linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42
  43#include "ext4_jbd2.h"
  44#include "xattr.h"
  45#include "acl.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53                              struct ext4_inode_info *ei)
  54{
  55        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56        __u32 csum;
  57        __u16 dummy_csum = 0;
  58        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59        unsigned int csum_size = sizeof(dummy_csum);
  60
  61        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63        offset += csum_size;
  64        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68                offset = offsetof(struct ext4_inode, i_checksum_hi);
  69                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70                                   EXT4_GOOD_OLD_INODE_SIZE,
  71                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74                                           csum_size);
  75                        offset += csum_size;
  76                }
  77                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79        }
  80
  81        return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85                                  struct ext4_inode_info *ei)
  86{
  87        __u32 provided, calculated;
  88
  89        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90            cpu_to_le32(EXT4_OS_LINUX) ||
  91            !ext4_has_metadata_csum(inode->i_sb))
  92                return 1;
  93
  94        provided = le16_to_cpu(raw->i_checksum_lo);
  95        calculated = ext4_inode_csum(inode, raw, ei);
  96        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99        else
 100                calculated &= 0xFFFF;
 101
 102        return provided == calculated;
 103}
 104
 105static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106                                struct ext4_inode_info *ei)
 107{
 108        __u32 csum;
 109
 110        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111            cpu_to_le32(EXT4_OS_LINUX) ||
 112            !ext4_has_metadata_csum(inode->i_sb))
 113                return;
 114
 115        csum = ext4_inode_csum(inode, raw, ei);
 116        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123                                              loff_t new_size)
 124{
 125        trace_ext4_begin_ordered_truncate(inode, new_size);
 126        /*
 127         * If jinode is zero, then we never opened the file for
 128         * writing, so there's no need to call
 129         * jbd2_journal_begin_ordered_truncate() since there's no
 130         * outstanding writes we need to flush.
 131         */
 132        if (!EXT4_I(inode)->jinode)
 133                return 0;
 134        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135                                                   EXT4_I(inode)->jinode,
 136                                                   new_size);
 137}
 138
 139static void ext4_invalidatepage(struct page *page, unsigned int offset,
 140                                unsigned int length);
 141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 144                                  int pextents);
 145
 146/*
 147 * Test whether an inode is a fast symlink.
 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 149 */
 150int ext4_inode_is_fast_symlink(struct inode *inode)
 151{
 152        return S_ISLNK(inode->i_mode) && inode->i_size &&
 153               (inode->i_size < EXT4_N_BLOCKS * 4);
 154}
 155
 156/*
 157 * Restart the transaction associated with *handle.  This does a commit,
 158 * so before we call here everything must be consistently dirtied against
 159 * this transaction.
 160 */
 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 162                                 int nblocks)
 163{
 164        int ret;
 165
 166        /*
 167         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 168         * moment, get_block can be called only for blocks inside i_size since
 169         * page cache has been already dropped and writes are blocked by
 170         * i_mutex. So we can safely drop the i_data_sem here.
 171         */
 172        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 173        jbd_debug(2, "restarting handle %p\n", handle);
 174        up_write(&EXT4_I(inode)->i_data_sem);
 175        ret = ext4_journal_restart(handle, nblocks);
 176        down_write(&EXT4_I(inode)->i_data_sem);
 177        ext4_discard_preallocations(inode);
 178
 179        return ret;
 180}
 181
 182/*
 183 * Called at the last iput() if i_nlink is zero.
 184 */
 185void ext4_evict_inode(struct inode *inode)
 186{
 187        handle_t *handle;
 188        int err;
 189        int extra_credits = 3;
 190        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 191
 192        trace_ext4_evict_inode(inode);
 193
 194        if (inode->i_nlink) {
 195                /*
 196                 * When journalling data dirty buffers are tracked only in the
 197                 * journal. So although mm thinks everything is clean and
 198                 * ready for reaping the inode might still have some pages to
 199                 * write in the running transaction or waiting to be
 200                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 201                 * (via truncate_inode_pages()) to discard these buffers can
 202                 * cause data loss. Also even if we did not discard these
 203                 * buffers, we would have no way to find them after the inode
 204                 * is reaped and thus user could see stale data if he tries to
 205                 * read them before the transaction is checkpointed. So be
 206                 * careful and force everything to disk here... We use
 207                 * ei->i_datasync_tid to store the newest transaction
 208                 * containing inode's data.
 209                 *
 210                 * Note that directories do not have this problem because they
 211                 * don't use page cache.
 212                 */
 213                if (inode->i_ino != EXT4_JOURNAL_INO &&
 214                    ext4_should_journal_data(inode) &&
 215                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 216                    inode->i_data.nrpages) {
 217                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 218                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 219
 220                        jbd2_complete_transaction(journal, commit_tid);
 221                        filemap_write_and_wait(&inode->i_data);
 222                }
 223                truncate_inode_pages_final(&inode->i_data);
 224
 225                goto no_delete;
 226        }
 227
 228        if (is_bad_inode(inode))
 229                goto no_delete;
 230        dquot_initialize(inode);
 231
 232        if (ext4_should_order_data(inode))
 233                ext4_begin_ordered_truncate(inode, 0);
 234        truncate_inode_pages_final(&inode->i_data);
 235
 236        /*
 237         * Protect us against freezing - iput() caller didn't have to have any
 238         * protection against it
 239         */
 240        sb_start_intwrite(inode->i_sb);
 241
 242        if (!IS_NOQUOTA(inode))
 243                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 244
 245        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 246                                 ext4_blocks_for_truncate(inode)+extra_credits);
 247        if (IS_ERR(handle)) {
 248                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 249                /*
 250                 * If we're going to skip the normal cleanup, we still need to
 251                 * make sure that the in-core orphan linked list is properly
 252                 * cleaned up.
 253                 */
 254                ext4_orphan_del(NULL, inode);
 255                sb_end_intwrite(inode->i_sb);
 256                goto no_delete;
 257        }
 258
 259        if (IS_SYNC(inode))
 260                ext4_handle_sync(handle);
 261
 262        /*
 263         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 264         * special handling of symlinks here because i_size is used to
 265         * determine whether ext4_inode_info->i_data contains symlink data or
 266         * block mappings. Setting i_size to 0 will remove its fast symlink
 267         * status. Erase i_data so that it becomes a valid empty block map.
 268         */
 269        if (ext4_inode_is_fast_symlink(inode))
 270                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 271        inode->i_size = 0;
 272        err = ext4_mark_inode_dirty(handle, inode);
 273        if (err) {
 274                ext4_warning(inode->i_sb,
 275                             "couldn't mark inode dirty (err %d)", err);
 276                goto stop_handle;
 277        }
 278        if (inode->i_blocks) {
 279                err = ext4_truncate(inode);
 280                if (err) {
 281                        ext4_error(inode->i_sb,
 282                                   "couldn't truncate inode %lu (err %d)",
 283                                   inode->i_ino, err);
 284                        goto stop_handle;
 285                }
 286        }
 287
 288        /* Remove xattr references. */
 289        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 290                                      extra_credits);
 291        if (err) {
 292                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 293stop_handle:
 294                ext4_journal_stop(handle);
 295                ext4_orphan_del(NULL, inode);
 296                sb_end_intwrite(inode->i_sb);
 297                ext4_xattr_inode_array_free(ea_inode_array);
 298                goto no_delete;
 299        }
 300
 301        /*
 302         * Kill off the orphan record which ext4_truncate created.
 303         * AKPM: I think this can be inside the above `if'.
 304         * Note that ext4_orphan_del() has to be able to cope with the
 305         * deletion of a non-existent orphan - this is because we don't
 306         * know if ext4_truncate() actually created an orphan record.
 307         * (Well, we could do this if we need to, but heck - it works)
 308         */
 309        ext4_orphan_del(handle, inode);
 310        EXT4_I(inode)->i_dtime  = get_seconds();
 311
 312        /*
 313         * One subtle ordering requirement: if anything has gone wrong
 314         * (transaction abort, IO errors, whatever), then we can still
 315         * do these next steps (the fs will already have been marked as
 316         * having errors), but we can't free the inode if the mark_dirty
 317         * fails.
 318         */
 319        if (ext4_mark_inode_dirty(handle, inode))
 320                /* If that failed, just do the required in-core inode clear. */
 321                ext4_clear_inode(inode);
 322        else
 323                ext4_free_inode(handle, inode);
 324        ext4_journal_stop(handle);
 325        sb_end_intwrite(inode->i_sb);
 326        ext4_xattr_inode_array_free(ea_inode_array);
 327        return;
 328no_delete:
 329        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 330}
 331
 332#ifdef CONFIG_QUOTA
 333qsize_t *ext4_get_reserved_space(struct inode *inode)
 334{
 335        return &EXT4_I(inode)->i_reserved_quota;
 336}
 337#endif
 338
 339/*
 340 * Called with i_data_sem down, which is important since we can call
 341 * ext4_discard_preallocations() from here.
 342 */
 343void ext4_da_update_reserve_space(struct inode *inode,
 344                                        int used, int quota_claim)
 345{
 346        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 347        struct ext4_inode_info *ei = EXT4_I(inode);
 348
 349        spin_lock(&ei->i_block_reservation_lock);
 350        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 351        if (unlikely(used > ei->i_reserved_data_blocks)) {
 352                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 353                         "with only %d reserved data blocks",
 354                         __func__, inode->i_ino, used,
 355                         ei->i_reserved_data_blocks);
 356                WARN_ON(1);
 357                used = ei->i_reserved_data_blocks;
 358        }
 359
 360        /* Update per-inode reservations */
 361        ei->i_reserved_data_blocks -= used;
 362        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 363
 364        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 365
 366        /* Update quota subsystem for data blocks */
 367        if (quota_claim)
 368                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 369        else {
 370                /*
 371                 * We did fallocate with an offset that is already delayed
 372                 * allocated. So on delayed allocated writeback we should
 373                 * not re-claim the quota for fallocated blocks.
 374                 */
 375                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 376        }
 377
 378        /*
 379         * If we have done all the pending block allocations and if
 380         * there aren't any writers on the inode, we can discard the
 381         * inode's preallocations.
 382         */
 383        if ((ei->i_reserved_data_blocks == 0) &&
 384            (atomic_read(&inode->i_writecount) == 0))
 385                ext4_discard_preallocations(inode);
 386}
 387
 388static int __check_block_validity(struct inode *inode, const char *func,
 389                                unsigned int line,
 390                                struct ext4_map_blocks *map)
 391{
 392        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 393                                   map->m_len)) {
 394                ext4_error_inode(inode, func, line, map->m_pblk,
 395                                 "lblock %lu mapped to illegal pblock "
 396                                 "(length %d)", (unsigned long) map->m_lblk,
 397                                 map->m_len);
 398                return -EFSCORRUPTED;
 399        }
 400        return 0;
 401}
 402
 403int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 404                       ext4_lblk_t len)
 405{
 406        int ret;
 407
 408        if (ext4_encrypted_inode(inode))
 409                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 410
 411        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 412        if (ret > 0)
 413                ret = 0;
 414
 415        return ret;
 416}
 417
 418#define check_block_validity(inode, map)        \
 419        __check_block_validity((inode), __func__, __LINE__, (map))
 420
 421#ifdef ES_AGGRESSIVE_TEST
 422static void ext4_map_blocks_es_recheck(handle_t *handle,
 423                                       struct inode *inode,
 424                                       struct ext4_map_blocks *es_map,
 425                                       struct ext4_map_blocks *map,
 426                                       int flags)
 427{
 428        int retval;
 429
 430        map->m_flags = 0;
 431        /*
 432         * There is a race window that the result is not the same.
 433         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 434         * is that we lookup a block mapping in extent status tree with
 435         * out taking i_data_sem.  So at the time the unwritten extent
 436         * could be converted.
 437         */
 438        down_read(&EXT4_I(inode)->i_data_sem);
 439        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 440                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 441                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 442        } else {
 443                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 444                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 445        }
 446        up_read((&EXT4_I(inode)->i_data_sem));
 447
 448        /*
 449         * We don't check m_len because extent will be collpased in status
 450         * tree.  So the m_len might not equal.
 451         */
 452        if (es_map->m_lblk != map->m_lblk ||
 453            es_map->m_flags != map->m_flags ||
 454            es_map->m_pblk != map->m_pblk) {
 455                printk("ES cache assertion failed for inode: %lu "
 456                       "es_cached ex [%d/%d/%llu/%x] != "
 457                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 458                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 459                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 460                       map->m_len, map->m_pblk, map->m_flags,
 461                       retval, flags);
 462        }
 463}
 464#endif /* ES_AGGRESSIVE_TEST */
 465
 466/*
 467 * The ext4_map_blocks() function tries to look up the requested blocks,
 468 * and returns if the blocks are already mapped.
 469 *
 470 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 471 * and store the allocated blocks in the result buffer head and mark it
 472 * mapped.
 473 *
 474 * If file type is extents based, it will call ext4_ext_map_blocks(),
 475 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 476 * based files
 477 *
 478 * On success, it returns the number of blocks being mapped or allocated.  if
 479 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 480 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 481 *
 482 * It returns 0 if plain look up failed (blocks have not been allocated), in
 483 * that case, @map is returned as unmapped but we still do fill map->m_len to
 484 * indicate the length of a hole starting at map->m_lblk.
 485 *
 486 * It returns the error in case of allocation failure.
 487 */
 488int ext4_map_blocks(handle_t *handle, struct inode *inode,
 489                    struct ext4_map_blocks *map, int flags)
 490{
 491        struct extent_status es;
 492        int retval;
 493        int ret = 0;
 494#ifdef ES_AGGRESSIVE_TEST
 495        struct ext4_map_blocks orig_map;
 496
 497        memcpy(&orig_map, map, sizeof(*map));
 498#endif
 499
 500        map->m_flags = 0;
 501        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 502                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 503                  (unsigned long) map->m_lblk);
 504
 505        /*
 506         * ext4_map_blocks returns an int, and m_len is an unsigned int
 507         */
 508        if (unlikely(map->m_len > INT_MAX))
 509                map->m_len = INT_MAX;
 510
 511        /* We can handle the block number less than EXT_MAX_BLOCKS */
 512        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 513                return -EFSCORRUPTED;
 514
 515        /* Lookup extent status tree firstly */
 516        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 517                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 518                        map->m_pblk = ext4_es_pblock(&es) +
 519                                        map->m_lblk - es.es_lblk;
 520                        map->m_flags |= ext4_es_is_written(&es) ?
 521                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 522                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 523                        if (retval > map->m_len)
 524                                retval = map->m_len;
 525                        map->m_len = retval;
 526                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 527                        map->m_pblk = 0;
 528                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 529                        if (retval > map->m_len)
 530                                retval = map->m_len;
 531                        map->m_len = retval;
 532                        retval = 0;
 533                } else {
 534                        BUG_ON(1);
 535                }
 536#ifdef ES_AGGRESSIVE_TEST
 537                ext4_map_blocks_es_recheck(handle, inode, map,
 538                                           &orig_map, flags);
 539#endif
 540                goto found;
 541        }
 542
 543        /*
 544         * Try to see if we can get the block without requesting a new
 545         * file system block.
 546         */
 547        down_read(&EXT4_I(inode)->i_data_sem);
 548        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 549                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 550                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 551        } else {
 552                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 553                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 554        }
 555        if (retval > 0) {
 556                unsigned int status;
 557
 558                if (unlikely(retval != map->m_len)) {
 559                        ext4_warning(inode->i_sb,
 560                                     "ES len assertion failed for inode "
 561                                     "%lu: retval %d != map->m_len %d",
 562                                     inode->i_ino, retval, map->m_len);
 563                        WARN_ON(1);
 564                }
 565
 566                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 567                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 568                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 569                    !(status & EXTENT_STATUS_WRITTEN) &&
 570                    ext4_find_delalloc_range(inode, map->m_lblk,
 571                                             map->m_lblk + map->m_len - 1))
 572                        status |= EXTENT_STATUS_DELAYED;
 573                ret = ext4_es_insert_extent(inode, map->m_lblk,
 574                                            map->m_len, map->m_pblk, status);
 575                if (ret < 0)
 576                        retval = ret;
 577        }
 578        up_read((&EXT4_I(inode)->i_data_sem));
 579
 580found:
 581        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 582                ret = check_block_validity(inode, map);
 583                if (ret != 0)
 584                        return ret;
 585        }
 586
 587        /* If it is only a block(s) look up */
 588        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 589                return retval;
 590
 591        /*
 592         * Returns if the blocks have already allocated
 593         *
 594         * Note that if blocks have been preallocated
 595         * ext4_ext_get_block() returns the create = 0
 596         * with buffer head unmapped.
 597         */
 598        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 599                /*
 600                 * If we need to convert extent to unwritten
 601                 * we continue and do the actual work in
 602                 * ext4_ext_map_blocks()
 603                 */
 604                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 605                        return retval;
 606
 607        /*
 608         * Here we clear m_flags because after allocating an new extent,
 609         * it will be set again.
 610         */
 611        map->m_flags &= ~EXT4_MAP_FLAGS;
 612
 613        /*
 614         * New blocks allocate and/or writing to unwritten extent
 615         * will possibly result in updating i_data, so we take
 616         * the write lock of i_data_sem, and call get_block()
 617         * with create == 1 flag.
 618         */
 619        down_write(&EXT4_I(inode)->i_data_sem);
 620
 621        /*
 622         * We need to check for EXT4 here because migrate
 623         * could have changed the inode type in between
 624         */
 625        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 626                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 627        } else {
 628                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 629
 630                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 631                        /*
 632                         * We allocated new blocks which will result in
 633                         * i_data's format changing.  Force the migrate
 634                         * to fail by clearing migrate flags
 635                         */
 636                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 637                }
 638
 639                /*
 640                 * Update reserved blocks/metadata blocks after successful
 641                 * block allocation which had been deferred till now. We don't
 642                 * support fallocate for non extent files. So we can update
 643                 * reserve space here.
 644                 */
 645                if ((retval > 0) &&
 646                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 647                        ext4_da_update_reserve_space(inode, retval, 1);
 648        }
 649
 650        if (retval > 0) {
 651                unsigned int status;
 652
 653                if (unlikely(retval != map->m_len)) {
 654                        ext4_warning(inode->i_sb,
 655                                     "ES len assertion failed for inode "
 656                                     "%lu: retval %d != map->m_len %d",
 657                                     inode->i_ino, retval, map->m_len);
 658                        WARN_ON(1);
 659                }
 660
 661                /*
 662                 * We have to zeroout blocks before inserting them into extent
 663                 * status tree. Otherwise someone could look them up there and
 664                 * use them before they are really zeroed. We also have to
 665                 * unmap metadata before zeroing as otherwise writeback can
 666                 * overwrite zeros with stale data from block device.
 667                 */
 668                if (flags & EXT4_GET_BLOCKS_ZERO &&
 669                    map->m_flags & EXT4_MAP_MAPPED &&
 670                    map->m_flags & EXT4_MAP_NEW) {
 671                        clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 672                                           map->m_len);
 673                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 674                                                 map->m_pblk, map->m_len);
 675                        if (ret) {
 676                                retval = ret;
 677                                goto out_sem;
 678                        }
 679                }
 680
 681                /*
 682                 * If the extent has been zeroed out, we don't need to update
 683                 * extent status tree.
 684                 */
 685                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 686                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 687                        if (ext4_es_is_written(&es))
 688                                goto out_sem;
 689                }
 690                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 691                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 692                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 693                    !(status & EXTENT_STATUS_WRITTEN) &&
 694                    ext4_find_delalloc_range(inode, map->m_lblk,
 695                                             map->m_lblk + map->m_len - 1))
 696                        status |= EXTENT_STATUS_DELAYED;
 697                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 698                                            map->m_pblk, status);
 699                if (ret < 0) {
 700                        retval = ret;
 701                        goto out_sem;
 702                }
 703        }
 704
 705out_sem:
 706        up_write((&EXT4_I(inode)->i_data_sem));
 707        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 708                ret = check_block_validity(inode, map);
 709                if (ret != 0)
 710                        return ret;
 711
 712                /*
 713                 * Inodes with freshly allocated blocks where contents will be
 714                 * visible after transaction commit must be on transaction's
 715                 * ordered data list.
 716                 */
 717                if (map->m_flags & EXT4_MAP_NEW &&
 718                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 719                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 720                    !ext4_is_quota_file(inode) &&
 721                    ext4_should_order_data(inode)) {
 722                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 723                                ret = ext4_jbd2_inode_add_wait(handle, inode);
 724                        else
 725                                ret = ext4_jbd2_inode_add_write(handle, inode);
 726                        if (ret)
 727                                return ret;
 728                }
 729        }
 730        return retval;
 731}
 732
 733/*
 734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 735 * we have to be careful as someone else may be manipulating b_state as well.
 736 */
 737static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 738{
 739        unsigned long old_state;
 740        unsigned long new_state;
 741
 742        flags &= EXT4_MAP_FLAGS;
 743
 744        /* Dummy buffer_head? Set non-atomically. */
 745        if (!bh->b_page) {
 746                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 747                return;
 748        }
 749        /*
 750         * Someone else may be modifying b_state. Be careful! This is ugly but
 751         * once we get rid of using bh as a container for mapping information
 752         * to pass to / from get_block functions, this can go away.
 753         */
 754        do {
 755                old_state = READ_ONCE(bh->b_state);
 756                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 757        } while (unlikely(
 758                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 759}
 760
 761static int _ext4_get_block(struct inode *inode, sector_t iblock,
 762                           struct buffer_head *bh, int flags)
 763{
 764        struct ext4_map_blocks map;
 765        int ret = 0;
 766
 767        if (ext4_has_inline_data(inode))
 768                return -ERANGE;
 769
 770        map.m_lblk = iblock;
 771        map.m_len = bh->b_size >> inode->i_blkbits;
 772
 773        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 774                              flags);
 775        if (ret > 0) {
 776                map_bh(bh, inode->i_sb, map.m_pblk);
 777                ext4_update_bh_state(bh, map.m_flags);
 778                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 779                ret = 0;
 780        } else if (ret == 0) {
 781                /* hole case, need to fill in bh->b_size */
 782                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 783        }
 784        return ret;
 785}
 786
 787int ext4_get_block(struct inode *inode, sector_t iblock,
 788                   struct buffer_head *bh, int create)
 789{
 790        return _ext4_get_block(inode, iblock, bh,
 791                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 792}
 793
 794/*
 795 * Get block function used when preparing for buffered write if we require
 796 * creating an unwritten extent if blocks haven't been allocated.  The extent
 797 * will be converted to written after the IO is complete.
 798 */
 799int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 800                             struct buffer_head *bh_result, int create)
 801{
 802        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 803                   inode->i_ino, create);
 804        return _ext4_get_block(inode, iblock, bh_result,
 805                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 806}
 807
 808/* Maximum number of blocks we map for direct IO at once. */
 809#define DIO_MAX_BLOCKS 4096
 810
 811/*
 812 * Get blocks function for the cases that need to start a transaction -
 813 * generally difference cases of direct IO and DAX IO. It also handles retries
 814 * in case of ENOSPC.
 815 */
 816static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 817                                struct buffer_head *bh_result, int flags)
 818{
 819        int dio_credits;
 820        handle_t *handle;
 821        int retries = 0;
 822        int ret;
 823
 824        /* Trim mapping request to maximum we can map at once for DIO */
 825        if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 826                bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 827        dio_credits = ext4_chunk_trans_blocks(inode,
 828                                      bh_result->b_size >> inode->i_blkbits);
 829retry:
 830        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 831        if (IS_ERR(handle))
 832                return PTR_ERR(handle);
 833
 834        ret = _ext4_get_block(inode, iblock, bh_result, flags);
 835        ext4_journal_stop(handle);
 836
 837        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 838                goto retry;
 839        return ret;
 840}
 841
 842/* Get block function for DIO reads and writes to inodes without extents */
 843int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 844                       struct buffer_head *bh, int create)
 845{
 846        /* We don't expect handle for direct IO */
 847        WARN_ON_ONCE(ext4_journal_current_handle());
 848
 849        if (!create)
 850                return _ext4_get_block(inode, iblock, bh, 0);
 851        return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 852}
 853
 854/*
 855 * Get block function for AIO DIO writes when we create unwritten extent if
 856 * blocks are not allocated yet. The extent will be converted to written
 857 * after IO is complete.
 858 */
 859static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 860                sector_t iblock, struct buffer_head *bh_result, int create)
 861{
 862        int ret;
 863
 864        /* We don't expect handle for direct IO */
 865        WARN_ON_ONCE(ext4_journal_current_handle());
 866
 867        ret = ext4_get_block_trans(inode, iblock, bh_result,
 868                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 869
 870        /*
 871         * When doing DIO using unwritten extents, we need io_end to convert
 872         * unwritten extents to written on IO completion. We allocate io_end
 873         * once we spot unwritten extent and store it in b_private. Generic
 874         * DIO code keeps b_private set and furthermore passes the value to
 875         * our completion callback in 'private' argument.
 876         */
 877        if (!ret && buffer_unwritten(bh_result)) {
 878                if (!bh_result->b_private) {
 879                        ext4_io_end_t *io_end;
 880
 881                        io_end = ext4_init_io_end(inode, GFP_KERNEL);
 882                        if (!io_end)
 883                                return -ENOMEM;
 884                        bh_result->b_private = io_end;
 885                        ext4_set_io_unwritten_flag(inode, io_end);
 886                }
 887                set_buffer_defer_completion(bh_result);
 888        }
 889
 890        return ret;
 891}
 892
 893/*
 894 * Get block function for non-AIO DIO writes when we create unwritten extent if
 895 * blocks are not allocated yet. The extent will be converted to written
 896 * after IO is complete by ext4_direct_IO_write().
 897 */
 898static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 899                sector_t iblock, struct buffer_head *bh_result, int create)
 900{
 901        int ret;
 902
 903        /* We don't expect handle for direct IO */
 904        WARN_ON_ONCE(ext4_journal_current_handle());
 905
 906        ret = ext4_get_block_trans(inode, iblock, bh_result,
 907                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 908
 909        /*
 910         * Mark inode as having pending DIO writes to unwritten extents.
 911         * ext4_direct_IO_write() checks this flag and converts extents to
 912         * written.
 913         */
 914        if (!ret && buffer_unwritten(bh_result))
 915                ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 916
 917        return ret;
 918}
 919
 920static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 921                   struct buffer_head *bh_result, int create)
 922{
 923        int ret;
 924
 925        ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 926                   inode->i_ino, create);
 927        /* We don't expect handle for direct IO */
 928        WARN_ON_ONCE(ext4_journal_current_handle());
 929
 930        ret = _ext4_get_block(inode, iblock, bh_result, 0);
 931        /*
 932         * Blocks should have been preallocated! ext4_file_write_iter() checks
 933         * that.
 934         */
 935        WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 936
 937        return ret;
 938}
 939
 940
 941/*
 942 * `handle' can be NULL if create is zero
 943 */
 944struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 945                                ext4_lblk_t block, int map_flags)
 946{
 947        struct ext4_map_blocks map;
 948        struct buffer_head *bh;
 949        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 950        int err;
 951
 952        J_ASSERT(handle != NULL || create == 0);
 953
 954        map.m_lblk = block;
 955        map.m_len = 1;
 956        err = ext4_map_blocks(handle, inode, &map, map_flags);
 957
 958        if (err == 0)
 959                return create ? ERR_PTR(-ENOSPC) : NULL;
 960        if (err < 0)
 961                return ERR_PTR(err);
 962
 963        bh = sb_getblk(inode->i_sb, map.m_pblk);
 964        if (unlikely(!bh))
 965                return ERR_PTR(-ENOMEM);
 966        if (map.m_flags & EXT4_MAP_NEW) {
 967                J_ASSERT(create != 0);
 968                J_ASSERT(handle != NULL);
 969
 970                /*
 971                 * Now that we do not always journal data, we should
 972                 * keep in mind whether this should always journal the
 973                 * new buffer as metadata.  For now, regular file
 974                 * writes use ext4_get_block instead, so it's not a
 975                 * problem.
 976                 */
 977                lock_buffer(bh);
 978                BUFFER_TRACE(bh, "call get_create_access");
 979                err = ext4_journal_get_create_access(handle, bh);
 980                if (unlikely(err)) {
 981                        unlock_buffer(bh);
 982                        goto errout;
 983                }
 984                if (!buffer_uptodate(bh)) {
 985                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 986                        set_buffer_uptodate(bh);
 987                }
 988                unlock_buffer(bh);
 989                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 990                err = ext4_handle_dirty_metadata(handle, inode, bh);
 991                if (unlikely(err))
 992                        goto errout;
 993        } else
 994                BUFFER_TRACE(bh, "not a new buffer");
 995        return bh;
 996errout:
 997        brelse(bh);
 998        return ERR_PTR(err);
 999}
1000
1001struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1002                               ext4_lblk_t block, int map_flags)
1003{
1004        struct buffer_head *bh;
1005
1006        bh = ext4_getblk(handle, inode, block, map_flags);
1007        if (IS_ERR(bh))
1008                return bh;
1009        if (!bh || buffer_uptodate(bh))
1010                return bh;
1011        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012        wait_on_buffer(bh);
1013        if (buffer_uptodate(bh))
1014                return bh;
1015        put_bh(bh);
1016        return ERR_PTR(-EIO);
1017}
1018
1019/* Read a contiguous batch of blocks. */
1020int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1021                     bool wait, struct buffer_head **bhs)
1022{
1023        int i, err;
1024
1025        for (i = 0; i < bh_count; i++) {
1026                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1027                if (IS_ERR(bhs[i])) {
1028                        err = PTR_ERR(bhs[i]);
1029                        bh_count = i;
1030                        goto out_brelse;
1031                }
1032        }
1033
1034        for (i = 0; i < bh_count; i++)
1035                /* Note that NULL bhs[i] is valid because of holes. */
1036                if (bhs[i] && !buffer_uptodate(bhs[i]))
1037                        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1038                                    &bhs[i]);
1039
1040        if (!wait)
1041                return 0;
1042
1043        for (i = 0; i < bh_count; i++)
1044                if (bhs[i])
1045                        wait_on_buffer(bhs[i]);
1046
1047        for (i = 0; i < bh_count; i++) {
1048                if (bhs[i] && !buffer_uptodate(bhs[i])) {
1049                        err = -EIO;
1050                        goto out_brelse;
1051                }
1052        }
1053        return 0;
1054
1055out_brelse:
1056        for (i = 0; i < bh_count; i++) {
1057                brelse(bhs[i]);
1058                bhs[i] = NULL;
1059        }
1060        return err;
1061}
1062
1063int ext4_walk_page_buffers(handle_t *handle,
1064                           struct buffer_head *head,
1065                           unsigned from,
1066                           unsigned to,
1067                           int *partial,
1068                           int (*fn)(handle_t *handle,
1069                                     struct buffer_head *bh))
1070{
1071        struct buffer_head *bh;
1072        unsigned block_start, block_end;
1073        unsigned blocksize = head->b_size;
1074        int err, ret = 0;
1075        struct buffer_head *next;
1076
1077        for (bh = head, block_start = 0;
1078             ret == 0 && (bh != head || !block_start);
1079             block_start = block_end, bh = next) {
1080                next = bh->b_this_page;
1081                block_end = block_start + blocksize;
1082                if (block_end <= from || block_start >= to) {
1083                        if (partial && !buffer_uptodate(bh))
1084                                *partial = 1;
1085                        continue;
1086                }
1087                err = (*fn)(handle, bh);
1088                if (!ret)
1089                        ret = err;
1090        }
1091        return ret;
1092}
1093
1094/*
1095 * To preserve ordering, it is essential that the hole instantiation and
1096 * the data write be encapsulated in a single transaction.  We cannot
1097 * close off a transaction and start a new one between the ext4_get_block()
1098 * and the commit_write().  So doing the jbd2_journal_start at the start of
1099 * prepare_write() is the right place.
1100 *
1101 * Also, this function can nest inside ext4_writepage().  In that case, we
1102 * *know* that ext4_writepage() has generated enough buffer credits to do the
1103 * whole page.  So we won't block on the journal in that case, which is good,
1104 * because the caller may be PF_MEMALLOC.
1105 *
1106 * By accident, ext4 can be reentered when a transaction is open via
1107 * quota file writes.  If we were to commit the transaction while thus
1108 * reentered, there can be a deadlock - we would be holding a quota
1109 * lock, and the commit would never complete if another thread had a
1110 * transaction open and was blocking on the quota lock - a ranking
1111 * violation.
1112 *
1113 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1114 * will _not_ run commit under these circumstances because handle->h_ref
1115 * is elevated.  We'll still have enough credits for the tiny quotafile
1116 * write.
1117 */
1118int do_journal_get_write_access(handle_t *handle,
1119                                struct buffer_head *bh)
1120{
1121        int dirty = buffer_dirty(bh);
1122        int ret;
1123
1124        if (!buffer_mapped(bh) || buffer_freed(bh))
1125                return 0;
1126        /*
1127         * __block_write_begin() could have dirtied some buffers. Clean
1128         * the dirty bit as jbd2_journal_get_write_access() could complain
1129         * otherwise about fs integrity issues. Setting of the dirty bit
1130         * by __block_write_begin() isn't a real problem here as we clear
1131         * the bit before releasing a page lock and thus writeback cannot
1132         * ever write the buffer.
1133         */
1134        if (dirty)
1135                clear_buffer_dirty(bh);
1136        BUFFER_TRACE(bh, "get write access");
1137        ret = ext4_journal_get_write_access(handle, bh);
1138        if (!ret && dirty)
1139                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1140        return ret;
1141}
1142
1143#ifdef CONFIG_EXT4_FS_ENCRYPTION
1144static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1145                                  get_block_t *get_block)
1146{
1147        unsigned from = pos & (PAGE_SIZE - 1);
1148        unsigned to = from + len;
1149        struct inode *inode = page->mapping->host;
1150        unsigned block_start, block_end;
1151        sector_t block;
1152        int err = 0;
1153        unsigned blocksize = inode->i_sb->s_blocksize;
1154        unsigned bbits;
1155        struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1156        bool decrypt = false;
1157
1158        BUG_ON(!PageLocked(page));
1159        BUG_ON(from > PAGE_SIZE);
1160        BUG_ON(to > PAGE_SIZE);
1161        BUG_ON(from > to);
1162
1163        if (!page_has_buffers(page))
1164                create_empty_buffers(page, blocksize, 0);
1165        head = page_buffers(page);
1166        bbits = ilog2(blocksize);
1167        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168
1169        for (bh = head, block_start = 0; bh != head || !block_start;
1170            block++, block_start = block_end, bh = bh->b_this_page) {
1171                block_end = block_start + blocksize;
1172                if (block_end <= from || block_start >= to) {
1173                        if (PageUptodate(page)) {
1174                                if (!buffer_uptodate(bh))
1175                                        set_buffer_uptodate(bh);
1176                        }
1177                        continue;
1178                }
1179                if (buffer_new(bh))
1180                        clear_buffer_new(bh);
1181                if (!buffer_mapped(bh)) {
1182                        WARN_ON(bh->b_size != blocksize);
1183                        err = get_block(inode, block, bh, 1);
1184                        if (err)
1185                                break;
1186                        if (buffer_new(bh)) {
1187                                clean_bdev_bh_alias(bh);
1188                                if (PageUptodate(page)) {
1189                                        clear_buffer_new(bh);
1190                                        set_buffer_uptodate(bh);
1191                                        mark_buffer_dirty(bh);
1192                                        continue;
1193                                }
1194                                if (block_end > to || block_start < from)
1195                                        zero_user_segments(page, to, block_end,
1196                                                           block_start, from);
1197                                continue;
1198                        }
1199                }
1200                if (PageUptodate(page)) {
1201                        if (!buffer_uptodate(bh))
1202                                set_buffer_uptodate(bh);
1203                        continue;
1204                }
1205                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1206                    !buffer_unwritten(bh) &&
1207                    (block_start < from || block_end > to)) {
1208                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209                        *wait_bh++ = bh;
1210                        decrypt = ext4_encrypted_inode(inode) &&
1211                                S_ISREG(inode->i_mode);
1212                }
1213        }
1214        /*
1215         * If we issued read requests, let them complete.
1216         */
1217        while (wait_bh > wait) {
1218                wait_on_buffer(*--wait_bh);
1219                if (!buffer_uptodate(*wait_bh))
1220                        err = -EIO;
1221        }
1222        if (unlikely(err))
1223                page_zero_new_buffers(page, from, to);
1224        else if (decrypt)
1225                err = fscrypt_decrypt_page(page->mapping->host, page,
1226                                PAGE_SIZE, 0, page->index);
1227        return err;
1228}
1229#endif
1230
1231static int ext4_write_begin(struct file *file, struct address_space *mapping,
1232                            loff_t pos, unsigned len, unsigned flags,
1233                            struct page **pagep, void **fsdata)
1234{
1235        struct inode *inode = mapping->host;
1236        int ret, needed_blocks;
1237        handle_t *handle;
1238        int retries = 0;
1239        struct page *page;
1240        pgoff_t index;
1241        unsigned from, to;
1242
1243        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1244                return -EIO;
1245
1246        trace_ext4_write_begin(inode, pos, len, flags);
1247        /*
1248         * Reserve one block more for addition to orphan list in case
1249         * we allocate blocks but write fails for some reason
1250         */
1251        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1252        index = pos >> PAGE_SHIFT;
1253        from = pos & (PAGE_SIZE - 1);
1254        to = from + len;
1255
1256        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1257                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1258                                                    flags, pagep);
1259                if (ret < 0)
1260                        return ret;
1261                if (ret == 1)
1262                        return 0;
1263        }
1264
1265        /*
1266         * grab_cache_page_write_begin() can take a long time if the
1267         * system is thrashing due to memory pressure, or if the page
1268         * is being written back.  So grab it first before we start
1269         * the transaction handle.  This also allows us to allocate
1270         * the page (if needed) without using GFP_NOFS.
1271         */
1272retry_grab:
1273        page = grab_cache_page_write_begin(mapping, index, flags);
1274        if (!page)
1275                return -ENOMEM;
1276        unlock_page(page);
1277
1278retry_journal:
1279        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1280        if (IS_ERR(handle)) {
1281                put_page(page);
1282                return PTR_ERR(handle);
1283        }
1284
1285        lock_page(page);
1286        if (page->mapping != mapping) {
1287                /* The page got truncated from under us */
1288                unlock_page(page);
1289                put_page(page);
1290                ext4_journal_stop(handle);
1291                goto retry_grab;
1292        }
1293        /* In case writeback began while the page was unlocked */
1294        wait_for_stable_page(page);
1295
1296#ifdef CONFIG_EXT4_FS_ENCRYPTION
1297        if (ext4_should_dioread_nolock(inode))
1298                ret = ext4_block_write_begin(page, pos, len,
1299                                             ext4_get_block_unwritten);
1300        else
1301                ret = ext4_block_write_begin(page, pos, len,
1302                                             ext4_get_block);
1303#else
1304        if (ext4_should_dioread_nolock(inode))
1305                ret = __block_write_begin(page, pos, len,
1306                                          ext4_get_block_unwritten);
1307        else
1308                ret = __block_write_begin(page, pos, len, ext4_get_block);
1309#endif
1310        if (!ret && ext4_should_journal_data(inode)) {
1311                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312                                             from, to, NULL,
1313                                             do_journal_get_write_access);
1314        }
1315
1316        if (ret) {
1317                unlock_page(page);
1318                /*
1319                 * __block_write_begin may have instantiated a few blocks
1320                 * outside i_size.  Trim these off again. Don't need
1321                 * i_size_read because we hold i_mutex.
1322                 *
1323                 * Add inode to orphan list in case we crash before
1324                 * truncate finishes
1325                 */
1326                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1327                        ext4_orphan_add(handle, inode);
1328
1329                ext4_journal_stop(handle);
1330                if (pos + len > inode->i_size) {
1331                        ext4_truncate_failed_write(inode);
1332                        /*
1333                         * If truncate failed early the inode might
1334                         * still be on the orphan list; we need to
1335                         * make sure the inode is removed from the
1336                         * orphan list in that case.
1337                         */
1338                        if (inode->i_nlink)
1339                                ext4_orphan_del(NULL, inode);
1340                }
1341
1342                if (ret == -ENOSPC &&
1343                    ext4_should_retry_alloc(inode->i_sb, &retries))
1344                        goto retry_journal;
1345                put_page(page);
1346                return ret;
1347        }
1348        *pagep = page;
1349        return ret;
1350}
1351
1352/* For write_end() in data=journal mode */
1353static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1354{
1355        int ret;
1356        if (!buffer_mapped(bh) || buffer_freed(bh))
1357                return 0;
1358        set_buffer_uptodate(bh);
1359        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1360        clear_buffer_meta(bh);
1361        clear_buffer_prio(bh);
1362        return ret;
1363}
1364
1365/*
1366 * We need to pick up the new inode size which generic_commit_write gave us
1367 * `file' can be NULL - eg, when called from page_symlink().
1368 *
1369 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1370 * buffers are managed internally.
1371 */
1372static int ext4_write_end(struct file *file,
1373                          struct address_space *mapping,
1374                          loff_t pos, unsigned len, unsigned copied,
1375                          struct page *page, void *fsdata)
1376{
1377        handle_t *handle = ext4_journal_current_handle();
1378        struct inode *inode = mapping->host;
1379        loff_t old_size = inode->i_size;
1380        int ret = 0, ret2;
1381        int i_size_changed = 0;
1382
1383        trace_ext4_write_end(inode, pos, len, copied);
1384        if (ext4_has_inline_data(inode)) {
1385                ret = ext4_write_inline_data_end(inode, pos, len,
1386                                                 copied, page);
1387                if (ret < 0) {
1388                        unlock_page(page);
1389                        put_page(page);
1390                        goto errout;
1391                }
1392                copied = ret;
1393        } else
1394                copied = block_write_end(file, mapping, pos,
1395                                         len, copied, page, fsdata);
1396        /*
1397         * it's important to update i_size while still holding page lock:
1398         * page writeout could otherwise come in and zero beyond i_size.
1399         */
1400        i_size_changed = ext4_update_inode_size(inode, pos + copied);
1401        unlock_page(page);
1402        put_page(page);
1403
1404        if (old_size < pos)
1405                pagecache_isize_extended(inode, old_size, pos);
1406        /*
1407         * Don't mark the inode dirty under page lock. First, it unnecessarily
1408         * makes the holding time of page lock longer. Second, it forces lock
1409         * ordering of page lock and transaction start for journaling
1410         * filesystems.
1411         */
1412        if (i_size_changed)
1413                ext4_mark_inode_dirty(handle, inode);
1414
1415        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1416                /* if we have allocated more blocks and copied
1417                 * less. We will have blocks allocated outside
1418                 * inode->i_size. So truncate them
1419                 */
1420                ext4_orphan_add(handle, inode);
1421errout:
1422        ret2 = ext4_journal_stop(handle);
1423        if (!ret)
1424                ret = ret2;
1425
1426        if (pos + len > inode->i_size) {
1427                ext4_truncate_failed_write(inode);
1428                /*
1429                 * If truncate failed early the inode might still be
1430                 * on the orphan list; we need to make sure the inode
1431                 * is removed from the orphan list in that case.
1432                 */
1433                if (inode->i_nlink)
1434                        ext4_orphan_del(NULL, inode);
1435        }
1436
1437        return ret ? ret : copied;
1438}
1439
1440/*
1441 * This is a private version of page_zero_new_buffers() which doesn't
1442 * set the buffer to be dirty, since in data=journalled mode we need
1443 * to call ext4_handle_dirty_metadata() instead.
1444 */
1445static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446                                            struct page *page,
1447                                            unsigned from, unsigned to)
1448{
1449        unsigned int block_start = 0, block_end;
1450        struct buffer_head *head, *bh;
1451
1452        bh = head = page_buffers(page);
1453        do {
1454                block_end = block_start + bh->b_size;
1455                if (buffer_new(bh)) {
1456                        if (block_end > from && block_start < to) {
1457                                if (!PageUptodate(page)) {
1458                                        unsigned start, size;
1459
1460                                        start = max(from, block_start);
1461                                        size = min(to, block_end) - start;
1462
1463                                        zero_user(page, start, size);
1464                                        write_end_fn(handle, bh);
1465                                }
1466                                clear_buffer_new(bh);
1467                        }
1468                }
1469                block_start = block_end;
1470                bh = bh->b_this_page;
1471        } while (bh != head);
1472}
1473
1474static int ext4_journalled_write_end(struct file *file,
1475                                     struct address_space *mapping,
1476                                     loff_t pos, unsigned len, unsigned copied,
1477                                     struct page *page, void *fsdata)
1478{
1479        handle_t *handle = ext4_journal_current_handle();
1480        struct inode *inode = mapping->host;
1481        loff_t old_size = inode->i_size;
1482        int ret = 0, ret2;
1483        int partial = 0;
1484        unsigned from, to;
1485        int size_changed = 0;
1486
1487        trace_ext4_journalled_write_end(inode, pos, len, copied);
1488        from = pos & (PAGE_SIZE - 1);
1489        to = from + len;
1490
1491        BUG_ON(!ext4_handle_valid(handle));
1492
1493        if (ext4_has_inline_data(inode)) {
1494                ret = ext4_write_inline_data_end(inode, pos, len,
1495                                                 copied, page);
1496                if (ret < 0) {
1497                        unlock_page(page);
1498                        put_page(page);
1499                        goto errout;
1500                }
1501                copied = ret;
1502        } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503                copied = 0;
1504                ext4_journalled_zero_new_buffers(handle, page, from, to);
1505        } else {
1506                if (unlikely(copied < len))
1507                        ext4_journalled_zero_new_buffers(handle, page,
1508                                                         from + copied, to);
1509                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1510                                             from + copied, &partial,
1511                                             write_end_fn);
1512                if (!partial)
1513                        SetPageUptodate(page);
1514        }
1515        size_changed = ext4_update_inode_size(inode, pos + copied);
1516        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1517        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1518        unlock_page(page);
1519        put_page(page);
1520
1521        if (old_size < pos)
1522                pagecache_isize_extended(inode, old_size, pos);
1523
1524        if (size_changed) {
1525                ret2 = ext4_mark_inode_dirty(handle, inode);
1526                if (!ret)
1527                        ret = ret2;
1528        }
1529
1530        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1531                /* if we have allocated more blocks and copied
1532                 * less. We will have blocks allocated outside
1533                 * inode->i_size. So truncate them
1534                 */
1535                ext4_orphan_add(handle, inode);
1536
1537errout:
1538        ret2 = ext4_journal_stop(handle);
1539        if (!ret)
1540                ret = ret2;
1541        if (pos + len > inode->i_size) {
1542                ext4_truncate_failed_write(inode);
1543                /*
1544                 * If truncate failed early the inode might still be
1545                 * on the orphan list; we need to make sure the inode
1546                 * is removed from the orphan list in that case.
1547                 */
1548                if (inode->i_nlink)
1549                        ext4_orphan_del(NULL, inode);
1550        }
1551
1552        return ret ? ret : copied;
1553}
1554
1555/*
1556 * Reserve space for a single cluster
1557 */
1558static int ext4_da_reserve_space(struct inode *inode)
1559{
1560        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561        struct ext4_inode_info *ei = EXT4_I(inode);
1562        int ret;
1563
1564        /*
1565         * We will charge metadata quota at writeout time; this saves
1566         * us from metadata over-estimation, though we may go over by
1567         * a small amount in the end.  Here we just reserve for data.
1568         */
1569        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1570        if (ret)
1571                return ret;
1572
1573        spin_lock(&ei->i_block_reservation_lock);
1574        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1575                spin_unlock(&ei->i_block_reservation_lock);
1576                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1577                return -ENOSPC;
1578        }
1579        ei->i_reserved_data_blocks++;
1580        trace_ext4_da_reserve_space(inode);
1581        spin_unlock(&ei->i_block_reservation_lock);
1582
1583        return 0;       /* success */
1584}
1585
1586static void ext4_da_release_space(struct inode *inode, int to_free)
1587{
1588        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589        struct ext4_inode_info *ei = EXT4_I(inode);
1590
1591        if (!to_free)
1592                return;         /* Nothing to release, exit */
1593
1594        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595
1596        trace_ext4_da_release_space(inode, to_free);
1597        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598                /*
1599                 * if there aren't enough reserved blocks, then the
1600                 * counter is messed up somewhere.  Since this
1601                 * function is called from invalidate page, it's
1602                 * harmless to return without any action.
1603                 */
1604                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1605                         "ino %lu, to_free %d with only %d reserved "
1606                         "data blocks", inode->i_ino, to_free,
1607                         ei->i_reserved_data_blocks);
1608                WARN_ON(1);
1609                to_free = ei->i_reserved_data_blocks;
1610        }
1611        ei->i_reserved_data_blocks -= to_free;
1612
1613        /* update fs dirty data blocks counter */
1614        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615
1616        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617
1618        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1619}
1620
1621static void ext4_da_page_release_reservation(struct page *page,
1622                                             unsigned int offset,
1623                                             unsigned int length)
1624{
1625        int to_release = 0, contiguous_blks = 0;
1626        struct buffer_head *head, *bh;
1627        unsigned int curr_off = 0;
1628        struct inode *inode = page->mapping->host;
1629        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630        unsigned int stop = offset + length;
1631        int num_clusters;
1632        ext4_fsblk_t lblk;
1633
1634        BUG_ON(stop > PAGE_SIZE || stop < length);
1635
1636        head = page_buffers(page);
1637        bh = head;
1638        do {
1639                unsigned int next_off = curr_off + bh->b_size;
1640
1641                if (next_off > stop)
1642                        break;
1643
1644                if ((offset <= curr_off) && (buffer_delay(bh))) {
1645                        to_release++;
1646                        contiguous_blks++;
1647                        clear_buffer_delay(bh);
1648                } else if (contiguous_blks) {
1649                        lblk = page->index <<
1650                               (PAGE_SHIFT - inode->i_blkbits);
1651                        lblk += (curr_off >> inode->i_blkbits) -
1652                                contiguous_blks;
1653                        ext4_es_remove_extent(inode, lblk, contiguous_blks);
1654                        contiguous_blks = 0;
1655                }
1656                curr_off = next_off;
1657        } while ((bh = bh->b_this_page) != head);
1658
1659        if (contiguous_blks) {
1660                lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1661                lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1662                ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663        }
1664
1665        /* If we have released all the blocks belonging to a cluster, then we
1666         * need to release the reserved space for that cluster. */
1667        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1668        while (num_clusters > 0) {
1669                lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1670                        ((num_clusters - 1) << sbi->s_cluster_bits);
1671                if (sbi->s_cluster_ratio == 1 ||
1672                    !ext4_find_delalloc_cluster(inode, lblk))
1673                        ext4_da_release_space(inode, 1);
1674
1675                num_clusters--;
1676        }
1677}
1678
1679/*
1680 * Delayed allocation stuff
1681 */
1682
1683struct mpage_da_data {
1684        struct inode *inode;
1685        struct writeback_control *wbc;
1686
1687        pgoff_t first_page;     /* The first page to write */
1688        pgoff_t next_page;      /* Current page to examine */
1689        pgoff_t last_page;      /* Last page to examine */
1690        /*
1691         * Extent to map - this can be after first_page because that can be
1692         * fully mapped. We somewhat abuse m_flags to store whether the extent
1693         * is delalloc or unwritten.
1694         */
1695        struct ext4_map_blocks map;
1696        struct ext4_io_submit io_submit;        /* IO submission data */
1697        unsigned int do_map:1;
1698};
1699
1700static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1701                                       bool invalidate)
1702{
1703        int nr_pages, i;
1704        pgoff_t index, end;
1705        struct pagevec pvec;
1706        struct inode *inode = mpd->inode;
1707        struct address_space *mapping = inode->i_mapping;
1708
1709        /* This is necessary when next_page == 0. */
1710        if (mpd->first_page >= mpd->next_page)
1711                return;
1712
1713        index = mpd->first_page;
1714        end   = mpd->next_page - 1;
1715        if (invalidate) {
1716                ext4_lblk_t start, last;
1717                start = index << (PAGE_SHIFT - inode->i_blkbits);
1718                last = end << (PAGE_SHIFT - inode->i_blkbits);
1719                ext4_es_remove_extent(inode, start, last - start + 1);
1720        }
1721
1722        pagevec_init(&pvec, 0);
1723        while (index <= end) {
1724                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1725                if (nr_pages == 0)
1726                        break;
1727                for (i = 0; i < nr_pages; i++) {
1728                        struct page *page = pvec.pages[i];
1729
1730                        BUG_ON(!PageLocked(page));
1731                        BUG_ON(PageWriteback(page));
1732                        if (invalidate) {
1733                                if (page_mapped(page))
1734                                        clear_page_dirty_for_io(page);
1735                                block_invalidatepage(page, 0, PAGE_SIZE);
1736                                ClearPageUptodate(page);
1737                        }
1738                        unlock_page(page);
1739                }
1740                pagevec_release(&pvec);
1741        }
1742}
1743
1744static void ext4_print_free_blocks(struct inode *inode)
1745{
1746        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1747        struct super_block *sb = inode->i_sb;
1748        struct ext4_inode_info *ei = EXT4_I(inode);
1749
1750        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1751               EXT4_C2B(EXT4_SB(inode->i_sb),
1752                        ext4_count_free_clusters(sb)));
1753        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1755               (long long) EXT4_C2B(EXT4_SB(sb),
1756                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1757        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1758               (long long) EXT4_C2B(EXT4_SB(sb),
1759                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1760        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1762                 ei->i_reserved_data_blocks);
1763        return;
1764}
1765
1766static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767{
1768        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769}
1770
1771/*
1772 * This function is grabs code from the very beginning of
1773 * ext4_map_blocks, but assumes that the caller is from delayed write
1774 * time. This function looks up the requested blocks and sets the
1775 * buffer delay bit under the protection of i_data_sem.
1776 */
1777static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778                              struct ext4_map_blocks *map,
1779                              struct buffer_head *bh)
1780{
1781        struct extent_status es;
1782        int retval;
1783        sector_t invalid_block = ~((sector_t) 0xffff);
1784#ifdef ES_AGGRESSIVE_TEST
1785        struct ext4_map_blocks orig_map;
1786
1787        memcpy(&orig_map, map, sizeof(*map));
1788#endif
1789
1790        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1791                invalid_block = ~0;
1792
1793        map->m_flags = 0;
1794        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795                  "logical block %lu\n", inode->i_ino, map->m_len,
1796                  (unsigned long) map->m_lblk);
1797
1798        /* Lookup extent status tree firstly */
1799        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1800                if (ext4_es_is_hole(&es)) {
1801                        retval = 0;
1802                        down_read(&EXT4_I(inode)->i_data_sem);
1803                        goto add_delayed;
1804                }
1805
1806                /*
1807                 * Delayed extent could be allocated by fallocate.
1808                 * So we need to check it.
1809                 */
1810                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811                        map_bh(bh, inode->i_sb, invalid_block);
1812                        set_buffer_new(bh);
1813                        set_buffer_delay(bh);
1814                        return 0;
1815                }
1816
1817                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818                retval = es.es_len - (iblock - es.es_lblk);
1819                if (retval > map->m_len)
1820                        retval = map->m_len;
1821                map->m_len = retval;
1822                if (ext4_es_is_written(&es))
1823                        map->m_flags |= EXT4_MAP_MAPPED;
1824                else if (ext4_es_is_unwritten(&es))
1825                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1826                else
1827                        BUG_ON(1);
1828
1829#ifdef ES_AGGRESSIVE_TEST
1830                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1831#endif
1832                return retval;
1833        }
1834
1835        /*
1836         * Try to see if we can get the block without requesting a new
1837         * file system block.
1838         */
1839        down_read(&EXT4_I(inode)->i_data_sem);
1840        if (ext4_has_inline_data(inode))
1841                retval = 0;
1842        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1843                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1844        else
1845                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1846
1847add_delayed:
1848        if (retval == 0) {
1849                int ret;
1850                /*
1851                 * XXX: __block_prepare_write() unmaps passed block,
1852                 * is it OK?
1853                 */
1854                /*
1855                 * If the block was allocated from previously allocated cluster,
1856                 * then we don't need to reserve it again. However we still need
1857                 * to reserve metadata for every block we're going to write.
1858                 */
1859                if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1860                    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1861                        ret = ext4_da_reserve_space(inode);
1862                        if (ret) {
1863                                /* not enough space to reserve */
1864                                retval = ret;
1865                                goto out_unlock;
1866                        }
1867                }
1868
1869                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870                                            ~0, EXTENT_STATUS_DELAYED);
1871                if (ret) {
1872                        retval = ret;
1873                        goto out_unlock;
1874                }
1875
1876                map_bh(bh, inode->i_sb, invalid_block);
1877                set_buffer_new(bh);
1878                set_buffer_delay(bh);
1879        } else if (retval > 0) {
1880                int ret;
1881                unsigned int status;
1882
1883                if (unlikely(retval != map->m_len)) {
1884                        ext4_warning(inode->i_sb,
1885                                     "ES len assertion failed for inode "
1886                                     "%lu: retval %d != map->m_len %d",
1887                                     inode->i_ino, retval, map->m_len);
1888                        WARN_ON(1);
1889                }
1890
1891                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894                                            map->m_pblk, status);
1895                if (ret != 0)
1896                        retval = ret;
1897        }
1898
1899out_unlock:
1900        up_read((&EXT4_I(inode)->i_data_sem));
1901
1902        return retval;
1903}
1904
1905/*
1906 * This is a special get_block_t callback which is used by
1907 * ext4_da_write_begin().  It will either return mapped block or
1908 * reserve space for a single block.
1909 *
1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911 * We also have b_blocknr = -1 and b_bdev initialized properly
1912 *
1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915 * initialized properly.
1916 */
1917int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918                           struct buffer_head *bh, int create)
1919{
1920        struct ext4_map_blocks map;
1921        int ret = 0;
1922
1923        BUG_ON(create == 0);
1924        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925
1926        map.m_lblk = iblock;
1927        map.m_len = 1;
1928
1929        /*
1930         * first, we need to know whether the block is allocated already
1931         * preallocated blocks are unmapped but should treated
1932         * the same as allocated blocks.
1933         */
1934        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1935        if (ret <= 0)
1936                return ret;
1937
1938        map_bh(bh, inode->i_sb, map.m_pblk);
1939        ext4_update_bh_state(bh, map.m_flags);
1940
1941        if (buffer_unwritten(bh)) {
1942                /* A delayed write to unwritten bh should be marked
1943                 * new and mapped.  Mapped ensures that we don't do
1944                 * get_block multiple times when we write to the same
1945                 * offset and new ensures that we do proper zero out
1946                 * for partial write.
1947                 */
1948                set_buffer_new(bh);
1949                set_buffer_mapped(bh);
1950        }
1951        return 0;
1952}
1953
1954static int bget_one(handle_t *handle, struct buffer_head *bh)
1955{
1956        get_bh(bh);
1957        return 0;
1958}
1959
1960static int bput_one(handle_t *handle, struct buffer_head *bh)
1961{
1962        put_bh(bh);
1963        return 0;
1964}
1965
1966static int __ext4_journalled_writepage(struct page *page,
1967                                       unsigned int len)
1968{
1969        struct address_space *mapping = page->mapping;
1970        struct inode *inode = mapping->host;
1971        struct buffer_head *page_bufs = NULL;
1972        handle_t *handle = NULL;
1973        int ret = 0, err = 0;
1974        int inline_data = ext4_has_inline_data(inode);
1975        struct buffer_head *inode_bh = NULL;
1976
1977        ClearPageChecked(page);
1978
1979        if (inline_data) {
1980                BUG_ON(page->index != 0);
1981                BUG_ON(len > ext4_get_max_inline_size(inode));
1982                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983                if (inode_bh == NULL)
1984                        goto out;
1985        } else {
1986                page_bufs = page_buffers(page);
1987                if (!page_bufs) {
1988                        BUG();
1989                        goto out;
1990                }
1991                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1992                                       NULL, bget_one);
1993        }
1994        /*
1995         * We need to release the page lock before we start the
1996         * journal, so grab a reference so the page won't disappear
1997         * out from under us.
1998         */
1999        get_page(page);
2000        unlock_page(page);
2001
2002        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003                                    ext4_writepage_trans_blocks(inode));
2004        if (IS_ERR(handle)) {
2005                ret = PTR_ERR(handle);
2006                put_page(page);
2007                goto out_no_pagelock;
2008        }
2009        BUG_ON(!ext4_handle_valid(handle));
2010
2011        lock_page(page);
2012        put_page(page);
2013        if (page->mapping != mapping) {
2014                /* The page got truncated from under us */
2015                ext4_journal_stop(handle);
2016                ret = 0;
2017                goto out;
2018        }
2019
2020        if (inline_data) {
2021                BUFFER_TRACE(inode_bh, "get write access");
2022                ret = ext4_journal_get_write_access(handle, inode_bh);
2023
2024                err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2025
2026        } else {
2027                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028                                             do_journal_get_write_access);
2029
2030                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2031                                             write_end_fn);
2032        }
2033        if (ret == 0)
2034                ret = err;
2035        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2036        err = ext4_journal_stop(handle);
2037        if (!ret)
2038                ret = err;
2039
2040        if (!ext4_has_inline_data(inode))
2041                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2042                                       NULL, bput_one);
2043        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2044out:
2045        unlock_page(page);
2046out_no_pagelock:
2047        brelse(inode_bh);
2048        return ret;
2049}
2050
2051/*
2052 * Note that we don't need to start a transaction unless we're journaling data
2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054 * need to file the inode to the transaction's list in ordered mode because if
2055 * we are writing back data added by write(), the inode is already there and if
2056 * we are writing back data modified via mmap(), no one guarantees in which
2057 * transaction the data will hit the disk. In case we are journaling data, we
2058 * cannot start transaction directly because transaction start ranks above page
2059 * lock so we have to do some magic.
2060 *
2061 * This function can get called via...
2062 *   - ext4_writepages after taking page lock (have journal handle)
2063 *   - journal_submit_inode_data_buffers (no journal handle)
2064 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2065 *   - grab_page_cache when doing write_begin (have journal handle)
2066 *
2067 * We don't do any block allocation in this function. If we have page with
2068 * multiple blocks we need to write those buffer_heads that are mapped. This
2069 * is important for mmaped based write. So if we do with blocksize 1K
2070 * truncate(f, 1024);
2071 * a = mmap(f, 0, 4096);
2072 * a[0] = 'a';
2073 * truncate(f, 4096);
2074 * we have in the page first buffer_head mapped via page_mkwrite call back
2075 * but other buffer_heads would be unmapped but dirty (dirty done via the
2076 * do_wp_page). So writepage should write the first block. If we modify
2077 * the mmap area beyond 1024 we will again get a page_fault and the
2078 * page_mkwrite callback will do the block allocation and mark the
2079 * buffer_heads mapped.
2080 *
2081 * We redirty the page if we have any buffer_heads that is either delay or
2082 * unwritten in the page.
2083 *
2084 * We can get recursively called as show below.
2085 *
2086 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2087 *              ext4_writepage()
2088 *
2089 * But since we don't do any block allocation we should not deadlock.
2090 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2091 */
2092static int ext4_writepage(struct page *page,
2093                          struct writeback_control *wbc)
2094{
2095        int ret = 0;
2096        loff_t size;
2097        unsigned int len;
2098        struct buffer_head *page_bufs = NULL;
2099        struct inode *inode = page->mapping->host;
2100        struct ext4_io_submit io_submit;
2101        bool keep_towrite = false;
2102
2103        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104                ext4_invalidatepage(page, 0, PAGE_SIZE);
2105                unlock_page(page);
2106                return -EIO;
2107        }
2108
2109        trace_ext4_writepage(page);
2110        size = i_size_read(inode);
2111        if (page->index == size >> PAGE_SHIFT)
2112                len = size & ~PAGE_MASK;
2113        else
2114                len = PAGE_SIZE;
2115
2116        page_bufs = page_buffers(page);
2117        /*
2118         * We cannot do block allocation or other extent handling in this
2119         * function. If there are buffers needing that, we have to redirty
2120         * the page. But we may reach here when we do a journal commit via
2121         * journal_submit_inode_data_buffers() and in that case we must write
2122         * allocated buffers to achieve data=ordered mode guarantees.
2123         *
2124         * Also, if there is only one buffer per page (the fs block
2125         * size == the page size), if one buffer needs block
2126         * allocation or needs to modify the extent tree to clear the
2127         * unwritten flag, we know that the page can't be written at
2128         * all, so we might as well refuse the write immediately.
2129         * Unfortunately if the block size != page size, we can't as
2130         * easily detect this case using ext4_walk_page_buffers(), but
2131         * for the extremely common case, this is an optimization that
2132         * skips a useless round trip through ext4_bio_write_page().
2133         */
2134        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135                                   ext4_bh_delay_or_unwritten)) {
2136                redirty_page_for_writepage(wbc, page);
2137                if ((current->flags & PF_MEMALLOC) ||
2138                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2139                        /*
2140                         * For memory cleaning there's no point in writing only
2141                         * some buffers. So just bail out. Warn if we came here
2142                         * from direct reclaim.
2143                         */
2144                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2145                                                        == PF_MEMALLOC);
2146                        unlock_page(page);
2147                        return 0;
2148                }
2149                keep_towrite = true;
2150        }
2151
2152        if (PageChecked(page) && ext4_should_journal_data(inode))
2153                /*
2154                 * It's mmapped pagecache.  Add buffers and journal it.  There
2155                 * doesn't seem much point in redirtying the page here.
2156                 */
2157                return __ext4_journalled_writepage(page, len);
2158
2159        ext4_io_submit_init(&io_submit, wbc);
2160        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161        if (!io_submit.io_end) {
2162                redirty_page_for_writepage(wbc, page);
2163                unlock_page(page);
2164                return -ENOMEM;
2165        }
2166        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2167        ext4_io_submit(&io_submit);
2168        /* Drop io_end reference we got from init */
2169        ext4_put_io_end_defer(io_submit.io_end);
2170        return ret;
2171}
2172
2173static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2174{
2175        int len;
2176        loff_t size;
2177        int err;
2178
2179        BUG_ON(page->index != mpd->first_page);
2180        clear_page_dirty_for_io(page);
2181        /*
2182         * We have to be very careful here!  Nothing protects writeback path
2183         * against i_size changes and the page can be writeably mapped into
2184         * page tables. So an application can be growing i_size and writing
2185         * data through mmap while writeback runs. clear_page_dirty_for_io()
2186         * write-protects our page in page tables and the page cannot get
2187         * written to again until we release page lock. So only after
2188         * clear_page_dirty_for_io() we are safe to sample i_size for
2189         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190         * on the barrier provided by TestClearPageDirty in
2191         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192         * after page tables are updated.
2193         */
2194        size = i_size_read(mpd->inode);
2195        if (page->index == size >> PAGE_SHIFT)
2196                len = size & ~PAGE_MASK;
2197        else
2198                len = PAGE_SIZE;
2199        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2200        if (!err)
2201                mpd->wbc->nr_to_write--;
2202        mpd->first_page++;
2203
2204        return err;
2205}
2206
2207#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2208
2209/*
2210 * mballoc gives us at most this number of blocks...
2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2212 * The rest of mballoc seems to handle chunks up to full group size.
2213 */
2214#define MAX_WRITEPAGES_EXTENT_LEN 2048
2215
2216/*
2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218 *
2219 * @mpd - extent of blocks
2220 * @lblk - logical number of the block in the file
2221 * @bh - buffer head we want to add to the extent
2222 *
2223 * The function is used to collect contig. blocks in the same state. If the
2224 * buffer doesn't require mapping for writeback and we haven't started the
2225 * extent of buffers to map yet, the function returns 'true' immediately - the
2226 * caller can write the buffer right away. Otherwise the function returns true
2227 * if the block has been added to the extent, false if the block couldn't be
2228 * added.
2229 */
2230static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231                                   struct buffer_head *bh)
2232{
2233        struct ext4_map_blocks *map = &mpd->map;
2234
2235        /* Buffer that doesn't need mapping for writeback? */
2236        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238                /* So far no extent to map => we write the buffer right away */
2239                if (map->m_len == 0)
2240                        return true;
2241                return false;
2242        }
2243
2244        /* First block in the extent? */
2245        if (map->m_len == 0) {
2246                /* We cannot map unless handle is started... */
2247                if (!mpd->do_map)
2248                        return false;
2249                map->m_lblk = lblk;
2250                map->m_len = 1;
2251                map->m_flags = bh->b_state & BH_FLAGS;
2252                return true;
2253        }
2254
2255        /* Don't go larger than mballoc is willing to allocate */
2256        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2257                return false;
2258
2259        /* Can we merge the block to our big extent? */
2260        if (lblk == map->m_lblk + map->m_len &&
2261            (bh->b_state & BH_FLAGS) == map->m_flags) {
2262                map->m_len++;
2263                return true;
2264        }
2265        return false;
2266}
2267
2268/*
2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270 *
2271 * @mpd - extent of blocks for mapping
2272 * @head - the first buffer in the page
2273 * @bh - buffer we should start processing from
2274 * @lblk - logical number of the block in the file corresponding to @bh
2275 *
2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277 * the page for IO if all buffers in this page were mapped and there's no
2278 * accumulated extent of buffers to map or add buffers in the page to the
2279 * extent of buffers to map. The function returns 1 if the caller can continue
2280 * by processing the next page, 0 if it should stop adding buffers to the
2281 * extent to map because we cannot extend it anymore. It can also return value
2282 * < 0 in case of error during IO submission.
2283 */
2284static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285                                   struct buffer_head *head,
2286                                   struct buffer_head *bh,
2287                                   ext4_lblk_t lblk)
2288{
2289        struct inode *inode = mpd->inode;
2290        int err;
2291        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2292                                                        >> inode->i_blkbits;
2293
2294        do {
2295                BUG_ON(buffer_locked(bh));
2296
2297                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2298                        /* Found extent to map? */
2299                        if (mpd->map.m_len)
2300                                return 0;
2301                        /* Buffer needs mapping and handle is not started? */
2302                        if (!mpd->do_map)
2303                                return 0;
2304                        /* Everything mapped so far and we hit EOF */
2305                        break;
2306                }
2307        } while (lblk++, (bh = bh->b_this_page) != head);
2308        /* So far everything mapped? Submit the page for IO. */
2309        if (mpd->map.m_len == 0) {
2310                err = mpage_submit_page(mpd, head->b_page);
2311                if (err < 0)
2312                        return err;
2313        }
2314        return lblk < blocks;
2315}
2316
2317/*
2318 * mpage_map_buffers - update buffers corresponding to changed extent and
2319 *                     submit fully mapped pages for IO
2320 *
2321 * @mpd - description of extent to map, on return next extent to map
2322 *
2323 * Scan buffers corresponding to changed extent (we expect corresponding pages
2324 * to be already locked) and update buffer state according to new extent state.
2325 * We map delalloc buffers to their physical location, clear unwritten bits,
2326 * and mark buffers as uninit when we perform writes to unwritten extents
2327 * and do extent conversion after IO is finished. If the last page is not fully
2328 * mapped, we update @map to the next extent in the last page that needs
2329 * mapping. Otherwise we submit the page for IO.
2330 */
2331static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332{
2333        struct pagevec pvec;
2334        int nr_pages, i;
2335        struct inode *inode = mpd->inode;
2336        struct buffer_head *head, *bh;
2337        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2338        pgoff_t start, end;
2339        ext4_lblk_t lblk;
2340        sector_t pblock;
2341        int err;
2342
2343        start = mpd->map.m_lblk >> bpp_bits;
2344        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345        lblk = start << bpp_bits;
2346        pblock = mpd->map.m_pblk;
2347
2348        pagevec_init(&pvec, 0);
2349        while (start <= end) {
2350                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2351                                                &start, end);
2352                if (nr_pages == 0)
2353                        break;
2354                for (i = 0; i < nr_pages; i++) {
2355                        struct page *page = pvec.pages[i];
2356
2357                        bh = head = page_buffers(page);
2358                        do {
2359                                if (lblk < mpd->map.m_lblk)
2360                                        continue;
2361                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2362                                        /*
2363                                         * Buffer after end of mapped extent.
2364                                         * Find next buffer in the page to map.
2365                                         */
2366                                        mpd->map.m_len = 0;
2367                                        mpd->map.m_flags = 0;
2368                                        /*
2369                                         * FIXME: If dioread_nolock supports
2370                                         * blocksize < pagesize, we need to make
2371                                         * sure we add size mapped so far to
2372                                         * io_end->size as the following call
2373                                         * can submit the page for IO.
2374                                         */
2375                                        err = mpage_process_page_bufs(mpd, head,
2376                                                                      bh, lblk);
2377                                        pagevec_release(&pvec);
2378                                        if (err > 0)
2379                                                err = 0;
2380                                        return err;
2381                                }
2382                                if (buffer_delay(bh)) {
2383                                        clear_buffer_delay(bh);
2384                                        bh->b_blocknr = pblock++;
2385                                }
2386                                clear_buffer_unwritten(bh);
2387                        } while (lblk++, (bh = bh->b_this_page) != head);
2388
2389                        /*
2390                         * FIXME: This is going to break if dioread_nolock
2391                         * supports blocksize < pagesize as we will try to
2392                         * convert potentially unmapped parts of inode.
2393                         */
2394                        mpd->io_submit.io_end->size += PAGE_SIZE;
2395                        /* Page fully mapped - let IO run! */
2396                        err = mpage_submit_page(mpd, page);
2397                        if (err < 0) {
2398                                pagevec_release(&pvec);
2399                                return err;
2400                        }
2401                }
2402                pagevec_release(&pvec);
2403        }
2404        /* Extent fully mapped and matches with page boundary. We are done. */
2405        mpd->map.m_len = 0;
2406        mpd->map.m_flags = 0;
2407        return 0;
2408}
2409
2410static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2411{
2412        struct inode *inode = mpd->inode;
2413        struct ext4_map_blocks *map = &mpd->map;
2414        int get_blocks_flags;
2415        int err, dioread_nolock;
2416
2417        trace_ext4_da_write_pages_extent(inode, map);
2418        /*
2419         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2420         * to convert an unwritten extent to be initialized (in the case
2421         * where we have written into one or more preallocated blocks).  It is
2422         * possible that we're going to need more metadata blocks than
2423         * previously reserved. However we must not fail because we're in
2424         * writeback and there is nothing we can do about it so it might result
2425         * in data loss.  So use reserved blocks to allocate metadata if
2426         * possible.
2427         *
2428         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2429         * the blocks in question are delalloc blocks.  This indicates
2430         * that the blocks and quotas has already been checked when
2431         * the data was copied into the page cache.
2432         */
2433        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2434                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2435                           EXT4_GET_BLOCKS_IO_SUBMIT;
2436        dioread_nolock = ext4_should_dioread_nolock(inode);
2437        if (dioread_nolock)
2438                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2439        if (map->m_flags & (1 << BH_Delay))
2440                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2441
2442        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2443        if (err < 0)
2444                return err;
2445        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2446                if (!mpd->io_submit.io_end->handle &&
2447                    ext4_handle_valid(handle)) {
2448                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2449                        handle->h_rsv_handle = NULL;
2450                }
2451                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2452        }
2453
2454        BUG_ON(map->m_len == 0);
2455        if (map->m_flags & EXT4_MAP_NEW) {
2456                clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2457                                   map->m_len);
2458        }
2459        return 0;
2460}
2461
2462/*
2463 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2464 *                               mpd->len and submit pages underlying it for IO
2465 *
2466 * @handle - handle for journal operations
2467 * @mpd - extent to map
2468 * @give_up_on_write - we set this to true iff there is a fatal error and there
2469 *                     is no hope of writing the data. The caller should discard
2470 *                     dirty pages to avoid infinite loops.
2471 *
2472 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2473 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2474 * them to initialized or split the described range from larger unwritten
2475 * extent. Note that we need not map all the described range since allocation
2476 * can return less blocks or the range is covered by more unwritten extents. We
2477 * cannot map more because we are limited by reserved transaction credits. On
2478 * the other hand we always make sure that the last touched page is fully
2479 * mapped so that it can be written out (and thus forward progress is
2480 * guaranteed). After mapping we submit all mapped pages for IO.
2481 */
2482static int mpage_map_and_submit_extent(handle_t *handle,
2483                                       struct mpage_da_data *mpd,
2484                                       bool *give_up_on_write)
2485{
2486        struct inode *inode = mpd->inode;
2487        struct ext4_map_blocks *map = &mpd->map;
2488        int err;
2489        loff_t disksize;
2490        int progress = 0;
2491
2492        mpd->io_submit.io_end->offset =
2493                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2494        do {
2495                err = mpage_map_one_extent(handle, mpd);
2496                if (err < 0) {
2497                        struct super_block *sb = inode->i_sb;
2498
2499                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2500                            EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2501                                goto invalidate_dirty_pages;
2502                        /*
2503                         * Let the uper layers retry transient errors.
2504                         * In the case of ENOSPC, if ext4_count_free_blocks()
2505                         * is non-zero, a commit should free up blocks.
2506                         */
2507                        if ((err == -ENOMEM) ||
2508                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2509                                if (progress)
2510                                        goto update_disksize;
2511                                return err;
2512                        }
2513                        ext4_msg(sb, KERN_CRIT,
2514                                 "Delayed block allocation failed for "
2515                                 "inode %lu at logical offset %llu with"
2516                                 " max blocks %u with error %d",
2517                                 inode->i_ino,
2518                                 (unsigned long long)map->m_lblk,
2519                                 (unsigned)map->m_len, -err);
2520                        ext4_msg(sb, KERN_CRIT,
2521                                 "This should not happen!! Data will "
2522                                 "be lost\n");
2523                        if (err == -ENOSPC)
2524                                ext4_print_free_blocks(inode);
2525                invalidate_dirty_pages:
2526                        *give_up_on_write = true;
2527                        return err;
2528                }
2529                progress = 1;
2530                /*
2531                 * Update buffer state, submit mapped pages, and get us new
2532                 * extent to map
2533                 */
2534                err = mpage_map_and_submit_buffers(mpd);
2535                if (err < 0)
2536                        goto update_disksize;
2537        } while (map->m_len);
2538
2539update_disksize:
2540        /*
2541         * Update on-disk size after IO is submitted.  Races with
2542         * truncate are avoided by checking i_size under i_data_sem.
2543         */
2544        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2545        if (disksize > EXT4_I(inode)->i_disksize) {
2546                int err2;
2547                loff_t i_size;
2548
2549                down_write(&EXT4_I(inode)->i_data_sem);
2550                i_size = i_size_read(inode);
2551                if (disksize > i_size)
2552                        disksize = i_size;
2553                if (disksize > EXT4_I(inode)->i_disksize)
2554                        EXT4_I(inode)->i_disksize = disksize;
2555                up_write(&EXT4_I(inode)->i_data_sem);
2556                err2 = ext4_mark_inode_dirty(handle, inode);
2557                if (err2)
2558                        ext4_error(inode->i_sb,
2559                                   "Failed to mark inode %lu dirty",
2560                                   inode->i_ino);
2561                if (!err)
2562                        err = err2;
2563        }
2564        return err;
2565}
2566
2567/*
2568 * Calculate the total number of credits to reserve for one writepages
2569 * iteration. This is called from ext4_writepages(). We map an extent of
2570 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2571 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2572 * bpp - 1 blocks in bpp different extents.
2573 */
2574static int ext4_da_writepages_trans_blocks(struct inode *inode)
2575{
2576        int bpp = ext4_journal_blocks_per_page(inode);
2577
2578        return ext4_meta_trans_blocks(inode,
2579                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2580}
2581
2582/*
2583 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2584 *                               and underlying extent to map
2585 *
2586 * @mpd - where to look for pages
2587 *
2588 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2589 * IO immediately. When we find a page which isn't mapped we start accumulating
2590 * extent of buffers underlying these pages that needs mapping (formed by
2591 * either delayed or unwritten buffers). We also lock the pages containing
2592 * these buffers. The extent found is returned in @mpd structure (starting at
2593 * mpd->lblk with length mpd->len blocks).
2594 *
2595 * Note that this function can attach bios to one io_end structure which are
2596 * neither logically nor physically contiguous. Although it may seem as an
2597 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2598 * case as we need to track IO to all buffers underlying a page in one io_end.
2599 */
2600static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2601{
2602        struct address_space *mapping = mpd->inode->i_mapping;
2603        struct pagevec pvec;
2604        unsigned int nr_pages;
2605        long left = mpd->wbc->nr_to_write;
2606        pgoff_t index = mpd->first_page;
2607        pgoff_t end = mpd->last_page;
2608        int tag;
2609        int i, err = 0;
2610        int blkbits = mpd->inode->i_blkbits;
2611        ext4_lblk_t lblk;
2612        struct buffer_head *head;
2613
2614        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2615                tag = PAGECACHE_TAG_TOWRITE;
2616        else
2617                tag = PAGECACHE_TAG_DIRTY;
2618
2619        pagevec_init(&pvec, 0);
2620        mpd->map.m_len = 0;
2621        mpd->next_page = index;
2622        while (index <= end) {
2623                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2624                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2625                if (nr_pages == 0)
2626                        goto out;
2627
2628                for (i = 0; i < nr_pages; i++) {
2629                        struct page *page = pvec.pages[i];
2630
2631                        /*
2632                         * At this point, the page may be truncated or
2633                         * invalidated (changing page->mapping to NULL), or
2634                         * even swizzled back from swapper_space to tmpfs file
2635                         * mapping. However, page->index will not change
2636                         * because we have a reference on the page.
2637                         */
2638                        if (page->index > end)
2639                                goto out;
2640
2641                        /*
2642                         * Accumulated enough dirty pages? This doesn't apply
2643                         * to WB_SYNC_ALL mode. For integrity sync we have to
2644                         * keep going because someone may be concurrently
2645                         * dirtying pages, and we might have synced a lot of
2646                         * newly appeared dirty pages, but have not synced all
2647                         * of the old dirty pages.
2648                         */
2649                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650                                goto out;
2651
2652                        /* If we can't merge this page, we are done. */
2653                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654                                goto out;
2655
2656                        lock_page(page);
2657                        /*
2658                         * If the page is no longer dirty, or its mapping no
2659                         * longer corresponds to inode we are writing (which
2660                         * means it has been truncated or invalidated), or the
2661                         * page is already under writeback and we are not doing
2662                         * a data integrity writeback, skip the page
2663                         */
2664                        if (!PageDirty(page) ||
2665                            (PageWriteback(page) &&
2666                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667                            unlikely(page->mapping != mapping)) {
2668                                unlock_page(page);
2669                                continue;
2670                        }
2671
2672                        wait_on_page_writeback(page);
2673                        BUG_ON(PageWriteback(page));
2674
2675                        if (mpd->map.m_len == 0)
2676                                mpd->first_page = page->index;
2677                        mpd->next_page = page->index + 1;
2678                        /* Add all dirty buffers to mpd */
2679                        lblk = ((ext4_lblk_t)page->index) <<
2680                                (PAGE_SHIFT - blkbits);
2681                        head = page_buffers(page);
2682                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2683                        if (err <= 0)
2684                                goto out;
2685                        err = 0;
2686                        left--;
2687                }
2688                pagevec_release(&pvec);
2689                cond_resched();
2690        }
2691        return 0;
2692out:
2693        pagevec_release(&pvec);
2694        return err;
2695}
2696
2697static int __writepage(struct page *page, struct writeback_control *wbc,
2698                       void *data)
2699{
2700        struct address_space *mapping = data;
2701        int ret = ext4_writepage(page, wbc);
2702        mapping_set_error(mapping, ret);
2703        return ret;
2704}
2705
2706static int ext4_writepages(struct address_space *mapping,
2707                           struct writeback_control *wbc)
2708{
2709        pgoff_t writeback_index = 0;
2710        long nr_to_write = wbc->nr_to_write;
2711        int range_whole = 0;
2712        int cycled = 1;
2713        handle_t *handle = NULL;
2714        struct mpage_da_data mpd;
2715        struct inode *inode = mapping->host;
2716        int needed_blocks, rsv_blocks = 0, ret = 0;
2717        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2718        bool done;
2719        struct blk_plug plug;
2720        bool give_up_on_write = false;
2721
2722        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2723                return -EIO;
2724
2725        percpu_down_read(&sbi->s_journal_flag_rwsem);
2726        trace_ext4_writepages(inode, wbc);
2727
2728        if (dax_mapping(mapping)) {
2729                ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2730                                                  wbc);
2731                goto out_writepages;
2732        }
2733
2734        /*
2735         * No pages to write? This is mainly a kludge to avoid starting
2736         * a transaction for special inodes like journal inode on last iput()
2737         * because that could violate lock ordering on umount
2738         */
2739        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2740                goto out_writepages;
2741
2742        if (ext4_should_journal_data(inode)) {
2743                struct blk_plug plug;
2744
2745                blk_start_plug(&plug);
2746                ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2747                blk_finish_plug(&plug);
2748                goto out_writepages;
2749        }
2750
2751        /*
2752         * If the filesystem has aborted, it is read-only, so return
2753         * right away instead of dumping stack traces later on that
2754         * will obscure the real source of the problem.  We test
2755         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2756         * the latter could be true if the filesystem is mounted
2757         * read-only, and in that case, ext4_writepages should
2758         * *never* be called, so if that ever happens, we would want
2759         * the stack trace.
2760         */
2761        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2762                     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2763                ret = -EROFS;
2764                goto out_writepages;
2765        }
2766
2767        if (ext4_should_dioread_nolock(inode)) {
2768                /*
2769                 * We may need to convert up to one extent per block in
2770                 * the page and we may dirty the inode.
2771                 */
2772                rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2773        }
2774
2775        /*
2776         * If we have inline data and arrive here, it means that
2777         * we will soon create the block for the 1st page, so
2778         * we'd better clear the inline data here.
2779         */
2780        if (ext4_has_inline_data(inode)) {
2781                /* Just inode will be modified... */
2782                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2783                if (IS_ERR(handle)) {
2784                        ret = PTR_ERR(handle);
2785                        goto out_writepages;
2786                }
2787                BUG_ON(ext4_test_inode_state(inode,
2788                                EXT4_STATE_MAY_INLINE_DATA));
2789                ext4_destroy_inline_data(handle, inode);
2790                ext4_journal_stop(handle);
2791        }
2792
2793        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2794                range_whole = 1;
2795
2796        if (wbc->range_cyclic) {
2797                writeback_index = mapping->writeback_index;
2798                if (writeback_index)
2799                        cycled = 0;
2800                mpd.first_page = writeback_index;
2801                mpd.last_page = -1;
2802        } else {
2803                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2804                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2805        }
2806
2807        mpd.inode = inode;
2808        mpd.wbc = wbc;
2809        ext4_io_submit_init(&mpd.io_submit, wbc);
2810retry:
2811        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2813        done = false;
2814        blk_start_plug(&plug);
2815
2816        /*
2817         * First writeback pages that don't need mapping - we can avoid
2818         * starting a transaction unnecessarily and also avoid being blocked
2819         * in the block layer on device congestion while having transaction
2820         * started.
2821         */
2822        mpd.do_map = 0;
2823        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2824        if (!mpd.io_submit.io_end) {
2825                ret = -ENOMEM;
2826                goto unplug;
2827        }
2828        ret = mpage_prepare_extent_to_map(&mpd);
2829        /* Submit prepared bio */
2830        ext4_io_submit(&mpd.io_submit);
2831        ext4_put_io_end_defer(mpd.io_submit.io_end);
2832        mpd.io_submit.io_end = NULL;
2833        /* Unlock pages we didn't use */
2834        mpage_release_unused_pages(&mpd, false);
2835        if (ret < 0)
2836                goto unplug;
2837
2838        while (!done && mpd.first_page <= mpd.last_page) {
2839                /* For each extent of pages we use new io_end */
2840                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2841                if (!mpd.io_submit.io_end) {
2842                        ret = -ENOMEM;
2843                        break;
2844                }
2845
2846                /*
2847                 * We have two constraints: We find one extent to map and we
2848                 * must always write out whole page (makes a difference when
2849                 * blocksize < pagesize) so that we don't block on IO when we
2850                 * try to write out the rest of the page. Journalled mode is
2851                 * not supported by delalloc.
2852                 */
2853                BUG_ON(ext4_should_journal_data(inode));
2854                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2855
2856                /* start a new transaction */
2857                handle = ext4_journal_start_with_reserve(inode,
2858                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2859                if (IS_ERR(handle)) {
2860                        ret = PTR_ERR(handle);
2861                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2862                               "%ld pages, ino %lu; err %d", __func__,
2863                                wbc->nr_to_write, inode->i_ino, ret);
2864                        /* Release allocated io_end */
2865                        ext4_put_io_end(mpd.io_submit.io_end);
2866                        mpd.io_submit.io_end = NULL;
2867                        break;
2868                }
2869                mpd.do_map = 1;
2870
2871                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2872                ret = mpage_prepare_extent_to_map(&mpd);
2873                if (!ret) {
2874                        if (mpd.map.m_len)
2875                                ret = mpage_map_and_submit_extent(handle, &mpd,
2876                                        &give_up_on_write);
2877                        else {
2878                                /*
2879                                 * We scanned the whole range (or exhausted
2880                                 * nr_to_write), submitted what was mapped and
2881                                 * didn't find anything needing mapping. We are
2882                                 * done.
2883                                 */
2884                                done = true;
2885                        }
2886                }
2887                /*
2888                 * Caution: If the handle is synchronous,
2889                 * ext4_journal_stop() can wait for transaction commit
2890                 * to finish which may depend on writeback of pages to
2891                 * complete or on page lock to be released.  In that
2892                 * case, we have to wait until after after we have
2893                 * submitted all the IO, released page locks we hold,
2894                 * and dropped io_end reference (for extent conversion
2895                 * to be able to complete) before stopping the handle.
2896                 */
2897                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2898                        ext4_journal_stop(handle);
2899                        handle = NULL;
2900                        mpd.do_map = 0;
2901                }
2902                /* Submit prepared bio */
2903                ext4_io_submit(&mpd.io_submit);
2904                /* Unlock pages we didn't use */
2905                mpage_release_unused_pages(&mpd, give_up_on_write);
2906                /*
2907                 * Drop our io_end reference we got from init. We have
2908                 * to be careful and use deferred io_end finishing if
2909                 * we are still holding the transaction as we can
2910                 * release the last reference to io_end which may end
2911                 * up doing unwritten extent conversion.
2912                 */
2913                if (handle) {
2914                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2915                        ext4_journal_stop(handle);
2916                } else
2917                        ext4_put_io_end(mpd.io_submit.io_end);
2918                mpd.io_submit.io_end = NULL;
2919
2920                if (ret == -ENOSPC && sbi->s_journal) {
2921                        /*
2922                         * Commit the transaction which would
2923                         * free blocks released in the transaction
2924                         * and try again
2925                         */
2926                        jbd2_journal_force_commit_nested(sbi->s_journal);
2927                        ret = 0;
2928                        continue;
2929                }
2930                /* Fatal error - ENOMEM, EIO... */
2931                if (ret)
2932                        break;
2933        }
2934unplug:
2935        blk_finish_plug(&plug);
2936        if (!ret && !cycled && wbc->nr_to_write > 0) {
2937                cycled = 1;
2938                mpd.last_page = writeback_index - 1;
2939                mpd.first_page = 0;
2940                goto retry;
2941        }
2942
2943        /* Update index */
2944        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2945                /*
2946                 * Set the writeback_index so that range_cyclic
2947                 * mode will write it back later
2948                 */
2949                mapping->writeback_index = mpd.first_page;
2950
2951out_writepages:
2952        trace_ext4_writepages_result(inode, wbc, ret,
2953                                     nr_to_write - wbc->nr_to_write);
2954        percpu_up_read(&sbi->s_journal_flag_rwsem);
2955        return ret;
2956}
2957
2958static int ext4_nonda_switch(struct super_block *sb)
2959{
2960        s64 free_clusters, dirty_clusters;
2961        struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963        /*
2964         * switch to non delalloc mode if we are running low
2965         * on free block. The free block accounting via percpu
2966         * counters can get slightly wrong with percpu_counter_batch getting
2967         * accumulated on each CPU without updating global counters
2968         * Delalloc need an accurate free block accounting. So switch
2969         * to non delalloc when we are near to error range.
2970         */
2971        free_clusters =
2972                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973        dirty_clusters =
2974                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975        /*
2976         * Start pushing delalloc when 1/2 of free blocks are dirty.
2977         */
2978        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981        if (2 * free_clusters < 3 * dirty_clusters ||
2982            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983                /*
2984                 * free block count is less than 150% of dirty blocks
2985                 * or free blocks is less than watermark
2986                 */
2987                return 1;
2988        }
2989        return 0;
2990}
2991
2992/* We always reserve for an inode update; the superblock could be there too */
2993static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994{
2995        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996                return 1;
2997
2998        if (pos + len <= 0x7fffffffULL)
2999                return 1;
3000
3001        /* We might need to update the superblock to set LARGE_FILE */
3002        return 2;
3003}
3004
3005static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006                               loff_t pos, unsigned len, unsigned flags,
3007                               struct page **pagep, void **fsdata)
3008{
3009        int ret, retries = 0;
3010        struct page *page;
3011        pgoff_t index;
3012        struct inode *inode = mapping->host;
3013        handle_t *handle;
3014
3015        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016                return -EIO;
3017
3018        index = pos >> PAGE_SHIFT;
3019
3020        if (ext4_nonda_switch(inode->i_sb) ||
3021            S_ISLNK(inode->i_mode)) {
3022                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023                return ext4_write_begin(file, mapping, pos,
3024                                        len, flags, pagep, fsdata);
3025        }
3026        *fsdata = (void *)0;
3027        trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030                ret = ext4_da_write_inline_data_begin(mapping, inode,
3031                                                      pos, len, flags,
3032                                                      pagep, fsdata);
3033                if (ret < 0)
3034                        return ret;
3035                if (ret == 1)
3036                        return 0;
3037        }
3038
3039        /*
3040         * grab_cache_page_write_begin() can take a long time if the
3041         * system is thrashing due to memory pressure, or if the page
3042         * is being written back.  So grab it first before we start
3043         * the transaction handle.  This also allows us to allocate
3044         * the page (if needed) without using GFP_NOFS.
3045         */
3046retry_grab:
3047        page = grab_cache_page_write_begin(mapping, index, flags);
3048        if (!page)
3049                return -ENOMEM;
3050        unlock_page(page);
3051
3052        /*
3053         * With delayed allocation, we don't log the i_disksize update
3054         * if there is delayed block allocation. But we still need
3055         * to journalling the i_disksize update if writes to the end
3056         * of file which has an already mapped buffer.
3057         */
3058retry_journal:
3059        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060                                ext4_da_write_credits(inode, pos, len));
3061        if (IS_ERR(handle)) {
3062                put_page(page);
3063                return PTR_ERR(handle);
3064        }
3065
3066        lock_page(page);
3067        if (page->mapping != mapping) {
3068                /* The page got truncated from under us */
3069                unlock_page(page);
3070                put_page(page);
3071                ext4_journal_stop(handle);
3072                goto retry_grab;
3073        }
3074        /* In case writeback began while the page was unlocked */
3075        wait_for_stable_page(page);
3076
3077#ifdef CONFIG_EXT4_FS_ENCRYPTION
3078        ret = ext4_block_write_begin(page, pos, len,
3079                                     ext4_da_get_block_prep);
3080#else
3081        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082#endif
3083        if (ret < 0) {
3084                unlock_page(page);
3085                ext4_journal_stop(handle);
3086                /*
3087                 * block_write_begin may have instantiated a few blocks
3088                 * outside i_size.  Trim these off again. Don't need
3089                 * i_size_read because we hold i_mutex.
3090                 */
3091                if (pos + len > inode->i_size)
3092                        ext4_truncate_failed_write(inode);
3093
3094                if (ret == -ENOSPC &&
3095                    ext4_should_retry_alloc(inode->i_sb, &retries))
3096                        goto retry_journal;
3097
3098                put_page(page);
3099                return ret;
3100        }
3101
3102        *pagep = page;
3103        return ret;
3104}
3105
3106/*
3107 * Check if we should update i_disksize
3108 * when write to the end of file but not require block allocation
3109 */
3110static int ext4_da_should_update_i_disksize(struct page *page,
3111                                            unsigned long offset)
3112{
3113        struct buffer_head *bh;
3114        struct inode *inode = page->mapping->host;
3115        unsigned int idx;
3116        int i;
3117
3118        bh = page_buffers(page);
3119        idx = offset >> inode->i_blkbits;
3120
3121        for (i = 0; i < idx; i++)
3122                bh = bh->b_this_page;
3123
3124        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125                return 0;
3126        return 1;
3127}
3128
3129static int ext4_da_write_end(struct file *file,
3130                             struct address_space *mapping,
3131                             loff_t pos, unsigned len, unsigned copied,
3132                             struct page *page, void *fsdata)
3133{
3134        struct inode *inode = mapping->host;
3135        int ret = 0, ret2;
3136        handle_t *handle = ext4_journal_current_handle();
3137        loff_t new_i_size;
3138        unsigned long start, end;
3139        int write_mode = (int)(unsigned long)fsdata;
3140
3141        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142                return ext4_write_end(file, mapping, pos,
3143                                      len, copied, page, fsdata);
3144
3145        trace_ext4_da_write_end(inode, pos, len, copied);
3146        start = pos & (PAGE_SIZE - 1);
3147        end = start + copied - 1;
3148
3149        /*
3150         * generic_write_end() will run mark_inode_dirty() if i_size
3151         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152         * into that.
3153         */
3154        new_i_size = pos + copied;
3155        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156                if (ext4_has_inline_data(inode) ||
3157                    ext4_da_should_update_i_disksize(page, end)) {
3158                        ext4_update_i_disksize(inode, new_i_size);
3159                        /* We need to mark inode dirty even if
3160                         * new_i_size is less that inode->i_size
3161                         * bu greater than i_disksize.(hint delalloc)
3162                         */
3163                        ext4_mark_inode_dirty(handle, inode);
3164                }
3165        }
3166
3167        if (write_mode != CONVERT_INLINE_DATA &&
3168            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169            ext4_has_inline_data(inode))
3170                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171                                                     page);
3172        else
3173                ret2 = generic_write_end(file, mapping, pos, len, copied,
3174                                                        page, fsdata);
3175
3176        copied = ret2;
3177        if (ret2 < 0)
3178                ret = ret2;
3179        ret2 = ext4_journal_stop(handle);
3180        if (!ret)
3181                ret = ret2;
3182
3183        return ret ? ret : copied;
3184}
3185
3186static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187                                   unsigned int length)
3188{
3189        /*
3190         * Drop reserved blocks
3191         */
3192        BUG_ON(!PageLocked(page));
3193        if (!page_has_buffers(page))
3194                goto out;
3195
3196        ext4_da_page_release_reservation(page, offset, length);
3197
3198out:
3199        ext4_invalidatepage(page, offset, length);
3200
3201        return;
3202}
3203
3204/*
3205 * Force all delayed allocation blocks to be allocated for a given inode.
3206 */
3207int ext4_alloc_da_blocks(struct inode *inode)
3208{
3209        trace_ext4_alloc_da_blocks(inode);
3210
3211        if (!EXT4_I(inode)->i_reserved_data_blocks)
3212                return 0;
3213
3214        /*
3215         * We do something simple for now.  The filemap_flush() will
3216         * also start triggering a write of the data blocks, which is
3217         * not strictly speaking necessary (and for users of
3218         * laptop_mode, not even desirable).  However, to do otherwise
3219         * would require replicating code paths in:
3220         *
3221         * ext4_writepages() ->
3222         *    write_cache_pages() ---> (via passed in callback function)
3223         *        __mpage_da_writepage() -->
3224         *           mpage_add_bh_to_extent()
3225         *           mpage_da_map_blocks()
3226         *
3227         * The problem is that write_cache_pages(), located in
3228         * mm/page-writeback.c, marks pages clean in preparation for
3229         * doing I/O, which is not desirable if we're not planning on
3230         * doing I/O at all.
3231         *
3232         * We could call write_cache_pages(), and then redirty all of
3233         * the pages by calling redirty_page_for_writepage() but that
3234         * would be ugly in the extreme.  So instead we would need to
3235         * replicate parts of the code in the above functions,
3236         * simplifying them because we wouldn't actually intend to
3237         * write out the pages, but rather only collect contiguous
3238         * logical block extents, call the multi-block allocator, and
3239         * then update the buffer heads with the block allocations.
3240         *
3241         * For now, though, we'll cheat by calling filemap_flush(),
3242         * which will map the blocks, and start the I/O, but not
3243         * actually wait for the I/O to complete.
3244         */
3245        return filemap_flush(inode->i_mapping);
3246}
3247
3248/*
3249 * bmap() is special.  It gets used by applications such as lilo and by
3250 * the swapper to find the on-disk block of a specific piece of data.
3251 *
3252 * Naturally, this is dangerous if the block concerned is still in the
3253 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3254 * filesystem and enables swap, then they may get a nasty shock when the
3255 * data getting swapped to that swapfile suddenly gets overwritten by
3256 * the original zero's written out previously to the journal and
3257 * awaiting writeback in the kernel's buffer cache.
3258 *
3259 * So, if we see any bmap calls here on a modified, data-journaled file,
3260 * take extra steps to flush any blocks which might be in the cache.
3261 */
3262static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263{
3264        struct inode *inode = mapping->host;
3265        journal_t *journal;
3266        int err;
3267
3268        /*
3269         * We can get here for an inline file via the FIBMAP ioctl
3270         */
3271        if (ext4_has_inline_data(inode))
3272                return 0;
3273
3274        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275                        test_opt(inode->i_sb, DELALLOC)) {
3276                /*
3277                 * With delalloc we want to sync the file
3278                 * so that we can make sure we allocate
3279                 * blocks for file
3280                 */
3281                filemap_write_and_wait(mapping);
3282        }
3283
3284        if (EXT4_JOURNAL(inode) &&
3285            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286                /*
3287                 * This is a REALLY heavyweight approach, but the use of
3288                 * bmap on dirty files is expected to be extremely rare:
3289                 * only if we run lilo or swapon on a freshly made file
3290                 * do we expect this to happen.
3291                 *
3292                 * (bmap requires CAP_SYS_RAWIO so this does not
3293                 * represent an unprivileged user DOS attack --- we'd be
3294                 * in trouble if mortal users could trigger this path at
3295                 * will.)
3296                 *
3297                 * NB. EXT4_STATE_JDATA is not set on files other than
3298                 * regular files.  If somebody wants to bmap a directory
3299                 * or symlink and gets confused because the buffer
3300                 * hasn't yet been flushed to disk, they deserve
3301                 * everything they get.
3302                 */
3303
3304                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305                journal = EXT4_JOURNAL(inode);
3306                jbd2_journal_lock_updates(journal);
3307                err = jbd2_journal_flush(journal);
3308                jbd2_journal_unlock_updates(journal);
3309
3310                if (err)
3311                        return 0;
3312        }
3313
3314        return generic_block_bmap(mapping, block, ext4_get_block);
3315}
3316
3317static int ext4_readpage(struct file *file, struct page *page)
3318{
3319        int ret = -EAGAIN;
3320        struct inode *inode = page->mapping->host;
3321
3322        trace_ext4_readpage(page);
3323
3324        if (ext4_has_inline_data(inode))
3325                ret = ext4_readpage_inline(inode, page);
3326
3327        if (ret == -EAGAIN)
3328                return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330        return ret;
3331}
3332
3333static int
3334ext4_readpages(struct file *file, struct address_space *mapping,
3335                struct list_head *pages, unsigned nr_pages)
3336{
3337        struct inode *inode = mapping->host;
3338
3339        /* If the file has inline data, no need to do readpages. */
3340        if (ext4_has_inline_data(inode))
3341                return 0;
3342
3343        return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344}
3345
3346static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347                                unsigned int length)
3348{
3349        trace_ext4_invalidatepage(page, offset, length);
3350
3351        /* No journalling happens on data buffers when this function is used */
3352        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354        block_invalidatepage(page, offset, length);
3355}
3356
3357static int __ext4_journalled_invalidatepage(struct page *page,
3358                                            unsigned int offset,
3359                                            unsigned int length)
3360{
3361        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363        trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365        /*
3366         * If it's a full truncate we just forget about the pending dirtying
3367         */
3368        if (offset == 0 && length == PAGE_SIZE)
3369                ClearPageChecked(page);
3370
3371        return jbd2_journal_invalidatepage(journal, page, offset, length);
3372}
3373
3374/* Wrapper for aops... */
3375static void ext4_journalled_invalidatepage(struct page *page,
3376                                           unsigned int offset,
3377                                           unsigned int length)
3378{
3379        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380}
3381
3382static int ext4_releasepage(struct page *page, gfp_t wait)
3383{
3384        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386        trace_ext4_releasepage(page);
3387
3388        /* Page has dirty journalled data -> cannot release */
3389        if (PageChecked(page))
3390                return 0;
3391        if (journal)
3392                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393        else
3394                return try_to_free_buffers(page);
3395}
3396
3397#ifdef CONFIG_FS_DAX
3398static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3399                            unsigned flags, struct iomap *iomap)
3400{
3401        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3402        unsigned int blkbits = inode->i_blkbits;
3403        unsigned long first_block = offset >> blkbits;
3404        unsigned long last_block = (offset + length - 1) >> blkbits;
3405        struct ext4_map_blocks map;
3406        int ret;
3407
3408        if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3409                return -ERANGE;
3410
3411        map.m_lblk = first_block;
3412        map.m_len = last_block - first_block + 1;
3413
3414        if (!(flags & IOMAP_WRITE)) {
3415                ret = ext4_map_blocks(NULL, inode, &map, 0);
3416        } else {
3417                int dio_credits;
3418                handle_t *handle;
3419                int retries = 0;
3420
3421                /* Trim mapping request to maximum we can map at once for DIO */
3422                if (map.m_len > DIO_MAX_BLOCKS)
3423                        map.m_len = DIO_MAX_BLOCKS;
3424                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3425retry:
3426                /*
3427                 * Either we allocate blocks and then we don't get unwritten
3428                 * extent so we have reserved enough credits, or the blocks
3429                 * are already allocated and unwritten and in that case
3430                 * extent conversion fits in the credits as well.
3431                 */
3432                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3433                                            dio_credits);
3434                if (IS_ERR(handle))
3435                        return PTR_ERR(handle);
3436
3437                ret = ext4_map_blocks(handle, inode, &map,
3438                                      EXT4_GET_BLOCKS_CREATE_ZERO);
3439                if (ret < 0) {
3440                        ext4_journal_stop(handle);
3441                        if (ret == -ENOSPC &&
3442                            ext4_should_retry_alloc(inode->i_sb, &retries))
3443                                goto retry;
3444                        return ret;
3445                }
3446
3447                /*
3448                 * If we added blocks beyond i_size, we need to make sure they
3449                 * will get truncated if we crash before updating i_size in
3450                 * ext4_iomap_end(). For faults we don't need to do that (and
3451                 * even cannot because for orphan list operations inode_lock is
3452                 * required) - if we happen to instantiate block beyond i_size,
3453                 * it is because we race with truncate which has already added
3454                 * the inode to the orphan list.
3455                 */
3456                if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3457                    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3458                        int err;
3459
3460                        err = ext4_orphan_add(handle, inode);
3461                        if (err < 0) {
3462                                ext4_journal_stop(handle);
3463                                return err;
3464                        }
3465                }
3466                ext4_journal_stop(handle);
3467        }
3468
3469        iomap->flags = 0;
3470        iomap->bdev = inode->i_sb->s_bdev;
3471        iomap->dax_dev = sbi->s_daxdev;
3472        iomap->offset = first_block << blkbits;
3473
3474        if (ret == 0) {
3475                iomap->type = IOMAP_HOLE;
3476                iomap->blkno = IOMAP_NULL_BLOCK;
3477                iomap->length = (u64)map.m_len << blkbits;
3478        } else {
3479                if (map.m_flags & EXT4_MAP_MAPPED) {
3480                        iomap->type = IOMAP_MAPPED;
3481                } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3482                        iomap->type = IOMAP_UNWRITTEN;
3483                } else {
3484                        WARN_ON_ONCE(1);
3485                        return -EIO;
3486                }
3487                iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3488                iomap->length = (u64)map.m_len << blkbits;
3489        }
3490
3491        if (map.m_flags & EXT4_MAP_NEW)
3492                iomap->flags |= IOMAP_F_NEW;
3493        return 0;
3494}
3495
3496static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3497                          ssize_t written, unsigned flags, struct iomap *iomap)
3498{
3499        int ret = 0;
3500        handle_t *handle;
3501        int blkbits = inode->i_blkbits;
3502        bool truncate = false;
3503
3504        if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3505                return 0;
3506
3507        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3508        if (IS_ERR(handle)) {
3509                ret = PTR_ERR(handle);
3510                goto orphan_del;
3511        }
3512        if (ext4_update_inode_size(inode, offset + written))
3513                ext4_mark_inode_dirty(handle, inode);
3514        /*
3515         * We may need to truncate allocated but not written blocks beyond EOF.
3516         */
3517        if (iomap->offset + iomap->length > 
3518            ALIGN(inode->i_size, 1 << blkbits)) {
3519                ext4_lblk_t written_blk, end_blk;
3520
3521                written_blk = (offset + written) >> blkbits;
3522                end_blk = (offset + length) >> blkbits;
3523                if (written_blk < end_blk && ext4_can_truncate(inode))
3524                        truncate = true;
3525        }
3526        /*
3527         * Remove inode from orphan list if we were extending a inode and
3528         * everything went fine.
3529         */
3530        if (!truncate && inode->i_nlink &&
3531            !list_empty(&EXT4_I(inode)->i_orphan))
3532                ext4_orphan_del(handle, inode);
3533        ext4_journal_stop(handle);
3534        if (truncate) {
3535                ext4_truncate_failed_write(inode);
3536orphan_del:
3537                /*
3538                 * If truncate failed early the inode might still be on the
3539                 * orphan list; we need to make sure the inode is removed from
3540                 * the orphan list in that case.
3541                 */
3542                if (inode->i_nlink)
3543                        ext4_orphan_del(NULL, inode);
3544        }
3545        return ret;
3546}
3547
3548const struct iomap_ops ext4_iomap_ops = {
3549        .iomap_begin            = ext4_iomap_begin,
3550        .iomap_end              = ext4_iomap_end,
3551};
3552
3553#endif
3554
3555static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3556                            ssize_t size, void *private)
3557{
3558        ext4_io_end_t *io_end = private;
3559
3560        /* if not async direct IO just return */
3561        if (!io_end)
3562                return 0;
3563
3564        ext_debug("ext4_end_io_dio(): io_end 0x%p "
3565                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3566                  io_end, io_end->inode->i_ino, iocb, offset, size);
3567
3568        /*
3569         * Error during AIO DIO. We cannot convert unwritten extents as the
3570         * data was not written. Just clear the unwritten flag and drop io_end.
3571         */
3572        if (size <= 0) {
3573                ext4_clear_io_unwritten_flag(io_end);
3574                size = 0;
3575        }
3576        io_end->offset = offset;
3577        io_end->size = size;
3578        ext4_put_io_end(io_end);
3579
3580        return 0;
3581}
3582
3583/*
3584 * Handling of direct IO writes.
3585 *
3586 * For ext4 extent files, ext4 will do direct-io write even to holes,
3587 * preallocated extents, and those write extend the file, no need to
3588 * fall back to buffered IO.
3589 *
3590 * For holes, we fallocate those blocks, mark them as unwritten
3591 * If those blocks were preallocated, we mark sure they are split, but
3592 * still keep the range to write as unwritten.
3593 *
3594 * The unwritten extents will be converted to written when DIO is completed.
3595 * For async direct IO, since the IO may still pending when return, we
3596 * set up an end_io call back function, which will do the conversion
3597 * when async direct IO completed.
3598 *
3599 * If the O_DIRECT write will extend the file then add this inode to the
3600 * orphan list.  So recovery will truncate it back to the original size
3601 * if the machine crashes during the write.
3602 *
3603 */
3604static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3605{
3606        struct file *file = iocb->ki_filp;
3607        struct inode *inode = file->f_mapping->host;
3608        struct ext4_inode_info *ei = EXT4_I(inode);
3609        ssize_t ret;
3610        loff_t offset = iocb->ki_pos;
3611        size_t count = iov_iter_count(iter);
3612        int overwrite = 0;
3613        get_block_t *get_block_func = NULL;
3614        int dio_flags = 0;
3615        loff_t final_size = offset + count;
3616        int orphan = 0;
3617        handle_t *handle;
3618
3619        if (final_size > inode->i_size) {
3620                /* Credits for sb + inode write */
3621                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3622                if (IS_ERR(handle)) {
3623                        ret = PTR_ERR(handle);
3624                        goto out;
3625                }
3626                ret = ext4_orphan_add(handle, inode);
3627                if (ret) {
3628                        ext4_journal_stop(handle);
3629                        goto out;
3630                }
3631                orphan = 1;
3632                ei->i_disksize = inode->i_size;
3633                ext4_journal_stop(handle);
3634        }
3635
3636        BUG_ON(iocb->private == NULL);
3637
3638        /*
3639         * Make all waiters for direct IO properly wait also for extent
3640         * conversion. This also disallows race between truncate() and
3641         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3642         */
3643        inode_dio_begin(inode);
3644
3645        /* If we do a overwrite dio, i_mutex locking can be released */
3646        overwrite = *((int *)iocb->private);
3647
3648        if (overwrite)
3649                inode_unlock(inode);
3650
3651        /*
3652         * For extent mapped files we could direct write to holes and fallocate.
3653         *
3654         * Allocated blocks to fill the hole are marked as unwritten to prevent
3655         * parallel buffered read to expose the stale data before DIO complete
3656         * the data IO.
3657         *
3658         * As to previously fallocated extents, ext4 get_block will just simply
3659         * mark the buffer mapped but still keep the extents unwritten.
3660         *
3661         * For non AIO case, we will convert those unwritten extents to written
3662         * after return back from blockdev_direct_IO. That way we save us from
3663         * allocating io_end structure and also the overhead of offloading
3664         * the extent convertion to a workqueue.
3665         *
3666         * For async DIO, the conversion needs to be deferred when the
3667         * IO is completed. The ext4 end_io callback function will be
3668         * called to take care of the conversion work.  Here for async
3669         * case, we allocate an io_end structure to hook to the iocb.
3670         */
3671        iocb->private = NULL;
3672        if (overwrite)
3673                get_block_func = ext4_dio_get_block_overwrite;
3674        else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3675                   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3676                get_block_func = ext4_dio_get_block;
3677                dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3678        } else if (is_sync_kiocb(iocb)) {
3679                get_block_func = ext4_dio_get_block_unwritten_sync;
3680                dio_flags = DIO_LOCKING;
3681        } else {
3682                get_block_func = ext4_dio_get_block_unwritten_async;
3683                dio_flags = DIO_LOCKING;
3684        }
3685        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3686                                   get_block_func, ext4_end_io_dio, NULL,
3687                                   dio_flags);
3688
3689        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3690                                                EXT4_STATE_DIO_UNWRITTEN)) {
3691                int err;
3692                /*
3693                 * for non AIO case, since the IO is already
3694                 * completed, we could do the conversion right here
3695                 */
3696                err = ext4_convert_unwritten_extents(NULL, inode,
3697                                                     offset, ret);
3698                if (err < 0)
3699                        ret = err;
3700                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3701        }
3702
3703        inode_dio_end(inode);
3704        /* take i_mutex locking again if we do a ovewrite dio */
3705        if (overwrite)
3706                inode_lock(inode);
3707
3708        if (ret < 0 && final_size > inode->i_size)
3709                ext4_truncate_failed_write(inode);
3710
3711        /* Handle extending of i_size after direct IO write */
3712        if (orphan) {
3713                int err;
3714
3715                /* Credits for sb + inode write */
3716                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3717                if (IS_ERR(handle)) {
3718                        /* This is really bad luck. We've written the data
3719                         * but cannot extend i_size. Bail out and pretend
3720                         * the write failed... */
3721                        ret = PTR_ERR(handle);
3722                        if (inode->i_nlink)
3723                                ext4_orphan_del(NULL, inode);
3724
3725                        goto out;
3726                }
3727                if (inode->i_nlink)
3728                        ext4_orphan_del(handle, inode);
3729                if (ret > 0) {
3730                        loff_t end = offset + ret;
3731                        if (end > inode->i_size) {
3732                                ei->i_disksize = end;
3733                                i_size_write(inode, end);
3734                                /*
3735                                 * We're going to return a positive `ret'
3736                                 * here due to non-zero-length I/O, so there's
3737                                 * no way of reporting error returns from
3738                                 * ext4_mark_inode_dirty() to userspace.  So
3739                                 * ignore it.
3740                                 */
3741                                ext4_mark_inode_dirty(handle, inode);
3742                        }
3743                }
3744                err = ext4_journal_stop(handle);
3745                if (ret == 0)
3746                        ret = err;
3747        }
3748out:
3749        return ret;
3750}
3751
3752static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3753{
3754        struct address_space *mapping = iocb->ki_filp->f_mapping;
3755        struct inode *inode = mapping->host;
3756        size_t count = iov_iter_count(iter);
3757        ssize_t ret;
3758
3759        /*
3760         * Shared inode_lock is enough for us - it protects against concurrent
3761         * writes & truncates and since we take care of writing back page cache,
3762         * we are protected against page writeback as well.
3763         */
3764        inode_lock_shared(inode);
3765        ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3766                                           iocb->ki_pos + count - 1);
3767        if (ret)
3768                goto out_unlock;
3769        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3770                                   iter, ext4_dio_get_block, NULL, NULL, 0);
3771out_unlock:
3772        inode_unlock_shared(inode);
3773        return ret;
3774}
3775
3776static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3777{
3778        struct file *file = iocb->ki_filp;
3779        struct inode *inode = file->f_mapping->host;
3780        size_t count = iov_iter_count(iter);
3781        loff_t offset = iocb->ki_pos;
3782        ssize_t ret;
3783
3784#ifdef CONFIG_EXT4_FS_ENCRYPTION
3785        if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3786                return 0;
3787#endif
3788
3789        /*
3790         * If we are doing data journalling we don't support O_DIRECT
3791         */
3792        if (ext4_should_journal_data(inode))
3793                return 0;
3794
3795        /* Let buffer I/O handle the inline data case. */
3796        if (ext4_has_inline_data(inode))
3797                return 0;
3798
3799        /* DAX uses iomap path now */
3800        if (WARN_ON_ONCE(IS_DAX(inode)))
3801                return 0;
3802
3803        trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3804        if (iov_iter_rw(iter) == READ)
3805                ret = ext4_direct_IO_read(iocb, iter);
3806        else
3807                ret = ext4_direct_IO_write(iocb, iter);
3808        trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3809        return ret;
3810}
3811
3812/*
3813 * Pages can be marked dirty completely asynchronously from ext4's journalling
3814 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3815 * much here because ->set_page_dirty is called under VFS locks.  The page is
3816 * not necessarily locked.
3817 *
3818 * We cannot just dirty the page and leave attached buffers clean, because the
3819 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3820 * or jbddirty because all the journalling code will explode.
3821 *
3822 * So what we do is to mark the page "pending dirty" and next time writepage
3823 * is called, propagate that into the buffers appropriately.
3824 */
3825static int ext4_journalled_set_page_dirty(struct page *page)
3826{
3827        SetPageChecked(page);
3828        return __set_page_dirty_nobuffers(page);
3829}
3830
3831static int ext4_set_page_dirty(struct page *page)
3832{
3833        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3834        WARN_ON_ONCE(!page_has_buffers(page));
3835        return __set_page_dirty_buffers(page);
3836}
3837
3838static const struct address_space_operations ext4_aops = {
3839        .readpage               = ext4_readpage,
3840        .readpages              = ext4_readpages,
3841        .writepage              = ext4_writepage,
3842        .writepages             = ext4_writepages,
3843        .write_begin            = ext4_write_begin,
3844        .write_end              = ext4_write_end,
3845        .set_page_dirty         = ext4_set_page_dirty,
3846        .bmap                   = ext4_bmap,
3847        .invalidatepage         = ext4_invalidatepage,
3848        .releasepage            = ext4_releasepage,
3849        .direct_IO              = ext4_direct_IO,
3850        .migratepage            = buffer_migrate_page,
3851        .is_partially_uptodate  = block_is_partially_uptodate,
3852        .error_remove_page      = generic_error_remove_page,
3853};
3854
3855static const struct address_space_operations ext4_journalled_aops = {
3856        .readpage               = ext4_readpage,
3857        .readpages              = ext4_readpages,
3858        .writepage              = ext4_writepage,
3859        .writepages             = ext4_writepages,
3860        .write_begin            = ext4_write_begin,
3861        .write_end              = ext4_journalled_write_end,
3862        .set_page_dirty         = ext4_journalled_set_page_dirty,
3863        .bmap                   = ext4_bmap,
3864        .invalidatepage         = ext4_journalled_invalidatepage,
3865        .releasepage            = ext4_releasepage,
3866        .direct_IO              = ext4_direct_IO,
3867        .is_partially_uptodate  = block_is_partially_uptodate,
3868        .error_remove_page      = generic_error_remove_page,
3869};
3870
3871static const struct address_space_operations ext4_da_aops = {
3872        .readpage               = ext4_readpage,
3873        .readpages              = ext4_readpages,
3874        .writepage              = ext4_writepage,
3875        .writepages             = ext4_writepages,
3876        .write_begin            = ext4_da_write_begin,
3877        .write_end              = ext4_da_write_end,
3878        .set_page_dirty         = ext4_set_page_dirty,
3879        .bmap                   = ext4_bmap,
3880        .invalidatepage         = ext4_da_invalidatepage,
3881        .releasepage            = ext4_releasepage,
3882        .direct_IO              = ext4_direct_IO,
3883        .migratepage            = buffer_migrate_page,
3884        .is_partially_uptodate  = block_is_partially_uptodate,
3885        .error_remove_page      = generic_error_remove_page,
3886};
3887
3888void ext4_set_aops(struct inode *inode)
3889{
3890        switch (ext4_inode_journal_mode(inode)) {
3891        case EXT4_INODE_ORDERED_DATA_MODE:
3892        case EXT4_INODE_WRITEBACK_DATA_MODE:
3893                break;
3894        case EXT4_INODE_JOURNAL_DATA_MODE:
3895                inode->i_mapping->a_ops = &ext4_journalled_aops;
3896                return;
3897        default:
3898                BUG();
3899        }
3900        if (test_opt(inode->i_sb, DELALLOC))
3901                inode->i_mapping->a_ops = &ext4_da_aops;
3902        else
3903                inode->i_mapping->a_ops = &ext4_aops;
3904}
3905
3906static int __ext4_block_zero_page_range(handle_t *handle,
3907                struct address_space *mapping, loff_t from, loff_t length)
3908{
3909        ext4_fsblk_t index = from >> PAGE_SHIFT;
3910        unsigned offset = from & (PAGE_SIZE-1);
3911        unsigned blocksize, pos;
3912        ext4_lblk_t iblock;
3913        struct inode *inode = mapping->host;
3914        struct buffer_head *bh;
3915        struct page *page;
3916        int err = 0;
3917
3918        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3919                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3920        if (!page)
3921                return -ENOMEM;
3922
3923        blocksize = inode->i_sb->s_blocksize;
3924
3925        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3926
3927        if (!page_has_buffers(page))
3928                create_empty_buffers(page, blocksize, 0);
3929
3930        /* Find the buffer that contains "offset" */
3931        bh = page_buffers(page);
3932        pos = blocksize;
3933        while (offset >= pos) {
3934                bh = bh->b_this_page;
3935                iblock++;
3936                pos += blocksize;
3937        }
3938        if (buffer_freed(bh)) {
3939                BUFFER_TRACE(bh, "freed: skip");
3940                goto unlock;
3941        }
3942        if (!buffer_mapped(bh)) {
3943                BUFFER_TRACE(bh, "unmapped");
3944                ext4_get_block(inode, iblock, bh, 0);
3945                /* unmapped? It's a hole - nothing to do */
3946                if (!buffer_mapped(bh)) {
3947                        BUFFER_TRACE(bh, "still unmapped");
3948                        goto unlock;
3949                }
3950        }
3951
3952        /* Ok, it's mapped. Make sure it's up-to-date */
3953        if (PageUptodate(page))
3954                set_buffer_uptodate(bh);
3955
3956        if (!buffer_uptodate(bh)) {
3957                err = -EIO;
3958                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3959                wait_on_buffer(bh);
3960                /* Uhhuh. Read error. Complain and punt. */
3961                if (!buffer_uptodate(bh))
3962                        goto unlock;
3963                if (S_ISREG(inode->i_mode) &&
3964                    ext4_encrypted_inode(inode)) {
3965                        /* We expect the key to be set. */
3966                        BUG_ON(!fscrypt_has_encryption_key(inode));
3967                        BUG_ON(blocksize != PAGE_SIZE);
3968                        WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3969                                                page, PAGE_SIZE, 0, page->index));
3970                }
3971        }
3972        if (ext4_should_journal_data(inode)) {
3973                BUFFER_TRACE(bh, "get write access");
3974                err = ext4_journal_get_write_access(handle, bh);
3975                if (err)
3976                        goto unlock;
3977        }
3978        zero_user(page, offset, length);
3979        BUFFER_TRACE(bh, "zeroed end of block");
3980
3981        if (ext4_should_journal_data(inode)) {
3982                err = ext4_handle_dirty_metadata(handle, inode, bh);
3983        } else {
3984                err = 0;
3985                mark_buffer_dirty(bh);
3986                if (ext4_should_order_data(inode))
3987                        err = ext4_jbd2_inode_add_write(handle, inode);
3988        }
3989
3990unlock:
3991        unlock_page(page);
3992        put_page(page);
3993        return err;
3994}
3995
3996/*
3997 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3998 * starting from file offset 'from'.  The range to be zero'd must
3999 * be contained with in one block.  If the specified range exceeds
4000 * the end of the block it will be shortened to end of the block
4001 * that cooresponds to 'from'
4002 */
4003static int ext4_block_zero_page_range(handle_t *handle,
4004                struct address_space *mapping, loff_t from, loff_t length)
4005{
4006        struct inode *inode = mapping->host;
4007        unsigned offset = from & (PAGE_SIZE-1);
4008        unsigned blocksize = inode->i_sb->s_blocksize;
4009        unsigned max = blocksize - (offset & (blocksize - 1));
4010
4011        /*
4012         * correct length if it does not fall between
4013         * 'from' and the end of the block
4014         */
4015        if (length > max || length < 0)
4016                length = max;
4017
4018        if (IS_DAX(inode)) {
4019                return iomap_zero_range(inode, from, length, NULL,
4020                                        &ext4_iomap_ops);
4021        }
4022        return __ext4_block_zero_page_range(handle, mapping, from, length);
4023}
4024
4025/*
4026 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4027 * up to the end of the block which corresponds to `from'.
4028 * This required during truncate. We need to physically zero the tail end
4029 * of that block so it doesn't yield old data if the file is later grown.
4030 */
4031static int ext4_block_truncate_page(handle_t *handle,
4032                struct address_space *mapping, loff_t from)
4033{
4034        unsigned offset = from & (PAGE_SIZE-1);
4035        unsigned length;
4036        unsigned blocksize;
4037        struct inode *inode = mapping->host;
4038
4039        /* If we are processing an encrypted inode during orphan list handling */
4040        if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4041                return 0;
4042
4043        blocksize = inode->i_sb->s_blocksize;
4044        length = blocksize - (offset & (blocksize - 1));
4045
4046        return ext4_block_zero_page_range(handle, mapping, from, length);
4047}
4048
4049int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4050                             loff_t lstart, loff_t length)
4051{
4052        struct super_block *sb = inode->i_sb;
4053        struct address_space *mapping = inode->i_mapping;
4054        unsigned partial_start, partial_end;
4055        ext4_fsblk_t start, end;
4056        loff_t byte_end = (lstart + length - 1);
4057        int err = 0;
4058
4059        partial_start = lstart & (sb->s_blocksize - 1);
4060        partial_end = byte_end & (sb->s_blocksize - 1);
4061
4062        start = lstart >> sb->s_blocksize_bits;
4063        end = byte_end >> sb->s_blocksize_bits;
4064
4065        /* Handle partial zero within the single block */
4066        if (start == end &&
4067            (partial_start || (partial_end != sb->s_blocksize - 1))) {
4068                err = ext4_block_zero_page_range(handle, mapping,
4069                                                 lstart, length);
4070                return err;
4071        }
4072        /* Handle partial zero out on the start of the range */
4073        if (partial_start) {
4074                err = ext4_block_zero_page_range(handle, mapping,
4075                                                 lstart, sb->s_blocksize);
4076                if (err)
4077                        return err;
4078        }
4079        /* Handle partial zero out on the end of the range */
4080        if (partial_end != sb->s_blocksize - 1)
4081                err = ext4_block_zero_page_range(handle, mapping,
4082                                                 byte_end - partial_end,
4083                                                 partial_end + 1);
4084        return err;
4085}
4086
4087int ext4_can_truncate(struct inode *inode)
4088{
4089        if (S_ISREG(inode->i_mode))
4090                return 1;
4091        if (S_ISDIR(inode->i_mode))
4092                return 1;
4093        if (S_ISLNK(inode->i_mode))
4094                return !ext4_inode_is_fast_symlink(inode);
4095        return 0;
4096}
4097
4098/*
4099 * We have to make sure i_disksize gets properly updated before we truncate
4100 * page cache due to hole punching or zero range. Otherwise i_disksize update
4101 * can get lost as it may have been postponed to submission of writeback but
4102 * that will never happen after we truncate page cache.
4103 */
4104int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4105                                      loff_t len)
4106{
4107        handle_t *handle;
4108        loff_t size = i_size_read(inode);
4109
4110        WARN_ON(!inode_is_locked(inode));
4111        if (offset > size || offset + len < size)
4112                return 0;
4113
4114        if (EXT4_I(inode)->i_disksize >= size)
4115                return 0;
4116
4117        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4118        if (IS_ERR(handle))
4119                return PTR_ERR(handle);
4120        ext4_update_i_disksize(inode, size);
4121        ext4_mark_inode_dirty(handle, inode);
4122        ext4_journal_stop(handle);
4123
4124        return 0;
4125}
4126
4127/*
4128 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4129 * associated with the given offset and length
4130 *
4131 * @inode:  File inode
4132 * @offset: The offset where the hole will begin
4133 * @len:    The length of the hole
4134 *
4135 * Returns: 0 on success or negative on failure
4136 */
4137
4138int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4139{
4140        struct super_block *sb = inode->i_sb;
4141        ext4_lblk_t first_block, stop_block;
4142        struct address_space *mapping = inode->i_mapping;
4143        loff_t first_block_offset, last_block_offset;
4144        handle_t *handle;
4145        unsigned int credits;
4146        int ret = 0;
4147
4148        if (!S_ISREG(inode->i_mode))
4149                return -EOPNOTSUPP;
4150
4151        trace_ext4_punch_hole(inode, offset, length, 0);
4152
4153        /*
4154         * Write out all dirty pages to avoid race conditions
4155         * Then release them.
4156         */
4157        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4158                ret = filemap_write_and_wait_range(mapping, offset,
4159                                                   offset + length - 1);
4160                if (ret)
4161                        return ret;
4162        }
4163
4164        inode_lock(inode);
4165
4166        /* No need to punch hole beyond i_size */
4167        if (offset >= inode->i_size)
4168                goto out_mutex;
4169
4170        /*
4171         * If the hole extends beyond i_size, set the hole
4172         * to end after the page that contains i_size
4173         */
4174        if (offset + length > inode->i_size) {
4175                length = inode->i_size +
4176                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4177                   offset;
4178        }
4179
4180        if (offset & (sb->s_blocksize - 1) ||
4181            (offset + length) & (sb->s_blocksize - 1)) {
4182                /*
4183                 * Attach jinode to inode for jbd2 if we do any zeroing of
4184                 * partial block
4185                 */
4186                ret = ext4_inode_attach_jinode(inode);
4187                if (ret < 0)
4188                        goto out_mutex;
4189
4190        }
4191
4192        /* Wait all existing dio workers, newcomers will block on i_mutex */
4193        ext4_inode_block_unlocked_dio(inode);
4194        inode_dio_wait(inode);
4195
4196        /*
4197         * Prevent page faults from reinstantiating pages we have released from
4198         * page cache.
4199         */
4200        down_write(&EXT4_I(inode)->i_mmap_sem);
4201        first_block_offset = round_up(offset, sb->s_blocksize);
4202        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4203
4204        /* Now release the pages and zero block aligned part of pages*/
4205        if (last_block_offset > first_block_offset) {
4206                ret = ext4_update_disksize_before_punch(inode, offset, length);
4207                if (ret)
4208                        goto out_dio;
4209                truncate_pagecache_range(inode, first_block_offset,
4210                                         last_block_offset);
4211        }
4212
4213        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214                credits = ext4_writepage_trans_blocks(inode);
4215        else
4216                credits = ext4_blocks_for_truncate(inode);
4217        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4218        if (IS_ERR(handle)) {
4219                ret = PTR_ERR(handle);
4220                ext4_std_error(sb, ret);
4221                goto out_dio;
4222        }
4223
4224        ret = ext4_zero_partial_blocks(handle, inode, offset,
4225                                       length);
4226        if (ret)
4227                goto out_stop;
4228
4229        first_block = (offset + sb->s_blocksize - 1) >>
4230                EXT4_BLOCK_SIZE_BITS(sb);
4231        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4232
4233        /* If there are no blocks to remove, return now */
4234        if (first_block >= stop_block)
4235                goto out_stop;
4236
4237        down_write(&EXT4_I(inode)->i_data_sem);
4238        ext4_discard_preallocations(inode);
4239
4240        ret = ext4_es_remove_extent(inode, first_block,
4241                                    stop_block - first_block);
4242        if (ret) {
4243                up_write(&EXT4_I(inode)->i_data_sem);
4244                goto out_stop;
4245        }
4246
4247        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4248                ret = ext4_ext_remove_space(inode, first_block,
4249                                            stop_block - 1);
4250        else
4251                ret = ext4_ind_remove_space(handle, inode, first_block,
4252                                            stop_block);
4253
4254        up_write(&EXT4_I(inode)->i_data_sem);
4255        if (IS_SYNC(inode))
4256                ext4_handle_sync(handle);
4257
4258        inode->i_mtime = inode->i_ctime = current_time(inode);
4259        ext4_mark_inode_dirty(handle, inode);
4260        if (ret >= 0)
4261                ext4_update_inode_fsync_trans(handle, inode, 1);
4262out_stop:
4263        ext4_journal_stop(handle);
4264out_dio:
4265        up_write(&EXT4_I(inode)->i_mmap_sem);
4266        ext4_inode_resume_unlocked_dio(inode);
4267out_mutex:
4268        inode_unlock(inode);
4269        return ret;
4270}
4271
4272int ext4_inode_attach_jinode(struct inode *inode)
4273{
4274        struct ext4_inode_info *ei = EXT4_I(inode);
4275        struct jbd2_inode *jinode;
4276
4277        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4278                return 0;
4279
4280        jinode = jbd2_alloc_inode(GFP_KERNEL);
4281        spin_lock(&inode->i_lock);
4282        if (!ei->jinode) {
4283                if (!jinode) {
4284                        spin_unlock(&inode->i_lock);
4285                        return -ENOMEM;
4286                }
4287                ei->jinode = jinode;
4288                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4289                jinode = NULL;
4290        }
4291        spin_unlock(&inode->i_lock);
4292        if (unlikely(jinode != NULL))
4293                jbd2_free_inode(jinode);
4294        return 0;
4295}
4296
4297/*
4298 * ext4_truncate()
4299 *
4300 * We block out ext4_get_block() block instantiations across the entire
4301 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4302 * simultaneously on behalf of the same inode.
4303 *
4304 * As we work through the truncate and commit bits of it to the journal there
4305 * is one core, guiding principle: the file's tree must always be consistent on
4306 * disk.  We must be able to restart the truncate after a crash.
4307 *
4308 * The file's tree may be transiently inconsistent in memory (although it
4309 * probably isn't), but whenever we close off and commit a journal transaction,
4310 * the contents of (the filesystem + the journal) must be consistent and
4311 * restartable.  It's pretty simple, really: bottom up, right to left (although
4312 * left-to-right works OK too).
4313 *
4314 * Note that at recovery time, journal replay occurs *before* the restart of
4315 * truncate against the orphan inode list.
4316 *
4317 * The committed inode has the new, desired i_size (which is the same as
4318 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4319 * that this inode's truncate did not complete and it will again call
4320 * ext4_truncate() to have another go.  So there will be instantiated blocks
4321 * to the right of the truncation point in a crashed ext4 filesystem.  But
4322 * that's fine - as long as they are linked from the inode, the post-crash
4323 * ext4_truncate() run will find them and release them.
4324 */
4325int ext4_truncate(struct inode *inode)
4326{
4327        struct ext4_inode_info *ei = EXT4_I(inode);
4328        unsigned int credits;
4329        int err = 0;
4330        handle_t *handle;
4331        struct address_space *mapping = inode->i_mapping;
4332
4333        /*
4334         * There is a possibility that we're either freeing the inode
4335         * or it's a completely new inode. In those cases we might not
4336         * have i_mutex locked because it's not necessary.
4337         */
4338        if (!(inode->i_state & (I_NEW|I_FREEING)))
4339                WARN_ON(!inode_is_locked(inode));
4340        trace_ext4_truncate_enter(inode);
4341
4342        if (!ext4_can_truncate(inode))
4343                return 0;
4344
4345        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4346
4347        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4348                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4349
4350        if (ext4_has_inline_data(inode)) {
4351                int has_inline = 1;
4352
4353                err = ext4_inline_data_truncate(inode, &has_inline);
4354                if (err)
4355                        return err;
4356                if (has_inline)
4357                        return 0;
4358        }
4359
4360        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4361        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4362                if (ext4_inode_attach_jinode(inode) < 0)
4363                        return 0;
4364        }
4365
4366        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4367                credits = ext4_writepage_trans_blocks(inode);
4368        else
4369                credits = ext4_blocks_for_truncate(inode);
4370
4371        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4372        if (IS_ERR(handle))
4373                return PTR_ERR(handle);
4374
4375        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4376                ext4_block_truncate_page(handle, mapping, inode->i_size);
4377
4378        /*
4379         * We add the inode to the orphan list, so that if this
4380         * truncate spans multiple transactions, and we crash, we will
4381         * resume the truncate when the filesystem recovers.  It also
4382         * marks the inode dirty, to catch the new size.
4383         *
4384         * Implication: the file must always be in a sane, consistent
4385         * truncatable state while each transaction commits.
4386         */
4387        err = ext4_orphan_add(handle, inode);
4388        if (err)
4389                goto out_stop;
4390
4391        down_write(&EXT4_I(inode)->i_data_sem);
4392
4393        ext4_discard_preallocations(inode);
4394
4395        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4396                err = ext4_ext_truncate(handle, inode);
4397        else
4398                ext4_ind_truncate(handle, inode);
4399
4400        up_write(&ei->i_data_sem);
4401        if (err)
4402                goto out_stop;
4403
4404        if (IS_SYNC(inode))
4405                ext4_handle_sync(handle);
4406
4407out_stop:
4408        /*
4409         * If this was a simple ftruncate() and the file will remain alive,
4410         * then we need to clear up the orphan record which we created above.
4411         * However, if this was a real unlink then we were called by
4412         * ext4_evict_inode(), and we allow that function to clean up the
4413         * orphan info for us.
4414         */
4415        if (inode->i_nlink)
4416                ext4_orphan_del(handle, inode);
4417
4418        inode->i_mtime = inode->i_ctime = current_time(inode);
4419        ext4_mark_inode_dirty(handle, inode);
4420        ext4_journal_stop(handle);
4421
4422        trace_ext4_truncate_exit(inode);
4423        return err;
4424}
4425
4426/*
4427 * ext4_get_inode_loc returns with an extra refcount against the inode's
4428 * underlying buffer_head on success. If 'in_mem' is true, we have all
4429 * data in memory that is needed to recreate the on-disk version of this
4430 * inode.
4431 */
4432static int __ext4_get_inode_loc(struct inode *inode,
4433                                struct ext4_iloc *iloc, int in_mem)
4434{
4435        struct ext4_group_desc  *gdp;
4436        struct buffer_head      *bh;
4437        struct super_block      *sb = inode->i_sb;
4438        ext4_fsblk_t            block;
4439        int                     inodes_per_block, inode_offset;
4440
4441        iloc->bh = NULL;
4442        if (!ext4_valid_inum(sb, inode->i_ino))
4443                return -EFSCORRUPTED;
4444
4445        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4446        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4447        if (!gdp)
4448                return -EIO;
4449
4450        /*
4451         * Figure out the offset within the block group inode table
4452         */
4453        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4454        inode_offset = ((inode->i_ino - 1) %
4455                        EXT4_INODES_PER_GROUP(sb));
4456        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4457        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4458
4459        bh = sb_getblk(sb, block);
4460        if (unlikely(!bh))
4461                return -ENOMEM;
4462        if (!buffer_uptodate(bh)) {
4463                lock_buffer(bh);
4464
4465                /*
4466                 * If the buffer has the write error flag, we have failed
4467                 * to write out another inode in the same block.  In this
4468                 * case, we don't have to read the block because we may
4469                 * read the old inode data successfully.
4470                 */
4471                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4472                        set_buffer_uptodate(bh);
4473
4474                if (buffer_uptodate(bh)) {
4475                        /* someone brought it uptodate while we waited */
4476                        unlock_buffer(bh);
4477                        goto has_buffer;
4478                }
4479
4480                /*
4481                 * If we have all information of the inode in memory and this
4482                 * is the only valid inode in the block, we need not read the
4483                 * block.
4484                 */
4485                if (in_mem) {
4486                        struct buffer_head *bitmap_bh;
4487                        int i, start;
4488
4489                        start = inode_offset & ~(inodes_per_block - 1);
4490
4491                        /* Is the inode bitmap in cache? */
4492                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4493                        if (unlikely(!bitmap_bh))
4494                                goto make_io;
4495
4496                        /*
4497                         * If the inode bitmap isn't in cache then the
4498                         * optimisation may end up performing two reads instead
4499                         * of one, so skip it.
4500                         */
4501                        if (!buffer_uptodate(bitmap_bh)) {
4502                                brelse(bitmap_bh);
4503                                goto make_io;
4504                        }
4505                        for (i = start; i < start + inodes_per_block; i++) {
4506                                if (i == inode_offset)
4507                                        continue;
4508                                if (ext4_test_bit(i, bitmap_bh->b_data))
4509                                        break;
4510                        }
4511                        brelse(bitmap_bh);
4512                        if (i == start + inodes_per_block) {
4513                                /* all other inodes are free, so skip I/O */
4514                                memset(bh->b_data, 0, bh->b_size);
4515                                set_buffer_uptodate(bh);
4516                                unlock_buffer(bh);
4517                                goto has_buffer;
4518                        }
4519                }
4520
4521make_io:
4522                /*
4523                 * If we need to do any I/O, try to pre-readahead extra
4524                 * blocks from the inode table.
4525                 */
4526                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4527                        ext4_fsblk_t b, end, table;
4528                        unsigned num;
4529                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4530
4531                        table = ext4_inode_table(sb, gdp);
4532                        /* s_inode_readahead_blks is always a power of 2 */
4533                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4534                        if (table > b)
4535                                b = table;
4536                        end = b + ra_blks;
4537                        num = EXT4_INODES_PER_GROUP(sb);
4538                        if (ext4_has_group_desc_csum(sb))
4539                                num -= ext4_itable_unused_count(sb, gdp);
4540                        table += num / inodes_per_block;
4541                        if (end > table)
4542                                end = table;
4543                        while (b <= end)
4544                                sb_breadahead(sb, b++);
4545                }
4546
4547                /*
4548                 * There are other valid inodes in the buffer, this inode
4549                 * has in-inode xattrs, or we don't have this inode in memory.
4550                 * Read the block from disk.
4551                 */
4552                trace_ext4_load_inode(inode);
4553                get_bh(bh);
4554                bh->b_end_io = end_buffer_read_sync;
4555                submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4556                wait_on_buffer(bh);
4557                if (!buffer_uptodate(bh)) {
4558                        EXT4_ERROR_INODE_BLOCK(inode, block,
4559                                               "unable to read itable block");
4560                        brelse(bh);
4561                        return -EIO;
4562                }
4563        }
4564has_buffer:
4565        iloc->bh = bh;
4566        return 0;
4567}
4568
4569int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4570{
4571        /* We have all inode data except xattrs in memory here. */
4572        return __ext4_get_inode_loc(inode, iloc,
4573                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4574}
4575
4576void ext4_set_inode_flags(struct inode *inode)
4577{
4578        unsigned int flags = EXT4_I(inode)->i_flags;
4579        unsigned int new_fl = 0;
4580
4581        if (flags & EXT4_SYNC_FL)
4582                new_fl |= S_SYNC;
4583        if (flags & EXT4_APPEND_FL)
4584                new_fl |= S_APPEND;
4585        if (flags & EXT4_IMMUTABLE_FL)
4586                new_fl |= S_IMMUTABLE;
4587        if (flags & EXT4_NOATIME_FL)
4588                new_fl |= S_NOATIME;
4589        if (flags & EXT4_DIRSYNC_FL)
4590                new_fl |= S_DIRSYNC;
4591        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4592            !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4593            !ext4_encrypted_inode(inode))
4594                new_fl |= S_DAX;
4595        inode_set_flags(inode, new_fl,
4596                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4597}
4598
4599static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4600                                  struct ext4_inode_info *ei)
4601{
4602        blkcnt_t i_blocks ;
4603        struct inode *inode = &(ei->vfs_inode);
4604        struct super_block *sb = inode->i_sb;
4605
4606        if (ext4_has_feature_huge_file(sb)) {
4607                /* we are using combined 48 bit field */
4608                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4609                                        le32_to_cpu(raw_inode->i_blocks_lo);
4610                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4611                        /* i_blocks represent file system block size */
4612                        return i_blocks  << (inode->i_blkbits - 9);
4613                } else {
4614                        return i_blocks;
4615                }
4616        } else {
4617                return le32_to_cpu(raw_inode->i_blocks_lo);
4618        }
4619}
4620
4621static inline void ext4_iget_extra_inode(struct inode *inode,
4622                                         struct ext4_inode *raw_inode,
4623                                         struct ext4_inode_info *ei)
4624{
4625        __le32 *magic = (void *)raw_inode +
4626                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4627        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4628            EXT4_INODE_SIZE(inode->i_sb) &&
4629            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4630                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4631                ext4_find_inline_data_nolock(inode);
4632        } else
4633                EXT4_I(inode)->i_inline_off = 0;
4634}
4635
4636int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4637{
4638        if (!ext4_has_feature_project(inode->i_sb))
4639                return -EOPNOTSUPP;
4640        *projid = EXT4_I(inode)->i_projid;
4641        return 0;
4642}
4643
4644struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4645{
4646        struct ext4_iloc iloc;
4647        struct ext4_inode *raw_inode;
4648        struct ext4_inode_info *ei;
4649        struct inode *inode;
4650        journal_t *journal = EXT4_SB(sb)->s_journal;
4651        long ret;
4652        loff_t size;
4653        int block;
4654        uid_t i_uid;
4655        gid_t i_gid;
4656        projid_t i_projid;
4657
4658        inode = iget_locked(sb, ino);
4659        if (!inode)
4660                return ERR_PTR(-ENOMEM);
4661        if (!(inode->i_state & I_NEW))
4662                return inode;
4663
4664        ei = EXT4_I(inode);
4665        iloc.bh = NULL;
4666
4667        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4668        if (ret < 0)
4669                goto bad_inode;
4670        raw_inode = ext4_raw_inode(&iloc);
4671
4672        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4673                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4674                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4675                        EXT4_INODE_SIZE(inode->i_sb) ||
4676                    (ei->i_extra_isize & 3)) {
4677                        EXT4_ERROR_INODE(inode,
4678                                         "bad extra_isize %u (inode size %u)",
4679                                         ei->i_extra_isize,
4680                                         EXT4_INODE_SIZE(inode->i_sb));
4681                        ret = -EFSCORRUPTED;
4682                        goto bad_inode;
4683                }
4684        } else
4685                ei->i_extra_isize = 0;
4686
4687        /* Precompute checksum seed for inode metadata */
4688        if (ext4_has_metadata_csum(sb)) {
4689                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4690                __u32 csum;
4691                __le32 inum = cpu_to_le32(inode->i_ino);
4692                __le32 gen = raw_inode->i_generation;
4693                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4694                                   sizeof(inum));
4695                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4696                                              sizeof(gen));
4697        }
4698
4699        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4700                EXT4_ERROR_INODE(inode, "checksum invalid");
4701                ret = -EFSBADCRC;
4702                goto bad_inode;
4703        }
4704
4705        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4706        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4707        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4708        if (ext4_has_feature_project(sb) &&
4709            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4710            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4711                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4712        else
4713                i_projid = EXT4_DEF_PROJID;
4714
4715        if (!(test_opt(inode->i_sb, NO_UID32))) {
4716                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4717                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4718        }
4719        i_uid_write(inode, i_uid);
4720        i_gid_write(inode, i_gid);
4721        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4722        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4723
4724        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4725        ei->i_inline_off = 0;
4726        ei->i_dir_start_lookup = 0;
4727        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4728        /* We now have enough fields to check if the inode was active or not.
4729         * This is needed because nfsd might try to access dead inodes
4730         * the test is that same one that e2fsck uses
4731         * NeilBrown 1999oct15
4732         */
4733        if (inode->i_nlink == 0) {
4734                if ((inode->i_mode == 0 ||
4735                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4736                    ino != EXT4_BOOT_LOADER_INO) {
4737                        /* this inode is deleted */
4738                        ret = -ESTALE;
4739                        goto bad_inode;
4740                }
4741                /* The only unlinked inodes we let through here have
4742                 * valid i_mode and are being read by the orphan
4743                 * recovery code: that's fine, we're about to complete
4744                 * the process of deleting those.
4745                 * OR it is the EXT4_BOOT_LOADER_INO which is
4746                 * not initialized on a new filesystem. */
4747        }
4748        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4749        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4750        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4751        if (ext4_has_feature_64bit(sb))
4752                ei->i_file_acl |=
4753                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4754        inode->i_size = ext4_isize(sb, raw_inode);
4755        if ((size = i_size_read(inode)) < 0) {
4756                EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4757                ret = -EFSCORRUPTED;
4758                goto bad_inode;
4759        }
4760        ei->i_disksize = inode->i_size;
4761#ifdef CONFIG_QUOTA
4762        ei->i_reserved_quota = 0;
4763#endif
4764        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4765        ei->i_block_group = iloc.block_group;
4766        ei->i_last_alloc_group = ~0;
4767        /*
4768         * NOTE! The in-memory inode i_data array is in little-endian order
4769         * even on big-endian machines: we do NOT byteswap the block numbers!
4770         */
4771        for (block = 0; block < EXT4_N_BLOCKS; block++)
4772                ei->i_data[block] = raw_inode->i_block[block];
4773        INIT_LIST_HEAD(&ei->i_orphan);
4774
4775        /*
4776         * Set transaction id's of transactions that have to be committed
4777         * to finish f[data]sync. We set them to currently running transaction
4778         * as we cannot be sure that the inode or some of its metadata isn't
4779         * part of the transaction - the inode could have been reclaimed and
4780         * now it is reread from disk.
4781         */
4782        if (journal) {
4783                transaction_t *transaction;
4784                tid_t tid;
4785
4786                read_lock(&journal->j_state_lock);
4787                if (journal->j_running_transaction)
4788                        transaction = journal->j_running_transaction;
4789                else
4790                        transaction = journal->j_committing_transaction;
4791                if (transaction)
4792                        tid = transaction->t_tid;
4793                else
4794                        tid = journal->j_commit_sequence;
4795                read_unlock(&journal->j_state_lock);
4796                ei->i_sync_tid = tid;
4797                ei->i_datasync_tid = tid;
4798        }
4799
4800        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4801                if (ei->i_extra_isize == 0) {
4802                        /* The extra space is currently unused. Use it. */
4803                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4804                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4805                                            EXT4_GOOD_OLD_INODE_SIZE;
4806                } else {
4807                        ext4_iget_extra_inode(inode, raw_inode, ei);
4808                }
4809        }
4810
4811        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4812        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4813        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4814        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4815
4816        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4817                inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4818                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4819                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4820                                inode->i_version |=
4821                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4822                }
4823        }
4824
4825        ret = 0;
4826        if (ei->i_file_acl &&
4827            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4828                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4829                                 ei->i_file_acl);
4830                ret = -EFSCORRUPTED;
4831                goto bad_inode;
4832        } else if (!ext4_has_inline_data(inode)) {
4833                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4834                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4835                            (S_ISLNK(inode->i_mode) &&
4836                             !ext4_inode_is_fast_symlink(inode))))
4837                                /* Validate extent which is part of inode */
4838                                ret = ext4_ext_check_inode(inode);
4839                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4840                           (S_ISLNK(inode->i_mode) &&
4841                            !ext4_inode_is_fast_symlink(inode))) {
4842                        /* Validate block references which are part of inode */
4843                        ret = ext4_ind_check_inode(inode);
4844                }
4845        }
4846        if (ret)
4847                goto bad_inode;
4848
4849        if (S_ISREG(inode->i_mode)) {
4850                inode->i_op = &ext4_file_inode_operations;
4851                inode->i_fop = &ext4_file_operations;
4852                ext4_set_aops(inode);
4853        } else if (S_ISDIR(inode->i_mode)) {
4854                inode->i_op = &ext4_dir_inode_operations;
4855                inode->i_fop = &ext4_dir_operations;
4856        } else if (S_ISLNK(inode->i_mode)) {
4857                if (ext4_encrypted_inode(inode)) {
4858                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4859                        ext4_set_aops(inode);
4860                } else if (ext4_inode_is_fast_symlink(inode)) {
4861                        inode->i_link = (char *)ei->i_data;
4862                        inode->i_op = &ext4_fast_symlink_inode_operations;
4863                        nd_terminate_link(ei->i_data, inode->i_size,
4864                                sizeof(ei->i_data) - 1);
4865                } else {
4866                        inode->i_op = &ext4_symlink_inode_operations;
4867                        ext4_set_aops(inode);
4868                }
4869                inode_nohighmem(inode);
4870        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4871              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4872                inode->i_op = &ext4_special_inode_operations;
4873                if (raw_inode->i_block[0])
4874                        init_special_inode(inode, inode->i_mode,
4875                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4876                else
4877                        init_special_inode(inode, inode->i_mode,
4878                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4879        } else if (ino == EXT4_BOOT_LOADER_INO) {
4880                make_bad_inode(inode);
4881        } else {
4882                ret = -EFSCORRUPTED;
4883                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4884                goto bad_inode;
4885        }
4886        brelse(iloc.bh);
4887        ext4_set_inode_flags(inode);
4888
4889        unlock_new_inode(inode);
4890        return inode;
4891
4892bad_inode:
4893        brelse(iloc.bh);
4894        iget_failed(inode);
4895        return ERR_PTR(ret);
4896}
4897
4898struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4899{
4900        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4901                return ERR_PTR(-EFSCORRUPTED);
4902        return ext4_iget(sb, ino);
4903}
4904
4905static int ext4_inode_blocks_set(handle_t *handle,
4906                                struct ext4_inode *raw_inode,
4907                                struct ext4_inode_info *ei)
4908{
4909        struct inode *inode = &(ei->vfs_inode);
4910        u64 i_blocks = inode->i_blocks;
4911        struct super_block *sb = inode->i_sb;
4912
4913        if (i_blocks <= ~0U) {
4914                /*
4915                 * i_blocks can be represented in a 32 bit variable
4916                 * as multiple of 512 bytes
4917                 */
4918                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4919                raw_inode->i_blocks_high = 0;
4920                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4921                return 0;
4922        }
4923        if (!ext4_has_feature_huge_file(sb))
4924                return -EFBIG;
4925
4926        if (i_blocks <= 0xffffffffffffULL) {
4927                /*
4928                 * i_blocks can be represented in a 48 bit variable
4929                 * as multiple of 512 bytes
4930                 */
4931                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4932                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4933                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4934        } else {
4935                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4936                /* i_block is stored in file system block size */
4937                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4938                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4939                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4940        }
4941        return 0;
4942}
4943
4944struct other_inode {
4945        unsigned long           orig_ino;
4946        struct ext4_inode       *raw_inode;
4947};
4948
4949static int other_inode_match(struct inode * inode, unsigned long ino,
4950                             void *data)
4951{
4952        struct other_inode *oi = (struct other_inode *) data;
4953
4954        if ((inode->i_ino != ino) ||
4955            (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4956                               I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4957            ((inode->i_state & I_DIRTY_TIME) == 0))
4958                return 0;
4959        spin_lock(&inode->i_lock);
4960        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4961                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4962            (inode->i_state & I_DIRTY_TIME)) {
4963                struct ext4_inode_info  *ei = EXT4_I(inode);
4964
4965                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4966                spin_unlock(&inode->i_lock);
4967
4968                spin_lock(&ei->i_raw_lock);
4969                EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4970                EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4971                EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4972                ext4_inode_csum_set(inode, oi->raw_inode, ei);
4973                spin_unlock(&ei->i_raw_lock);
4974                trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4975                return -1;
4976        }
4977        spin_unlock(&inode->i_lock);
4978        return -1;
4979}
4980
4981/*
4982 * Opportunistically update the other time fields for other inodes in
4983 * the same inode table block.
4984 */
4985static void ext4_update_other_inodes_time(struct super_block *sb,
4986                                          unsigned long orig_ino, char *buf)
4987{
4988        struct other_inode oi;
4989        unsigned long ino;
4990        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4991        int inode_size = EXT4_INODE_SIZE(sb);
4992
4993        oi.orig_ino = orig_ino;
4994        /*
4995         * Calculate the first inode in the inode table block.  Inode
4996         * numbers are one-based.  That is, the first inode in a block
4997         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4998         */
4999        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5000        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5001                if (ino == orig_ino)
5002                        continue;
5003                oi.raw_inode = (struct ext4_inode *) buf;
5004                (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5005        }
5006}
5007
5008/*
5009 * Post the struct inode info into an on-disk inode location in the
5010 * buffer-cache.  This gobbles the caller's reference to the
5011 * buffer_head in the inode location struct.
5012 *
5013 * The caller must have write access to iloc->bh.
5014 */
5015static int ext4_do_update_inode(handle_t *handle,
5016                                struct inode *inode,
5017                                struct ext4_iloc *iloc)
5018{
5019        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5020        struct ext4_inode_info *ei = EXT4_I(inode);
5021        struct buffer_head *bh = iloc->bh;
5022        struct super_block *sb = inode->i_sb;
5023        int err = 0, rc, block;
5024        int need_datasync = 0, set_large_file = 0;
5025        uid_t i_uid;
5026        gid_t i_gid;
5027        projid_t i_projid;
5028
5029        spin_lock(&ei->i_raw_lock);
5030
5031        /* For fields not tracked in the in-memory inode,
5032         * initialise them to zero for new inodes. */
5033        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5034                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5035
5036        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5037        i_uid = i_uid_read(inode);
5038        i_gid = i_gid_read(inode);
5039        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5040        if (!(test_opt(inode->i_sb, NO_UID32))) {
5041                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5042                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5043/*
5044 * Fix up interoperability with old kernels. Otherwise, old inodes get
5045 * re-used with the upper 16 bits of the uid/gid intact
5046 */
5047                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5048                        raw_inode->i_uid_high = 0;
5049                        raw_inode->i_gid_high = 0;
5050                } else {
5051                        raw_inode->i_uid_high =
5052                                cpu_to_le16(high_16_bits(i_uid));
5053                        raw_inode->i_gid_high =
5054                                cpu_to_le16(high_16_bits(i_gid));
5055                }
5056        } else {
5057                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5058                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5059                raw_inode->i_uid_high = 0;
5060                raw_inode->i_gid_high = 0;
5061        }
5062        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5063
5064        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5065        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5066        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5067        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5068
5069        err = ext4_inode_blocks_set(handle, raw_inode, ei);
5070        if (err) {
5071                spin_unlock(&ei->i_raw_lock);
5072                goto out_brelse;
5073        }
5074        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5075        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5076        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5077                raw_inode->i_file_acl_high =
5078                        cpu_to_le16(ei->i_file_acl >> 32);
5079        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5080        if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5081                ext4_isize_set(raw_inode, ei->i_disksize);
5082                need_datasync = 1;
5083        }
5084        if (ei->i_disksize > 0x7fffffffULL) {
5085                if (!ext4_has_feature_large_file(sb) ||
5086                                EXT4_SB(sb)->s_es->s_rev_level ==
5087                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5088                        set_large_file = 1;
5089        }
5090        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5091        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5092                if (old_valid_dev(inode->i_rdev)) {
5093                        raw_inode->i_block[0] =
5094                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5095                        raw_inode->i_block[1] = 0;
5096                } else {
5097                        raw_inode->i_block[0] = 0;
5098                        raw_inode->i_block[1] =
5099                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5100                        raw_inode->i_block[2] = 0;
5101                }
5102        } else if (!ext4_has_inline_data(inode)) {
5103                for (block = 0; block < EXT4_N_BLOCKS; block++)
5104                        raw_inode->i_block[block] = ei->i_data[block];
5105        }
5106
5107        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5108                raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5109                if (ei->i_extra_isize) {
5110                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5111                                raw_inode->i_version_hi =
5112                                        cpu_to_le32(inode->i_version >> 32);
5113                        raw_inode->i_extra_isize =
5114                                cpu_to_le16(ei->i_extra_isize);
5115                }
5116        }
5117
5118        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5119               i_projid != EXT4_DEF_PROJID);
5120
5121        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5122            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5123                raw_inode->i_projid = cpu_to_le32(i_projid);
5124
5125        ext4_inode_csum_set(inode, raw_inode, ei);
5126        spin_unlock(&ei->i_raw_lock);
5127        if (inode->i_sb->s_flags & MS_LAZYTIME)
5128                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5129                                              bh->b_data);
5130
5131        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5132        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5133        if (!err)
5134                err = rc;
5135        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5136        if (set_large_file) {
5137                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5138                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5139                if (err)
5140                        goto out_brelse;
5141                ext4_update_dynamic_rev(sb);
5142                ext4_set_feature_large_file(sb);
5143                ext4_handle_sync(handle);
5144                err = ext4_handle_dirty_super(handle, sb);
5145        }
5146        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5147out_brelse:
5148        brelse(bh);
5149        ext4_std_error(inode->i_sb, err);
5150        return err;
5151}
5152
5153/*
5154 * ext4_write_inode()
5155 *
5156 * We are called from a few places:
5157 *
5158 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5159 *   Here, there will be no transaction running. We wait for any running
5160 *   transaction to commit.
5161 *
5162 * - Within flush work (sys_sync(), kupdate and such).
5163 *   We wait on commit, if told to.
5164 *
5165 * - Within iput_final() -> write_inode_now()
5166 *   We wait on commit, if told to.
5167 *
5168 * In all cases it is actually safe for us to return without doing anything,
5169 * because the inode has been copied into a raw inode buffer in
5170 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5171 * writeback.
5172 *
5173 * Note that we are absolutely dependent upon all inode dirtiers doing the
5174 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5175 * which we are interested.
5176 *
5177 * It would be a bug for them to not do this.  The code:
5178 *
5179 *      mark_inode_dirty(inode)
5180 *      stuff();
5181 *      inode->i_size = expr;
5182 *
5183 * is in error because write_inode() could occur while `stuff()' is running,
5184 * and the new i_size will be lost.  Plus the inode will no longer be on the
5185 * superblock's dirty inode list.
5186 */
5187int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5188{
5189        int err;
5190
5191        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5192                return 0;
5193
5194        if (EXT4_SB(inode->i_sb)->s_journal) {
5195                if (ext4_journal_current_handle()) {
5196                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5197                        dump_stack();
5198                        return -EIO;
5199                }
5200
5201                /*
5202                 * No need to force transaction in WB_SYNC_NONE mode. Also
5203                 * ext4_sync_fs() will force the commit after everything is
5204                 * written.
5205                 */
5206                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5207                        return 0;
5208
5209                err = ext4_force_commit(inode->i_sb);
5210        } else {
5211                struct ext4_iloc iloc;
5212
5213                err = __ext4_get_inode_loc(inode, &iloc, 0);
5214                if (err)
5215                        return err;
5216                /*
5217                 * sync(2) will flush the whole buffer cache. No need to do
5218                 * it here separately for each inode.
5219                 */
5220                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5221                        sync_dirty_buffer(iloc.bh);
5222                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5223                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5224                                         "IO error syncing inode");
5225                        err = -EIO;
5226                }
5227                brelse(iloc.bh);
5228        }
5229        return err;
5230}
5231
5232/*
5233 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5234 * buffers that are attached to a page stradding i_size and are undergoing
5235 * commit. In that case we have to wait for commit to finish and try again.
5236 */
5237static void ext4_wait_for_tail_page_commit(struct inode *inode)
5238{
5239        struct page *page;
5240        unsigned offset;
5241        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5242        tid_t commit_tid = 0;
5243        int ret;
5244
5245        offset = inode->i_size & (PAGE_SIZE - 1);
5246        /*
5247         * All buffers in the last page remain valid? Then there's nothing to
5248         * do. We do the check mainly to optimize the common PAGE_SIZE ==
5249         * blocksize case
5250         */
5251        if (offset > PAGE_SIZE - i_blocksize(inode))
5252                return;
5253        while (1) {
5254                page = find_lock_page(inode->i_mapping,
5255                                      inode->i_size >> PAGE_SHIFT);
5256                if (!page)
5257                        return;
5258                ret = __ext4_journalled_invalidatepage(page, offset,
5259                                                PAGE_SIZE - offset);
5260                unlock_page(page);
5261                put_page(page);
5262                if (ret != -EBUSY)
5263                        return;
5264                commit_tid = 0;
5265                read_lock(&journal->j_state_lock);
5266                if (journal->j_committing_transaction)
5267                        commit_tid = journal->j_committing_transaction->t_tid;
5268                read_unlock(&journal->j_state_lock);
5269                if (commit_tid)
5270                        jbd2_log_wait_commit(journal, commit_tid);
5271        }
5272}
5273
5274/*
5275 * ext4_setattr()
5276 *
5277 * Called from notify_change.
5278 *
5279 * We want to trap VFS attempts to truncate the file as soon as
5280 * possible.  In particular, we want to make sure that when the VFS
5281 * shrinks i_size, we put the inode on the orphan list and modify
5282 * i_disksize immediately, so that during the subsequent flushing of
5283 * dirty pages and freeing of disk blocks, we can guarantee that any
5284 * commit will leave the blocks being flushed in an unused state on
5285 * disk.  (On recovery, the inode will get truncated and the blocks will
5286 * be freed, so we have a strong guarantee that no future commit will
5287 * leave these blocks visible to the user.)
5288 *
5289 * Another thing we have to assure is that if we are in ordered mode
5290 * and inode is still attached to the committing transaction, we must
5291 * we start writeout of all the dirty pages which are being truncated.
5292 * This way we are sure that all the data written in the previous
5293 * transaction are already on disk (truncate waits for pages under
5294 * writeback).
5295 *
5296 * Called with inode->i_mutex down.
5297 */
5298int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5299{
5300        struct inode *inode = d_inode(dentry);
5301        int error, rc = 0;
5302        int orphan = 0;
5303        const unsigned int ia_valid = attr->ia_valid;
5304
5305        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5306                return -EIO;
5307
5308        error = setattr_prepare(dentry, attr);
5309        if (error)
5310                return error;
5311
5312        if (is_quota_modification(inode, attr)) {
5313                error = dquot_initialize(inode);
5314                if (error)
5315                        return error;
5316        }
5317        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5318            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5319                handle_t *handle;
5320
5321                /* (user+group)*(old+new) structure, inode write (sb,
5322                 * inode block, ? - but truncate inode update has it) */
5323                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5324                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5325                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5326                if (IS_ERR(handle)) {
5327                        error = PTR_ERR(handle);
5328                        goto err_out;
5329                }
5330
5331                /* dquot_transfer() calls back ext4_get_inode_usage() which
5332                 * counts xattr inode references.
5333                 */
5334                down_read(&EXT4_I(inode)->xattr_sem);
5335                error = dquot_transfer(inode, attr);
5336                up_read(&EXT4_I(inode)->xattr_sem);
5337
5338                if (error) {
5339                        ext4_journal_stop(handle);
5340                        return error;
5341                }
5342                /* Update corresponding info in inode so that everything is in
5343                 * one transaction */
5344                if (attr->ia_valid & ATTR_UID)
5345                        inode->i_uid = attr->ia_uid;
5346                if (attr->ia_valid & ATTR_GID)
5347                        inode->i_gid = attr->ia_gid;
5348                error = ext4_mark_inode_dirty(handle, inode);
5349                ext4_journal_stop(handle);
5350        }
5351
5352        if (attr->ia_valid & ATTR_SIZE) {
5353                handle_t *handle;
5354                loff_t oldsize = inode->i_size;
5355                int shrink = (attr->ia_size <= inode->i_size);
5356
5357                if (ext4_encrypted_inode(inode)) {
5358                        error = fscrypt_get_encryption_info(inode);
5359                        if (error)
5360                                return error;
5361                        if (!fscrypt_has_encryption_key(inode))
5362                                return -ENOKEY;
5363                }
5364
5365                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5366                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5367
5368                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
5369                                return -EFBIG;
5370                }
5371                if (!S_ISREG(inode->i_mode))
5372                        return -EINVAL;
5373
5374                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5375                        inode_inc_iversion(inode);
5376
5377                if (ext4_should_order_data(inode) &&
5378                    (attr->ia_size < inode->i_size)) {
5379                        error = ext4_begin_ordered_truncate(inode,
5380                                                            attr->ia_size);
5381                        if (error)
5382                                goto err_out;
5383                }
5384                if (attr->ia_size != inode->i_size) {
5385                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5386                        if (IS_ERR(handle)) {
5387                                error = PTR_ERR(handle);
5388                                goto err_out;
5389                        }
5390                        if (ext4_handle_valid(handle) && shrink) {
5391                                error = ext4_orphan_add(handle, inode);
5392                                orphan = 1;
5393                        }
5394                        /*
5395                         * Update c/mtime on truncate up, ext4_truncate() will
5396                         * update c/mtime in shrink case below
5397                         */
5398                        if (!shrink) {
5399                                inode->i_mtime = current_time(inode);
5400                                inode->i_ctime = inode->i_mtime;
5401                        }
5402                        down_write(&EXT4_I(inode)->i_data_sem);
5403                        EXT4_I(inode)->i_disksize = attr->ia_size;
5404                        rc = ext4_mark_inode_dirty(handle, inode);
5405                        if (!error)
5406                                error = rc;
5407                        /*
5408                         * We have to update i_size under i_data_sem together
5409                         * with i_disksize to avoid races with writeback code
5410                         * running ext4_wb_update_i_disksize().
5411                         */
5412                        if (!error)
5413                                i_size_write(inode, attr->ia_size);
5414                        up_write(&EXT4_I(inode)->i_data_sem);
5415                        ext4_journal_stop(handle);
5416                        if (error) {
5417                                if (orphan)
5418                                        ext4_orphan_del(NULL, inode);
5419                                goto err_out;
5420                        }
5421                }
5422                if (!shrink)
5423                        pagecache_isize_extended(inode, oldsize, inode->i_size);
5424
5425                /*
5426                 * Blocks are going to be removed from the inode. Wait
5427                 * for dio in flight.  Temporarily disable
5428                 * dioread_nolock to prevent livelock.
5429                 */
5430                if (orphan) {
5431                        if (!ext4_should_journal_data(inode)) {
5432                                ext4_inode_block_unlocked_dio(inode);
5433                                inode_dio_wait(inode);
5434                                ext4_inode_resume_unlocked_dio(inode);
5435                        } else
5436                                ext4_wait_for_tail_page_commit(inode);
5437                }
5438                down_write(&EXT4_I(inode)->i_mmap_sem);
5439                /*
5440                 * Truncate pagecache after we've waited for commit
5441                 * in data=journal mode to make pages freeable.
5442                 */
5443                truncate_pagecache(inode, inode->i_size);
5444                if (shrink) {
5445                        rc = ext4_truncate(inode);
5446                        if (rc)
5447                                error = rc;
5448                }
5449                up_write(&EXT4_I(inode)->i_mmap_sem);
5450        }
5451
5452        if (!error) {
5453                setattr_copy(inode, attr);
5454                mark_inode_dirty(inode);
5455        }
5456
5457        /*
5458         * If the call to ext4_truncate failed to get a transaction handle at
5459         * all, we need to clean up the in-core orphan list manually.
5460         */
5461        if (orphan && inode->i_nlink)
5462                ext4_orphan_del(NULL, inode);
5463
5464        if (!error && (ia_valid & ATTR_MODE))
5465                rc = posix_acl_chmod(inode, inode->i_mode);
5466
5467err_out:
5468        ext4_std_error(inode->i_sb, error);
5469        if (!error)
5470                error = rc;
5471        return error;
5472}
5473
5474int ext4_getattr(const struct path *path, struct kstat *stat,
5475                 u32 request_mask, unsigned int query_flags)
5476{
5477        struct inode *inode = d_inode(path->dentry);
5478        struct ext4_inode *raw_inode;
5479        struct ext4_inode_info *ei = EXT4_I(inode);
5480        unsigned int flags;
5481
5482        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5483                stat->result_mask |= STATX_BTIME;
5484                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5485                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5486        }
5487
5488        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5489        if (flags & EXT4_APPEND_FL)
5490                stat->attributes |= STATX_ATTR_APPEND;
5491        if (flags & EXT4_COMPR_FL)
5492                stat->attributes |= STATX_ATTR_COMPRESSED;
5493        if (flags & EXT4_ENCRYPT_FL)
5494                stat->attributes |= STATX_ATTR_ENCRYPTED;
5495        if (flags & EXT4_IMMUTABLE_FL)
5496                stat->attributes |= STATX_ATTR_IMMUTABLE;
5497        if (flags & EXT4_NODUMP_FL)
5498                stat->attributes |= STATX_ATTR_NODUMP;
5499
5500        stat->attributes_mask |= (STATX_ATTR_APPEND |
5501                                  STATX_ATTR_COMPRESSED |
5502                                  STATX_ATTR_ENCRYPTED |
5503                                  STATX_ATTR_IMMUTABLE |
5504                                  STATX_ATTR_NODUMP);
5505
5506        generic_fillattr(inode, stat);
5507        return 0;
5508}
5509
5510int ext4_file_getattr(const struct path *path, struct kstat *stat,
5511                      u32 request_mask, unsigned int query_flags)
5512{
5513        struct inode *inode = d_inode(path->dentry);
5514        u64 delalloc_blocks;
5515
5516        ext4_getattr(path, stat, request_mask, query_flags);
5517
5518        /*
5519         * If there is inline data in the inode, the inode will normally not
5520         * have data blocks allocated (it may have an external xattr block).
5521         * Report at least one sector for such files, so tools like tar, rsync,
5522         * others don't incorrectly think the file is completely sparse.
5523         */
5524        if (unlikely(ext4_has_inline_data(inode)))
5525                stat->blocks += (stat->size + 511) >> 9;
5526
5527        /*
5528         * We can't update i_blocks if the block allocation is delayed
5529         * otherwise in the case of system crash before the real block
5530         * allocation is done, we will have i_blocks inconsistent with
5531         * on-disk file blocks.
5532         * We always keep i_blocks updated together with real
5533         * allocation. But to not confuse with user, stat
5534         * will return the blocks that include the delayed allocation
5535         * blocks for this file.
5536         */
5537        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5538                                   EXT4_I(inode)->i_reserved_data_blocks);
5539        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5540        return 0;
5541}
5542
5543static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5544                                   int pextents)
5545{
5546        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5547                return ext4_ind_trans_blocks(inode, lblocks);
5548        return ext4_ext_index_trans_blocks(inode, pextents);
5549}
5550
5551/*
5552 * Account for index blocks, block groups bitmaps and block group
5553 * descriptor blocks if modify datablocks and index blocks
5554 * worse case, the indexs blocks spread over different block groups
5555 *
5556 * If datablocks are discontiguous, they are possible to spread over
5557 * different block groups too. If they are contiguous, with flexbg,
5558 * they could still across block group boundary.
5559 *
5560 * Also account for superblock, inode, quota and xattr blocks
5561 */
5562static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5563                                  int pextents)
5564{
5565        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5566        int gdpblocks;
5567        int idxblocks;
5568        int ret = 0;
5569
5570        /*
5571         * How many index blocks need to touch to map @lblocks logical blocks
5572         * to @pextents physical extents?
5573         */
5574        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5575
5576        ret = idxblocks;
5577
5578        /*
5579         * Now let's see how many group bitmaps and group descriptors need
5580         * to account
5581         */
5582        groups = idxblocks + pextents;
5583        gdpblocks = groups;
5584        if (groups > ngroups)
5585                groups = ngroups;
5586        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5587                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5588
5589        /* bitmaps and block group descriptor blocks */
5590        ret += groups + gdpblocks;
5591
5592        /* Blocks for super block, inode, quota and xattr blocks */
5593        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5594
5595        return ret;
5596}
5597
5598/*
5599 * Calculate the total number of credits to reserve to fit
5600 * the modification of a single pages into a single transaction,
5601 * which may include multiple chunks of block allocations.
5602 *
5603 * This could be called via ext4_write_begin()
5604 *
5605 * We need to consider the worse case, when
5606 * one new block per extent.
5607 */
5608int ext4_writepage_trans_blocks(struct inode *inode)
5609{
5610        int bpp = ext4_journal_blocks_per_page(inode);
5611        int ret;
5612
5613        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5614
5615        /* Account for data blocks for journalled mode */
5616        if (ext4_should_journal_data(inode))
5617                ret += bpp;
5618        return ret;
5619}
5620
5621/*
5622 * Calculate the journal credits for a chunk of data modification.
5623 *
5624 * This is called from DIO, fallocate or whoever calling
5625 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5626 *
5627 * journal buffers for data blocks are not included here, as DIO
5628 * and fallocate do no need to journal data buffers.
5629 */
5630int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5631{
5632        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5633}
5634
5635/*
5636 * The caller must have previously called ext4_reserve_inode_write().
5637 * Give this, we know that the caller already has write access to iloc->bh.
5638 */
5639int ext4_mark_iloc_dirty(handle_t *handle,
5640                         struct inode *inode, struct ext4_iloc *iloc)
5641{
5642        int err = 0;
5643
5644        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5645                return -EIO;
5646
5647        if (IS_I_VERSION(inode))
5648                inode_inc_iversion(inode);
5649
5650        /* the do_update_inode consumes one bh->b_count */
5651        get_bh(iloc->bh);
5652
5653        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5654        err = ext4_do_update_inode(handle, inode, iloc);
5655        put_bh(iloc->bh);
5656        return err;
5657}
5658
5659/*
5660 * On success, We end up with an outstanding reference count against
5661 * iloc->bh.  This _must_ be cleaned up later.
5662 */
5663
5664int
5665ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5666                         struct ext4_iloc *iloc)
5667{
5668        int err;
5669
5670        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5671                return -EIO;
5672
5673        err = ext4_get_inode_loc(inode, iloc);
5674        if (!err) {
5675                BUFFER_TRACE(iloc->bh, "get_write_access");
5676                err = ext4_journal_get_write_access(handle, iloc->bh);
5677                if (err) {
5678                        brelse(iloc->bh);
5679                        iloc->bh = NULL;
5680                }
5681        }
5682        ext4_std_error(inode->i_sb, err);
5683        return err;
5684}
5685
5686static int __ext4_expand_extra_isize(struct inode *inode,
5687                                     unsigned int new_extra_isize,
5688                                     struct ext4_iloc *iloc,
5689                                     handle_t *handle, int *no_expand)
5690{
5691        struct ext4_inode *raw_inode;
5692        struct ext4_xattr_ibody_header *header;
5693        int error;
5694
5695        raw_inode = ext4_raw_inode(iloc);
5696
5697        header = IHDR(inode, raw_inode);
5698
5699        /* No extended attributes present */
5700        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5701            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5702                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5703                       EXT4_I(inode)->i_extra_isize, 0,
5704                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5705                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5706                return 0;
5707        }
5708
5709        /* try to expand with EAs present */
5710        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5711                                           raw_inode, handle);
5712        if (error) {
5713                /*
5714                 * Inode size expansion failed; don't try again
5715                 */
5716                *no_expand = 1;
5717        }
5718
5719        return error;
5720}
5721
5722/*
5723 * Expand an inode by new_extra_isize bytes.
5724 * Returns 0 on success or negative error number on failure.
5725 */
5726static int ext4_try_to_expand_extra_isize(struct inode *inode,
5727                                          unsigned int new_extra_isize,
5728                                          struct ext4_iloc iloc,
5729                                          handle_t *handle)
5730{
5731        int no_expand;
5732        int error;
5733
5734        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5735                return -EOVERFLOW;
5736
5737        /*
5738         * In nojournal mode, we can immediately attempt to expand
5739         * the inode.  When journaled, we first need to obtain extra
5740         * buffer credits since we may write into the EA block
5741         * with this same handle. If journal_extend fails, then it will
5742         * only result in a minor loss of functionality for that inode.
5743         * If this is felt to be critical, then e2fsck should be run to
5744         * force a large enough s_min_extra_isize.
5745         */
5746        if (ext4_handle_valid(handle) &&
5747            jbd2_journal_extend(handle,
5748                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5749                return -ENOSPC;
5750
5751        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5752                return -EBUSY;
5753
5754        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5755                                          handle, &no_expand);
5756        ext4_write_unlock_xattr(inode, &no_expand);
5757
5758        return error;
5759}
5760
5761int ext4_expand_extra_isize(struct inode *inode,
5762                            unsigned int new_extra_isize,
5763                            struct ext4_iloc *iloc)
5764{
5765        handle_t *handle;
5766        int no_expand;
5767        int error, rc;
5768
5769        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5770                brelse(iloc->bh);
5771                return -EOVERFLOW;
5772        }
5773
5774        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5775                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5776        if (IS_ERR(handle)) {
5777                error = PTR_ERR(handle);
5778                brelse(iloc->bh);
5779                return error;
5780        }
5781
5782        ext4_write_lock_xattr(inode, &no_expand);
5783
5784        BUFFER_TRACE(iloc.bh, "get_write_access");
5785        error = ext4_journal_get_write_access(handle, iloc->bh);
5786        if (error) {
5787                brelse(iloc->bh);
5788                goto out_stop;
5789        }
5790
5791        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5792                                          handle, &no_expand);
5793
5794        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5795        if (!error)
5796                error = rc;
5797
5798        ext4_write_unlock_xattr(inode, &no_expand);
5799out_stop:
5800        ext4_journal_stop(handle);
5801        return error;
5802}
5803
5804/*
5805 * What we do here is to mark the in-core inode as clean with respect to inode
5806 * dirtiness (it may still be data-dirty).
5807 * This means that the in-core inode may be reaped by prune_icache
5808 * without having to perform any I/O.  This is a very good thing,
5809 * because *any* task may call prune_icache - even ones which
5810 * have a transaction open against a different journal.
5811 *
5812 * Is this cheating?  Not really.  Sure, we haven't written the
5813 * inode out, but prune_icache isn't a user-visible syncing function.
5814 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5815 * we start and wait on commits.
5816 */
5817int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5818{
5819        struct ext4_iloc iloc;
5820        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5821        int err;
5822
5823        might_sleep();
5824        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5825        err = ext4_reserve_inode_write(handle, inode, &iloc);
5826        if (err)
5827                return err;
5828
5829        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5830                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5831                                               iloc, handle);
5832
5833        return ext4_mark_iloc_dirty(handle, inode, &iloc);
5834}
5835
5836/*
5837 * ext4_dirty_inode() is called from __mark_inode_dirty()
5838 *
5839 * We're really interested in the case where a file is being extended.
5840 * i_size has been changed by generic_commit_write() and we thus need
5841 * to include the updated inode in the current transaction.
5842 *
5843 * Also, dquot_alloc_block() will always dirty the inode when blocks
5844 * are allocated to the file.
5845 *
5846 * If the inode is marked synchronous, we don't honour that here - doing
5847 * so would cause a commit on atime updates, which we don't bother doing.
5848 * We handle synchronous inodes at the highest possible level.
5849 *
5850 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5851 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5852 * to copy into the on-disk inode structure are the timestamp files.
5853 */
5854void ext4_dirty_inode(struct inode *inode, int flags)
5855{
5856        handle_t *handle;
5857
5858        if (flags == I_DIRTY_TIME)
5859                return;
5860        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5861        if (IS_ERR(handle))
5862                goto out;
5863
5864        ext4_mark_inode_dirty(handle, inode);
5865
5866        ext4_journal_stop(handle);
5867out:
5868        return;
5869}
5870
5871#if 0
5872/*
5873 * Bind an inode's backing buffer_head into this transaction, to prevent
5874 * it from being flushed to disk early.  Unlike
5875 * ext4_reserve_inode_write, this leaves behind no bh reference and
5876 * returns no iloc structure, so the caller needs to repeat the iloc
5877 * lookup to mark the inode dirty later.
5878 */
5879static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5880{
5881        struct ext4_iloc iloc;
5882
5883        int err = 0;
5884        if (handle) {
5885                err = ext4_get_inode_loc(inode, &iloc);
5886                if (!err) {
5887                        BUFFER_TRACE(iloc.bh, "get_write_access");
5888                        err = jbd2_journal_get_write_access(handle, iloc.bh);
5889                        if (!err)
5890                                err = ext4_handle_dirty_metadata(handle,
5891                                                                 NULL,
5892                                                                 iloc.bh);
5893                        brelse(iloc.bh);
5894                }
5895        }
5896        ext4_std_error(inode->i_sb, err);
5897        return err;
5898}
5899#endif
5900
5901int ext4_change_inode_journal_flag(struct inode *inode, int val)
5902{
5903        journal_t *journal;
5904        handle_t *handle;
5905        int err;
5906        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5907
5908        /*
5909         * We have to be very careful here: changing a data block's
5910         * journaling status dynamically is dangerous.  If we write a
5911         * data block to the journal, change the status and then delete
5912         * that block, we risk forgetting to revoke the old log record
5913         * from the journal and so a subsequent replay can corrupt data.
5914         * So, first we make sure that the journal is empty and that
5915         * nobody is changing anything.
5916         */
5917
5918        journal = EXT4_JOURNAL(inode);
5919        if (!journal)
5920                return 0;
5921        if (is_journal_aborted(journal))
5922                return -EROFS;
5923
5924        /* Wait for all existing dio workers */
5925        ext4_inode_block_unlocked_dio(inode);
5926        inode_dio_wait(inode);
5927
5928        /*
5929         * Before flushing the journal and switching inode's aops, we have
5930         * to flush all dirty data the inode has. There can be outstanding
5931         * delayed allocations, there can be unwritten extents created by
5932         * fallocate or buffered writes in dioread_nolock mode covered by
5933         * dirty data which can be converted only after flushing the dirty
5934         * data (and journalled aops don't know how to handle these cases).
5935         */
5936        if (val) {
5937                down_write(&EXT4_I(inode)->i_mmap_sem);
5938                err = filemap_write_and_wait(inode->i_mapping);
5939                if (err < 0) {
5940                        up_write(&EXT4_I(inode)->i_mmap_sem);
5941                        ext4_inode_resume_unlocked_dio(inode);
5942                        return err;
5943                }
5944        }
5945
5946        percpu_down_write(&sbi->s_journal_flag_rwsem);
5947        jbd2_journal_lock_updates(journal);
5948
5949        /*
5950         * OK, there are no updates running now, and all cached data is
5951         * synced to disk.  We are now in a completely consistent state
5952         * which doesn't have anything in the journal, and we know that
5953         * no filesystem updates are running, so it is safe to modify
5954         * the inode's in-core data-journaling state flag now.
5955         */
5956
5957        if (val)
5958                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5959        else {
5960                err = jbd2_journal_flush(journal);
5961                if (err < 0) {
5962                        jbd2_journal_unlock_updates(journal);
5963                        percpu_up_write(&sbi->s_journal_flag_rwsem);
5964                        ext4_inode_resume_unlocked_dio(inode);
5965                        return err;
5966                }
5967                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5968        }
5969        ext4_set_aops(inode);
5970        /*
5971         * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5972         * E.g. S_DAX may get cleared / set.
5973         */
5974        ext4_set_inode_flags(inode);
5975
5976        jbd2_journal_unlock_updates(journal);
5977        percpu_up_write(&sbi->s_journal_flag_rwsem);
5978
5979        if (val)
5980                up_write(&EXT4_I(inode)->i_mmap_sem);
5981        ext4_inode_resume_unlocked_dio(inode);
5982
5983        /* Finally we can mark the inode as dirty. */
5984
5985        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5986        if (IS_ERR(handle))
5987                return PTR_ERR(handle);
5988
5989        err = ext4_mark_inode_dirty(handle, inode);
5990        ext4_handle_sync(handle);
5991        ext4_journal_stop(handle);
5992        ext4_std_error(inode->i_sb, err);
5993
5994        return err;
5995}
5996
5997static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5998{
5999        return !buffer_mapped(bh);
6000}
6001
6002int ext4_page_mkwrite(struct vm_fault *vmf)
6003{
6004        struct vm_area_struct *vma = vmf->vma;
6005        struct page *page = vmf->page;
6006        loff_t size;
6007        unsigned long len;
6008        int ret;
6009        struct file *file = vma->vm_file;
6010        struct inode *inode = file_inode(file);
6011        struct address_space *mapping = inode->i_mapping;
6012        handle_t *handle;
6013        get_block_t *get_block;
6014        int retries = 0;
6015
6016        sb_start_pagefault(inode->i_sb);
6017        file_update_time(vma->vm_file);
6018
6019        down_read(&EXT4_I(inode)->i_mmap_sem);
6020
6021        ret = ext4_convert_inline_data(inode);
6022        if (ret)
6023                goto out_ret;
6024
6025        /* Delalloc case is easy... */
6026        if (test_opt(inode->i_sb, DELALLOC) &&
6027            !ext4_should_journal_data(inode) &&
6028            !ext4_nonda_switch(inode->i_sb)) {
6029                do {
6030                        ret = block_page_mkwrite(vma, vmf,
6031                                                   ext4_da_get_block_prep);
6032                } while (ret == -ENOSPC &&
6033                       ext4_should_retry_alloc(inode->i_sb, &retries));
6034                goto out_ret;
6035        }
6036
6037        lock_page(page);
6038        size = i_size_read(inode);
6039        /* Page got truncated from under us? */
6040        if (page->mapping != mapping || page_offset(page) > size) {
6041                unlock_page(page);
6042                ret = VM_FAULT_NOPAGE;
6043                goto out;
6044        }
6045
6046        if (page->index == size >> PAGE_SHIFT)
6047                len = size & ~PAGE_MASK;
6048        else
6049                len = PAGE_SIZE;
6050        /*
6051         * Return if we have all the buffers mapped. This avoids the need to do
6052         * journal_start/journal_stop which can block and take a long time
6053         */
6054        if (page_has_buffers(page)) {
6055                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6056                                            0, len, NULL,
6057                                            ext4_bh_unmapped)) {
6058                        /* Wait so that we don't change page under IO */
6059                        wait_for_stable_page(page);
6060                        ret = VM_FAULT_LOCKED;
6061                        goto out;
6062                }
6063        }
6064        unlock_page(page);
6065        /* OK, we need to fill the hole... */
6066        if (ext4_should_dioread_nolock(inode))
6067                get_block = ext4_get_block_unwritten;
6068        else
6069                get_block = ext4_get_block;
6070retry_alloc:
6071        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6072                                    ext4_writepage_trans_blocks(inode));
6073        if (IS_ERR(handle)) {
6074                ret = VM_FAULT_SIGBUS;
6075                goto out;
6076        }
6077        ret = block_page_mkwrite(vma, vmf, get_block);
6078        if (!ret && ext4_should_journal_data(inode)) {
6079                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6080                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
6081                        unlock_page(page);
6082                        ret = VM_FAULT_SIGBUS;
6083                        ext4_journal_stop(handle);
6084                        goto out;
6085                }
6086                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6087        }
6088        ext4_journal_stop(handle);
6089        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6090                goto retry_alloc;
6091out_ret:
6092        ret = block_page_mkwrite_return(ret);
6093out:
6094        up_read(&EXT4_I(inode)->i_mmap_sem);
6095        sb_end_pagefault(inode->i_sb);
6096        return ret;
6097}
6098
6099int ext4_filemap_fault(struct vm_fault *vmf)
6100{
6101        struct inode *inode = file_inode(vmf->vma->vm_file);
6102        int err;
6103
6104        down_read(&EXT4_I(inode)->i_mmap_sem);
6105        err = filemap_fault(vmf);
6106        up_read(&EXT4_I(inode)->i_mmap_sem);
6107
6108        return err;
6109}
6110
6111/*
6112 * Find the first extent at or after @lblk in an inode that is not a hole.
6113 * Search for @map_len blocks at most. The extent is returned in @result.
6114 *
6115 * The function returns 1 if we found an extent. The function returns 0 in
6116 * case there is no extent at or after @lblk and in that case also sets
6117 * @result->es_len to 0. In case of error, the error code is returned.
6118 */
6119int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6120                         unsigned int map_len, struct extent_status *result)
6121{
6122        struct ext4_map_blocks map;
6123        struct extent_status es = {};
6124        int ret;
6125
6126        map.m_lblk = lblk;
6127        map.m_len = map_len;
6128
6129        /*
6130         * For non-extent based files this loop may iterate several times since
6131         * we do not determine full hole size.
6132         */
6133        while (map.m_len > 0) {
6134                ret = ext4_map_blocks(NULL, inode, &map, 0);
6135                if (ret < 0)
6136                        return ret;
6137                /* There's extent covering m_lblk? Just return it. */
6138                if (ret > 0) {
6139                        int status;
6140
6141                        ext4_es_store_pblock(result, map.m_pblk);
6142                        result->es_lblk = map.m_lblk;
6143                        result->es_len = map.m_len;
6144                        if (map.m_flags & EXT4_MAP_UNWRITTEN)
6145                                status = EXTENT_STATUS_UNWRITTEN;
6146                        else
6147                                status = EXTENT_STATUS_WRITTEN;
6148                        ext4_es_store_status(result, status);
6149                        return 1;
6150                }
6151                ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6152                                                  map.m_lblk + map.m_len - 1,
6153                                                  &es);
6154                /* Is delalloc data before next block in extent tree? */
6155                if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6156                        ext4_lblk_t offset = 0;
6157
6158                        if (es.es_lblk < lblk)
6159                                offset = lblk - es.es_lblk;
6160                        result->es_lblk = es.es_lblk + offset;
6161                        ext4_es_store_pblock(result,
6162                                             ext4_es_pblock(&es) + offset);
6163                        result->es_len = es.es_len - offset;
6164                        ext4_es_store_status(result, ext4_es_status(&es));
6165
6166                        return 1;
6167                }
6168                /* There's a hole at m_lblk, advance us after it */
6169                map.m_lblk += map.m_len;
6170                map_len -= map.m_len;
6171                map.m_len = map_len;
6172                cond_resched();
6173        }
6174        result->es_len = 0;
6175        return 0;
6176}
6177