linux/include/linux/sched/signal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_SIGNAL_H
   3#define _LINUX_SCHED_SIGNAL_H
   4
   5#include <linux/rculist.h>
   6#include <linux/signal.h>
   7#include <linux/sched.h>
   8#include <linux/sched/jobctl.h>
   9#include <linux/sched/task.h>
  10#include <linux/cred.h>
  11
  12/*
  13 * Types defining task->signal and task->sighand and APIs using them:
  14 */
  15
  16struct sighand_struct {
  17        atomic_t                count;
  18        struct k_sigaction      action[_NSIG];
  19        spinlock_t              siglock;
  20        wait_queue_head_t       signalfd_wqh;
  21};
  22
  23/*
  24 * Per-process accounting stats:
  25 */
  26struct pacct_struct {
  27        int                     ac_flag;
  28        long                    ac_exitcode;
  29        unsigned long           ac_mem;
  30        u64                     ac_utime, ac_stime;
  31        unsigned long           ac_minflt, ac_majflt;
  32};
  33
  34struct cpu_itimer {
  35        u64 expires;
  36        u64 incr;
  37};
  38
  39/*
  40 * This is the atomic variant of task_cputime, which can be used for
  41 * storing and updating task_cputime statistics without locking.
  42 */
  43struct task_cputime_atomic {
  44        atomic64_t utime;
  45        atomic64_t stime;
  46        atomic64_t sum_exec_runtime;
  47};
  48
  49#define INIT_CPUTIME_ATOMIC \
  50        (struct task_cputime_atomic) {                          \
  51                .utime = ATOMIC64_INIT(0),                      \
  52                .stime = ATOMIC64_INIT(0),                      \
  53                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  54        }
  55/**
  56 * struct thread_group_cputimer - thread group interval timer counts
  57 * @cputime_atomic:     atomic thread group interval timers.
  58 * @running:            true when there are timers running and
  59 *                      @cputime_atomic receives updates.
  60 * @checking_timer:     true when a thread in the group is in the
  61 *                      process of checking for thread group timers.
  62 *
  63 * This structure contains the version of task_cputime, above, that is
  64 * used for thread group CPU timer calculations.
  65 */
  66struct thread_group_cputimer {
  67        struct task_cputime_atomic cputime_atomic;
  68        bool running;
  69        bool checking_timer;
  70};
  71
  72/*
  73 * NOTE! "signal_struct" does not have its own
  74 * locking, because a shared signal_struct always
  75 * implies a shared sighand_struct, so locking
  76 * sighand_struct is always a proper superset of
  77 * the locking of signal_struct.
  78 */
  79struct signal_struct {
  80        atomic_t                sigcnt;
  81        atomic_t                live;
  82        int                     nr_threads;
  83        struct list_head        thread_head;
  84
  85        wait_queue_head_t       wait_chldexit;  /* for wait4() */
  86
  87        /* current thread group signal load-balancing target: */
  88        struct task_struct      *curr_target;
  89
  90        /* shared signal handling: */
  91        struct sigpending       shared_pending;
  92
  93        /* thread group exit support */
  94        int                     group_exit_code;
  95        /* overloaded:
  96         * - notify group_exit_task when ->count is equal to notify_count
  97         * - everyone except group_exit_task is stopped during signal delivery
  98         *   of fatal signals, group_exit_task processes the signal.
  99         */
 100        int                     notify_count;
 101        struct task_struct      *group_exit_task;
 102
 103        /* thread group stop support, overloads group_exit_code too */
 104        int                     group_stop_count;
 105        unsigned int            flags; /* see SIGNAL_* flags below */
 106
 107        /*
 108         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 109         * manager, to re-parent orphan (double-forking) child processes
 110         * to this process instead of 'init'. The service manager is
 111         * able to receive SIGCHLD signals and is able to investigate
 112         * the process until it calls wait(). All children of this
 113         * process will inherit a flag if they should look for a
 114         * child_subreaper process at exit.
 115         */
 116        unsigned int            is_child_subreaper:1;
 117        unsigned int            has_child_subreaper:1;
 118
 119#ifdef CONFIG_POSIX_TIMERS
 120
 121        /* POSIX.1b Interval Timers */
 122        int                     posix_timer_id;
 123        struct list_head        posix_timers;
 124
 125        /* ITIMER_REAL timer for the process */
 126        struct hrtimer real_timer;
 127        ktime_t it_real_incr;
 128
 129        /*
 130         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 131         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 132         * values are defined to 0 and 1 respectively
 133         */
 134        struct cpu_itimer it[2];
 135
 136        /*
 137         * Thread group totals for process CPU timers.
 138         * See thread_group_cputimer(), et al, for details.
 139         */
 140        struct thread_group_cputimer cputimer;
 141
 142        /* Earliest-expiration cache. */
 143        struct task_cputime cputime_expires;
 144
 145        struct list_head cpu_timers[3];
 146
 147#endif
 148
 149        struct pid *leader_pid;
 150
 151#ifdef CONFIG_NO_HZ_FULL
 152        atomic_t tick_dep_mask;
 153#endif
 154
 155        struct pid *tty_old_pgrp;
 156
 157        /* boolean value for session group leader */
 158        int leader;
 159
 160        struct tty_struct *tty; /* NULL if no tty */
 161
 162#ifdef CONFIG_SCHED_AUTOGROUP
 163        struct autogroup *autogroup;
 164#endif
 165        /*
 166         * Cumulative resource counters for dead threads in the group,
 167         * and for reaped dead child processes forked by this group.
 168         * Live threads maintain their own counters and add to these
 169         * in __exit_signal, except for the group leader.
 170         */
 171        seqlock_t stats_lock;
 172        u64 utime, stime, cutime, cstime;
 173        u64 gtime;
 174        u64 cgtime;
 175        struct prev_cputime prev_cputime;
 176        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 177        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 178        unsigned long inblock, oublock, cinblock, coublock;
 179        unsigned long maxrss, cmaxrss;
 180        struct task_io_accounting ioac;
 181
 182        /*
 183         * Cumulative ns of schedule CPU time fo dead threads in the
 184         * group, not including a zombie group leader, (This only differs
 185         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 186         * other than jiffies.)
 187         */
 188        unsigned long long sum_sched_runtime;
 189
 190        /*
 191         * We don't bother to synchronize most readers of this at all,
 192         * because there is no reader checking a limit that actually needs
 193         * to get both rlim_cur and rlim_max atomically, and either one
 194         * alone is a single word that can safely be read normally.
 195         * getrlimit/setrlimit use task_lock(current->group_leader) to
 196         * protect this instead of the siglock, because they really
 197         * have no need to disable irqs.
 198         */
 199        struct rlimit rlim[RLIM_NLIMITS];
 200
 201#ifdef CONFIG_BSD_PROCESS_ACCT
 202        struct pacct_struct pacct;      /* per-process accounting information */
 203#endif
 204#ifdef CONFIG_TASKSTATS
 205        struct taskstats *stats;
 206#endif
 207#ifdef CONFIG_AUDIT
 208        unsigned audit_tty;
 209        struct tty_audit_buf *tty_audit_buf;
 210#endif
 211
 212        /*
 213         * Thread is the potential origin of an oom condition; kill first on
 214         * oom
 215         */
 216        bool oom_flag_origin;
 217        short oom_score_adj;            /* OOM kill score adjustment */
 218        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 219                                         * Only settable by CAP_SYS_RESOURCE. */
 220        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 221                                         * killed by the oom killer */
 222
 223        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 224                                         * credential calculations
 225                                         * (notably. ptrace) */
 226} __randomize_layout;
 227
 228/*
 229 * Bits in flags field of signal_struct.
 230 */
 231#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 232#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 233#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 234#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 235/*
 236 * Pending notifications to parent.
 237 */
 238#define SIGNAL_CLD_STOPPED      0x00000010
 239#define SIGNAL_CLD_CONTINUED    0x00000020
 240#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 241
 242#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 243
 244#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 245                          SIGNAL_STOP_CONTINUED)
 246
 247static inline void signal_set_stop_flags(struct signal_struct *sig,
 248                                         unsigned int flags)
 249{
 250        WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 251        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 252}
 253
 254/* If true, all threads except ->group_exit_task have pending SIGKILL */
 255static inline int signal_group_exit(const struct signal_struct *sig)
 256{
 257        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 258                (sig->group_exit_task != NULL);
 259}
 260
 261extern void flush_signals(struct task_struct *);
 262extern void ignore_signals(struct task_struct *);
 263extern void flush_signal_handlers(struct task_struct *, int force_default);
 264extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
 265
 266static inline int kernel_dequeue_signal(siginfo_t *info)
 267{
 268        struct task_struct *tsk = current;
 269        siginfo_t __info;
 270        int ret;
 271
 272        spin_lock_irq(&tsk->sighand->siglock);
 273        ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
 274        spin_unlock_irq(&tsk->sighand->siglock);
 275
 276        return ret;
 277}
 278
 279static inline void kernel_signal_stop(void)
 280{
 281        spin_lock_irq(&current->sighand->siglock);
 282        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 283                __set_current_state(TASK_STOPPED);
 284        spin_unlock_irq(&current->sighand->siglock);
 285
 286        schedule();
 287}
 288extern int send_sig_info(int, struct siginfo *, struct task_struct *);
 289extern int force_sigsegv(int, struct task_struct *);
 290extern int force_sig_info(int, struct siginfo *, struct task_struct *);
 291extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
 292extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
 293extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
 294                                const struct cred *, u32);
 295extern int kill_pgrp(struct pid *pid, int sig, int priv);
 296extern int kill_pid(struct pid *pid, int sig, int priv);
 297extern __must_check bool do_notify_parent(struct task_struct *, int);
 298extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 299extern void force_sig(int, struct task_struct *);
 300extern int send_sig(int, struct task_struct *, int);
 301extern int zap_other_threads(struct task_struct *p);
 302extern struct sigqueue *sigqueue_alloc(void);
 303extern void sigqueue_free(struct sigqueue *);
 304extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
 305extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 306
 307static inline int restart_syscall(void)
 308{
 309        set_tsk_thread_flag(current, TIF_SIGPENDING);
 310        return -ERESTARTNOINTR;
 311}
 312
 313static inline int signal_pending(struct task_struct *p)
 314{
 315        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 316}
 317
 318static inline int __fatal_signal_pending(struct task_struct *p)
 319{
 320        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 321}
 322
 323static inline int fatal_signal_pending(struct task_struct *p)
 324{
 325        return signal_pending(p) && __fatal_signal_pending(p);
 326}
 327
 328static inline int signal_pending_state(long state, struct task_struct *p)
 329{
 330        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 331                return 0;
 332        if (!signal_pending(p))
 333                return 0;
 334
 335        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 336}
 337
 338/*
 339 * Reevaluate whether the task has signals pending delivery.
 340 * Wake the task if so.
 341 * This is required every time the blocked sigset_t changes.
 342 * callers must hold sighand->siglock.
 343 */
 344extern void recalc_sigpending_and_wake(struct task_struct *t);
 345extern void recalc_sigpending(void);
 346
 347extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 348
 349static inline void signal_wake_up(struct task_struct *t, bool resume)
 350{
 351        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 352}
 353static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 354{
 355        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 356}
 357
 358#ifdef TIF_RESTORE_SIGMASK
 359/*
 360 * Legacy restore_sigmask accessors.  These are inefficient on
 361 * SMP architectures because they require atomic operations.
 362 */
 363
 364/**
 365 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 366 *
 367 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 368 * will run before returning to user mode, to process the flag.  For
 369 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 370 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 371 * arch code will notice on return to user mode, in case those bits
 372 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 373 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 374 */
 375static inline void set_restore_sigmask(void)
 376{
 377        set_thread_flag(TIF_RESTORE_SIGMASK);
 378        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 379}
 380static inline void clear_restore_sigmask(void)
 381{
 382        clear_thread_flag(TIF_RESTORE_SIGMASK);
 383}
 384static inline bool test_restore_sigmask(void)
 385{
 386        return test_thread_flag(TIF_RESTORE_SIGMASK);
 387}
 388static inline bool test_and_clear_restore_sigmask(void)
 389{
 390        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 391}
 392
 393#else   /* TIF_RESTORE_SIGMASK */
 394
 395/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 396static inline void set_restore_sigmask(void)
 397{
 398        current->restore_sigmask = true;
 399        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 400}
 401static inline void clear_restore_sigmask(void)
 402{
 403        current->restore_sigmask = false;
 404}
 405static inline bool test_restore_sigmask(void)
 406{
 407        return current->restore_sigmask;
 408}
 409static inline bool test_and_clear_restore_sigmask(void)
 410{
 411        if (!current->restore_sigmask)
 412                return false;
 413        current->restore_sigmask = false;
 414        return true;
 415}
 416#endif
 417
 418static inline void restore_saved_sigmask(void)
 419{
 420        if (test_and_clear_restore_sigmask())
 421                __set_current_blocked(&current->saved_sigmask);
 422}
 423
 424static inline sigset_t *sigmask_to_save(void)
 425{
 426        sigset_t *res = &current->blocked;
 427        if (unlikely(test_restore_sigmask()))
 428                res = &current->saved_sigmask;
 429        return res;
 430}
 431
 432static inline int kill_cad_pid(int sig, int priv)
 433{
 434        return kill_pid(cad_pid, sig, priv);
 435}
 436
 437/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 438#define SEND_SIG_NOINFO ((struct siginfo *) 0)
 439#define SEND_SIG_PRIV   ((struct siginfo *) 1)
 440#define SEND_SIG_FORCED ((struct siginfo *) 2)
 441
 442/*
 443 * True if we are on the alternate signal stack.
 444 */
 445static inline int on_sig_stack(unsigned long sp)
 446{
 447        /*
 448         * If the signal stack is SS_AUTODISARM then, by construction, we
 449         * can't be on the signal stack unless user code deliberately set
 450         * SS_AUTODISARM when we were already on it.
 451         *
 452         * This improves reliability: if user state gets corrupted such that
 453         * the stack pointer points very close to the end of the signal stack,
 454         * then this check will enable the signal to be handled anyway.
 455         */
 456        if (current->sas_ss_flags & SS_AUTODISARM)
 457                return 0;
 458
 459#ifdef CONFIG_STACK_GROWSUP
 460        return sp >= current->sas_ss_sp &&
 461                sp - current->sas_ss_sp < current->sas_ss_size;
 462#else
 463        return sp > current->sas_ss_sp &&
 464                sp - current->sas_ss_sp <= current->sas_ss_size;
 465#endif
 466}
 467
 468static inline int sas_ss_flags(unsigned long sp)
 469{
 470        if (!current->sas_ss_size)
 471                return SS_DISABLE;
 472
 473        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 474}
 475
 476static inline void sas_ss_reset(struct task_struct *p)
 477{
 478        p->sas_ss_sp = 0;
 479        p->sas_ss_size = 0;
 480        p->sas_ss_flags = SS_DISABLE;
 481}
 482
 483static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 484{
 485        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 486#ifdef CONFIG_STACK_GROWSUP
 487                return current->sas_ss_sp;
 488#else
 489                return current->sas_ss_sp + current->sas_ss_size;
 490#endif
 491        return sp;
 492}
 493
 494extern void __cleanup_sighand(struct sighand_struct *);
 495extern void flush_itimer_signals(void);
 496
 497#define tasklist_empty() \
 498        list_empty(&init_task.tasks)
 499
 500#define next_task(p) \
 501        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 502
 503#define for_each_process(p) \
 504        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 505
 506extern bool current_is_single_threaded(void);
 507
 508/*
 509 * Careful: do_each_thread/while_each_thread is a double loop so
 510 *          'break' will not work as expected - use goto instead.
 511 */
 512#define do_each_thread(g, t) \
 513        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 514
 515#define while_each_thread(g, t) \
 516        while ((t = next_thread(t)) != g)
 517
 518#define __for_each_thread(signal, t)    \
 519        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 520
 521#define for_each_thread(p, t)           \
 522        __for_each_thread((p)->signal, t)
 523
 524/* Careful: this is a double loop, 'break' won't work as expected. */
 525#define for_each_process_thread(p, t)   \
 526        for_each_process(p) for_each_thread(p, t)
 527
 528typedef int (*proc_visitor)(struct task_struct *p, void *data);
 529void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 530
 531static inline int get_nr_threads(struct task_struct *tsk)
 532{
 533        return tsk->signal->nr_threads;
 534}
 535
 536static inline bool thread_group_leader(struct task_struct *p)
 537{
 538        return p->exit_signal >= 0;
 539}
 540
 541/* Do to the insanities of de_thread it is possible for a process
 542 * to have the pid of the thread group leader without actually being
 543 * the thread group leader.  For iteration through the pids in proc
 544 * all we care about is that we have a task with the appropriate
 545 * pid, we don't actually care if we have the right task.
 546 */
 547static inline bool has_group_leader_pid(struct task_struct *p)
 548{
 549        return task_pid(p) == p->signal->leader_pid;
 550}
 551
 552static inline
 553bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 554{
 555        return p1->signal == p2->signal;
 556}
 557
 558static inline struct task_struct *next_thread(const struct task_struct *p)
 559{
 560        return list_entry_rcu(p->thread_group.next,
 561                              struct task_struct, thread_group);
 562}
 563
 564static inline int thread_group_empty(struct task_struct *p)
 565{
 566        return list_empty(&p->thread_group);
 567}
 568
 569#define delay_group_leader(p) \
 570                (thread_group_leader(p) && !thread_group_empty(p))
 571
 572extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 573                                                        unsigned long *flags);
 574
 575static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
 576                                                       unsigned long *flags)
 577{
 578        struct sighand_struct *ret;
 579
 580        ret = __lock_task_sighand(tsk, flags);
 581        (void)__cond_lock(&tsk->sighand->siglock, ret);
 582        return ret;
 583}
 584
 585static inline void unlock_task_sighand(struct task_struct *tsk,
 586                                                unsigned long *flags)
 587{
 588        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
 589}
 590
 591static inline unsigned long task_rlimit(const struct task_struct *tsk,
 592                unsigned int limit)
 593{
 594        return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
 595}
 596
 597static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
 598                unsigned int limit)
 599{
 600        return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
 601}
 602
 603static inline unsigned long rlimit(unsigned int limit)
 604{
 605        return task_rlimit(current, limit);
 606}
 607
 608static inline unsigned long rlimit_max(unsigned int limit)
 609{
 610        return task_rlimit_max(current, limit);
 611}
 612
 613#endif /* _LINUX_SCHED_SIGNAL_H */
 614