linux/fs/gfs2/aops.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
  25
  26#include "gfs2.h"
  27#include "incore.h"
  28#include "bmap.h"
  29#include "glock.h"
  30#include "inode.h"
  31#include "log.h"
  32#include "meta_io.h"
  33#include "quota.h"
  34#include "trans.h"
  35#include "rgrp.h"
  36#include "super.h"
  37#include "util.h"
  38#include "glops.h"
  39
  40
  41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  42                                   unsigned int from, unsigned int to)
  43{
  44        struct buffer_head *head = page_buffers(page);
  45        unsigned int bsize = head->b_size;
  46        struct buffer_head *bh;
  47        unsigned int start, end;
  48
  49        for (bh = head, start = 0; bh != head || !start;
  50             bh = bh->b_this_page, start = end) {
  51                end = start + bsize;
  52                if (end <= from || start >= to)
  53                        continue;
  54                if (gfs2_is_jdata(ip))
  55                        set_buffer_uptodate(bh);
  56                gfs2_trans_add_data(ip->i_gl, bh);
  57        }
  58}
  59
  60/**
  61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  62 * @inode: The inode
  63 * @lblock: The block number to look up
  64 * @bh_result: The buffer head to return the result in
  65 * @create: Non-zero if we may add block to the file
  66 *
  67 * Returns: errno
  68 */
  69
  70static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  71                                  struct buffer_head *bh_result, int create)
  72{
  73        int error;
  74
  75        error = gfs2_block_map(inode, lblock, bh_result, 0);
  76        if (error)
  77                return error;
  78        if (!buffer_mapped(bh_result))
  79                return -EIO;
  80        return 0;
  81}
  82
  83static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  84                                 struct buffer_head *bh_result, int create)
  85{
  86        return gfs2_block_map(inode, lblock, bh_result, 0);
  87}
  88
  89/**
  90 * gfs2_writepage_common - Common bits of writepage
  91 * @page: The page to be written
  92 * @wbc: The writeback control
  93 *
  94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  95 */
  96
  97static int gfs2_writepage_common(struct page *page,
  98                                 struct writeback_control *wbc)
  99{
 100        struct inode *inode = page->mapping->host;
 101        struct gfs2_inode *ip = GFS2_I(inode);
 102        struct gfs2_sbd *sdp = GFS2_SB(inode);
 103        loff_t i_size = i_size_read(inode);
 104        pgoff_t end_index = i_size >> PAGE_SHIFT;
 105        unsigned offset;
 106
 107        if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 108                goto out;
 109        if (current->journal_info)
 110                goto redirty;
 111        /* Is the page fully outside i_size? (truncate in progress) */
 112        offset = i_size & (PAGE_SIZE-1);
 113        if (page->index > end_index || (page->index == end_index && !offset)) {
 114                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 115                goto out;
 116        }
 117        return 1;
 118redirty:
 119        redirty_page_for_writepage(wbc, page);
 120out:
 121        unlock_page(page);
 122        return 0;
 123}
 124
 125/**
 126 * gfs2_writepage - Write page for writeback mappings
 127 * @page: The page
 128 * @wbc: The writeback control
 129 *
 130 */
 131
 132static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 133{
 134        int ret;
 135
 136        ret = gfs2_writepage_common(page, wbc);
 137        if (ret <= 0)
 138                return ret;
 139
 140        return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 141}
 142
 143/* This is the same as calling block_write_full_page, but it also
 144 * writes pages outside of i_size
 145 */
 146static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
 147                                struct writeback_control *wbc)
 148{
 149        struct inode * const inode = page->mapping->host;
 150        loff_t i_size = i_size_read(inode);
 151        const pgoff_t end_index = i_size >> PAGE_SHIFT;
 152        unsigned offset;
 153
 154        /*
 155         * The page straddles i_size.  It must be zeroed out on each and every
 156         * writepage invocation because it may be mmapped.  "A file is mapped
 157         * in multiples of the page size.  For a file that is not a multiple of
 158         * the  page size, the remaining memory is zeroed when mapped, and
 159         * writes to that region are not written out to the file."
 160         */
 161        offset = i_size & (PAGE_SIZE-1);
 162        if (page->index == end_index && offset)
 163                zero_user_segment(page, offset, PAGE_SIZE);
 164
 165        return __block_write_full_page(inode, page, get_block, wbc,
 166                                       end_buffer_async_write);
 167}
 168
 169/**
 170 * __gfs2_jdata_writepage - The core of jdata writepage
 171 * @page: The page to write
 172 * @wbc: The writeback control
 173 *
 174 * This is shared between writepage and writepages and implements the
 175 * core of the writepage operation. If a transaction is required then
 176 * PageChecked will have been set and the transaction will have
 177 * already been started before this is called.
 178 */
 179
 180static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 181{
 182        struct inode *inode = page->mapping->host;
 183        struct gfs2_inode *ip = GFS2_I(inode);
 184        struct gfs2_sbd *sdp = GFS2_SB(inode);
 185
 186        if (PageChecked(page)) {
 187                ClearPageChecked(page);
 188                if (!page_has_buffers(page)) {
 189                        create_empty_buffers(page, inode->i_sb->s_blocksize,
 190                                             BIT(BH_Dirty)|BIT(BH_Uptodate));
 191                }
 192                gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 193        }
 194        return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
 195}
 196
 197/**
 198 * gfs2_jdata_writepage - Write complete page
 199 * @page: Page to write
 200 * @wbc: The writeback control
 201 *
 202 * Returns: errno
 203 *
 204 */
 205
 206static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 207{
 208        struct inode *inode = page->mapping->host;
 209        struct gfs2_inode *ip = GFS2_I(inode);
 210        struct gfs2_sbd *sdp = GFS2_SB(inode);
 211        int ret;
 212
 213        if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 214                goto out;
 215        if (PageChecked(page) || current->journal_info)
 216                goto out_ignore;
 217        ret = __gfs2_jdata_writepage(page, wbc);
 218        return ret;
 219
 220out_ignore:
 221        redirty_page_for_writepage(wbc, page);
 222out:
 223        unlock_page(page);
 224        return 0;
 225}
 226
 227/**
 228 * gfs2_writepages - Write a bunch of dirty pages back to disk
 229 * @mapping: The mapping to write
 230 * @wbc: Write-back control
 231 *
 232 * Used for both ordered and writeback modes.
 233 */
 234static int gfs2_writepages(struct address_space *mapping,
 235                           struct writeback_control *wbc)
 236{
 237        struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
 238        int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 239
 240        /*
 241         * Even if we didn't write any pages here, we might still be holding
 242         * dirty pages in the ail. We forcibly flush the ail because we don't
 243         * want balance_dirty_pages() to loop indefinitely trying to write out
 244         * pages held in the ail that it can't find.
 245         */
 246        if (ret == 0)
 247                set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
 248
 249        return ret;
 250}
 251
 252/**
 253 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 254 * @mapping: The mapping
 255 * @wbc: The writeback control
 256 * @pvec: The vector of pages
 257 * @nr_pages: The number of pages to write
 258 * @end: End position
 259 * @done_index: Page index
 260 *
 261 * Returns: non-zero if loop should terminate, zero otherwise
 262 */
 263
 264static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 265                                    struct writeback_control *wbc,
 266                                    struct pagevec *pvec,
 267                                    int nr_pages, pgoff_t end,
 268                                    pgoff_t *done_index)
 269{
 270        struct inode *inode = mapping->host;
 271        struct gfs2_sbd *sdp = GFS2_SB(inode);
 272        unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 273        int i;
 274        int ret;
 275
 276        ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 277        if (ret < 0)
 278                return ret;
 279
 280        for(i = 0; i < nr_pages; i++) {
 281                struct page *page = pvec->pages[i];
 282
 283                /*
 284                 * At this point, the page may be truncated or
 285                 * invalidated (changing page->mapping to NULL), or
 286                 * even swizzled back from swapper_space to tmpfs file
 287                 * mapping. However, page->index will not change
 288                 * because we have a reference on the page.
 289                 */
 290                if (page->index > end) {
 291                        /*
 292                         * can't be range_cyclic (1st pass) because
 293                         * end == -1 in that case.
 294                         */
 295                        ret = 1;
 296                        break;
 297                }
 298
 299                *done_index = page->index;
 300
 301                lock_page(page);
 302
 303                if (unlikely(page->mapping != mapping)) {
 304continue_unlock:
 305                        unlock_page(page);
 306                        continue;
 307                }
 308
 309                if (!PageDirty(page)) {
 310                        /* someone wrote it for us */
 311                        goto continue_unlock;
 312                }
 313
 314                if (PageWriteback(page)) {
 315                        if (wbc->sync_mode != WB_SYNC_NONE)
 316                                wait_on_page_writeback(page);
 317                        else
 318                                goto continue_unlock;
 319                }
 320
 321                BUG_ON(PageWriteback(page));
 322                if (!clear_page_dirty_for_io(page))
 323                        goto continue_unlock;
 324
 325                trace_wbc_writepage(wbc, inode_to_bdi(inode));
 326
 327                ret = __gfs2_jdata_writepage(page, wbc);
 328                if (unlikely(ret)) {
 329                        if (ret == AOP_WRITEPAGE_ACTIVATE) {
 330                                unlock_page(page);
 331                                ret = 0;
 332                        } else {
 333
 334                                /*
 335                                 * done_index is set past this page,
 336                                 * so media errors will not choke
 337                                 * background writeout for the entire
 338                                 * file. This has consequences for
 339                                 * range_cyclic semantics (ie. it may
 340                                 * not be suitable for data integrity
 341                                 * writeout).
 342                                 */
 343                                *done_index = page->index + 1;
 344                                ret = 1;
 345                                break;
 346                        }
 347                }
 348
 349                /*
 350                 * We stop writing back only if we are not doing
 351                 * integrity sync. In case of integrity sync we have to
 352                 * keep going until we have written all the pages
 353                 * we tagged for writeback prior to entering this loop.
 354                 */
 355                if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 356                        ret = 1;
 357                        break;
 358                }
 359
 360        }
 361        gfs2_trans_end(sdp);
 362        return ret;
 363}
 364
 365/**
 366 * gfs2_write_cache_jdata - Like write_cache_pages but different
 367 * @mapping: The mapping to write
 368 * @wbc: The writeback control
 369 *
 370 * The reason that we use our own function here is that we need to
 371 * start transactions before we grab page locks. This allows us
 372 * to get the ordering right.
 373 */
 374
 375static int gfs2_write_cache_jdata(struct address_space *mapping,
 376                                  struct writeback_control *wbc)
 377{
 378        int ret = 0;
 379        int done = 0;
 380        struct pagevec pvec;
 381        int nr_pages;
 382        pgoff_t uninitialized_var(writeback_index);
 383        pgoff_t index;
 384        pgoff_t end;
 385        pgoff_t done_index;
 386        int cycled;
 387        int range_whole = 0;
 388        int tag;
 389
 390        pagevec_init(&pvec, 0);
 391        if (wbc->range_cyclic) {
 392                writeback_index = mapping->writeback_index; /* prev offset */
 393                index = writeback_index;
 394                if (index == 0)
 395                        cycled = 1;
 396                else
 397                        cycled = 0;
 398                end = -1;
 399        } else {
 400                index = wbc->range_start >> PAGE_SHIFT;
 401                end = wbc->range_end >> PAGE_SHIFT;
 402                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 403                        range_whole = 1;
 404                cycled = 1; /* ignore range_cyclic tests */
 405        }
 406        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 407                tag = PAGECACHE_TAG_TOWRITE;
 408        else
 409                tag = PAGECACHE_TAG_DIRTY;
 410
 411retry:
 412        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 413                tag_pages_for_writeback(mapping, index, end);
 414        done_index = index;
 415        while (!done && (index <= end)) {
 416                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 417                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 418                if (nr_pages == 0)
 419                        break;
 420
 421                ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
 422                if (ret)
 423                        done = 1;
 424                if (ret > 0)
 425                        ret = 0;
 426                pagevec_release(&pvec);
 427                cond_resched();
 428        }
 429
 430        if (!cycled && !done) {
 431                /*
 432                 * range_cyclic:
 433                 * We hit the last page and there is more work to be done: wrap
 434                 * back to the start of the file
 435                 */
 436                cycled = 1;
 437                index = 0;
 438                end = writeback_index - 1;
 439                goto retry;
 440        }
 441
 442        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 443                mapping->writeback_index = done_index;
 444
 445        return ret;
 446}
 447
 448
 449/**
 450 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 451 * @mapping: The mapping to write
 452 * @wbc: The writeback control
 453 * 
 454 */
 455
 456static int gfs2_jdata_writepages(struct address_space *mapping,
 457                                 struct writeback_control *wbc)
 458{
 459        struct gfs2_inode *ip = GFS2_I(mapping->host);
 460        struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 461        int ret;
 462
 463        ret = gfs2_write_cache_jdata(mapping, wbc);
 464        if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 465                gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
 466                ret = gfs2_write_cache_jdata(mapping, wbc);
 467        }
 468        return ret;
 469}
 470
 471/**
 472 * stuffed_readpage - Fill in a Linux page with stuffed file data
 473 * @ip: the inode
 474 * @page: the page
 475 *
 476 * Returns: errno
 477 */
 478
 479static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 480{
 481        struct buffer_head *dibh;
 482        u64 dsize = i_size_read(&ip->i_inode);
 483        void *kaddr;
 484        int error;
 485
 486        /*
 487         * Due to the order of unstuffing files and ->fault(), we can be
 488         * asked for a zero page in the case of a stuffed file being extended,
 489         * so we need to supply one here. It doesn't happen often.
 490         */
 491        if (unlikely(page->index)) {
 492                zero_user(page, 0, PAGE_SIZE);
 493                SetPageUptodate(page);
 494                return 0;
 495        }
 496
 497        error = gfs2_meta_inode_buffer(ip, &dibh);
 498        if (error)
 499                return error;
 500
 501        kaddr = kmap_atomic(page);
 502        if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 503                dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 504        memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 505        memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 506        kunmap_atomic(kaddr);
 507        flush_dcache_page(page);
 508        brelse(dibh);
 509        SetPageUptodate(page);
 510
 511        return 0;
 512}
 513
 514
 515/**
 516 * __gfs2_readpage - readpage
 517 * @file: The file to read a page for
 518 * @page: The page to read
 519 *
 520 * This is the core of gfs2's readpage. Its used by the internal file
 521 * reading code as in that case we already hold the glock. Also its
 522 * called by gfs2_readpage() once the required lock has been granted.
 523 *
 524 */
 525
 526static int __gfs2_readpage(void *file, struct page *page)
 527{
 528        struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 529        struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 530        int error;
 531
 532        if (gfs2_is_stuffed(ip)) {
 533                error = stuffed_readpage(ip, page);
 534                unlock_page(page);
 535        } else {
 536                error = mpage_readpage(page, gfs2_block_map);
 537        }
 538
 539        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 540                return -EIO;
 541
 542        return error;
 543}
 544
 545/**
 546 * gfs2_readpage - read a page of a file
 547 * @file: The file to read
 548 * @page: The page of the file
 549 *
 550 * This deals with the locking required. We have to unlock and
 551 * relock the page in order to get the locking in the right
 552 * order.
 553 */
 554
 555static int gfs2_readpage(struct file *file, struct page *page)
 556{
 557        struct address_space *mapping = page->mapping;
 558        struct gfs2_inode *ip = GFS2_I(mapping->host);
 559        struct gfs2_holder gh;
 560        int error;
 561
 562        unlock_page(page);
 563        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 564        error = gfs2_glock_nq(&gh);
 565        if (unlikely(error))
 566                goto out;
 567        error = AOP_TRUNCATED_PAGE;
 568        lock_page(page);
 569        if (page->mapping == mapping && !PageUptodate(page))
 570                error = __gfs2_readpage(file, page);
 571        else
 572                unlock_page(page);
 573        gfs2_glock_dq(&gh);
 574out:
 575        gfs2_holder_uninit(&gh);
 576        if (error && error != AOP_TRUNCATED_PAGE)
 577                lock_page(page);
 578        return error;
 579}
 580
 581/**
 582 * gfs2_internal_read - read an internal file
 583 * @ip: The gfs2 inode
 584 * @buf: The buffer to fill
 585 * @pos: The file position
 586 * @size: The amount to read
 587 *
 588 */
 589
 590int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 591                       unsigned size)
 592{
 593        struct address_space *mapping = ip->i_inode.i_mapping;
 594        unsigned long index = *pos / PAGE_SIZE;
 595        unsigned offset = *pos & (PAGE_SIZE - 1);
 596        unsigned copied = 0;
 597        unsigned amt;
 598        struct page *page;
 599        void *p;
 600
 601        do {
 602                amt = size - copied;
 603                if (offset + size > PAGE_SIZE)
 604                        amt = PAGE_SIZE - offset;
 605                page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 606                if (IS_ERR(page))
 607                        return PTR_ERR(page);
 608                p = kmap_atomic(page);
 609                memcpy(buf + copied, p + offset, amt);
 610                kunmap_atomic(p);
 611                put_page(page);
 612                copied += amt;
 613                index++;
 614                offset = 0;
 615        } while(copied < size);
 616        (*pos) += size;
 617        return size;
 618}
 619
 620/**
 621 * gfs2_readpages - Read a bunch of pages at once
 622 * @file: The file to read from
 623 * @mapping: Address space info
 624 * @pages: List of pages to read
 625 * @nr_pages: Number of pages to read
 626 *
 627 * Some notes:
 628 * 1. This is only for readahead, so we can simply ignore any things
 629 *    which are slightly inconvenient (such as locking conflicts between
 630 *    the page lock and the glock) and return having done no I/O. Its
 631 *    obviously not something we'd want to do on too regular a basis.
 632 *    Any I/O we ignore at this time will be done via readpage later.
 633 * 2. We don't handle stuffed files here we let readpage do the honours.
 634 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 635 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 636 */
 637
 638static int gfs2_readpages(struct file *file, struct address_space *mapping,
 639                          struct list_head *pages, unsigned nr_pages)
 640{
 641        struct inode *inode = mapping->host;
 642        struct gfs2_inode *ip = GFS2_I(inode);
 643        struct gfs2_sbd *sdp = GFS2_SB(inode);
 644        struct gfs2_holder gh;
 645        int ret;
 646
 647        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 648        ret = gfs2_glock_nq(&gh);
 649        if (unlikely(ret))
 650                goto out_uninit;
 651        if (!gfs2_is_stuffed(ip))
 652                ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 653        gfs2_glock_dq(&gh);
 654out_uninit:
 655        gfs2_holder_uninit(&gh);
 656        if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 657                ret = -EIO;
 658        return ret;
 659}
 660
 661/**
 662 * gfs2_write_begin - Begin to write to a file
 663 * @file: The file to write to
 664 * @mapping: The mapping in which to write
 665 * @pos: The file offset at which to start writing
 666 * @len: Length of the write
 667 * @flags: Various flags
 668 * @pagep: Pointer to return the page
 669 * @fsdata: Pointer to return fs data (unused by GFS2)
 670 *
 671 * Returns: errno
 672 */
 673
 674static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 675                            loff_t pos, unsigned len, unsigned flags,
 676                            struct page **pagep, void **fsdata)
 677{
 678        struct gfs2_inode *ip = GFS2_I(mapping->host);
 679        struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 680        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 681        unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 682        unsigned requested = 0;
 683        int alloc_required;
 684        int error = 0;
 685        pgoff_t index = pos >> PAGE_SHIFT;
 686        unsigned from = pos & (PAGE_SIZE - 1);
 687        struct page *page;
 688
 689        gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 690        error = gfs2_glock_nq(&ip->i_gh);
 691        if (unlikely(error))
 692                goto out_uninit;
 693        if (&ip->i_inode == sdp->sd_rindex) {
 694                error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 695                                           GL_NOCACHE, &m_ip->i_gh);
 696                if (unlikely(error)) {
 697                        gfs2_glock_dq(&ip->i_gh);
 698                        goto out_uninit;
 699                }
 700        }
 701
 702        alloc_required = gfs2_write_alloc_required(ip, pos, len);
 703
 704        if (alloc_required || gfs2_is_jdata(ip))
 705                gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 706
 707        if (alloc_required) {
 708                struct gfs2_alloc_parms ap = { .aflags = 0, };
 709                requested = data_blocks + ind_blocks;
 710                ap.target = requested;
 711                error = gfs2_quota_lock_check(ip, &ap);
 712                if (error)
 713                        goto out_unlock;
 714
 715                error = gfs2_inplace_reserve(ip, &ap);
 716                if (error)
 717                        goto out_qunlock;
 718        }
 719
 720        rblocks = RES_DINODE + ind_blocks;
 721        if (gfs2_is_jdata(ip))
 722                rblocks += data_blocks ? data_blocks : 1;
 723        if (ind_blocks || data_blocks)
 724                rblocks += RES_STATFS + RES_QUOTA;
 725        if (&ip->i_inode == sdp->sd_rindex)
 726                rblocks += 2 * RES_STATFS;
 727        if (alloc_required)
 728                rblocks += gfs2_rg_blocks(ip, requested);
 729
 730        error = gfs2_trans_begin(sdp, rblocks,
 731                                 PAGE_SIZE/sdp->sd_sb.sb_bsize);
 732        if (error)
 733                goto out_trans_fail;
 734
 735        error = -ENOMEM;
 736        flags |= AOP_FLAG_NOFS;
 737        page = grab_cache_page_write_begin(mapping, index, flags);
 738        *pagep = page;
 739        if (unlikely(!page))
 740                goto out_endtrans;
 741
 742        if (gfs2_is_stuffed(ip)) {
 743                error = 0;
 744                if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 745                        error = gfs2_unstuff_dinode(ip, page);
 746                        if (error == 0)
 747                                goto prepare_write;
 748                } else if (!PageUptodate(page)) {
 749                        error = stuffed_readpage(ip, page);
 750                }
 751                goto out;
 752        }
 753
 754prepare_write:
 755        error = __block_write_begin(page, from, len, gfs2_block_map);
 756out:
 757        if (error == 0)
 758                return 0;
 759
 760        unlock_page(page);
 761        put_page(page);
 762
 763        gfs2_trans_end(sdp);
 764        if (pos + len > ip->i_inode.i_size)
 765                gfs2_trim_blocks(&ip->i_inode);
 766        goto out_trans_fail;
 767
 768out_endtrans:
 769        gfs2_trans_end(sdp);
 770out_trans_fail:
 771        if (alloc_required) {
 772                gfs2_inplace_release(ip);
 773out_qunlock:
 774                gfs2_quota_unlock(ip);
 775        }
 776out_unlock:
 777        if (&ip->i_inode == sdp->sd_rindex) {
 778                gfs2_glock_dq(&m_ip->i_gh);
 779                gfs2_holder_uninit(&m_ip->i_gh);
 780        }
 781        gfs2_glock_dq(&ip->i_gh);
 782out_uninit:
 783        gfs2_holder_uninit(&ip->i_gh);
 784        return error;
 785}
 786
 787/**
 788 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 789 * @inode: the rindex inode
 790 */
 791static void adjust_fs_space(struct inode *inode)
 792{
 793        struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 794        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 795        struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 796        struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 797        struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 798        struct buffer_head *m_bh, *l_bh;
 799        u64 fs_total, new_free;
 800
 801        /* Total up the file system space, according to the latest rindex. */
 802        fs_total = gfs2_ri_total(sdp);
 803        if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 804                return;
 805
 806        spin_lock(&sdp->sd_statfs_spin);
 807        gfs2_statfs_change_in(m_sc, m_bh->b_data +
 808                              sizeof(struct gfs2_dinode));
 809        if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 810                new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 811        else
 812                new_free = 0;
 813        spin_unlock(&sdp->sd_statfs_spin);
 814        fs_warn(sdp, "File system extended by %llu blocks.\n",
 815                (unsigned long long)new_free);
 816        gfs2_statfs_change(sdp, new_free, new_free, 0);
 817
 818        if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 819                goto out;
 820        update_statfs(sdp, m_bh, l_bh);
 821        brelse(l_bh);
 822out:
 823        brelse(m_bh);
 824}
 825
 826/**
 827 * gfs2_stuffed_write_end - Write end for stuffed files
 828 * @inode: The inode
 829 * @dibh: The buffer_head containing the on-disk inode
 830 * @pos: The file position
 831 * @len: The length of the write
 832 * @copied: How much was actually copied by the VFS
 833 * @page: The page
 834 *
 835 * This copies the data from the page into the inode block after
 836 * the inode data structure itself.
 837 *
 838 * Returns: errno
 839 */
 840static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 841                                  loff_t pos, unsigned len, unsigned copied,
 842                                  struct page *page)
 843{
 844        struct gfs2_inode *ip = GFS2_I(inode);
 845        struct gfs2_sbd *sdp = GFS2_SB(inode);
 846        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 847        u64 to = pos + copied;
 848        void *kaddr;
 849        unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 850
 851        BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 852        kaddr = kmap_atomic(page);
 853        memcpy(buf + pos, kaddr + pos, copied);
 854        flush_dcache_page(page);
 855        kunmap_atomic(kaddr);
 856
 857        WARN_ON(!PageUptodate(page));
 858        unlock_page(page);
 859        put_page(page);
 860
 861        if (copied) {
 862                if (inode->i_size < to)
 863                        i_size_write(inode, to);
 864                mark_inode_dirty(inode);
 865        }
 866
 867        if (inode == sdp->sd_rindex) {
 868                adjust_fs_space(inode);
 869                sdp->sd_rindex_uptodate = 0;
 870        }
 871
 872        brelse(dibh);
 873        gfs2_trans_end(sdp);
 874        if (inode == sdp->sd_rindex) {
 875                gfs2_glock_dq(&m_ip->i_gh);
 876                gfs2_holder_uninit(&m_ip->i_gh);
 877        }
 878        gfs2_glock_dq(&ip->i_gh);
 879        gfs2_holder_uninit(&ip->i_gh);
 880        return copied;
 881}
 882
 883/**
 884 * gfs2_write_end
 885 * @file: The file to write to
 886 * @mapping: The address space to write to
 887 * @pos: The file position
 888 * @len: The length of the data
 889 * @copied: How much was actually copied by the VFS
 890 * @page: The page that has been written
 891 * @fsdata: The fsdata (unused in GFS2)
 892 *
 893 * The main write_end function for GFS2. We have a separate one for
 894 * stuffed files as they are slightly different, otherwise we just
 895 * put our locking around the VFS provided functions.
 896 *
 897 * Returns: errno
 898 */
 899
 900static int gfs2_write_end(struct file *file, struct address_space *mapping,
 901                          loff_t pos, unsigned len, unsigned copied,
 902                          struct page *page, void *fsdata)
 903{
 904        struct inode *inode = page->mapping->host;
 905        struct gfs2_inode *ip = GFS2_I(inode);
 906        struct gfs2_sbd *sdp = GFS2_SB(inode);
 907        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 908        struct buffer_head *dibh;
 909        unsigned int from = pos & (PAGE_SIZE - 1);
 910        unsigned int to = from + len;
 911        int ret;
 912        struct gfs2_trans *tr = current->journal_info;
 913        BUG_ON(!tr);
 914
 915        BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 916
 917        ret = gfs2_meta_inode_buffer(ip, &dibh);
 918        if (unlikely(ret)) {
 919                unlock_page(page);
 920                put_page(page);
 921                goto failed;
 922        }
 923
 924        if (gfs2_is_stuffed(ip))
 925                return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 926
 927        if (!gfs2_is_writeback(ip))
 928                gfs2_page_add_databufs(ip, page, from, to);
 929
 930        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 931        if (tr->tr_num_buf_new)
 932                __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 933        else
 934                gfs2_trans_add_meta(ip->i_gl, dibh);
 935
 936
 937        if (inode == sdp->sd_rindex) {
 938                adjust_fs_space(inode);
 939                sdp->sd_rindex_uptodate = 0;
 940        }
 941
 942        brelse(dibh);
 943failed:
 944        gfs2_trans_end(sdp);
 945        gfs2_inplace_release(ip);
 946        if (ip->i_qadata && ip->i_qadata->qa_qd_num)
 947                gfs2_quota_unlock(ip);
 948        if (inode == sdp->sd_rindex) {
 949                gfs2_glock_dq(&m_ip->i_gh);
 950                gfs2_holder_uninit(&m_ip->i_gh);
 951        }
 952        gfs2_glock_dq(&ip->i_gh);
 953        gfs2_holder_uninit(&ip->i_gh);
 954        return ret;
 955}
 956
 957/**
 958 * gfs2_set_page_dirty - Page dirtying function
 959 * @page: The page to dirty
 960 *
 961 * Returns: 1 if it dirtyed the page, or 0 otherwise
 962 */
 963 
 964static int gfs2_set_page_dirty(struct page *page)
 965{
 966        SetPageChecked(page);
 967        return __set_page_dirty_buffers(page);
 968}
 969
 970/**
 971 * gfs2_bmap - Block map function
 972 * @mapping: Address space info
 973 * @lblock: The block to map
 974 *
 975 * Returns: The disk address for the block or 0 on hole or error
 976 */
 977
 978static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 979{
 980        struct gfs2_inode *ip = GFS2_I(mapping->host);
 981        struct gfs2_holder i_gh;
 982        sector_t dblock = 0;
 983        int error;
 984
 985        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 986        if (error)
 987                return 0;
 988
 989        if (!gfs2_is_stuffed(ip))
 990                dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 991
 992        gfs2_glock_dq_uninit(&i_gh);
 993
 994        return dblock;
 995}
 996
 997static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 998{
 999        struct gfs2_bufdata *bd;
1000
1001        lock_buffer(bh);
1002        gfs2_log_lock(sdp);
1003        clear_buffer_dirty(bh);
1004        bd = bh->b_private;
1005        if (bd) {
1006                if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
1007                        list_del_init(&bd->bd_list);
1008                else
1009                        gfs2_remove_from_journal(bh, REMOVE_JDATA);
1010        }
1011        bh->b_bdev = NULL;
1012        clear_buffer_mapped(bh);
1013        clear_buffer_req(bh);
1014        clear_buffer_new(bh);
1015        gfs2_log_unlock(sdp);
1016        unlock_buffer(bh);
1017}
1018
1019static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1020                                unsigned int length)
1021{
1022        struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1023        unsigned int stop = offset + length;
1024        int partial_page = (offset || length < PAGE_SIZE);
1025        struct buffer_head *bh, *head;
1026        unsigned long pos = 0;
1027
1028        BUG_ON(!PageLocked(page));
1029        if (!partial_page)
1030                ClearPageChecked(page);
1031        if (!page_has_buffers(page))
1032                goto out;
1033
1034        bh = head = page_buffers(page);
1035        do {
1036                if (pos + bh->b_size > stop)
1037                        return;
1038
1039                if (offset <= pos)
1040                        gfs2_discard(sdp, bh);
1041                pos += bh->b_size;
1042                bh = bh->b_this_page;
1043        } while (bh != head);
1044out:
1045        if (!partial_page)
1046                try_to_release_page(page, 0);
1047}
1048
1049/**
1050 * gfs2_ok_for_dio - check that dio is valid on this file
1051 * @ip: The inode
1052 * @offset: The offset at which we are reading or writing
1053 *
1054 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1055 *          1 (to accept the i/o request)
1056 */
1057static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1058{
1059        /*
1060         * Should we return an error here? I can't see that O_DIRECT for
1061         * a stuffed file makes any sense. For now we'll silently fall
1062         * back to buffered I/O
1063         */
1064        if (gfs2_is_stuffed(ip))
1065                return 0;
1066
1067        if (offset >= i_size_read(&ip->i_inode))
1068                return 0;
1069        return 1;
1070}
1071
1072
1073
1074static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1075{
1076        struct file *file = iocb->ki_filp;
1077        struct inode *inode = file->f_mapping->host;
1078        struct address_space *mapping = inode->i_mapping;
1079        struct gfs2_inode *ip = GFS2_I(inode);
1080        loff_t offset = iocb->ki_pos;
1081        struct gfs2_holder gh;
1082        int rv;
1083
1084        /*
1085         * Deferred lock, even if its a write, since we do no allocation
1086         * on this path. All we need change is atime, and this lock mode
1087         * ensures that other nodes have flushed their buffered read caches
1088         * (i.e. their page cache entries for this inode). We do not,
1089         * unfortunately have the option of only flushing a range like
1090         * the VFS does.
1091         */
1092        gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1093        rv = gfs2_glock_nq(&gh);
1094        if (rv)
1095                goto out_uninit;
1096        rv = gfs2_ok_for_dio(ip, offset);
1097        if (rv != 1)
1098                goto out; /* dio not valid, fall back to buffered i/o */
1099
1100        /*
1101         * Now since we are holding a deferred (CW) lock at this point, you
1102         * might be wondering why this is ever needed. There is a case however
1103         * where we've granted a deferred local lock against a cached exclusive
1104         * glock. That is ok provided all granted local locks are deferred, but
1105         * it also means that it is possible to encounter pages which are
1106         * cached and possibly also mapped. So here we check for that and sort
1107         * them out ahead of the dio. The glock state machine will take care of
1108         * everything else.
1109         *
1110         * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1111         * the first place, mapping->nr_pages will always be zero.
1112         */
1113        if (mapping->nrpages) {
1114                loff_t lstart = offset & ~(PAGE_SIZE - 1);
1115                loff_t len = iov_iter_count(iter);
1116                loff_t end = PAGE_ALIGN(offset + len) - 1;
1117
1118                rv = 0;
1119                if (len == 0)
1120                        goto out;
1121                if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1122                        unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1123                rv = filemap_write_and_wait_range(mapping, lstart, end);
1124                if (rv)
1125                        goto out;
1126                if (iov_iter_rw(iter) == WRITE)
1127                        truncate_inode_pages_range(mapping, lstart, end);
1128        }
1129
1130        rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1131                                  gfs2_get_block_direct, NULL, NULL, 0);
1132out:
1133        gfs2_glock_dq(&gh);
1134out_uninit:
1135        gfs2_holder_uninit(&gh);
1136        return rv;
1137}
1138
1139/**
1140 * gfs2_releasepage - free the metadata associated with a page
1141 * @page: the page that's being released
1142 * @gfp_mask: passed from Linux VFS, ignored by us
1143 *
1144 * Call try_to_free_buffers() if the buffers in this page can be
1145 * released.
1146 *
1147 * Returns: 0
1148 */
1149
1150int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1151{
1152        struct address_space *mapping = page->mapping;
1153        struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1154        struct buffer_head *bh, *head;
1155        struct gfs2_bufdata *bd;
1156
1157        if (!page_has_buffers(page))
1158                return 0;
1159
1160        /*
1161         * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1162         * clean pages might not have had the dirty bit cleared.  Thus, it can
1163         * send actual dirty pages to ->releasepage() via shrink_active_list().
1164         *
1165         * As a workaround, we skip pages that contain dirty buffers below.
1166         * Once ->releasepage isn't called on dirty pages anymore, we can warn
1167         * on dirty buffers like we used to here again.
1168         */
1169
1170        gfs2_log_lock(sdp);
1171        spin_lock(&sdp->sd_ail_lock);
1172        head = bh = page_buffers(page);
1173        do {
1174                if (atomic_read(&bh->b_count))
1175                        goto cannot_release;
1176                bd = bh->b_private;
1177                if (bd && bd->bd_tr)
1178                        goto cannot_release;
1179                if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1180                        goto cannot_release;
1181                bh = bh->b_this_page;
1182        } while(bh != head);
1183        spin_unlock(&sdp->sd_ail_lock);
1184
1185        head = bh = page_buffers(page);
1186        do {
1187                bd = bh->b_private;
1188                if (bd) {
1189                        gfs2_assert_warn(sdp, bd->bd_bh == bh);
1190                        if (!list_empty(&bd->bd_list))
1191                                list_del_init(&bd->bd_list);
1192                        bd->bd_bh = NULL;
1193                        bh->b_private = NULL;
1194                        kmem_cache_free(gfs2_bufdata_cachep, bd);
1195                }
1196
1197                bh = bh->b_this_page;
1198        } while (bh != head);
1199        gfs2_log_unlock(sdp);
1200
1201        return try_to_free_buffers(page);
1202
1203cannot_release:
1204        spin_unlock(&sdp->sd_ail_lock);
1205        gfs2_log_unlock(sdp);
1206        return 0;
1207}
1208
1209static const struct address_space_operations gfs2_writeback_aops = {
1210        .writepage = gfs2_writepage,
1211        .writepages = gfs2_writepages,
1212        .readpage = gfs2_readpage,
1213        .readpages = gfs2_readpages,
1214        .write_begin = gfs2_write_begin,
1215        .write_end = gfs2_write_end,
1216        .bmap = gfs2_bmap,
1217        .invalidatepage = gfs2_invalidatepage,
1218        .releasepage = gfs2_releasepage,
1219        .direct_IO = gfs2_direct_IO,
1220        .migratepage = buffer_migrate_page,
1221        .is_partially_uptodate = block_is_partially_uptodate,
1222        .error_remove_page = generic_error_remove_page,
1223};
1224
1225static const struct address_space_operations gfs2_ordered_aops = {
1226        .writepage = gfs2_writepage,
1227        .writepages = gfs2_writepages,
1228        .readpage = gfs2_readpage,
1229        .readpages = gfs2_readpages,
1230        .write_begin = gfs2_write_begin,
1231        .write_end = gfs2_write_end,
1232        .set_page_dirty = gfs2_set_page_dirty,
1233        .bmap = gfs2_bmap,
1234        .invalidatepage = gfs2_invalidatepage,
1235        .releasepage = gfs2_releasepage,
1236        .direct_IO = gfs2_direct_IO,
1237        .migratepage = buffer_migrate_page,
1238        .is_partially_uptodate = block_is_partially_uptodate,
1239        .error_remove_page = generic_error_remove_page,
1240};
1241
1242static const struct address_space_operations gfs2_jdata_aops = {
1243        .writepage = gfs2_jdata_writepage,
1244        .writepages = gfs2_jdata_writepages,
1245        .readpage = gfs2_readpage,
1246        .readpages = gfs2_readpages,
1247        .write_begin = gfs2_write_begin,
1248        .write_end = gfs2_write_end,
1249        .set_page_dirty = gfs2_set_page_dirty,
1250        .bmap = gfs2_bmap,
1251        .invalidatepage = gfs2_invalidatepage,
1252        .releasepage = gfs2_releasepage,
1253        .is_partially_uptodate = block_is_partially_uptodate,
1254        .error_remove_page = generic_error_remove_page,
1255};
1256
1257void gfs2_set_aops(struct inode *inode)
1258{
1259        struct gfs2_inode *ip = GFS2_I(inode);
1260
1261        if (gfs2_is_writeback(ip))
1262                inode->i_mapping->a_ops = &gfs2_writeback_aops;
1263        else if (gfs2_is_ordered(ip))
1264                inode->i_mapping->a_ops = &gfs2_ordered_aops;
1265        else if (gfs2_is_jdata(ip))
1266                inode->i_mapping->a_ops = &gfs2_jdata_aops;
1267        else
1268                BUG();
1269}
1270
1271