linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/*
   2 * Symmetric key ciphers.
   3 * 
   4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_SKCIPHER_H
  14#define _CRYPTO_SKCIPHER_H
  15
  16#include <linux/crypto.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19
  20/**
  21 *      struct skcipher_request - Symmetric key cipher request
  22 *      @cryptlen: Number of bytes to encrypt or decrypt
  23 *      @iv: Initialisation Vector
  24 *      @src: Source SG list
  25 *      @dst: Destination SG list
  26 *      @base: Underlying async request request
  27 *      @__ctx: Start of private context data
  28 */
  29struct skcipher_request {
  30        unsigned int cryptlen;
  31
  32        u8 *iv;
  33
  34        struct scatterlist *src;
  35        struct scatterlist *dst;
  36
  37        struct crypto_async_request base;
  38
  39        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  40};
  41
  42/**
  43 *      struct skcipher_givcrypt_request - Crypto request with IV generation
  44 *      @seq: Sequence number for IV generation
  45 *      @giv: Space for generated IV
  46 *      @creq: The crypto request itself
  47 */
  48struct skcipher_givcrypt_request {
  49        u64 seq;
  50        u8 *giv;
  51
  52        struct ablkcipher_request creq;
  53};
  54
  55struct crypto_skcipher {
  56        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  57                        unsigned int keylen);
  58        int (*setkeytype)(struct crypto_skcipher *tfm, const u8 *key,
  59                          unsigned int keylen);
  60        int (*encrypt)(struct skcipher_request *req);
  61        int (*decrypt)(struct skcipher_request *req);
  62
  63        unsigned int ivsize;
  64        unsigned int reqsize;
  65        unsigned int keysize;
  66
  67        struct crypto_tfm base;
  68};
  69
  70/**
  71 * struct skcipher_alg - symmetric key cipher definition
  72 * @min_keysize: Minimum key size supported by the transformation. This is the
  73 *               smallest key length supported by this transformation algorithm.
  74 *               This must be set to one of the pre-defined values as this is
  75 *               not hardware specific. Possible values for this field can be
  76 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
  77 * @max_keysize: Maximum key size supported by the transformation. This is the
  78 *               largest key length supported by this transformation algorithm.
  79 *               This must be set to one of the pre-defined values as this is
  80 *               not hardware specific. Possible values for this field can be
  81 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
  82 * @setkey: Set key for the transformation. This function is used to either
  83 *          program a supplied key into the hardware or store the key in the
  84 *          transformation context for programming it later. Note that this
  85 *          function does modify the transformation context. This function can
  86 *          be called multiple times during the existence of the transformation
  87 *          object, so one must make sure the key is properly reprogrammed into
  88 *          the hardware. This function is also responsible for checking the key
  89 *          length for validity. In case a software fallback was put in place in
  90 *          the @cra_init call, this function might need to use the fallback if
  91 *          the algorithm doesn't support all of the key sizes.
  92 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  93 *           the supplied scatterlist containing the blocks of data. The crypto
  94 *           API consumer is responsible for aligning the entries of the
  95 *           scatterlist properly and making sure the chunks are correctly
  96 *           sized. In case a software fallback was put in place in the
  97 *           @cra_init call, this function might need to use the fallback if
  98 *           the algorithm doesn't support all of the key sizes. In case the
  99 *           key was stored in transformation context, the key might need to be
 100 *           re-programmed into the hardware in this function. This function
 101 *           shall not modify the transformation context, as this function may
 102 *           be called in parallel with the same transformation object.
 103 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
 104 *           and the conditions are exactly the same.
 105 * @init: Initialize the cryptographic transformation object. This function
 106 *        is used to initialize the cryptographic transformation object.
 107 *        This function is called only once at the instantiation time, right
 108 *        after the transformation context was allocated. In case the
 109 *        cryptographic hardware has some special requirements which need to
 110 *        be handled by software, this function shall check for the precise
 111 *        requirement of the transformation and put any software fallbacks
 112 *        in place.
 113 * @exit: Deinitialize the cryptographic transformation object. This is a
 114 *        counterpart to @init, used to remove various changes set in
 115 *        @init.
 116 * @ivsize: IV size applicable for transformation. The consumer must provide an
 117 *          IV of exactly that size to perform the encrypt or decrypt operation.
 118 * @chunksize: Equal to the block size except for stream ciphers such as
 119 *             CTR where it is set to the underlying block size.
 120 * @walksize: Equal to the chunk size except in cases where the algorithm is
 121 *            considerably more efficient if it can operate on multiple chunks
 122 *            in parallel. Should be a multiple of chunksize.
 123 * @base: Definition of a generic crypto algorithm.
 124 *
 125 * All fields except @ivsize are mandatory and must be filled.
 126 */
 127struct skcipher_alg {
 128        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
 129                      unsigned int keylen);
 130        int (*setkeytype)(struct crypto_skcipher *tfm, const u8 *key,
 131                          unsigned int keylen);
 132        int (*encrypt)(struct skcipher_request *req);
 133        int (*decrypt)(struct skcipher_request *req);
 134        int (*init)(struct crypto_skcipher *tfm);
 135        void (*exit)(struct crypto_skcipher *tfm);
 136
 137        unsigned int min_keysize;
 138        unsigned int max_keysize;
 139        unsigned int ivsize;
 140        unsigned int chunksize;
 141        unsigned int walksize;
 142
 143        struct crypto_alg base;
 144};
 145
 146#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
 147        char __##name##_desc[sizeof(struct skcipher_request) + \
 148                crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
 149        struct skcipher_request *name = (void *)__##name##_desc
 150
 151/**
 152 * DOC: Symmetric Key Cipher API
 153 *
 154 * Symmetric key cipher API is used with the ciphers of type
 155 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 156 *
 157 * Asynchronous cipher operations imply that the function invocation for a
 158 * cipher request returns immediately before the completion of the operation.
 159 * The cipher request is scheduled as a separate kernel thread and therefore
 160 * load-balanced on the different CPUs via the process scheduler. To allow
 161 * the kernel crypto API to inform the caller about the completion of a cipher
 162 * request, the caller must provide a callback function. That function is
 163 * invoked with the cipher handle when the request completes.
 164 *
 165 * To support the asynchronous operation, additional information than just the
 166 * cipher handle must be supplied to the kernel crypto API. That additional
 167 * information is given by filling in the skcipher_request data structure.
 168 *
 169 * For the symmetric key cipher API, the state is maintained with the tfm
 170 * cipher handle. A single tfm can be used across multiple calls and in
 171 * parallel. For asynchronous block cipher calls, context data supplied and
 172 * only used by the caller can be referenced the request data structure in
 173 * addition to the IV used for the cipher request. The maintenance of such
 174 * state information would be important for a crypto driver implementer to
 175 * have, because when calling the callback function upon completion of the
 176 * cipher operation, that callback function may need some information about
 177 * which operation just finished if it invoked multiple in parallel. This
 178 * state information is unused by the kernel crypto API.
 179 */
 180
 181static inline struct crypto_skcipher *__crypto_skcipher_cast(
 182        struct crypto_tfm *tfm)
 183{
 184        return container_of(tfm, struct crypto_skcipher, base);
 185}
 186
 187/**
 188 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 189 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 190 *            skcipher cipher
 191 * @type: specifies the type of the cipher
 192 * @mask: specifies the mask for the cipher
 193 *
 194 * Allocate a cipher handle for an skcipher. The returned struct
 195 * crypto_skcipher is the cipher handle that is required for any subsequent
 196 * API invocation for that skcipher.
 197 *
 198 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 199 *         of an error, PTR_ERR() returns the error code.
 200 */
 201struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 202                                              u32 type, u32 mask);
 203
 204static inline struct crypto_tfm *crypto_skcipher_tfm(
 205        struct crypto_skcipher *tfm)
 206{
 207        return &tfm->base;
 208}
 209
 210/**
 211 * crypto_free_skcipher() - zeroize and free cipher handle
 212 * @tfm: cipher handle to be freed
 213 */
 214static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 215{
 216        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 217}
 218
 219/**
 220 * crypto_has_skcipher() - Search for the availability of an skcipher.
 221 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 222 *            skcipher
 223 * @type: specifies the type of the cipher
 224 * @mask: specifies the mask for the cipher
 225 *
 226 * Return: true when the skcipher is known to the kernel crypto API; false
 227 *         otherwise
 228 */
 229static inline int crypto_has_skcipher(const char *alg_name, u32 type,
 230                                        u32 mask)
 231{
 232        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 233                              crypto_skcipher_mask(mask));
 234}
 235
 236/**
 237 * crypto_has_skcipher2() - Search for the availability of an skcipher.
 238 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 239 *            skcipher
 240 * @type: specifies the type of the skcipher
 241 * @mask: specifies the mask for the skcipher
 242 *
 243 * Return: true when the skcipher is known to the kernel crypto API; false
 244 *         otherwise
 245 */
 246int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
 247
 248static inline const char *crypto_skcipher_driver_name(
 249        struct crypto_skcipher *tfm)
 250{
 251        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 252}
 253
 254static inline struct skcipher_alg *crypto_skcipher_alg(
 255        struct crypto_skcipher *tfm)
 256{
 257        return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
 258                            struct skcipher_alg, base);
 259}
 260
 261static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
 262{
 263        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 264            CRYPTO_ALG_TYPE_BLKCIPHER)
 265                return alg->base.cra_blkcipher.ivsize;
 266
 267        if (alg->base.cra_ablkcipher.encrypt)
 268                return alg->base.cra_ablkcipher.ivsize;
 269
 270        return alg->ivsize;
 271}
 272
 273/**
 274 * crypto_skcipher_ivsize() - obtain IV size
 275 * @tfm: cipher handle
 276 *
 277 * The size of the IV for the skcipher referenced by the cipher handle is
 278 * returned. This IV size may be zero if the cipher does not need an IV.
 279 *
 280 * Return: IV size in bytes
 281 */
 282static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 283{
 284        return tfm->ivsize;
 285}
 286
 287static inline unsigned int crypto_skcipher_alg_chunksize(
 288        struct skcipher_alg *alg)
 289{
 290        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 291            CRYPTO_ALG_TYPE_BLKCIPHER)
 292                return alg->base.cra_blocksize;
 293
 294        if (alg->base.cra_ablkcipher.encrypt)
 295                return alg->base.cra_blocksize;
 296
 297        return alg->chunksize;
 298}
 299
 300static inline unsigned int crypto_skcipher_alg_walksize(
 301        struct skcipher_alg *alg)
 302{
 303        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 304            CRYPTO_ALG_TYPE_BLKCIPHER)
 305                return alg->base.cra_blocksize;
 306
 307        if (alg->base.cra_ablkcipher.encrypt)
 308                return alg->base.cra_blocksize;
 309
 310        return alg->walksize;
 311}
 312
 313/**
 314 * crypto_skcipher_chunksize() - obtain chunk size
 315 * @tfm: cipher handle
 316 *
 317 * The block size is set to one for ciphers such as CTR.  However,
 318 * you still need to provide incremental updates in multiples of
 319 * the underlying block size as the IV does not have sub-block
 320 * granularity.  This is known in this API as the chunk size.
 321 *
 322 * Return: chunk size in bytes
 323 */
 324static inline unsigned int crypto_skcipher_chunksize(
 325        struct crypto_skcipher *tfm)
 326{
 327        return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
 328}
 329
 330/**
 331 * crypto_skcipher_walksize() - obtain walk size
 332 * @tfm: cipher handle
 333 *
 334 * In some cases, algorithms can only perform optimally when operating on
 335 * multiple blocks in parallel. This is reflected by the walksize, which
 336 * must be a multiple of the chunksize (or equal if the concern does not
 337 * apply)
 338 *
 339 * Return: walk size in bytes
 340 */
 341static inline unsigned int crypto_skcipher_walksize(
 342        struct crypto_skcipher *tfm)
 343{
 344        return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
 345}
 346
 347/**
 348 * crypto_skcipher_blocksize() - obtain block size of cipher
 349 * @tfm: cipher handle
 350 *
 351 * The block size for the skcipher referenced with the cipher handle is
 352 * returned. The caller may use that information to allocate appropriate
 353 * memory for the data returned by the encryption or decryption operation
 354 *
 355 * Return: block size of cipher
 356 */
 357static inline unsigned int crypto_skcipher_blocksize(
 358        struct crypto_skcipher *tfm)
 359{
 360        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 361}
 362
 363static inline unsigned int crypto_skcipher_alignmask(
 364        struct crypto_skcipher *tfm)
 365{
 366        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 367}
 368
 369static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 370{
 371        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 372}
 373
 374static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 375                                               u32 flags)
 376{
 377        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 378}
 379
 380static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 381                                                 u32 flags)
 382{
 383        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 384}
 385
 386/**
 387 * crypto_skcipher_setkey() - set key for cipher
 388 * @tfm: cipher handle
 389 * @key: buffer holding the key
 390 * @keylen: length of the key in bytes
 391 *
 392 * The caller provided key is set for the skcipher referenced by the cipher
 393 * handle.
 394 *
 395 * Note, the key length determines the cipher type. Many block ciphers implement
 396 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 397 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 398 * is performed.
 399 *
 400 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 401 */
 402static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 403                                         const u8 *key, unsigned int keylen)
 404{
 405        return tfm->setkey(tfm, key, keylen);
 406}
 407
 408static inline int crypto_skcipher_setkeytype(struct crypto_skcipher *tfm,
 409                                             const u8 *key, unsigned int keylen)
 410{
 411        return tfm->setkeytype(tfm, key, keylen);
 412}
 413
 414static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
 415{
 416        return tfm->keysize;
 417}
 418
 419static inline unsigned int crypto_skcipher_default_keysize(
 420        struct crypto_skcipher *tfm)
 421{
 422        return tfm->keysize;
 423}
 424
 425/**
 426 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 427 * @req: skcipher_request out of which the cipher handle is to be obtained
 428 *
 429 * Return the crypto_skcipher handle when furnishing an skcipher_request
 430 * data structure.
 431 *
 432 * Return: crypto_skcipher handle
 433 */
 434static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 435        struct skcipher_request *req)
 436{
 437        return __crypto_skcipher_cast(req->base.tfm);
 438}
 439
 440/**
 441 * crypto_skcipher_encrypt() - encrypt plaintext
 442 * @req: reference to the skcipher_request handle that holds all information
 443 *       needed to perform the cipher operation
 444 *
 445 * Encrypt plaintext data using the skcipher_request handle. That data
 446 * structure and how it is filled with data is discussed with the
 447 * skcipher_request_* functions.
 448 *
 449 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 450 */
 451static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
 452{
 453        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 454
 455        return tfm->encrypt(req);
 456}
 457
 458/**
 459 * crypto_skcipher_decrypt() - decrypt ciphertext
 460 * @req: reference to the skcipher_request handle that holds all information
 461 *       needed to perform the cipher operation
 462 *
 463 * Decrypt ciphertext data using the skcipher_request handle. That data
 464 * structure and how it is filled with data is discussed with the
 465 * skcipher_request_* functions.
 466 *
 467 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 468 */
 469static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
 470{
 471        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 472
 473        return tfm->decrypt(req);
 474}
 475
 476/**
 477 * DOC: Symmetric Key Cipher Request Handle
 478 *
 479 * The skcipher_request data structure contains all pointers to data
 480 * required for the symmetric key cipher operation. This includes the cipher
 481 * handle (which can be used by multiple skcipher_request instances), pointer
 482 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 483 * as a handle to the skcipher_request_* API calls in a similar way as
 484 * skcipher handle to the crypto_skcipher_* API calls.
 485 */
 486
 487/**
 488 * crypto_skcipher_reqsize() - obtain size of the request data structure
 489 * @tfm: cipher handle
 490 *
 491 * Return: number of bytes
 492 */
 493static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 494{
 495        return tfm->reqsize;
 496}
 497
 498/**
 499 * skcipher_request_set_tfm() - update cipher handle reference in request
 500 * @req: request handle to be modified
 501 * @tfm: cipher handle that shall be added to the request handle
 502 *
 503 * Allow the caller to replace the existing skcipher handle in the request
 504 * data structure with a different one.
 505 */
 506static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 507                                            struct crypto_skcipher *tfm)
 508{
 509        req->base.tfm = crypto_skcipher_tfm(tfm);
 510}
 511
 512static inline struct skcipher_request *skcipher_request_cast(
 513        struct crypto_async_request *req)
 514{
 515        return container_of(req, struct skcipher_request, base);
 516}
 517
 518/**
 519 * skcipher_request_alloc() - allocate request data structure
 520 * @tfm: cipher handle to be registered with the request
 521 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 522 *
 523 * Allocate the request data structure that must be used with the skcipher
 524 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 525 * handle is registered in the request data structure.
 526 *
 527 * Return: allocated request handle in case of success, or NULL if out of memory
 528 */
 529static inline struct skcipher_request *skcipher_request_alloc(
 530        struct crypto_skcipher *tfm, gfp_t gfp)
 531{
 532        struct skcipher_request *req;
 533
 534        req = kmalloc(sizeof(struct skcipher_request) +
 535                      crypto_skcipher_reqsize(tfm), gfp);
 536
 537        if (likely(req))
 538                skcipher_request_set_tfm(req, tfm);
 539
 540        return req;
 541}
 542
 543/**
 544 * skcipher_request_free() - zeroize and free request data structure
 545 * @req: request data structure cipher handle to be freed
 546 */
 547static inline void skcipher_request_free(struct skcipher_request *req)
 548{
 549        kzfree(req);
 550}
 551
 552static inline void skcipher_request_zero(struct skcipher_request *req)
 553{
 554        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 555
 556        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 557}
 558
 559/**
 560 * skcipher_request_set_callback() - set asynchronous callback function
 561 * @req: request handle
 562 * @flags: specify zero or an ORing of the flags
 563 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 564 *         increase the wait queue beyond the initial maximum size;
 565 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 566 * @compl: callback function pointer to be registered with the request handle
 567 * @data: The data pointer refers to memory that is not used by the kernel
 568 *        crypto API, but provided to the callback function for it to use. Here,
 569 *        the caller can provide a reference to memory the callback function can
 570 *        operate on. As the callback function is invoked asynchronously to the
 571 *        related functionality, it may need to access data structures of the
 572 *        related functionality which can be referenced using this pointer. The
 573 *        callback function can access the memory via the "data" field in the
 574 *        crypto_async_request data structure provided to the callback function.
 575 *
 576 * This function allows setting the callback function that is triggered once the
 577 * cipher operation completes.
 578 *
 579 * The callback function is registered with the skcipher_request handle and
 580 * must comply with the following template::
 581 *
 582 *      void callback_function(struct crypto_async_request *req, int error)
 583 */
 584static inline void skcipher_request_set_callback(struct skcipher_request *req,
 585                                                 u32 flags,
 586                                                 crypto_completion_t compl,
 587                                                 void *data)
 588{
 589        req->base.complete = compl;
 590        req->base.data = data;
 591        req->base.flags = flags;
 592}
 593
 594/**
 595 * skcipher_request_set_crypt() - set data buffers
 596 * @req: request handle
 597 * @src: source scatter / gather list
 598 * @dst: destination scatter / gather list
 599 * @cryptlen: number of bytes to process from @src
 600 * @iv: IV for the cipher operation which must comply with the IV size defined
 601 *      by crypto_skcipher_ivsize
 602 *
 603 * This function allows setting of the source data and destination data
 604 * scatter / gather lists.
 605 *
 606 * For encryption, the source is treated as the plaintext and the
 607 * destination is the ciphertext. For a decryption operation, the use is
 608 * reversed - the source is the ciphertext and the destination is the plaintext.
 609 */
 610static inline void skcipher_request_set_crypt(
 611        struct skcipher_request *req,
 612        struct scatterlist *src, struct scatterlist *dst,
 613        unsigned int cryptlen, void *iv)
 614{
 615        req->src = src;
 616        req->dst = dst;
 617        req->cryptlen = cryptlen;
 618        req->iv = iv;
 619}
 620
 621#endif  /* _CRYPTO_SKCIPHER_H */
 622
 623