; same question
2770         * - splits also need a schedule gap (for full/low speed I/O)
2771         * - qh has a polling interval
2772         *
2773         * For control/bulk requests, the HC or TT handles these.
2774         */
2775        if (type == PIPE_INTERRUPT) {
2776                qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2777                                is_input, 0,
2778                                hb_mult(maxp) * max_packet(maxp)));
2779                qh->start = NO_FRAME;
2780
2781                if (urb->dev->speed == USB_SPEED_HIGH) {
2782                        qh->c_usecs = 0;
2783                        qh->gap_uf = 0;
2784
2785                        qh->period = urb->interval >> 3;
2786                        if (qh->period == 0 && urb->interval != 1) {
2787                                /* NOTE interval 2 or 4 uframes could work.
2788                                 * But interval 1 scheduling is simpler, and
2789                                 * includes high bandwidth.
2790                                 */
2791                                urb->interval = 1;
2792                        } else if (qh->period > fotg210->periodic_size) {
2793                                qh->period = fotg210->periodic_size;
2794                                urb->interval = qh->period << 3;
2795                        }
2796                } else {
2797                        int think_time;
2798
2799                        /* gap is f(FS/LS transfer times) */
2800                        qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2801                                        is_input, 0, maxp) / (125 * 1000);
2802
2803                        /* FIXME this just approximates SPLIT/CSPLIT times */
2804                        if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2805                                qh->c_usecs = qh->usecs + HS_USECS(0);
2806                                qh->usecs = HS_USECS(1);
2807                        } else {                /* SPLIT+DATA, gap, CSPLIT */
2808                                qh->usecs += HS_USECS(1);
2809                                qh->c_usecs = HS_USECS(0);
2810                        }
2811
2812                        think_time = tt ? tt->think_time : 0;
2813                        qh->tt_usecs = NS_TO_US(think_time +
2814                                        usb_calc_bus_time(urb->dev->speed,
2815                                        is_input, 0, max_packet(maxp)));
2816                        qh->period = urb->interval;
2817                        if (qh->period > fotg210->periodic_size) {
2818                                qh->period = fotg210->periodic_size;
2819                                urb->interval = qh->period;
2820                        }
2821                }
2822        }
2823
2824        /* support for tt scheduling, and access to toggles */
2825        qh->dev = urb->dev;
2826
2827        /* using TT? */
2828        switch (urb->dev->speed) {
2829        case USB_SPEED_LOW:
2830                info1 |= QH_LOW_SPEED;
2831                /* FALL THROUGH */
2832
2833        case USB_SPEED_FULL:
2834                /* EPS 0 means "full" */
2835                if (type != PIPE_INTERRUPT)
2836                        info1 |= (FOTG210_TUNE_RL_TT << 28);
2837                if (type == PIPE_CONTROL) {
2838                        info1 |= QH_CONTROL_EP;         /* for TT */
2839                        info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2840                }
2841                info1 |= maxp << 16;
2842
2843                info2 |= (FOTG210_TUNE_MULT_TT << 30);
2844
2845                /* Some Freescale processors have an erratum in which the
2846                 * port number in the queue head was 0..N-1 instead of 1..N.
2847                 */
2848                if (fotg210_has_fsl_portno_bug(fotg210))
2849                        info2 |= (urb->dev->ttport-1) << 23;
2850                else
2851                        info2 |= urb->dev->ttport << 23;
2852
2853                /* set the address of the TT; for TDI's integrated
2854                 * root hub tt, leave it zeroed.
2855                 */
2856                if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2857                        info2 |= tt->hub->devnum << 16;
2858
2859                /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2860
2861                break;
2862
2863        case USB_SPEED_HIGH:            /* no TT involved */
2864                info1 |= QH_HIGH_SPEED;
2865                if (type == PIPE_CONTROL) {
2866                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2867                        info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2868                        info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2869                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2870                } else if (type == PIPE_BULK) {
2871                        info1 |= (FOTG210_TUNE_RL_HS << 28);
2872                        /* The USB spec says that high speed bulk endpoints
2873                         * always use 512 byte maxpacket.  But some device
2874                         * vendors decided to ignore that, and MSFT is happy
2875                         * to help them do so.  So now people expect to use
2876                         * such nonconformant devices with Linux too; sigh.
2877                         */
2878                        info1 |= max_packet(maxp) << 16;
2879                        info2 |= (FOTG210_TUNE_MULT_HS << 30);
2880                } else {                /* PIPE_INTERRUPT */
2881                        info1 |= max_packet(maxp) << 16;
2882                        info2 |= hb_mult(maxp) << 30;
2883                }
2884                break;
2885        default:
2886                fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2887                                urb->dev->speed);
2888done:
2889                qh_destroy(fotg210, qh);
2890                return NULL;
2891        }
2892
2893        /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2894
2895        /* init as live, toggle clear, advance to dummy */
2896        qh->qh_state = QH_STATE_IDLE;
2897        hw = qh->hw;
2898        hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2899        hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2900        qh->is_out = !is_input;
2901        usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2902        qh_refresh(fotg210, qh);
2903        return qh;
2904}
2905
2906static void enable_async(struct fotg210_hcd *fotg210)
2907{
2908        if (fotg210->async_count++)
2909                return;
2910
2911        /* Stop waiting to turn off the async schedule */
2912        fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2913
2914        /* Don't start the schedule until ASS is 0 */
2915        fotg210_poll_ASS(fotg210);
2916        turn_on_io_watchdog(fotg210);
2917}
2918
2919static void disable_async(struct fotg210_hcd *fotg210)
2920{
2921        if (--fotg210->async_count)
2922                return;
2923
2924        /* The async schedule and async_unlink list are supposed to be empty */
2925        WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2926
2927        /* Don't turn off the schedule until ASS is 1 */
2928        fotg210_poll_ASS(fotg210);
2929}
2930
2931/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2932
2933static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2934{
2935        __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2936        struct fotg210_qh *head;
2937
2938        /* Don't link a QH if there's a Clear-TT-Buffer pending */
2939        if (unlikely(qh->clearing_tt))
2940                return;
2941
2942        WARN_ON(qh->qh_state != QH_STATE_IDLE);
2943
2944        /* clear halt and/or toggle; and maybe recover from silicon quirk */
2945        qh_refresh(fotg210, qh);
2946
2947        /* splice right after start */
2948        head = fotg210->async;
2949        qh->qh_next = head->qh_next;
2950        qh->hw->hw_next = head->hw->hw_next;
2951        wmb();
2952
2953        head->qh_next.qh = qh;
2954        head->hw->hw_next = dma;
2955
2956        qh->xacterrs = 0;
2957        qh->qh_state = QH_STATE_LINKED;
2958        /* qtd completions reported later by interrupt */
2959
2960        enable_async(fotg210);
2961}
2962
2963/* For control/bulk/interrupt, return QH with these TDs appended.
2964 * Allocates and initializes the QH if necessary.
2965 * Returns null if it can't allocate a QH it needs to.
2966 * If the QH has TDs (urbs) already, that's great.
2967 */
2968static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2969                struct urb *urb, struct list_head *qtd_list,
2970                int epnum, void **ptr)
2971{
2972        struct fotg210_qh *qh = NULL;
2973        __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2974
2975        qh = (struct fotg210_qh *) *ptr;
2976        if (unlikely(qh == NULL)) {
2977                /* can't sleep here, we have fotg210->lock... */
2978                qh = qh_make(fotg210, urb, GFP_ATOMIC);
2979                *ptr = qh;
2980        }
2981        if (likely(qh != NULL)) {
2982                struct fotg210_qtd *qtd;
2983
2984                if (unlikely(list_empty(qtd_list)))
2985                        qtd = NULL;
2986                else
2987                        qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2988                                        qtd_list);
2989
2990                /* control qh may need patching ... */
2991                if (unlikely(epnum == 0)) {
2992                        /* usb_reset_device() briefly reverts to address 0 */
2993                        if (usb_pipedevice(urb->pipe) == 0)
2994                                qh->hw->hw_info1 &= ~qh_addr_mask;
2995                }
2996
2997                /* just one way to queue requests: swap with the dummy qtd.
2998                 * only hc or qh_refresh() ever modify the overlay.
2999                 */
3000                if (likely(qtd != NULL)) {
3001                        struct fotg210_qtd *dummy;
3002                        dma_addr_t dma;
3003                        __hc32 token;
3004
3005                        /* to avoid racing the HC, use the dummy td instead of
3006                         * the first td of our list (becomes new dummy).  both
3007                         * tds stay deactivated until we're done, when the
3008                         * HC is allowed to fetch the old dummy (4.10.2).
3009                         */
3010                        token = qtd->hw_token;
3011                        qtd->hw_token = HALT_BIT(fotg210);
3012
3013                        dummy = qh->dummy;
3014
3015                        dma = dummy->qtd_dma;
3016                        *dummy = *qtd;
3017                        dummy->qtd_dma = dma;
3018
3019                        list_del(&qtd->qtd_list);
3020                        list_add(&dummy->qtd_list, qtd_list);
3021                        list_splice_tail(qtd_list, &qh->qtd_list);
3022
3023                        fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3024                        qh->dummy = qtd;
3025
3026                        /* hc must see the new dummy at list end */
3027                        dma = qtd->qtd_dma;
3028                        qtd = list_entry(qh->qtd_list.prev,
3029                                        struct fotg210_qtd, qtd_list);
3030                        qtd->hw_next = QTD_NEXT(fotg210, dma);
3031
3032                        /* let the hc process these next qtds */
3033                        wmb();
3034                        dummy->hw_token = token;
3035
3036                        urb->hcpriv = qh;
3037                }
3038        }
3039        return qh;
3040}
3041
3042static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3043                struct list_head *qtd_list, gfp_t mem_flags)
3044{
3045        int epnum;
3046        unsigned long flags;
3047        struct fotg210_qh *qh = NULL;
3048        int rc;
3049
3050        epnum = urb->ep->desc.bEndpointAddress;
3051
3052#ifdef FOTG210_URB_TRACE
3053        {
3054                struct fotg210_qtd *qtd;
3055
3056                qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3057                fotg210_dbg(fotg210,
3058                                "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3059                                __func__, urb->dev->devpath, urb,
3060                                epnum & 0x0f, (epnum & USB_DIR_IN)
3061                                        ? "in" : "out",
3062                                urb->transfer_buffer_length,
3063                                qtd, urb->ep->hcpriv);
3064        }
3065#endif
3066
3067        spin_lock_irqsave(&fotg210->lock, flags);
3068        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3069                rc = -ESHUTDOWN;
3070                goto done;
3071        }
3072        rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3073        if (unlikely(rc))
3074                goto done;
3075
3076        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3077        if (unlikely(qh == NULL)) {
3078                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3079                rc = -ENOMEM;
3080                goto done;
3081        }
3082
3083        /* Control/bulk operations through TTs don't need scheduling,
3084         * the HC and TT handle it when the TT has a buffer ready.
3085         */
3086        if (likely(qh->qh_state == QH_STATE_IDLE))
3087                qh_link_async(fotg210, qh);
3088done:
3089        spin_unlock_irqrestore(&fotg210->lock, flags);
3090        if (unlikely(qh == NULL))
3091                qtd_list_free(fotg210, urb, qtd_list);
3092        return rc;
3093}
3094
3095static void single_unlink_async(struct fotg210_hcd *fotg210,
3096                struct fotg210_qh *qh)
3097{
3098        struct fotg210_qh *prev;
3099
3100        /* Add to the end of the list of QHs waiting for the next IAAD */
3101        qh->qh_state = QH_STATE_UNLINK;
3102        if (fotg210->async_unlink)
3103                fotg210->async_unlink_last->unlink_next = qh;
3104        else
3105                fotg210->async_unlink = qh;
3106        fotg210->async_unlink_last = qh;
3107
3108        /* Unlink it from the schedule */
3109        prev = fotg210->async;
3110        while (prev->qh_next.qh != qh)
3111                prev = prev->qh_next.qh;
3112
3113        prev->hw->hw_next = qh->hw->hw_next;
3114        prev->qh_next = qh->qh_next;
3115        if (fotg210->qh_scan_next == qh)
3116                fotg210->qh_scan_next = qh->qh_next.qh;
3117}
3118
3119static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3120{
3121        /*
3122         * Do nothing if an IAA cycle is already running or
3123         * if one will be started shortly.
3124         */
3125        if (fotg210->async_iaa || fotg210->async_unlinking)
3126                return;
3127
3128        /* Do all the waiting QHs at once */
3129        fotg210->async_iaa = fotg210->async_unlink;
3130        fotg210->async_unlink = NULL;
3131
3132        /* If the controller isn't running, we don't have to wait for it */
3133        if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3134                if (!nested)            /* Avoid recursion */
3135                        end_unlink_async(fotg210);
3136
3137        /* Otherwise start a new IAA cycle */
3138        } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3139                /* Make sure the unlinks are all visible to the hardware */
3140                wmb();
3141
3142                fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3143                                &fotg210->regs->command);
3144                fotg210_readl(fotg210, &fotg210->regs->command);
3145                fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3146                                true);
3147        }
3148}
3149
3150/* the async qh for the qtds being unlinked are now gone from the HC */
3151
3152static void end_unlink_async(struct fotg210_hcd *fotg210)
3153{
3154        struct fotg210_qh *qh;
3155
3156        /* Process the idle QHs */
3157restart:
3158        fotg210->async_unlinking = true;
3159        while (fotg210->async_iaa) {
3160                qh = fotg210->async_iaa;
3161                fotg210->async_iaa = qh->unlink_next;
3162                qh->unlink_next = NULL;
3163
3164                qh->qh_state = QH_STATE_IDLE;
3165                qh->qh_next.qh = NULL;
3166
3167                qh_completions(fotg210, qh);
3168                if (!list_empty(&qh->qtd_list) &&
3169                                fotg210->rh_state == FOTG210_RH_RUNNING)
3170                        qh_link_async(fotg210, qh);
3171                disable_async(fotg210);
3172        }
3173        fotg210->async_unlinking = false;
3174
3175        /* Start a new IAA cycle if any QHs are waiting for it */
3176        if (fotg210->async_unlink) {
3177                start_iaa_cycle(fotg210, true);
3178                if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3179                        goto restart;
3180        }
3181}
3182
3183static void unlink_empty_async(struct fotg210_hcd *fotg210)
3184{
3185        struct fotg210_qh *qh, *next;
3186        bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3187        bool check_unlinks_later = false;
3188
3189        /* Unlink all the async QHs that have been empty for a timer cycle */
3190        next = fotg210->async->qh_next.qh;
3191        while (next) {
3192                qh = next;
3193                next = qh->qh_next.qh;
3194
3195                if (list_empty(&qh->qtd_list) &&
3196                                qh->qh_state == QH_STATE_LINKED) {
3197                        if (!stopped && qh->unlink_cycle ==
3198                                        fotg210->async_unlink_cycle)
3199                                check_unlinks_later = true;
3200                        else
3201                                single_unlink_async(fotg210, qh);
3202                }
3203        }
3204
3205        /* Start a new IAA cycle if any QHs are waiting for it */
3206        if (fotg210->async_unlink)
3207                start_iaa_cycle(fotg210, false);
3208
3209        /* QHs that haven't been empty for long enough will be handled later */
3210        if (check_unlinks_later) {
3211                fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3212                                true);
3213                ++fotg210->async_unlink_cycle;
3214        }
3215}
3216
3217/* makes sure the async qh will become idle */
3218/* caller must own fotg210->lock */
3219
3220static void start_unlink_async(struct fotg210_hcd *fotg210,
3221                struct fotg210_qh *qh)
3222{
3223        /*
3224         * If the QH isn't linked then there's nothing we can do
3225         * unless we were called during a giveback, in which case
3226         * qh_completions() has to deal with it.
3227         */
3228        if (qh->qh_state != QH_STATE_LINKED) {
3229                if (qh->qh_state == QH_STATE_COMPLETING)
3230                        qh->needs_rescan = 1;
3231                return;
3232        }
3233
3234        single_unlink_async(fotg210, qh);
3235        start_iaa_cycle(fotg210, false);
3236}
3237
3238static void scan_async(struct fotg210_hcd *fotg210)
3239{
3240        struct fotg210_qh *qh;
3241        bool check_unlinks_later = false;
3242
3243        fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3244        while (fotg210->qh_scan_next) {
3245                qh = fotg210->qh_scan_next;
3246                fotg210->qh_scan_next = qh->qh_next.qh;
3247rescan:
3248                /* clean any finished work for this qh */
3249                if (!list_empty(&qh->qtd_list)) {
3250                        int temp;
3251
3252                        /*
3253                         * Unlinks could happen here; completion reporting
3254                         * drops the lock.  That's why fotg210->qh_scan_next
3255                         * always holds the next qh to scan; if the next qh
3256                         * gets unlinked then fotg210->qh_scan_next is adjusted
3257                         * in single_unlink_async().
3258                         */
3259                        temp = qh_completions(fotg210, qh);
3260                        if (qh->needs_rescan) {
3261                                start_unlink_async(fotg210, qh);
3262                        } else if (list_empty(&qh->qtd_list)
3263                                        && qh->qh_state == QH_STATE_LINKED) {
3264                                qh->unlink_cycle = fotg210->async_unlink_cycle;
3265                                check_unlinks_later = true;
3266                        } else if (temp != 0)
3267                                goto rescan;
3268                }
3269        }
3270
3271        /*
3272         * Unlink empty entries, reducing DMA usage as well
3273         * as HCD schedule-scanning costs.  Delay for any qh
3274         * we just scanned, there's a not-unusual case that it
3275         * doesn't stay idle for long.
3276         */
3277        if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3278                        !(fotg210->enabled_hrtimer_events &
3279                        BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3280                fotg210_enable_event(fotg210,
3281                                FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3282                ++fotg210->async_unlink_cycle;
3283        }
3284}
3285/* EHCI scheduled transaction support:  interrupt, iso, split iso
3286 * These are called "periodic" transactions in the EHCI spec.
3287 *
3288 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3289 * with the "asynchronous" transaction support (control/bulk transfers).
3290 * The only real difference is in how interrupt transfers are scheduled.
3291 *
3292 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3293 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3294 * pre-calculated schedule data to make appending to the queue be quick.
3295 */
3296static int fotg210_get_frame(struct usb_hcd *hcd);
3297
3298/* periodic_next_shadow - return "next" pointer on shadow list
3299 * @periodic: host pointer to qh/itd
3300 * @tag: hardware tag for type of this record
3301 */
3302static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3303                union fotg210_shadow *periodic, __hc32 tag)
3304{
3305        switch (hc32_to_cpu(fotg210, tag)) {
3306        case Q_TYPE_QH:
3307                return &periodic->qh->qh_next;
3308        case Q_TYPE_FSTN:
3309                return &periodic->fstn->fstn_next;
3310        default:
3311                return &periodic->itd->itd_next;
3312        }
3313}
3314
3315static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3316                union fotg210_shadow *periodic, __hc32 tag)
3317{
3318        switch (hc32_to_cpu(fotg210, tag)) {
3319        /* our fotg210_shadow.qh is actually software part */
3320        case Q_TYPE_QH:
3321                return &periodic->qh->hw->hw_next;
3322        /* others are hw parts */
3323        default:
3324                return periodic->hw_next;
3325        }
3326}
3327
3328/* caller must hold fotg210->lock */
3329static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3330                void *ptr)
3331{
3332        union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3333        __hc32 *hw_p = &fotg210->periodic[frame];
3334        union fotg210_shadow here = *prev_p;
3335
3336        /* find predecessor of "ptr"; hw and shadow lists are in sync */
3337        while (here.ptr && here.ptr != ptr) {
3338                prev_p = periodic_next_shadow(fotg210, prev_p,
3339                                Q_NEXT_TYPE(fotg210, *hw_p));
3340                hw_p = shadow_next_periodic(fotg210, &here,
3341                                Q_NEXT_TYPE(fotg210, *hw_p));
3342                here = *prev_p;
3343        }
3344        /* an interrupt entry (at list end) could have been shared */
3345        if (!here.ptr)
3346                return;
3347
3348        /* update shadow and hardware lists ... the old "next" pointers
3349         * from ptr may still be in use, the caller updates them.
3350         */
3351        *prev_p = *periodic_next_shadow(fotg210, &here,
3352                        Q_NEXT_TYPE(fotg210, *hw_p));
3353
3354        *hw_p = *shadow_next_periodic(fotg210, &here,
3355                        Q_NEXT_TYPE(fotg210, *hw_p));
3356}
3357
3358/* how many of the uframe's 125 usecs are allocated? */
3359static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3360                unsigned frame, unsigned uframe)
3361{
3362        __hc32 *hw_p = &fotg210->periodic[frame];
3363        union fotg210_shadow *q = &fotg210->pshadow[frame];
3364        unsigned usecs = 0;
3365        struct fotg210_qh_hw *hw;
3366
3367        while (q->ptr) {
3368                switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3369                case Q_TYPE_QH:
3370                        hw = q->qh->hw;
3371                        /* is it in the S-mask? */
3372                        if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3373                                usecs += q->qh->usecs;
3374                        /* ... or C-mask? */
3375                        if (hw->hw_info2 & cpu_to_hc32(fotg210,
3376                                        1 << (8 + uframe)))
3377                                usecs += q->qh->c_usecs;
3378                        hw_p = &hw->hw_next;
3379                        q = &q->qh->qh_next;
3380                        break;
3381                /* case Q_TYPE_FSTN: */
3382                default:
3383                        /* for "save place" FSTNs, count the relevant INTR
3384                         * bandwidth from the previous frame
3385                         */
3386                        if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3387                                fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3388
3389                        hw_p = &q->fstn->hw_next;
3390                        q = &q->fstn->fstn_next;
3391                        break;
3392                case Q_TYPE_ITD:
3393                        if (q->itd->hw_transaction[uframe])
3394                                usecs += q->itd->stream->usecs;
3395                        hw_p = &q->itd->hw_next;
3396                        q = &q->itd->itd_next;
3397                        break;
3398                }
3399        }
3400        if (usecs > fotg210->uframe_periodic_max)
3401                fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3402                                frame * 8 + uframe, usecs);
3403        return usecs;
3404}
3405
3406static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3407{
3408        if (!dev1->tt || !dev2->tt)
3409                return 0;
3410        if (dev1->tt != dev2->tt)
3411                return 0;
3412        if (dev1->tt->multi)
3413                return dev1->ttport == dev2->ttport;
3414        else
3415                return 1;
3416}
3417
3418/* return true iff the device's transaction translator is available
3419 * for a periodic transfer starting at the specified frame, using
3420 * all the uframes in the mask.
3421 */
3422static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3423                struct usb_device *dev, unsigned frame, u32 uf_mask)
3424{
3425        if (period == 0)        /* error */
3426                return 0;
3427
3428        /* note bandwidth wastage:  split never follows csplit
3429         * (different dev or endpoint) until the next uframe.
3430         * calling convention doesn't make that distinction.
3431         */
3432        for (; frame < fotg210->periodic_size; frame += period) {
3433                union fotg210_shadow here;
3434                __hc32 type;
3435                struct fotg210_qh_hw *hw;
3436
3437                here = fotg210->pshadow[frame];
3438                type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3439                while (here.ptr) {
3440                        switch (hc32_to_cpu(fotg210, type)) {
3441                        case Q_TYPE_ITD:
3442                                type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3443                                here = here.itd->itd_next;
3444                                continue;
3445                        case Q_TYPE_QH:
3446                                hw = here.qh->hw;
3447                                if (same_tt(dev, here.qh->dev)) {
3448                                        u32 mask;
3449
3450                                        mask = hc32_to_cpu(fotg210,
3451                                                        hw->hw_info2);
3452                                        /* "knows" no gap is needed */
3453                                        mask |= mask >> 8;
3454                                        if (mask & uf_mask)
3455                                                break;
3456                                }
3457                                type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3458                                here = here.qh->qh_next;
3459                                continue;
3460                        /* case Q_TYPE_FSTN: */
3461                        default:
3462                                fotg210_dbg(fotg210,
3463                                                "periodic frame %d bogus type %d\n",
3464                                                frame, type);
3465                        }
3466
3467                        /* collision or error */
3468                        return 0;
3469                }
3470        }
3471
3472        /* no collision */
3473        return 1;
3474}
3475
3476static void enable_periodic(struct fotg210_hcd *fotg210)
3477{
3478        if (fotg210->periodic_count++)
3479                return;
3480
3481        /* Stop waiting to turn off the periodic schedule */
3482        fotg210->enabled_hrtimer_events &=
3483                ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3484
3485        /* Don't start the schedule until PSS is 0 */
3486        fotg210_poll_PSS(fotg210);
3487        turn_on_io_watchdog(fotg210);
3488}
3489
3490static void disable_periodic(struct fotg210_hcd *fotg210)
3491{
3492        if (--fotg210->periodic_count)
3493                return;
3494
3495        /* Don't turn off the schedule until PSS is 1 */
3496        fotg210_poll_PSS(fotg210);
3497}
3498
3499/* periodic schedule slots have iso tds (normal or split) first, then a
3500 * sparse tree for active interrupt transfers.
3501 *
3502 * this just links in a qh; caller guarantees uframe masks are set right.
3503 * no FSTN support (yet; fotg210 0.96+)
3504 */
3505static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3506{
3507        unsigned i;
3508        unsigned period = qh->period;
3509
3510        dev_dbg(&qh->dev->dev,
3511                        "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3512                        hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3513                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3514                        qh->c_usecs);
3515
3516        /* high bandwidth, or otherwise every microframe */
3517        if (period == 0)
3518                period = 1;
3519
3520        for (i = qh->start; i < fotg210->periodic_size; i += period) {
3521                union fotg210_shadow *prev = &fotg210->pshadow[i];
3522                __hc32 *hw_p = &fotg210->periodic[i];
3523                union fotg210_shadow here = *prev;
3524                __hc32 type = 0;
3525
3526                /* skip the iso nodes at list head */
3527                while (here.ptr) {
3528                        type = Q_NEXT_TYPE(fotg210, *hw_p);
3529                        if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3530                                break;
3531                        prev = periodic_next_shadow(fotg210, prev, type);
3532                        hw_p = shadow_next_periodic(fotg210, &here, type);
3533                        here = *prev;
3534                }
3535
3536                /* sorting each branch by period (slow-->fast)
3537                 * enables sharing interior tree nodes
3538                 */
3539                while (here.ptr && qh != here.qh) {
3540                        if (qh->period > here.qh->period)
3541                                break;
3542                        prev = &here.qh->qh_next;
3543                        hw_p = &here.qh->hw->hw_next;
3544                        here = *prev;
3545                }
3546                /* link in this qh, unless some earlier pass did that */
3547                if (qh != here.qh) {
3548                        qh->qh_next = here;
3549                        if (here.qh)
3550                                qh->hw->hw_next = *hw_p;
3551                        wmb();
3552                        prev->qh = qh;
3553                        *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3554                }
3555        }
3556        qh->qh_state = QH_STATE_LINKED;
3557        qh->xacterrs = 0;
3558
3559        /* update per-qh bandwidth for usbfs */
3560        fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3561                ? ((qh->usecs + qh->c_usecs) / qh->period)
3562                : (qh->usecs * 8);
3563
3564        list_add(&qh->intr_node, &fotg210->intr_qh_list);
3565
3566        /* maybe enable periodic schedule processing */
3567        ++fotg210->intr_count;
3568        enable_periodic(fotg210);
3569}
3570
3571static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3572                struct fotg210_qh *qh)
3573{
3574        unsigned i;
3575        unsigned period;
3576
3577        /*
3578         * If qh is for a low/full-speed device, simply unlinking it
3579         * could interfere with an ongoing split transaction.  To unlink
3580         * it safely would require setting the QH_INACTIVATE bit and
3581         * waiting at least one frame, as described in EHCI 4.12.2.5.
3582         *
3583         * We won't bother with any of this.  Instead, we assume that the
3584         * only reason for unlinking an interrupt QH while the current URB
3585         * is still active is to dequeue all the URBs (flush the whole
3586         * endpoint queue).
3587         *
3588         * If rebalancing the periodic schedule is ever implemented, this
3589         * approach will no longer be valid.
3590         */
3591
3592        /* high bandwidth, or otherwise part of every microframe */
3593        period = qh->period;
3594        if (!period)
3595                period = 1;
3596
3597        for (i = qh->start; i < fotg210->periodic_size; i += period)
3598                periodic_unlink(fotg210, i, qh);
3599
3600        /* update per-qh bandwidth for usbfs */
3601        fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3602                ? ((qh->usecs + qh->c_usecs) / qh->period)
3603                : (qh->usecs * 8);
3604
3605        dev_dbg(&qh->dev->dev,
3606                        "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3607                        qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3608                        (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3609                        qh->c_usecs);
3610
3611        /* qh->qh_next still "live" to HC */
3612        qh->qh_state = QH_STATE_UNLINK;
3613        qh->qh_next.ptr = NULL;
3614
3615        if (fotg210->qh_scan_next == qh)
3616                fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3617                                struct fotg210_qh, intr_node);
3618        list_del(&qh->intr_node);
3619}
3620
3621static void start_unlink_intr(struct fotg210_hcd *fotg210,
3622                struct fotg210_qh *qh)
3623{
3624        /* If the QH isn't linked then there's nothing we can do
3625         * unless we were called during a giveback, in which case
3626         * qh_completions() has to deal with it.
3627         */
3628        if (qh->qh_state != QH_STATE_LINKED) {
3629                if (qh->qh_state == QH_STATE_COMPLETING)
3630                        qh->needs_rescan = 1;
3631                return;
3632        }
3633
3634        qh_unlink_periodic(fotg210, qh);
3635
3636        /* Make sure the unlinks are visible before starting the timer */
3637        wmb();
3638
3639        /*
3640         * The EHCI spec doesn't say how long it takes the controller to
3641         * stop accessing an unlinked interrupt QH.  The timer delay is
3642         * 9 uframes; presumably that will be long enough.
3643         */
3644        qh->unlink_cycle = fotg210->intr_unlink_cycle;
3645
3646        /* New entries go at the end of the intr_unlink list */
3647        if (fotg210->intr_unlink)
3648                fotg210->intr_unlink_last->unlink_next = qh;
3649        else
3650                fotg210->intr_unlink = qh;
3651        fotg210->intr_unlink_last = qh;
3652
3653        if (fotg210->intr_unlinking)
3654                ;       /* Avoid recursive calls */
3655        else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3656                fotg210_handle_intr_unlinks(fotg210);
3657        else if (fotg210->intr_unlink == qh) {
3658                fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3659                                true);
3660                ++fotg210->intr_unlink_cycle;
3661        }
3662}
3663
3664static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3665{
3666        struct fotg210_qh_hw *hw = qh->hw;
3667        int rc;
3668
3669        qh->qh_state = QH_STATE_IDLE;
3670        hw->hw_next = FOTG210_LIST_END(fotg210);
3671
3672        qh_completions(fotg210, qh);
3673
3674        /* reschedule QH iff another request is queued */
3675        if (!list_empty(&qh->qtd_list) &&
3676                        fotg210->rh_state == FOTG210_RH_RUNNING) {
3677                rc = qh_schedule(fotg210, qh);
3678
3679                /* An error here likely indicates handshake failure
3680                 * or no space left in the schedule.  Neither fault
3681                 * should happen often ...
3682                 *
3683                 * FIXME kill the now-dysfunctional queued urbs
3684                 */
3685                if (rc != 0)
3686                        fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3687                                        qh, rc);
3688        }
3689
3690        /* maybe turn off periodic schedule */
3691        --fotg210->intr_count;
3692        disable_periodic(fotg210);
3693}
3694
3695static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3696                unsigned uframe, unsigned period, unsigned usecs)
3697{
3698        int claimed;
3699
3700        /* complete split running into next frame?
3701         * given FSTN support, we could sometimes check...
3702         */
3703        if (uframe >= 8)
3704                return 0;
3705
3706        /* convert "usecs we need" to "max already claimed" */
3707        usecs = fotg210->uframe_periodic_max - usecs;
3708
3709        /* we "know" 2 and 4 uframe intervals were rejected; so
3710         * for period 0, check _every_ microframe in the schedule.
3711         */
3712        if (unlikely(period == 0)) {
3713                do {
3714                        for (uframe = 0; uframe < 7; uframe++) {
3715                                claimed = periodic_usecs(fotg210, frame,
3716                                                uframe);
3717                                if (claimed > usecs)
3718                                        return 0;
3719                        }
3720                } while ((frame += 1) < fotg210->periodic_size);
3721
3722        /* just check the specified uframe, at that period */
3723        } else {
3724                do {
3725                        claimed = periodic_usecs(fotg210, frame, uframe);
3726                        if (claimed > usecs)
3727                                return 0;
3728                } while ((frame += period) < fotg210->periodic_size);
3729        }
3730
3731        /* success! */
3732        return 1;
3733}
3734
3735static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3736                unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3737{
3738        int retval = -ENOSPC;
3739        u8 mask = 0;
3740
3741        if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3742                goto done;
3743
3744        if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3745                goto done;
3746        if (!qh->c_usecs) {
3747                retval = 0;
3748                *c_maskp = 0;
3749                goto done;
3750        }
3751
3752        /* Make sure this tt's buffer is also available for CSPLITs.
3753         * We pessimize a bit; probably the typical full speed case
3754         * doesn't need the second CSPLIT.
3755         *
3756         * NOTE:  both SPLIT and CSPLIT could be checked in just
3757         * one smart pass...
3758         */
3759        mask = 0x03 << (uframe + qh->gap_uf);
3760        *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3761
3762        mask |= 1 << uframe;
3763        if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3764                if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3765                                qh->period, qh->c_usecs))
3766                        goto done;
3767                if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3768                                qh->period, qh->c_usecs))
3769                        goto done;
3770                retval = 0;
3771        }
3772done:
3773        return retval;
3774}
3775
3776/* "first fit" scheduling policy used the first time through,
3777 * or when the previous schedule slot can't be re-used.
3778 */
3779static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3780{
3781        int status;
3782        unsigned uframe;
3783        __hc32 c_mask;
3784        unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3785        struct fotg210_qh_hw *hw = qh->hw;
3786
3787        qh_refresh(fotg210, qh);
3788        hw->hw_next = FOTG210_LIST_END(fotg210);
3789        frame = qh->start;
3790
3791        /* reuse the previous schedule slots, if we can */
3792        if (frame < qh->period) {
3793                uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3794                status = check_intr_schedule(fotg210, frame, --uframe,
3795                                qh, &c_mask);
3796        } else {
3797                uframe = 0;
3798                c_mask = 0;
3799                status = -ENOSPC;
3800        }
3801
3802        /* else scan the schedule to find a group of slots such that all
3803         * uframes have enough periodic bandwidth available.
3804         */
3805        if (status) {
3806                /* "normal" case, uframing flexible except with splits */
3807                if (qh->period) {
3808                        int i;
3809
3810                        for (i = qh->period; status && i > 0; --i) {
3811                                frame = ++fotg210->random_frame % qh->period;
3812                                for (uframe = 0; uframe < 8; uframe++) {
3813                                        status = check_intr_schedule(fotg210,
3814                                                        frame, uframe, qh,
3815                                                        &c_mask);
3816                                        if (status == 0)
3817                                                break;
3818                                }
3819                        }
3820
3821                /* qh->period == 0 means every uframe */
3822                } else {
3823                        frame = 0;
3824                        status = check_intr_schedule(fotg210, 0, 0, qh,
3825                                        &c_mask);
3826                }
3827                if (status)
3828                        goto done;
3829                qh->start = frame;
3830
3831                /* reset S-frame and (maybe) C-frame masks */
3832                hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3833                hw->hw_info2 |= qh->period
3834                        ? cpu_to_hc32(fotg210, 1 << uframe)
3835                        : cpu_to_hc32(fotg210, QH_SMASK);
3836                hw->hw_info2 |= c_mask;
3837        } else
3838                fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3839
3840        /* stuff into the periodic schedule */
3841        qh_link_periodic(fotg210, qh);
3842done:
3843        return status;
3844}
3845
3846static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3847                struct list_head *qtd_list, gfp_t mem_flags)
3848{
3849        unsigned epnum;
3850        unsigned long flags;
3851        struct fotg210_qh *qh;
3852        int status;
3853        struct list_head empty;
3854
3855        /* get endpoint and transfer/schedule data */
3856        epnum = urb->ep->desc.bEndpointAddress;
3857
3858        spin_lock_irqsave(&fotg210->lock, flags);
3859
3860        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3861                status = -ESHUTDOWN;
3862                goto done_not_linked;
3863        }
3864        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3865        if (unlikely(status))
3866                goto done_not_linked;
3867
3868        /* get qh and force any scheduling errors */
3869        INIT_LIST_HEAD(&empty);
3870        qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3871        if (qh == NULL) {
3872                status = -ENOMEM;
3873                goto done;
3874        }
3875        if (qh->qh_state == QH_STATE_IDLE) {
3876                status = qh_schedule(fotg210, qh);
3877                if (status)
3878                        goto done;
3879        }
3880
3881        /* then queue the urb's tds to the qh */
3882        qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3883        BUG_ON(qh == NULL);
3884
3885        /* ... update usbfs periodic stats */
3886        fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3887
3888done:
3889        if (unlikely(status))
3890                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3891done_not_linked:
3892        spin_unlock_irqrestore(&fotg210->lock, flags);
3893        if (status)
3894                qtd_list_free(fotg210, urb, qtd_list);
3895
3896        return status;
3897}
3898
3899static void scan_intr(struct fotg210_hcd *fotg210)
3900{
3901        struct fotg210_qh *qh;
3902
3903        list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3904                        &fotg210->intr_qh_list, intr_node) {
3905rescan:
3906                /* clean any finished work for this qh */
3907                if (!list_empty(&qh->qtd_list)) {
3908                        int temp;
3909
3910                        /*
3911                         * Unlinks could happen here; completion reporting
3912                         * drops the lock.  That's why fotg210->qh_scan_next
3913                         * always holds the next qh to scan; if the next qh
3914                         * gets unlinked then fotg210->qh_scan_next is adjusted
3915                         * in qh_unlink_periodic().
3916                         */
3917                        temp = qh_completions(fotg210, qh);
3918                        if (unlikely(qh->needs_rescan ||
3919                                        (list_empty(&qh->qtd_list) &&
3920                                        qh->qh_state == QH_STATE_LINKED)))
3921                                start_unlink_intr(fotg210, qh);
3922                        else if (temp != 0)
3923                                goto rescan;
3924                }
3925        }
3926}
3927
3928/* fotg210_iso_stream ops work with both ITD and SITD */
3929
3930static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3931{
3932        struct fotg210_iso_stream *stream;
3933
3934        stream = kzalloc(sizeof(*stream), mem_flags);
3935        if (likely(stream != NULL)) {
3936                INIT_LIST_HEAD(&stream->td_list);
3937                INIT_LIST_HEAD(&stream->free_list);
3938                stream->next_uframe = -1;
3939        }
3940        return stream;
3941}
3942
3943static void iso_stream_init(struct fotg210_hcd *fotg210,
3944                struct fotg210_iso_stream *stream, struct usb_device *dev,
3945                int pipe, unsigned interval)
3946{
3947        u32 buf1;
3948        unsigned epnum, maxp;
3949        int is_input;
3950        long bandwidth;
3951        unsigned multi;
3952
3953        /*
3954         * this might be a "high bandwidth" highspeed endpoint,
3955         * as encoded in the ep descriptor's wMaxPacket field
3956         */
3957        epnum = usb_pipeendpoint(pipe);
3958        is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3959        maxp = usb_maxpacket(dev, pipe, !is_input);
3960        if (is_input)
3961                buf1 = (1 << 11);
3962        else
3963                buf1 = 0;
3964
3965        maxp = max_packet(maxp);
3966        multi = hb_mult(maxp);
3967        buf1 |= maxp;
3968        maxp *= multi;
3969
3970        stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3971        stream->buf1 = cpu_to_hc32(fotg210, buf1);
3972        stream->buf2 = cpu_to_hc32(fotg210, multi);
3973
3974        /* usbfs wants to report the average usecs per frame tied up
3975         * when transfers on this endpoint are scheduled ...
3976         */
3977        if (dev->speed == USB_SPEED_FULL) {
3978                interval <<= 3;
3979                stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3980                                is_input, 1, maxp));
3981                stream->usecs /= 8;
3982        } else {
3983                stream->highspeed = 1;
3984                stream->usecs = HS_USECS_ISO(maxp);
3985        }
3986        bandwidth = stream->usecs * 8;
3987        bandwidth /= interval;
3988
3989        stream->bandwidth = bandwidth;
3990        stream->udev = dev;
3991        stream->bEndpointAddress = is_input | epnum;
3992        stream->interval = interval;
3993        stream->maxp = maxp;
3994}
3995
3996static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3997                struct urb *urb)
3998{
3999        unsigned epnum;
4000        struct fotg210_iso_stream *stream;
4001        struct usb_host_endpoint *ep;
4002        unsigned long flags;
4003
4004        epnum = usb_pipeendpoint(urb->pipe);
4005        if (usb_pipein(urb->pipe))
4006                ep = urb->dev->ep_in[epnum];
4007        else
4008                ep = urb->dev->ep_out[epnum];
4009
4010        spin_lock_irqsave(&fotg210->lock, flags);
4011        stream = ep->hcpriv;
4012
4013        if (unlikely(stream == NULL)) {
4014                stream = iso_stream_alloc(GFP_ATOMIC);
4015                if (likely(stream != NULL)) {
4016                        ep->hcpriv = stream;
4017                        stream->ep = ep;
4018                        iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4019                                        urb->interval);
4020                }
4021
4022        /* if dev->ep[epnum] is a QH, hw is set */
4023        } else if (unlikely(stream->hw != NULL)) {
4024                fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4025                                urb->dev->devpath, epnum,
4026                                usb_pipein(urb->pipe) ? "in" : "out");
4027                stream = NULL;
4028        }
4029
4030        spin_unlock_irqrestore(&fotg210->lock, flags);
4031        return stream;
4032}
4033
4034/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4035
4036static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4037                gfp_t mem_flags)
4038{
4039        struct fotg210_iso_sched *iso_sched;
4040        int size = sizeof(*iso_sched);
4041
4042        size += packets * sizeof(struct fotg210_iso_packet);
4043        iso_sched = kzalloc(size, mem_flags);
4044        if (likely(iso_sched != NULL))
4045                INIT_LIST_HEAD(&iso_sched->td_list);
4046
4047        return iso_sched;
4048}
4049
4050static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4051                struct fotg210_iso_sched *iso_sched,
4052                struct fotg210_iso_stream *stream, struct urb *urb)
4053{
4054        unsigned i;
4055        dma_addr_t dma = urb->transfer_dma;
4056
4057        /* how many uframes are needed for these transfers */
4058        iso_sched->span = urb->number_of_packets * stream->interval;
4059
4060        /* figure out per-uframe itd fields that we'll need later
4061         * when we fit new itds into the schedule.
4062         */
4063        for (i = 0; i < urb->number_of_packets; i++) {
4064                struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4065                unsigned length;
4066                dma_addr_t buf;
4067                u32 trans;
4068
4069                length = urb->iso_frame_desc[i].length;
4070                buf = dma + urb->iso_frame_desc[i].offset;
4071
4072                trans = FOTG210_ISOC_ACTIVE;
4073                trans |= buf & 0x0fff;
4074                if (unlikely(((i + 1) == urb->number_of_packets))
4075                                && !(urb->transfer_flags & URB_NO_INTERRUPT))
4076                        trans |= FOTG210_ITD_IOC;
4077                trans |= length << 16;
4078                uframe->transaction = cpu_to_hc32(fotg210, trans);
4079
4080                /* might need to cross a buffer page within a uframe */
4081                uframe->bufp = (buf & ~(u64)0x0fff);
4082                buf += length;
4083                if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4084                        uframe->cross = 1;
4085        }
4086}
4087
4088static void iso_sched_free(struct fotg210_iso_stream *stream,
4089                struct fotg210_iso_sched *iso_sched)
4090{
4091        if (!iso_sched)
4092                return;
4093        /* caller must hold fotg210->lock!*/
4094        list_splice(&iso_sched->td_list, &stream->free_list);
4095        kfree(iso_sched);
4096}
4097
4098static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4099                struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4100{
4101        struct fotg210_itd *itd;
4102        dma_addr_t itd_dma;
4103        int i;
4104        unsigned num_itds;
4105        struct fotg210_iso_sched *sched;
4106        unsigned long flags;
4107
4108        sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4109        if (unlikely(sched == NULL))
4110                return -ENOMEM;
4111
4112        itd_sched_init(fotg210, sched, stream, urb);
4113
4114        if (urb->interval < 8)
4115                num_itds = 1 + (sched->span + 7) / 8;
4116        else
4117                num_itds = urb->number_of_packets;
4118
4119        /* allocate/init ITDs */
4120        spin_lock_irqsave(&fotg210->lock, flags);
4121        for (i = 0; i < num_itds; i++) {
4122
4123                /*
4124                 * Use iTDs from the free list, but not iTDs that may
4125                 * still be in use by the hardware.
4126                 */
4127                if (likely(!list_empty(&stream->free_list))) {
4128                        itd = list_first_entry(&stream->free_list,
4129                                        struct fotg210_itd, itd_list);
4130                        if (itd->frame == fotg210->now_frame)
4131                                goto alloc_itd;
4132                        list_del(&itd->itd_list);
4133                        itd_dma = itd->itd_dma;
4134                } else {
4135alloc_itd:
4136                        spin_unlock_irqrestore(&fotg210->lock, flags);
4137                        itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4138                                        &itd_dma);
4139                        spin_lock_irqsave(&fotg210->lock, flags);
4140                        if (!itd) {
4141                                iso_sched_free(stream, sched);
4142                                spin_unlock_irqrestore(&fotg210->lock, flags);
4143                                return -ENOMEM;
4144                        }
4145                }
4146
4147                memset(itd, 0, sizeof(*itd));
4148                itd->itd_dma = itd_dma;
4149                list_add(&itd->itd_list, &sched->td_list);
4150        }
4151        spin_unlock_irqrestore(&fotg210->lock, flags);
4152
4153        /* temporarily store schedule info in hcpriv */
4154        urb->hcpriv = sched;
4155        urb->error_count = 0;
4156        return 0;
4157}
4158
4159static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4160                u8 usecs, u32 period)
4161{
4162        uframe %= period;
4163        do {
4164                /* can't commit more than uframe_periodic_max usec */
4165                if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4166                                > (fotg210->uframe_periodic_max - usecs))
4167                        return 0;
4168
4169                /* we know urb->interval is 2^N uframes */
4170                uframe += period;
4171        } while (uframe < mod);
4172        return 1;
4173}
4174
4175/* This scheduler plans almost as far into the future as it has actual
4176 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4177 * "as small as possible" to be cache-friendlier.)  That limits the size
4178 * transfers you can stream reliably; avoid more than 64 msec per urb.
4179 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4180 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4181 * and other factors); or more than about 230 msec total (for portability,
4182 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4183 */
4184
4185#define SCHEDULE_SLOP 80 /* microframes */
4186
4187static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4188                struct fotg210_iso_stream *stream)
4189{
4190        u32 now, next, start, period, span;
4191        int status;
4192        unsigned mod = fotg210->periodic_size << 3;
4193        struct fotg210_iso_sched *sched = urb->hcpriv;
4194
4195        period = urb->interval;
4196        span = sched->span;
4197
4198        if (span > mod - SCHEDULE_SLOP) {
4199                fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4200                status = -EFBIG;
4201                goto fail;
4202        }
4203
4204        now = fotg210_read_frame_index(fotg210) & (mod - 1);
4205
4206        /* Typical case: reuse current schedule, stream is still active.
4207         * Hopefully there are no gaps from the host falling behind
4208         * (irq delays etc), but if there are we'll take the next
4209         * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4210         */
4211        if (likely(!list_empty(&stream->td_list))) {
4212                u32 excess;
4213
4214                /* For high speed devices, allow scheduling within the
4215                 * isochronous scheduling threshold.  For full speed devices
4216                 * and Intel PCI-based controllers, don't (work around for
4217                 * Intel ICH9 bug).
4218                 */
4219                if (!stream->highspeed && fotg210->fs_i_thresh)
4220                        next = now + fotg210->i_thresh;
4221                else
4222                        next = now;
4223
4224                /* Fell behind (by up to twice the slop amount)?
4225                 * We decide based on the time of the last currently-scheduled
4226                 * slot, not the time of the next available slot.
4227                 */
4228                excess = (stream->next_uframe - period - next) & (mod - 1);
4229                if (excess >= mod - 2 * SCHEDULE_SLOP)
4230                        start = next + excess - mod + period *
4231                                        DIV_ROUND_UP(mod - excess, period);
4232                else
4233                        start = next + excess + period;
4234                if (start - now >= mod) {
4235                        fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4236                                        urb, start - now - period, period,
4237                                        mod);
4238                        status = -EFBIG;
4239                        goto fail;
4240                }
4241        }
4242
4243        /* need to schedule; when's the next (u)frame we could start?
4244         * this is bigger than fotg210->i_thresh allows; scheduling itself
4245         * isn't free, the slop should handle reasonably slow cpus.  it
4246         * can also help high bandwidth if the dma and irq loads don't
4247         * jump until after the queue is primed.
4248         */
4249        else {
4250                int done = 0;
4251
4252                start = SCHEDULE_SLOP + (now & ~0x07);
4253
4254                /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4255
4256                /* find a uframe slot with enough bandwidth.
4257                 * Early uframes are more precious because full-speed
4258                 * iso IN transfers can't use late uframes,
4259                 * and therefore they should be allocated last.
4260                 */
4261                next = start;
4262                start += period;
4263                do {
4264                        start--;
4265                        /* check schedule: enough space? */
4266                        if (itd_slot_ok(fotg210, mod, start,
4267                                        stream->usecs, period))
4268                                done = 1;
4269                } while (start > next && !done);
4270
4271                /* no room in the schedule */
4272                if (!done) {
4273                        fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4274                                        urb, now, now + mod);
4275                        status = -ENOSPC;
4276                        goto fail;
4277                }
4278        }
4279
4280        /* Tried to schedule too far into the future? */
4281        if (unlikely(start - now + span - period >=
4282                        mod - 2 * SCHEDULE_SLOP)) {
4283                fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4284                                urb, start - now, span - period,
4285                                mod - 2 * SCHEDULE_SLOP);
4286                status = -EFBIG;
4287                goto fail;
4288        }
4289
4290        stream->next_uframe = start & (mod - 1);
4291
4292        /* report high speed start in uframes; full speed, in frames */
4293        urb->start_frame = stream->next_uframe;
4294        if (!stream->highspeed)
4295                urb->start_frame >>= 3;
4296
4297        /* Make sure scan_isoc() sees these */
4298        if (fotg210->isoc_count == 0)
4299                fotg210->next_frame = now >> 3;
4300        return 0;
4301
4302fail:
4303        iso_sched_free(stream, sched);
4304        urb->hcpriv = NULL;
4305        return status;
4306}
4307
4308static inline void itd_init(struct fotg210_hcd *fotg210,
4309                struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4310{
4311        int i;
4312
4313        /* it's been recently zeroed */
4314        itd->hw_next = FOTG210_LIST_END(fotg210);
4315        itd->hw_bufp[0] = stream->buf0;
4316        itd->hw_bufp[1] = stream->buf1;
4317        itd->hw_bufp[2] = stream->buf2;
4318
4319        for (i = 0; i < 8; i++)
4320                itd->index[i] = -1;
4321
4322        /* All other fields are filled when scheduling */
4323}
4324
4325static inline void itd_patch(struct fotg210_hcd *fotg210,
4326                struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4327                unsigned index, u16 uframe)
4328{
4329        struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4330        unsigned pg = itd->pg;
4331
4332        uframe &= 0x07;
4333        itd->index[uframe] = index;
4334
4335        itd->hw_transaction[uframe] = uf->transaction;
4336        itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4337        itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4338        itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4339
4340        /* iso_frame_desc[].offset must be strictly increasing */
4341        if (unlikely(uf->cross)) {
4342                u64 bufp = uf->bufp + 4096;
4343
4344                itd->pg = ++pg;
4345                itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4346                itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4347        }
4348}
4349
4350static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4351                struct fotg210_itd *itd)
4352{
4353        union fotg210_shadow *prev = &fotg210->pshadow[frame];
4354        __hc32 *hw_p = &fotg210->periodic[frame];
4355        union fotg210_shadow here = *prev;
4356        __hc32 type = 0;
4357
4358        /* skip any iso nodes which might belong to previous microframes */
4359        while (here.ptr) {
4360                type = Q_NEXT_TYPE(fotg210, *hw_p);
4361                if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4362                        break;
4363                prev = periodic_next_shadow(fotg210, prev, type);
4364                hw_p = shadow_next_periodic(fotg210, &here, type);
4365                here = *prev;
4366        }
4367
4368        itd->itd_next = here;
4369        itd->hw_next = *hw_p;
4370        prev->itd = itd;
4371        itd->frame = frame;
4372        wmb();
4373        *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4374}
4375
4376/* fit urb's itds into the selected schedule slot; activate as needed */
4377static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4378                unsigned mod, struct fotg210_iso_stream *stream)
4379{
4380        int packet;
4381        unsigned next_uframe, uframe, frame;
4382        struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4383        struct fotg210_itd *itd;
4384
4385        next_uframe = stream->next_uframe & (mod - 1);
4386
4387        if (unlikely(list_empty(&stream->td_list))) {
4388                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4389                                += stream->bandwidth;
4390                fotg210_dbg(fotg210,
4391                        "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4392                        urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4393                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4394                        urb->interval,
4395                        next_uframe >> 3, next_uframe & 0x7);
4396        }
4397
4398        /* fill iTDs uframe by uframe */
4399        for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4400                if (itd == NULL) {
4401                        /* ASSERT:  we have all necessary itds */
4402
4403                        /* ASSERT:  no itds for this endpoint in this uframe */
4404
4405                        itd = list_entry(iso_sched->td_list.next,
4406                                        struct fotg210_itd, itd_list);
4407                        list_move_tail(&itd->itd_list, &stream->td_list);
4408                        itd->stream = stream;
4409                        itd->urb = urb;
4410                        itd_init(fotg210, stream, itd);
4411                }
4412
4413                uframe = next_uframe & 0x07;
4414                frame = next_uframe >> 3;
4415
4416                itd_patch(fotg210, itd, iso_sched, packet, uframe);
4417
4418                next_uframe += stream->interval;
4419                next_uframe &= mod - 1;
4420                packet++;
4421
4422                /* link completed itds into the schedule */
4423                if (((next_uframe >> 3) != frame)
4424                                || packet == urb->number_of_packets) {
4425                        itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4426                                        itd);
4427                        itd = NULL;
4428                }
4429        }
4430        stream->next_uframe = next_uframe;
4431
4432        /* don't need that schedule data any more */
4433        iso_sched_free(stream, iso_sched);
4434        urb->hcpriv = NULL;
4435
4436        ++fotg210->isoc_count;
4437        enable_periodic(fotg210);
4438}
4439
4440#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4441                FOTG210_ISOC_XACTERR)
4442
4443/* Process and recycle a completed ITD.  Return true iff its urb completed,
4444 * and hence its completion callback probably added things to the hardware
4445 * schedule.
4446 *
4447 * Note that we carefully avoid recycling this descriptor until after any
4448 * completion callback runs, so that it won't be reused quickly.  That is,
4449 * assuming (a) no more than two urbs per frame on this endpoint, and also
4450 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4451 * corrupts things if you reuse completed descriptors very quickly...
4452 */
4453static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4454{
4455        struct urb *urb = itd->urb;
4456        struct usb_iso_packet_descriptor *desc;
4457        u32 t;
4458        unsigned uframe;
4459        int urb_index = -1;
4460        struct fotg210_iso_stream *stream = itd->stream;
4461        struct usb_device *dev;
4462        bool retval = false;
4463
4464        /* for each uframe with a packet */
4465        for (uframe = 0; uframe < 8; uframe++) {
4466                if (likely(itd->index[uframe] == -1))
4467                        continue;
4468                urb_index = itd->index[uframe];
4469                desc = &urb->iso_frame_desc[urb_index];
4470
4471                t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4472                itd->hw_transaction[uframe] = 0;
4473
4474                /* report transfer status */
4475                if (unlikely(t & ISO_ERRS)) {
4476                        urb->error_count++;
4477                        if (t & FOTG210_ISOC_BUF_ERR)
4478                                desc->status = usb_pipein(urb->pipe)
4479                                        ? -ENOSR  /* hc couldn't read */
4480                                        : -ECOMM; /* hc couldn't write */
4481                        else if (t & FOTG210_ISOC_BABBLE)
4482                                desc->status = -EOVERFLOW;
4483                        else /* (t & FOTG210_ISOC_XACTERR) */
4484                                desc->status = -EPROTO;
4485
4486                        /* HC need not update length with this error */
4487                        if (!(t & FOTG210_ISOC_BABBLE)) {
4488                                desc->actual_length =
4489                                        fotg210_itdlen(urb, desc, t);
4490                                urb->actual_length += desc->actual_length;
4491                        }
4492                } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4493                        desc->status = 0;
4494                        desc->actual_length = fotg210_itdlen(urb, desc, t);
4495                        urb->actual_length += desc->actual_length;
4496                } else {
4497                        /* URB was too late */
4498                        desc->status = -EXDEV;
4499                }
4500        }
4501
4502        /* handle completion now? */
4503        if (likely((urb_index + 1) != urb->number_of_packets))
4504                goto done;
4505
4506        /* ASSERT: it's really the last itd for this urb
4507         * list_for_each_entry (itd, &stream->td_list, itd_list)
4508         *      BUG_ON (itd->urb == urb);
4509         */
4510
4511        /* give urb back to the driver; completion often (re)submits */
4512        dev = urb->dev;
4513        fotg210_urb_done(fotg210, urb, 0);
4514        retval = true;
4515        urb = NULL;
4516
4517        --fotg210->isoc_count;
4518        disable_periodic(fotg210);
4519
4520        if (unlikely(list_is_singular(&stream->td_list))) {
4521                fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4522                                -= stream->bandwidth;
4523                fotg210_dbg(fotg210,
4524                        "deschedule devp %s ep%d%s-iso\n",
4525                        dev->devpath, stream->bEndpointAddress & 0x0f,
4526                        (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4527        }
4528
4529done:
4530        itd->urb = NULL;
4531
4532        /* Add to the end of the free list for later reuse */
4533        list_move_tail(&itd->itd_list, &stream->free_list);
4534
4535        /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4536        if (list_empty(&stream->td_list)) {
4537                list_splice_tail_init(&stream->free_list,
4538                                &fotg210->cached_itd_list);
4539                start_free_itds(fotg210);
4540        }
4541
4542        return retval;
4543}
4544
4545static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4546                gfp_t mem_flags)
4547{
4548        int status = -EINVAL;
4549        unsigned long flags;
4550        struct fotg210_iso_stream *stream;
4551
4552        /* Get iso_stream head */
4553        stream = iso_stream_find(fotg210, urb);
4554        if (unlikely(stream == NULL)) {
4555                fotg210_dbg(fotg210, "can't get iso stream\n");
4556                return -ENOMEM;
4557        }
4558        if (unlikely(urb->interval != stream->interval &&
4559                        fotg210_port_speed(fotg210, 0) ==
4560                        USB_PORT_STAT_HIGH_SPEED)) {
4561                fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4562                                stream->interval, urb->interval);
4563                goto done;
4564        }
4565
4566#ifdef FOTG210_URB_TRACE
4567        fotg210_dbg(fotg210,
4568                        "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4569                        __func__, urb->dev->devpath, urb,
4570                        usb_pipeendpoint(urb->pipe),
4571                        usb_pipein(urb->pipe) ? "in" : "out",
4572                        urb->transfer_buffer_length,
4573                        urb->number_of_packets, urb->interval,
4574                        stream);
4575#endif
4576
4577        /* allocate ITDs w/o locking anything */
4578        status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4579        if (unlikely(status < 0)) {
4580                fotg210_dbg(fotg210, "can't init itds\n");
4581                goto done;
4582        }
4583
4584        /* schedule ... need to lock */
4585        spin_lock_irqsave(&fotg210->lock, flags);
4586        if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4587                status = -ESHUTDOWN;
4588                goto done_not_linked;
4589        }
4590        status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4591        if (unlikely(status))
4592                goto done_not_linked;
4593        status = iso_stream_schedule(fotg210, urb, stream);
4594        if (likely(status == 0))
4595                itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4596        else
4597                usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4598done_not_linked:
4599        spin_unlock_irqrestore(&fotg210->lock, flags);
4600done:
4601        return status;
4602}
4603
4604static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4605                unsigned now_frame, bool live)
4606{
4607        unsigned uf;
4608        bool modified;
4609        union fotg210_shadow q, *q_p;
4610        __hc32 type, *hw_p;
4611
4612        /* scan each element in frame's queue for completions */
4613        q_p = &fotg210->pshadow[frame];
4614        hw_p = &fotg210->periodic[frame];
4615        q.ptr = q_p->ptr;
4616        type = Q_NEXT_TYPE(fotg210, *hw_p);
4617        modified = false;
4618
4619        while (q.ptr) {
4620                switch (hc32_to_cpu(fotg210, type)) {
4621                case Q_TYPE_ITD:
4622                        /* If this ITD is still active, leave it for
4623                         * later processing ... check the next entry.
4624                         * No need to check for activity unless the
4625                         * frame is current.
4626                         */
4627                        if (frame == now_frame && live) {
4628                                rmb();
4629                                for (uf = 0; uf < 8; uf++) {
4630                                        if (q.itd->hw_transaction[uf] &
4631                                                        ITD_ACTIVE(fotg210))
4632                                                break;
4633                                }
4634                                if (uf < 8) {
4635                                        q_p = &q.itd->itd_next;
4636                                        hw_p = &q.itd->hw_next;
4637                                        type = Q_NEXT_TYPE(fotg210,
4638                                                        q.itd->hw_next);
4639                                        q = *q_p;
4640                                        break;
4641                                }
4642                        }
4643
4644                        /* Take finished ITDs out of the schedule
4645                         * and process them:  recycle, maybe report
4646                         * URB completion.  HC won't cache the
4647                         * pointer for much longer, if at all.
4648                         */
4649                        *q_p = q.itd->itd_next;
4650                        *hw_p = q.itd->hw_next;
4651                        type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4652                        wmb();
4653                        modified = itd_complete(fotg210, q.itd);
4654                        q = *q_p;
4655                        break;
4656                default:
4657                        fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4658                                        type, frame, q.ptr);
4659                        /* FALL THROUGH */
4660                case Q_TYPE_QH:
4661                case Q_TYPE_FSTN:
4662                        /* End of the iTDs and siTDs */
4663                        q.ptr = NULL;
4664                        break;
4665                }
4666
4667                /* assume completion callbacks modify the queue */
4668                if (unlikely(modified && fotg210->isoc_count > 0))
4669                        return -EINVAL;
4670        }
4671        return 0;
4672}
4673
4674static void scan_isoc(struct fotg210_hcd *fotg210)
4675{
4676        unsigned uf, now_frame, frame, ret;
4677        unsigned fmask = fotg210->periodic_size - 1;
4678        bool live;
4679
4680        /*
4681         * When running, scan from last scan point up to "now"
4682         * else clean up by scanning everything that's left.
4683         * Touches as few pages as possible:  cache-friendly.
4684         */
4685        if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4686                uf = fotg210_read_frame_index(fotg210);
4687                now_frame = (uf >> 3) & fmask;
4688                live = true;
4689        } else  {
4690                now_frame = (fotg210->next_frame - 1) & fmask;
4691                live = false;
4692        }
4693        fotg210->now_frame = now_frame;
4694
4695        frame = fotg210->next_frame;
4696        for (;;) {
4697                ret = 1;
4698                while (ret != 0)
4699                        ret = scan_frame_queue(fotg210, frame,
4700                                        now_frame, live);
4701
4702                /* Stop when we have reached the current frame */
4703                if (frame == now_frame)
4704                        break;
4705                frame = (frame + 1) & fmask;
4706        }
4707        fotg210->next_frame = now_frame;
4708}
4709
4710/* Display / Set uframe_periodic_max
4711 */
4712static ssize_t show_uframe_periodic_max(struct device *dev,
4713                struct device_attribute *attr, char *buf)
4714{
4715        struct fotg210_hcd *fotg210;
4716        int n;
4717
4718        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4719        n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4720        return n;
4721}
4722
4723
4724static ssize_t store_uframe_periodic_max(struct device *dev,
4725                struct device_attribute *attr, const char *buf, size_t count)
4726{
4727        struct fotg210_hcd *fotg210;
4728        unsigned uframe_periodic_max;
4729        unsigned frame, uframe;
4730        unsigned short allocated_max;
4731        unsigned long flags;
4732        ssize_t ret;
4733
4734        fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4735        if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4736                return -EINVAL;
4737
4738        if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4739                fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4740                                uframe_periodic_max);
4741                return -EINVAL;
4742        }
4743
4744        ret = -EINVAL;
4745
4746        /*
4747         * lock, so that our checking does not race with possible periodic
4748         * bandwidth allocation through submitting new urbs.
4749         */
4750        spin_lock_irqsave(&fotg210->lock, flags);
4751
4752        /*
4753         * for request to decrease max periodic bandwidth, we have to check
4754         * every microframe in the schedule to see whether the decrease is
4755         * possible.
4756         */
4757        if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4758                allocated_max = 0;
4759
4760                for (frame = 0; frame < fotg210->periodic_size; ++frame)
4761                        for (uframe = 0; uframe < 7; ++uframe)
4762                                allocated_max = max(allocated_max,
4763                                                periodic_usecs(fotg210, frame,
4764                                                uframe));
4765
4766                if (allocated_max > uframe_periodic_max) {
4767                        fotg210_info(fotg210,
4768                                        "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4769                                        allocated_max, uframe_periodic_max);
4770                        goto out_unlock;
4771                }
4772        }
4773
4774        /* increasing is always ok */
4775
4776        fotg210_info(fotg210,
4777                        "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4778                        100 * uframe_periodic_max/125, uframe_periodic_max);
4779
4780        if (uframe_periodic_max != 100)
4781                fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4782
4783        fotg210->uframe_periodic_max = uframe_periodic_max;
4784        ret = count;
4785
4786out_unlock:
4787        spin_unlock_irqrestore(&fotg210->lock, flags);
4788        return ret;
4789}
4790
4791static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4792                   store_uframe_periodic_max);
4793
4794static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4795{
4796        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4797
4798        return device_create_file(controller, &dev_attr_uframe_periodic_max);
4799}
4800
4801static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4802{
4803        struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4804
4805        device_remove_file(controller, &dev_attr_uframe_periodic_max);
4806}
4807/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4808 * The firmware seems to think that powering off is a wakeup event!
4809 * This routine turns off remote wakeup and everything else, on all ports.
4810 */
4811static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4812{
4813        u32 __iomem *status_reg = &fotg210->regs->port_status;
4814
4815        fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4816}
4817
4818/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4819 * Must be called with interrupts enabled and the lock not held.
4820 */
4821static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4822{
4823        fotg210_halt(fotg210);
4824
4825        spin_lock_irq(&fotg210->lock);
4826        fotg210->rh_state = FOTG210_RH_HALTED;
4827        fotg210_turn_off_all_ports(fotg210);
4828        spin_unlock_irq(&fotg210->lock);
4829}
4830
4831/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4832 * This forcibly disables dma and IRQs, helping kexec and other cases
4833 * where the next system software may expect clean state.
4834 */
4835static void fotg210_shutdown(struct usb_hcd *hcd)
4836{
4837        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4838
4839        spin_lock_irq(&fotg210->lock);
4840        fotg210->shutdown = true;
4841        fotg210->rh_state = FOTG210_RH_STOPPING;
4842        fotg210->enabled_hrtimer_events = 0;
4843        spin_unlock_irq(&fotg210->lock);
4844
4845        fotg210_silence_controller(fotg210);
4846
4847        hrtimer_cancel(&fotg210->hrtimer);
4848}
4849
4850/* fotg210_work is called from some interrupts, timers, and so on.
4851 * it calls driver completion functions, after dropping fotg210->lock.
4852 */
4853static void fotg210_work(struct fotg210_hcd *fotg210)
4854{
4855        /* another CPU may drop fotg210->lock during a schedule scan while
4856         * it reports urb completions.  this flag guards against bogus
4857         * attempts at re-entrant schedule scanning.
4858         */
4859        if (fotg210->scanning) {
4860                fotg210->need_rescan = true;
4861                return;
4862        }
4863        fotg210->scanning = true;
4864
4865rescan:
4866        fotg210->need_rescan = false;
4867        if (fotg210->async_count)
4868                scan_async(fotg210);
4869        if (fotg210->intr_count > 0)
4870                scan_intr(fotg210);
4871        if (fotg210->isoc_count > 0)
4872                scan_isoc(fotg210);
4873        if (fotg210->need_rescan)
4874                goto rescan;
4875        fotg210->scanning = false;
4876
4877        /* the IO watchdog guards against hardware or driver bugs that
4878         * misplace IRQs, and should let us run completely without IRQs.
4879         * such lossage has been observed on both VT6202 and VT8235.
4880         */
4881        turn_on_io_watchdog(fotg210);
4882}
4883
4884/* Called when the fotg210_hcd module is removed.
4885 */
4886static void fotg210_stop(struct usb_hcd *hcd)
4887{
4888        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4889
4890        fotg210_dbg(fotg210, "stop\n");
4891
4892        /* no more interrupts ... */
4893
4894        spin_lock_irq(&fotg210->lock);
4895        fotg210->enabled_hrtimer_events = 0;
4896        spin_unlock_irq(&fotg210->lock);
4897
4898        fotg210_quiesce(fotg210);
4899        fotg210_silence_controller(fotg210);
4900        fotg210_reset(fotg210);
4901
4902        hrtimer_cancel(&fotg210->hrtimer);
4903        remove_sysfs_files(fotg210);
4904        remove_debug_files(fotg210);
4905
4906        /* root hub is shut down separately (first, when possible) */
4907        spin_lock_irq(&fotg210->lock);
4908        end_free_itds(fotg210);
4909        spin_unlock_irq(&fotg210->lock);
4910        fotg210_mem_cleanup(fotg210);
4911
4912#ifdef FOTG210_STATS
4913        fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4914                        fotg210->stats.normal, fotg210->stats.error,
4915                        fotg210->stats.iaa, fotg210->stats.lost_iaa);
4916        fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4917                        fotg210->stats.complete, fotg210->stats.unlink);
4918#endif
4919
4920        dbg_status(fotg210, "fotg210_stop completed",
4921                        fotg210_readl(fotg210, &fotg210->regs->status));
4922}
4923
4924/* one-time init, only for memory state */
4925static int hcd_fotg210_init(struct usb_hcd *hcd)
4926{
4927        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4928        u32 temp;
4929        int retval;
4930        u32 hcc_params;
4931        struct fotg210_qh_hw *hw;
4932
4933        spin_lock_init(&fotg210->lock);
4934
4935        /*
4936         * keep io watchdog by default, those good HCDs could turn off it later
4937         */
4938        fotg210->need_io_watchdog = 1;
4939
4940        hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4941        fotg210->hrtimer.function = fotg210_hrtimer_func;
4942        fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4943
4944        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4945
4946        /*
4947         * by default set standard 80% (== 100 usec/uframe) max periodic
4948         * bandwidth as required by USB 2.0
4949         */
4950        fotg210->uframe_periodic_max = 100;
4951
4952        /*
4953         * hw default: 1K periodic list heads, one per frame.
4954         * periodic_size can shrink by USBCMD update if hcc_params allows.
4955         */
4956        fotg210->periodic_size = DEFAULT_I_TDPS;
4957        INIT_LIST_HEAD(&fotg210->intr_qh_list);
4958        INIT_LIST_HEAD(&fotg210->cached_itd_list);
4959
4960        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4961                /* periodic schedule size can be smaller than default */
4962                switch (FOTG210_TUNE_FLS) {
4963                case 0:
4964                        fotg210->periodic_size = 1024;
4965                        break;
4966                case 1:
4967                        fotg210->periodic_size = 512;
4968                        break;
4969                case 2:
4970                        fotg210->periodic_size = 256;
4971                        break;
4972                default:
4973                        BUG();
4974                }
4975        }
4976        retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4977        if (retval < 0)
4978                return retval;
4979
4980        /* controllers may cache some of the periodic schedule ... */
4981        fotg210->i_thresh = 2;
4982
4983        /*
4984         * dedicate a qh for the async ring head, since we couldn't unlink
4985         * a 'real' qh without stopping the async schedule [4.8].  use it
4986         * as the 'reclamation list head' too.
4987         * its dummy is used in hw_alt_next of many tds, to prevent the qh
4988         * from automatically advancing to the next td after short reads.
4989         */
4990        fotg210->async->qh_next.qh = NULL;
4991        hw = fotg210->async->hw;
4992        hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4993        hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4994        hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4995        hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4996        fotg210->async->qh_state = QH_STATE_LINKED;
4997        hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4998
4999        /* clear interrupt enables, set irq latency */
5000        if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5001                log2_irq_thresh = 0;
5002        temp = 1 << (16 + log2_irq_thresh);
5003        if (HCC_CANPARK(hcc_params)) {
5004                /* HW default park == 3, on hardware that supports it (like
5005                 * NVidia and ALI silicon), maximizes throughput on the async
5006                 * schedule by avoiding QH fetches between transfers.
5007                 *
5008                 * With fast usb storage devices and NForce2, "park" seems to
5009                 * make problems:  throughput reduction (!), data errors...
5010                 */
5011                if (park) {
5012                        park = min_t(unsigned, park, 3);
5013                        temp |= CMD_PARK;
5014                        temp |= park << 8;
5015                }
5016                fotg210_dbg(fotg210, "park %d\n", park);
5017        }
5018        if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5019                /* periodic schedule size can be smaller than default */
5020                temp &= ~(3 << 2);
5021                temp |= (FOTG210_TUNE_FLS << 2);
5022        }
5023        fotg210->command = temp;
5024
5025        /* Accept arbitrarily long scatter-gather lists */
5026        if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5027                hcd->self.sg_tablesize = ~0;
5028        return 0;
5029}
5030
5031/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5032static int fotg210_run(struct usb_hcd *hcd)
5033{
5034        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5035        u32 temp;
5036        u32 hcc_params;
5037
5038        hcd->uses_new_polling = 1;
5039
5040        /* EHCI spec section 4.1 */
5041
5042        fotg210_writel(fotg210, fotg210->periodic_dma,
5043                        &fotg210->regs->frame_list);
5044        fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5045                        &fotg210->regs->async_next);
5046
5047        /*
5048         * hcc_params controls whether fotg210->regs->segment must (!!!)
5049         * be used; it constrains QH/ITD/SITD and QTD locations.
5050         * dma_pool consistent memory always uses segment zero.
5051         * streaming mappings for I/O buffers, like pci_map_single(),
5052         * can return segments above 4GB, if the device allows.
5053         *
5054         * NOTE:  the dma mask is visible through dev->dma_mask, so
5055         * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5056         * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5057         * host side drivers though.
5058         */
5059        hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5060
5061        /*
5062         * Philips, Intel, and maybe others need CMD_RUN before the
5063         * root hub will detect new devices (why?); NEC doesn't
5064         */
5065        fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5066        fotg210->command |= CMD_RUN;
5067        fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5068        dbg_cmd(fotg210, "init", fotg210->command);
5069
5070        /*
5071         * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5072         * are explicitly handed to companion controller(s), so no TT is
5073         * involved with the root hub.  (Except where one is integrated,
5074         * and there's no companion controller unless maybe for USB OTG.)
5075         *
5076         * Turning on the CF flag will transfer ownership of all ports
5077         * from the companions to the EHCI controller.  If any of the
5078         * companions are in the middle of a port reset at the time, it
5079         * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5080         * guarantees that no resets are in progress.  After we set CF,
5081         * a short delay lets the hardware catch up; new resets shouldn't
5082         * be started before the port switching actions could complete.
5083         */
5084        down_write(&ehci_cf_port_reset_rwsem);
5085        fotg210->rh_state = FOTG210_RH_RUNNING;
5086        /* unblock posted writes */
5087        fotg210_readl(fotg210, &fotg210->regs->command);
5088        usleep_range(5000, 10000);
5089        up_write(&ehci_cf_port_reset_rwsem);
5090        fotg210->last_periodic_enable = ktime_get_real();
5091
5092        temp = HC_VERSION(fotg210,
5093                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5094        fotg210_info(fotg210,
5095                        "USB %x.%x started, EHCI %x.%02x\n",
5096                        ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5097                        temp >> 8, temp & 0xff);
5098
5099        fotg210_writel(fotg210, INTR_MASK,
5100                        &fotg210->regs->intr_enable); /* Turn On Interrupts */
5101
5102        /* GRR this is run-once init(), being done every time the HC starts.
5103         * So long as they're part of class devices, we can't do it init()
5104         * since the class device isn't created that early.
5105         */
5106        create_debug_files(fotg210);
5107        create_sysfs_files(fotg210);
5108
5109        return 0;
5110}
5111
5112static int fotg210_setup(struct usb_hcd *hcd)
5113{
5114        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5115        int retval;
5116
5117        fotg210->regs = (void __iomem *)fotg210->caps +
5118                        HC_LENGTH(fotg210,
5119                        fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5120        dbg_hcs_params(fotg210, "reset");
5121        dbg_hcc_params(fotg210, "reset");
5122
5123        /* cache this readonly data; minimize chip reads */
5124        fotg210->hcs_params = fotg210_readl(fotg210,
5125                        &fotg210->caps->hcs_params);
5126
5127        fotg210->sbrn = HCD_USB2;
5128
5129        /* data structure init */
5130        retval = hcd_fotg210_init(hcd);
5131        if (retval)
5132                return retval;
5133
5134        retval = fotg210_halt(fotg210);
5135        if (retval)
5136                return retval;
5137
5138        fotg210_reset(fotg210);
5139
5140        return 0;
5141}
5142
5143static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5144{
5145        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5146        u32 status, masked_status, pcd_status = 0, cmd;
5147        int bh;
5148
5149        spin_lock(&fotg210->lock);
5150
5151        status = fotg210_readl(fotg210, &fotg210->regs->status);
5152
5153        /* e.g. cardbus physical eject */
5154        if (status == ~(u32) 0) {
5155                fotg210_dbg(fotg210, "device removed\n");
5156                goto dead;
5157        }
5158
5159        /*
5160         * We don't use STS_FLR, but some controllers don't like it to
5161         * remain on, so mask it out along with the other status bits.
5162         */
5163        masked_status = status & (INTR_MASK | STS_FLR);
5164
5165        /* Shared IRQ? */
5166        if (!masked_status ||
5167                        unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5168                spin_unlock(&fotg210->lock);
5169                return IRQ_NONE;
5170        }
5171
5172        /* clear (just) interrupts */
5173        fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5174        cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5175        bh = 0;
5176
5177        /* unrequested/ignored: Frame List Rollover */
5178        dbg_status(fotg210, "irq", status);
5179
5180        /* INT, ERR, and IAA interrupt rates can be throttled */
5181
5182        /* normal [4.15.1.2] or error [4.15.1.1] completion */
5183        if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5184                if (likely((status & STS_ERR) == 0))
5185                        COUNT(fotg210->stats.normal);
5186                else
5187                        COUNT(fotg210->stats.error);
5188                bh = 1;
5189        }
5190
5191        /* complete the unlinking of some qh [4.15.2.3] */
5192        if (status & STS_IAA) {
5193
5194                /* Turn off the IAA watchdog */
5195                fotg210->enabled_hrtimer_events &=
5196                        ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5197
5198                /*
5199                 * Mild optimization: Allow another IAAD to reset the
5200                 * hrtimer, if one occurs before the next expiration.
5201                 * In theory we could always cancel the hrtimer, but
5202                 * tests show that about half the time it will be reset
5203                 * for some other event anyway.
5204                 */
5205                if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5206                        ++fotg210->next_hrtimer_event;
5207
5208                /* guard against (alleged) silicon errata */
5209                if (cmd & CMD_IAAD)
5210                        fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5211                if (fotg210->async_iaa) {
5212                        COUNT(fotg210->stats.iaa);
5213                        end_unlink_async(fotg210);
5214                } else
5215                        fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5216        }
5217
5218        /* remote wakeup [4.3.1] */
5219        if (status & STS_PCD) {
5220                int pstatus;
5221                u32 __iomem *status_reg = &fotg210->regs->port_status;
5222
5223                /* kick root hub later */
5224                pcd_status = status;
5225
5226                /* resume root hub? */
5227                if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5228                        usb_hcd_resume_root_hub(hcd);
5229
5230                pstatus = fotg210_readl(fotg210, status_reg);
5231
5232                if (test_bit(0, &fotg210->suspended_ports) &&
5233                                ((pstatus & PORT_RESUME) ||
5234                                !(pstatus & PORT_SUSPEND)) &&
5235                                (pstatus & PORT_PE) &&
5236                                fotg210->reset_done[0] == 0) {
5237
5238                        /* start 20 msec resume signaling from this port,
5239                         * and make hub_wq collect PORT_STAT_C_SUSPEND to
5240                         * stop that signaling.  Use 5 ms extra for safety,
5241                         * like usb_port_resume() does.
5242                         */
5243                        fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5244                        set_bit(0, &fotg210->resuming_ports);
5245                        fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5246                        mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5247                }
5248        }
5249
5250        /* PCI errors [4.15.2.4] */
5251        if (unlikely((status & STS_FATAL) != 0)) {
5252                fotg210_err(fotg210, "fatal error\n");
5253                dbg_cmd(fotg210, "fatal", cmd);
5254                dbg_status(fotg210, "fatal", status);
5255dead:
5256                usb_hc_died(hcd);
5257
5258                /* Don't let the controller do anything more */
5259                fotg210->shutdown = true;
5260                fotg210->rh_state = FOTG210_RH_STOPPING;
5261                fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5262                fotg210_writel(fotg210, fotg210->command,
5263                                &fotg210->regs->command);
5264                fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5265                fotg210_handle_controller_death(fotg210);
5266
5267                /* Handle completions when the controller stops */
5268                bh = 0;
5269        }
5270
5271        if (bh)
5272                fotg210_work(fotg210);
5273        spin_unlock(&fotg210->lock);
5274        if (pcd_status)
5275                usb_hcd_poll_rh_status(hcd);
5276        return IRQ_HANDLED;
5277}
5278
5279/* non-error returns are a promise to giveback() the urb later
5280 * we drop ownership so next owner (or urb unlink) can get it
5281 *
5282 * urb + dev is in hcd.self.controller.urb_list
5283 * we're queueing TDs onto software and hardware lists
5284 *
5285 * hcd-specific init for hcpriv hasn't been done yet
5286 *
5287 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5288 * to a (possibly active) QH, and the same QH scanning code.
5289 */
5290static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5291                gfp_t mem_flags)
5292{
5293        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5294        struct list_head qtd_list;
5295
5296        INIT_LIST_HEAD(&qtd_list);
5297
5298        switch (usb_pipetype(urb->pipe)) {
5299        case PIPE_CONTROL:
5300                /* qh_completions() code doesn't handle all the fault cases
5301                 * in multi-TD control transfers.  Even 1KB is rare anyway.
5302                 */
5303                if (urb->transfer_buffer_length > (16 * 1024))
5304                        return -EMSGSIZE;
5305                /* FALLTHROUGH */
5306        /* case PIPE_BULK: */
5307        default:
5308                if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5309                        return -ENOMEM;
5310                return submit_async(fotg210, urb, &qtd_list, mem_flags);
5311
5312        case PIPE_INTERRUPT:
5313                if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5314                        return -ENOMEM;
5315                return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5316
5317        case PIPE_ISOCHRONOUS:
5318                return itd_submit(fotg210, urb, mem_flags);
5319        }
5320}
5321
5322/* remove from hardware lists
5323 * completions normally happen asynchronously
5324 */
5325
5326static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5327{
5328        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5329        struct fotg210_qh *qh;
5330        unsigned long flags;
5331        int rc;
5332
5333        spin_lock_irqsave(&fotg210->lock, flags);
5334        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5335        if (rc)
5336                goto done;
5337
5338        switch (usb_pipetype(urb->pipe)) {
5339        /* case PIPE_CONTROL: */
5340        /* case PIPE_BULK:*/
5341        default:
5342                qh = (struct fotg210_qh *) urb->hcpriv;
5343                if (!qh)
5344                        break;
5345                switch (qh->qh_state) {
5346                case QH_STATE_LINKED:
5347                case QH_STATE_COMPLETING:
5348                        start_unlink_async(fotg210, qh);
5349                        break;
5350                case QH_STATE_UNLINK:
5351                case QH_STATE_UNLINK_WAIT:
5352                        /* already started */
5353                        break;
5354                case QH_STATE_IDLE:
5355                        /* QH might be waiting for a Clear-TT-Buffer */
5356                        qh_completions(fotg210, qh);
5357                        break;
5358                }
5359                break;
5360
5361        case PIPE_INTERRUPT:
5362                qh = (struct fotg210_qh *) urb->hcpriv;
5363                if (!qh)
5364                        break;
5365                switch (qh->qh_state) {
5366                case QH_STATE_LINKED:
5367                case QH_STATE_COMPLETING:
5368                        start_unlink_intr(fotg210, qh);
5369                        break;
5370                case QH_STATE_IDLE:
5371                        qh_completions(fotg210, qh);
5372                        break;
5373                default:
5374                        fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5375                                        qh, qh->qh_state);
5376                        goto done;
5377                }
5378                break;
5379
5380        case PIPE_ISOCHRONOUS:
5381                /* itd... */
5382
5383                /* wait till next completion, do it then. */
5384                /* completion irqs can wait up to 1024 msec, */
5385                break;
5386        }
5387done:
5388        spin_unlock_irqrestore(&fotg210->lock, flags);
5389        return rc;
5390}
5391
5392/* bulk qh holds the data toggle */
5393
5394static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5395                struct usb_host_endpoint *ep)
5396{
5397        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5398        unsigned long flags;
5399        struct fotg210_qh *qh, *tmp;
5400
5401        /* ASSERT:  any requests/urbs are being unlinked */
5402        /* ASSERT:  nobody can be submitting urbs for this any more */
5403
5404rescan:
5405        spin_lock_irqsave(&fotg210->lock, flags);
5406        qh = ep->hcpriv;
5407        if (!qh)
5408                goto done;
5409
5410        /* endpoints can be iso streams.  for now, we don't
5411         * accelerate iso completions ... so spin a while.
5412         */
5413        if (qh->hw == NULL) {
5414                struct fotg210_iso_stream *stream = ep->hcpriv;
5415
5416                if (!list_empty(&stream->td_list))
5417                        goto idle_timeout;
5418
5419                /* BUG_ON(!list_empty(&stream->free_list)); */
5420                kfree(stream);
5421                goto done;
5422        }
5423
5424        if (fotg210->rh_state < FOTG210_RH_RUNNING)
5425                qh->qh_state = QH_STATE_IDLE;
5426        switch (qh->qh_state) {
5427        case QH_STATE_LINKED:
5428        case QH_STATE_COMPLETING:
5429                for (tmp = fotg210->async->qh_next.qh;
5430                                tmp && tmp != qh;
5431                                tmp = tmp->qh_next.qh)
5432                        continue;
5433                /* periodic qh self-unlinks on empty, and a COMPLETING qh
5434                 * may already be unlinked.
5435                 */
5436                if (tmp)
5437                        start_unlink_async(fotg210, qh);
5438                /* FALL THROUGH */
5439        case QH_STATE_UNLINK:           /* wait for hw to finish? */
5440        case QH_STATE_UNLINK_WAIT:
5441idle_timeout:
5442                spin_unlock_irqrestore(&fotg210->lock, flags);
5443                schedule_timeout_uninterruptible(1);
5444                goto rescan;
5445        case QH_STATE_IDLE:             /* fully unlinked */
5446                if (qh->clearing_tt)
5447                        goto idle_timeout;
5448                if (list_empty(&qh->qtd_list)) {
5449                        qh_destroy(fotg210, qh);
5450                        break;
5451                }
5452                /* else FALL THROUGH */
5453        default:
5454                /* caller was supposed to have unlinked any requests;
5455                 * that's not our job.  just leak this memory.
5456                 */
5457                fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5458                                qh, ep->desc.bEndpointAddress, qh->qh_state,
5459                                list_empty(&qh->qtd_list) ? "" : "(has tds)");
5460                break;
5461        }
5462done:
5463        ep->hcpriv = NULL;
5464        spin_unlock_irqrestore(&fotg210->lock, flags);
5465}
5466
5467static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5468                struct usb_host_endpoint *ep)
5469{
5470        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5471        struct fotg210_qh *qh;
5472        int eptype = usb_endpoint_type(&ep->desc);
5473        int epnum = usb_endpoint_num(&ep->desc);
5474        int is_out = usb_endpoint_dir_out(&ep->desc);
5475        unsigned long flags;
5476
5477        if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5478                return;
5479
5480        spin_lock_irqsave(&fotg210->lock, flags);
5481        qh = ep->hcpriv;
5482
5483        /* For Bulk and Interrupt endpoints we maintain the toggle state
5484         * in the hardware; the toggle bits in udev aren't used at all.
5485         * When an endpoint is reset by usb_clear_halt() we must reset
5486         * the toggle bit in the QH.
5487         */
5488        if (qh) {
5489                usb_settoggle(qh->dev, epnum, is_out, 0);
5490                if (!list_empty(&qh->qtd_list)) {
5491                        WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5492                } else if (qh->qh_state == QH_STATE_LINKED ||
5493                                qh->qh_state == QH_STATE_COMPLETING) {
5494
5495                        /* The toggle value in the QH can't be updated
5496                         * while the QH is active.  Unlink it now;
5497                         * re-linking will call qh_refresh().
5498                         */
5499                        if (eptype == USB_ENDPOINT_XFER_BULK)
5500                                start_unlink_async(fotg210, qh);
5501                        else
5502                                start_unlink_intr(fotg210, qh);
5503                }
5504        }
5505        spin_unlock_irqrestore(&fotg210->lock, flags);
5506}
5507
5508static int fotg210_get_frame(struct usb_hcd *hcd)
5509{
5510        struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5511
5512        return (fotg210_read_frame_index(fotg210) >> 3) %
5513                fotg210->periodic_size;
5514}
5515
5516/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5517 * because its registers (and irq) are shared between host/gadget/otg
5518 * functions  and in order to facilitate role switching we cannot
5519 * give the fotg210 driver exclusive access to those.
5520 */
5521MODULE_DESCRIPTION(DRIVER_DESC);
5522MODULE_AUTHOR(DRIVER_AUTHOR);
5523MODULE_LICENSE("GPL");
5524
5525static const struct hc_driver fotg210_fotg210_hc_driver = {
5526        .description            = hcd_name,
5527        .product_desc           = "Faraday USB2.0 Host Controller",
5528        .hcd_priv_size          = sizeof(struct fotg210_hcd),
5529
5530        /*
5531         * generic hardware linkage
5532         */
5533        .irq                    = fotg210_irq,
5534        .flags                  = HCD_MEMORY | HCD_USB2,
5535
5536        /*
5537         * basic lifecycle operations
5538         */
5539        .reset                  = hcd_fotg210_init,
5540        .start                  = fotg210_run,
5541        .stop                   = fotg210_stop,
5542        .shutdown               = fotg210_shutdown,
5543
5544        /*
5545         * managing i/o requests and associated device resources
5546         */
5547        .urb_enqueue            = fotg210_urb_enqueue,
5548        .urb_dequeue            = fotg210_urb_dequeue,
5549        .endpoint_disable       = fotg210_endpoint_disable,
5550        .endpoint_reset         = fotg210_endpoint_reset,
5551
5552        /*
5553         * scheduling support
5554         */
5555        .get_frame_number       = fotg210_get_frame,
5556
5557        /*
5558         * root hub support
5559         */
5560        .hub_status_data        = fotg210_hub_status_data,
5561        .hub_control            = fotg210_hub_control,
5562        .bus_suspend            = fotg210_bus_suspend,
5563        .bus_resume             = fotg210_bus_resume,
5564
5565        .relinquish_port        = fotg210_relinquish_port,
5566        .port_handed_over       = fotg210_port_handed_over,
5567
5568        .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5569};
5570
5571static void fotg210_init(struct fotg210_hcd *fotg210)
5572{
5573        u32 value;
5574
5575        iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5576                        &fotg210->regs->gmir);
5577
5578        value = ioread32(&fotg210->regs->otgcsr);
5579        value &= ~OTGCSR_A_BUS_DROP;
5580        value |= OTGCSR_A_BUS_REQ;
5581        iowrite32(value, &fotg210->regs->otgcsr);
5582}
5583
5584/**
5585 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5586 *
5587 * Allocates basic resources for this USB host controller, and
5588 * then invokes the start() method for the HCD associated with it
5589 * through the hotplug entry's driver_data.
5590 */
5591static int fotg210_hcd_probe(struct platform_device *pdev)
5592{
5593        struct device *dev = &pdev->dev;
5594        struct usb_hcd *hcd;
5595        struct resource *res;
5596        int irq;
5597        int retval = -ENODEV;
5598        struct fotg210_hcd *fotg210;
5599
5600        if (usb_disabled())
5601                return -ENODEV;
5602
5603        pdev->dev.power.power_state = PMSG_ON;
5604
5605        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5606        if (!res) {
5607                dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5608                                dev_name(dev));
5609                return -ENODEV;
5610        }
5611
5612        irq = res->start;
5613
5614        hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5615                        dev_name(dev));
5616        if (!hcd) {
5617                dev_err(dev, "failed to create hcd with err %d\n", retval);
5618                retval = -ENOMEM;
5619                goto fail_create_hcd;
5620        }
5621
5622        hcd->has_tt = 1;
5623
5624        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5625        hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5626        if (IS_ERR(hcd->regs)) {
5627                retval = PTR_ERR(hcd->regs);
5628                goto failed;
5629        }
5630
5631        hcd->rsrc_start = res->start;
5632        hcd->rsrc_len = resource_size(res);
5633
5634        fotg210 = hcd_to_fotg210(hcd);
5635
5636        fotg210->caps = hcd->regs;
5637
5638        retval = fotg210_setup(hcd);
5639        if (retval)
5640                goto failed;
5641
5642        fotg210_init(fotg210);
5643
5644        retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5645        if (retval) {
5646                dev_err(dev, "failed to add hcd with err %d\n", retval);
5647                goto failed;
5648        }
5649        device_wakeup_enable(hcd->self.controller);
5650
5651        return retval;
5652
5653failed:
5654        usb_put_hcd(hcd);
5655fail_create_hcd:
5656        dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5657        return retval;
5658}
5659
5660/**
5661 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5662 * @dev: USB Host Controller being removed
5663 *
5664 */
5665static int fotg210_hcd_remove(struct platform_device *pdev)
5666{
5667        struct device *dev = &pdev->dev;
5668        struct usb_hcd *hcd = dev_get_drvdata(dev);
5669
5670        if (!hcd)
5671                return 0;
5672
5673        usb_remove_hcd(hcd);
5674        usb_put_hcd(hcd);
5675
5676        return 0;
5677}
5678
5679static struct platform_driver fotg210_hcd_driver = {
5680        .driver = {
5681                .name   = "fotg210-hcd",
5682        },
5683        .probe  = fotg210_hcd_probe,
5684        .remove = fotg210_hcd_remove,
5685};
5686
5687static int __init fotg210_hcd_init(void)
5688{
5689        int retval = 0;
5690
5691        if (usb_disabled())
5692                return -ENODEV;
5693
5694        pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5695        set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5696        if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5697                        test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5698                pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5699
5700        pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5701                        hcd_name, sizeof(struct fotg210_qh),
5702                        sizeof(struct fotg210_qtd),
5703                        sizeof(struct fotg210_itd));
5704
5705        fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5706        if (!fotg210_debug_root) {
5707                retval = -ENOENT;
5708                goto err_debug;
5709        }
5710
5711        retval = platform_driver_register(&fotg210_hcd_driver);
5712        if (retval < 0)
5713                goto clean;
5714        return retval;
5715
5716clean:
5717        debugfs_remove(fotg210_debug_root);
5718        fotg210_debug_root = NULL;
5719err_debug:
5720        clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5721        return retval;
5722}
5723module_init(fotg210_hcd_init);
5724
5725static void __exit fotg210_hcd_cleanup(void)
5726{
5727        platform_driver_unregister(&fotg210_hcd_driver);
5728        debugfs_remove(fotg210_debug_root);
5729        clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5730}
5731module_exit(fotg210_hcd_cleanup);
5732