linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23#include <linux/rbtree.h>
  24#include <linux/socket.h>
  25#include <linux/refcount.h>
  26
  27#include <linux/atomic.h>
  28#include <asm/types.h>
  29#include <linux/spinlock.h>
  30#include <linux/net.h>
  31#include <linux/textsearch.h>
  32#include <net/checksum.h>
  33#include <linux/rcupdate.h>
  34#include <linux/hrtimer.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/netdev_features.h>
  37#include <linux/sched.h>
  38#include <linux/sched/clock.h>
  39#include <net/flow_dissector.h>
  40#include <linux/splice.h>
  41#include <linux/in6.h>
  42#include <linux/if_packet.h>
  43#include <net/flow.h>
  44
  45/* The interface for checksum offload between the stack and networking drivers
  46 * is as follows...
  47 *
  48 * A. IP checksum related features
  49 *
  50 * Drivers advertise checksum offload capabilities in the features of a device.
  51 * From the stack's point of view these are capabilities offered by the driver,
  52 * a driver typically only advertises features that it is capable of offloading
  53 * to its device.
  54 *
  55 * The checksum related features are:
  56 *
  57 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  58 *                        IP (one's complement) checksum for any combination
  59 *                        of protocols or protocol layering. The checksum is
  60 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  61 *                        interface (see below).
  62 *
  63 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  64 *                        TCP or UDP packets over IPv4. These are specifically
  65 *                        unencapsulated packets of the form IPv4|TCP or
  66 *                        IPv4|UDP where the Protocol field in the IPv4 header
  67 *                        is TCP or UDP. The IPv4 header may contain IP options
  68 *                        This feature cannot be set in features for a device
  69 *                        with NETIF_F_HW_CSUM also set. This feature is being
  70 *                        DEPRECATED (see below).
  71 *
  72 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  73 *                        TCP or UDP packets over IPv6. These are specifically
  74 *                        unencapsulated packets of the form IPv6|TCP or
  75 *                        IPv4|UDP where the Next Header field in the IPv6
  76 *                        header is either TCP or UDP. IPv6 extension headers
  77 *                        are not supported with this feature. This feature
  78 *                        cannot be set in features for a device with
  79 *                        NETIF_F_HW_CSUM also set. This feature is being
  80 *                        DEPRECATED (see below).
  81 *
  82 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  83 *                       This flag is used only used to disable the RX checksum
  84 *                       feature for a device. The stack will accept receive
  85 *                       checksum indication in packets received on a device
  86 *                       regardless of whether NETIF_F_RXCSUM is set.
  87 *
  88 * B. Checksumming of received packets by device. Indication of checksum
  89 *    verification is in set skb->ip_summed. Possible values are:
  90 *
  91 * CHECKSUM_NONE:
  92 *
  93 *   Device did not checksum this packet e.g. due to lack of capabilities.
  94 *   The packet contains full (though not verified) checksum in packet but
  95 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  96 *
  97 * CHECKSUM_UNNECESSARY:
  98 *
  99 *   The hardware you're dealing with doesn't calculate the full checksum
 100 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 101 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 102 *   if their checksums are okay. skb->csum is still undefined in this case
 103 *   though. A driver or device must never modify the checksum field in the
 104 *   packet even if checksum is verified.
 105 *
 106 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 107 *     TCP: IPv6 and IPv4.
 108 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 109 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 110 *       may perform further validation in this case.
 111 *     GRE: only if the checksum is present in the header.
 112 *     SCTP: indicates the CRC in SCTP header has been validated.
 113 *     FCOE: indicates the CRC in FC frame has been validated.
 114 *
 115 *   skb->csum_level indicates the number of consecutive checksums found in
 116 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 117 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 118 *   and a device is able to verify the checksums for UDP (possibly zero),
 119 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 120 *   two. If the device were only able to verify the UDP checksum and not
 121 *   GRE, either because it doesn't support GRE checksum of because GRE
 122 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 123 *   not considered in this case).
 124 *
 125 * CHECKSUM_COMPLETE:
 126 *
 127 *   This is the most generic way. The device supplied checksum of the _whole_
 128 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 129 *   hardware doesn't need to parse L3/L4 headers to implement this.
 130 *
 131 *   Notes:
 132 *   - Even if device supports only some protocols, but is able to produce
 133 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 134 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 135 *
 136 * CHECKSUM_PARTIAL:
 137 *
 138 *   A checksum is set up to be offloaded to a device as described in the
 139 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 140 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 141 *   on the same host, or it may be set in the input path in GRO or remote
 142 *   checksum offload. For the purposes of checksum verification, the checksum
 143 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 144 *   checksums in the packet are considered verified. Any checksums in the
 145 *   packet that are after the checksum being offloaded are not considered to
 146 *   be verified.
 147 *
 148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 149 *    in the skb->ip_summed for a packet. Values are:
 150 *
 151 * CHECKSUM_PARTIAL:
 152 *
 153 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 154 *   from skb->csum_start up to the end, and to record/write the checksum at
 155 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 156 *   csum_start and csum_offset values are valid values given the length and
 157 *   offset of the packet, however they should not attempt to validate that the
 158 *   checksum refers to a legitimate transport layer checksum-- it is the
 159 *   purview of the stack to validate that csum_start and csum_offset are set
 160 *   correctly.
 161 *
 162 *   When the stack requests checksum offload for a packet, the driver MUST
 163 *   ensure that the checksum is set correctly. A driver can either offload the
 164 *   checksum calculation to the device, or call skb_checksum_help (in the case
 165 *   that the device does not support offload for a particular checksum).
 166 *
 167 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 168 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 169 *   checksum offload capability.
 170 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 171 *   on network device checksumming capabilities: if a packet does not match
 172 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 173 *   csum_not_inet, see item D.) is called to resolve the checksum.
 174 *
 175 * CHECKSUM_NONE:
 176 *
 177 *   The skb was already checksummed by the protocol, or a checksum is not
 178 *   required.
 179 *
 180 * CHECKSUM_UNNECESSARY:
 181 *
 182 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 183 *   output.
 184 *
 185 * CHECKSUM_COMPLETE:
 186 *   Not used in checksum output. If a driver observes a packet with this value
 187 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 188 *
 189 * D. Non-IP checksum (CRC) offloads
 190 *
 191 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 192 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 193 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 194 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 195 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 196 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 197 *     must verify which offload is configured for a packet by testing the
 198 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 199 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 200 *
 201 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 202 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 203 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 204 *     accordingly. Note the there is no indication in the skbuff that the
 205 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 206 *     both IP checksum offload and FCOE CRC offload must verify which offload
 207 *     is configured for a packet presumably by inspecting packet headers.
 208 *
 209 * E. Checksumming on output with GSO.
 210 *
 211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 214 * part of the GSO operation is implied. If a checksum is being offloaded
 215 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 216 * are set to refer to the outermost checksum being offload (two offloaded
 217 * checksums are possible with UDP encapsulation).
 218 */
 219
 220/* Don't change this without changing skb_csum_unnecessary! */
 221#define CHECKSUM_NONE           0
 222#define CHECKSUM_UNNECESSARY    1
 223#define CHECKSUM_COMPLETE       2
 224#define CHECKSUM_PARTIAL        3
 225
 226/* Maximum value in skb->csum_level */
 227#define SKB_MAX_CSUM_LEVEL      3
 228
 229#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 230#define SKB_WITH_OVERHEAD(X)    \
 231        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 232#define SKB_MAX_ORDER(X, ORDER) \
 233        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 234#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 235#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 236
 237/* return minimum truesize of one skb containing X bytes of data */
 238#define SKB_TRUESIZE(X) ((X) +                                          \
 239                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 240                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 241
 242struct net_device;
 243struct scatterlist;
 244struct pipe_inode_info;
 245struct iov_iter;
 246struct napi_struct;
 247
 248#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 249struct nf_conntrack {
 250        atomic_t use;
 251};
 252#endif
 253
 254#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 255struct nf_bridge_info {
 256        refcount_t              use;
 257        enum {
 258                BRNF_PROTO_UNCHANGED,
 259                BRNF_PROTO_8021Q,
 260                BRNF_PROTO_PPPOE
 261        } orig_proto:8;
 262        u8                      pkt_otherhost:1;
 263        u8                      in_prerouting:1;
 264        u8                      bridged_dnat:1;
 265        __u16                   frag_max_size;
 266        struct net_device       *physindev;
 267
 268        /* always valid & non-NULL from FORWARD on, for physdev match */
 269        struct net_device       *physoutdev;
 270        union {
 271                /* prerouting: detect dnat in orig/reply direction */
 272                __be32          ipv4_daddr;
 273                struct in6_addr ipv6_daddr;
 274
 275                /* after prerouting + nat detected: store original source
 276                 * mac since neigh resolution overwrites it, only used while
 277                 * skb is out in neigh layer.
 278                 */
 279                char neigh_header[8];
 280        };
 281};
 282#endif
 283
 284struct sk_buff_head {
 285        /* These two members must be first. */
 286        struct sk_buff  *next;
 287        struct sk_buff  *prev;
 288
 289        __u32           qlen;
 290        spinlock_t      lock;
 291};
 292
 293struct sk_buff;
 294
 295/* To allow 64K frame to be packed as single skb without frag_list we
 296 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 297 * buffers which do not start on a page boundary.
 298 *
 299 * Since GRO uses frags we allocate at least 16 regardless of page
 300 * size.
 301 */
 302#if (65536/PAGE_SIZE + 1) < 16
 303#define MAX_SKB_FRAGS 16UL
 304#else
 305#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 306#endif
 307extern int sysctl_max_skb_frags;
 308
 309/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 310 * segment using its current segmentation instead.
 311 */
 312#define GSO_BY_FRAGS    0xFFFF
 313
 314typedef struct skb_frag_struct skb_frag_t;
 315
 316struct skb_frag_struct {
 317        struct {
 318                struct page *p;
 319        } page;
 320#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 321        __u32 page_offset;
 322        __u32 size;
 323#else
 324        __u16 page_offset;
 325        __u16 size;
 326#endif
 327};
 328
 329static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 330{
 331        return frag->size;
 332}
 333
 334static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 335{
 336        frag->size = size;
 337}
 338
 339static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 340{
 341        frag->size += delta;
 342}
 343
 344static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 345{
 346        frag->size -= delta;
 347}
 348
 349static inline bool skb_frag_must_loop(struct page *p)
 350{
 351#if defined(CONFIG_HIGHMEM)
 352        if (PageHighMem(p))
 353                return true;
 354#endif
 355        return false;
 356}
 357
 358/**
 359 *      skb_frag_foreach_page - loop over pages in a fragment
 360 *
 361 *      @f:             skb frag to operate on
 362 *      @f_off:         offset from start of f->page.p
 363 *      @f_len:         length from f_off to loop over
 364 *      @p:             (temp var) current page
 365 *      @p_off:         (temp var) offset from start of current page,
 366 *                                 non-zero only on first page.
 367 *      @p_len:         (temp var) length in current page,
 368 *                                 < PAGE_SIZE only on first and last page.
 369 *      @copied:        (temp var) length so far, excluding current p_len.
 370 *
 371 *      A fragment can hold a compound page, in which case per-page
 372 *      operations, notably kmap_atomic, must be called for each
 373 *      regular page.
 374 */
 375#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 376        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 377             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 378             p_len = skb_frag_must_loop(p) ?                            \
 379             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 380             copied = 0;                                                \
 381             copied < f_len;                                            \
 382             copied += p_len, p++, p_off = 0,                           \
 383             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 384
 385#define HAVE_HW_TIME_STAMP
 386
 387/**
 388 * struct skb_shared_hwtstamps - hardware time stamps
 389 * @hwtstamp:   hardware time stamp transformed into duration
 390 *              since arbitrary point in time
 391 *
 392 * Software time stamps generated by ktime_get_real() are stored in
 393 * skb->tstamp.
 394 *
 395 * hwtstamps can only be compared against other hwtstamps from
 396 * the same device.
 397 *
 398 * This structure is attached to packets as part of the
 399 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 400 */
 401struct skb_shared_hwtstamps {
 402        ktime_t hwtstamp;
 403};
 404
 405/* Definitions for tx_flags in struct skb_shared_info */
 406enum {
 407        /* generate hardware time stamp */
 408        SKBTX_HW_TSTAMP = 1 << 0,
 409
 410        /* generate software time stamp when queueing packet to NIC */
 411        SKBTX_SW_TSTAMP = 1 << 1,
 412
 413        /* device driver is going to provide hardware time stamp */
 414        SKBTX_IN_PROGRESS = 1 << 2,
 415
 416        /* device driver supports TX zero-copy buffers */
 417        SKBTX_DEV_ZEROCOPY = 1 << 3,
 418
 419        /* generate wifi status information (where possible) */
 420        SKBTX_WIFI_STATUS = 1 << 4,
 421
 422        /* This indicates at least one fragment might be overwritten
 423         * (as in vmsplice(), sendfile() ...)
 424         * If we need to compute a TX checksum, we'll need to copy
 425         * all frags to avoid possible bad checksum
 426         */
 427        SKBTX_SHARED_FRAG = 1 << 5,
 428
 429        /* generate software time stamp when entering packet scheduling */
 430        SKBTX_SCHED_TSTAMP = 1 << 6,
 431};
 432
 433#define SKBTX_ZEROCOPY_FRAG     (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
 434#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 435                                 SKBTX_SCHED_TSTAMP)
 436#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 437
 438/*
 439 * The callback notifies userspace to release buffers when skb DMA is done in
 440 * lower device, the skb last reference should be 0 when calling this.
 441 * The zerocopy_success argument is true if zero copy transmit occurred,
 442 * false on data copy or out of memory error caused by data copy attempt.
 443 * The ctx field is used to track device context.
 444 * The desc field is used to track userspace buffer index.
 445 */
 446struct ubuf_info {
 447        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 448        union {
 449                struct {
 450                        unsigned long desc;
 451                        void *ctx;
 452                };
 453                struct {
 454                        u32 id;
 455                        u16 len;
 456                        u16 zerocopy:1;
 457                        u32 bytelen;
 458                };
 459        };
 460        refcount_t refcnt;
 461
 462        struct mmpin {
 463                struct user_struct *user;
 464                unsigned int num_pg;
 465        } mmp;
 466};
 467
 468#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 469
 470struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
 471struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 472                                        struct ubuf_info *uarg);
 473
 474static inline void sock_zerocopy_get(struct ubuf_info *uarg)
 475{
 476        refcount_inc(&uarg->refcnt);
 477}
 478
 479void sock_zerocopy_put(struct ubuf_info *uarg);
 480void sock_zerocopy_put_abort(struct ubuf_info *uarg);
 481
 482void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
 483
 484int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 485                             struct msghdr *msg, int len,
 486                             struct ubuf_info *uarg);
 487
 488/* This data is invariant across clones and lives at
 489 * the end of the header data, ie. at skb->end.
 490 */
 491struct skb_shared_info {
 492        unsigned short  _unused;
 493        unsigned char   nr_frags;
 494        __u8            tx_flags;
 495        unsigned short  gso_size;
 496        /* Warning: this field is not always filled in (UFO)! */
 497        unsigned short  gso_segs;
 498        struct sk_buff  *frag_list;
 499        struct skb_shared_hwtstamps hwtstamps;
 500        unsigned int    gso_type;
 501        u32             tskey;
 502        __be32          ip6_frag_id;
 503
 504        /*
 505         * Warning : all fields before dataref are cleared in __alloc_skb()
 506         */
 507        atomic_t        dataref;
 508
 509        /* Intermediate layers must ensure that destructor_arg
 510         * remains valid until skb destructor */
 511        void *          destructor_arg;
 512
 513        /* must be last field, see pskb_expand_head() */
 514        skb_frag_t      frags[MAX_SKB_FRAGS];
 515};
 516
 517/* We divide dataref into two halves.  The higher 16 bits hold references
 518 * to the payload part of skb->data.  The lower 16 bits hold references to
 519 * the entire skb->data.  A clone of a headerless skb holds the length of
 520 * the header in skb->hdr_len.
 521 *
 522 * All users must obey the rule that the skb->data reference count must be
 523 * greater than or equal to the payload reference count.
 524 *
 525 * Holding a reference to the payload part means that the user does not
 526 * care about modifications to the header part of skb->data.
 527 */
 528#define SKB_DATAREF_SHIFT 16
 529#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 530
 531
 532enum {
 533        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 534        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 535        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 536};
 537
 538enum {
 539        SKB_GSO_TCPV4 = 1 << 0,
 540
 541        /* This indicates the skb is from an untrusted source. */
 542        SKB_GSO_DODGY = 1 << 1,
 543
 544        /* This indicates the tcp segment has CWR set. */
 545        SKB_GSO_TCP_ECN = 1 << 2,
 546
 547        SKB_GSO_TCP_FIXEDID = 1 << 3,
 548
 549        SKB_GSO_TCPV6 = 1 << 4,
 550
 551        SKB_GSO_FCOE = 1 << 5,
 552
 553        SKB_GSO_GRE = 1 << 6,
 554
 555        SKB_GSO_GRE_CSUM = 1 << 7,
 556
 557        SKB_GSO_IPXIP4 = 1 << 8,
 558
 559        SKB_GSO_IPXIP6 = 1 << 9,
 560
 561        SKB_GSO_UDP_TUNNEL = 1 << 10,
 562
 563        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 564
 565        SKB_GSO_PARTIAL = 1 << 12,
 566
 567        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 568
 569        SKB_GSO_SCTP = 1 << 14,
 570
 571        SKB_GSO_ESP = 1 << 15,
 572};
 573
 574#if BITS_PER_LONG > 32
 575#define NET_SKBUFF_DATA_USES_OFFSET 1
 576#endif
 577
 578#ifdef NET_SKBUFF_DATA_USES_OFFSET
 579typedef unsigned int sk_buff_data_t;
 580#else
 581typedef unsigned char *sk_buff_data_t;
 582#endif
 583
 584/** 
 585 *      struct sk_buff - socket buffer
 586 *      @next: Next buffer in list
 587 *      @prev: Previous buffer in list
 588 *      @tstamp: Time we arrived/left
 589 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 590 *      @sk: Socket we are owned by
 591 *      @dev: Device we arrived on/are leaving by
 592 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 593 *      @_skb_refdst: destination entry (with norefcount bit)
 594 *      @sp: the security path, used for xfrm
 595 *      @len: Length of actual data
 596 *      @data_len: Data length
 597 *      @mac_len: Length of link layer header
 598 *      @hdr_len: writable header length of cloned skb
 599 *      @csum: Checksum (must include start/offset pair)
 600 *      @csum_start: Offset from skb->head where checksumming should start
 601 *      @csum_offset: Offset from csum_start where checksum should be stored
 602 *      @priority: Packet queueing priority
 603 *      @ignore_df: allow local fragmentation
 604 *      @cloned: Head may be cloned (check refcnt to be sure)
 605 *      @ip_summed: Driver fed us an IP checksum
 606 *      @nohdr: Payload reference only, must not modify header
 607 *      @pkt_type: Packet class
 608 *      @fclone: skbuff clone status
 609 *      @ipvs_property: skbuff is owned by ipvs
 610 *      @tc_skip_classify: do not classify packet. set by IFB device
 611 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 612 *      @tc_redirected: packet was redirected by a tc action
 613 *      @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
 614 *      @peeked: this packet has been seen already, so stats have been
 615 *              done for it, don't do them again
 616 *      @nf_trace: netfilter packet trace flag
 617 *      @protocol: Packet protocol from driver
 618 *      @destructor: Destruct function
 619 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 620 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 621 *      @skb_iif: ifindex of device we arrived on
 622 *      @tc_index: Traffic control index
 623 *      @hash: the packet hash
 624 *      @queue_mapping: Queue mapping for multiqueue devices
 625 *      @xmit_more: More SKBs are pending for this queue
 626 *      @ndisc_nodetype: router type (from link layer)
 627 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 628 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 629 *              ports.
 630 *      @sw_hash: indicates hash was computed in software stack
 631 *      @wifi_acked_valid: wifi_acked was set
 632 *      @wifi_acked: whether frame was acked on wifi or not
 633 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 634 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 635 *      @dst_pending_confirm: need to confirm neighbour
 636  *     @napi_id: id of the NAPI struct this skb came from
 637 *      @secmark: security marking
 638 *      @mark: Generic packet mark
 639 *      @vlan_proto: vlan encapsulation protocol
 640 *      @vlan_tci: vlan tag control information
 641 *      @inner_protocol: Protocol (encapsulation)
 642 *      @inner_transport_header: Inner transport layer header (encapsulation)
 643 *      @inner_network_header: Network layer header (encapsulation)
 644 *      @inner_mac_header: Link layer header (encapsulation)
 645 *      @transport_header: Transport layer header
 646 *      @network_header: Network layer header
 647 *      @mac_header: Link layer header
 648 *      @tail: Tail pointer
 649 *      @end: End pointer
 650 *      @head: Head of buffer
 651 *      @data: Data head pointer
 652 *      @truesize: Buffer size
 653 *      @users: User count - see {datagram,tcp}.c
 654 */
 655
 656struct sk_buff {
 657        union {
 658                struct {
 659                        /* These two members must be first. */
 660                        struct sk_buff          *next;
 661                        struct sk_buff          *prev;
 662
 663                        union {
 664                                ktime_t         tstamp;
 665                                u64             skb_mstamp;
 666                        };
 667                };
 668                struct rb_node  rbnode; /* used in netem & tcp stack */
 669        };
 670        struct sock             *sk;
 671
 672        union {
 673                struct net_device       *dev;
 674                /* Some protocols might use this space to store information,
 675                 * while device pointer would be NULL.
 676                 * UDP receive path is one user.
 677                 */
 678                unsigned long           dev_scratch;
 679        };
 680        /*
 681         * This is the control buffer. It is free to use for every
 682         * layer. Please put your private variables there. If you
 683         * want to keep them across layers you have to do a skb_clone()
 684         * first. This is owned by whoever has the skb queued ATM.
 685         */
 686        char                    cb[48] __aligned(8);
 687
 688        unsigned long           _skb_refdst;
 689        void                    (*destructor)(struct sk_buff *skb);
 690#ifdef CONFIG_XFRM
 691        struct  sec_path        *sp;
 692#endif
 693#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 694        unsigned long            _nfct;
 695#endif
 696#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 697        struct nf_bridge_info   *nf_bridge;
 698#endif
 699        unsigned int            len,
 700                                data_len;
 701        __u16                   mac_len,
 702                                hdr_len;
 703
 704        /* Following fields are _not_ copied in __copy_skb_header()
 705         * Note that queue_mapping is here mostly to fill a hole.
 706         */
 707        kmemcheck_bitfield_begin(flags1);
 708        __u16                   queue_mapping;
 709
 710/* if you move cloned around you also must adapt those constants */
 711#ifdef __BIG_ENDIAN_BITFIELD
 712#define CLONED_MASK     (1 << 7)
 713#else
 714#define CLONED_MASK     1
 715#endif
 716#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 717
 718        __u8                    __cloned_offset[0];
 719        __u8                    cloned:1,
 720                                nohdr:1,
 721                                fclone:2,
 722                                peeked:1,
 723                                head_frag:1,
 724                                xmit_more:1,
 725                                __unused:1; /* one bit hole */
 726        kmemcheck_bitfield_end(flags1);
 727
 728        /* fields enclosed in headers_start/headers_end are copied
 729         * using a single memcpy() in __copy_skb_header()
 730         */
 731        /* private: */
 732        __u32                   headers_start[0];
 733        /* public: */
 734
 735/* if you move pkt_type around you also must adapt those constants */
 736#ifdef __BIG_ENDIAN_BITFIELD
 737#define PKT_TYPE_MAX    (7 << 5)
 738#else
 739#define PKT_TYPE_MAX    7
 740#endif
 741#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 742
 743        __u8                    __pkt_type_offset[0];
 744        __u8                    pkt_type:3;
 745        __u8                    pfmemalloc:1;
 746        __u8                    ignore_df:1;
 747
 748        __u8                    nf_trace:1;
 749        __u8                    ip_summed:2;
 750        __u8                    ooo_okay:1;
 751        __u8                    l4_hash:1;
 752        __u8                    sw_hash:1;
 753        __u8                    wifi_acked_valid:1;
 754        __u8                    wifi_acked:1;
 755
 756        __u8                    no_fcs:1;
 757        /* Indicates the inner headers are valid in the skbuff. */
 758        __u8                    encapsulation:1;
 759        __u8                    encap_hdr_csum:1;
 760        __u8                    csum_valid:1;
 761        __u8                    csum_complete_sw:1;
 762        __u8                    csum_level:2;
 763        __u8                    csum_not_inet:1;
 764
 765        __u8                    dst_pending_confirm:1;
 766#ifdef CONFIG_IPV6_NDISC_NODETYPE
 767        __u8                    ndisc_nodetype:2;
 768#endif
 769        __u8                    ipvs_property:1;
 770        __u8                    inner_protocol_type:1;
 771        __u8                    remcsum_offload:1;
 772#ifdef CONFIG_NET_SWITCHDEV
 773        __u8                    offload_fwd_mark:1;
 774#endif
 775#ifdef CONFIG_NET_CLS_ACT
 776        __u8                    tc_skip_classify:1;
 777        __u8                    tc_at_ingress:1;
 778        __u8                    tc_redirected:1;
 779        __u8                    tc_from_ingress:1;
 780#endif
 781
 782#ifdef CONFIG_NET_SCHED
 783        __u16                   tc_index;       /* traffic control index */
 784#endif
 785
 786        union {
 787                __wsum          csum;
 788                struct {
 789                        __u16   csum_start;
 790                        __u16   csum_offset;
 791                };
 792        };
 793        __u32                   priority;
 794        int                     skb_iif;
 795        __u32                   hash;
 796        __be16                  vlan_proto;
 797        __u16                   vlan_tci;
 798#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 799        union {
 800                unsigned int    napi_id;
 801                unsigned int    sender_cpu;
 802        };
 803#endif
 804#ifdef CONFIG_NETWORK_SECMARK
 805        __u32           secmark;
 806#endif
 807
 808        union {
 809                __u32           mark;
 810                __u32           reserved_tailroom;
 811        };
 812
 813        union {
 814                __be16          inner_protocol;
 815                __u8            inner_ipproto;
 816        };
 817
 818        __u16                   inner_transport_header;
 819        __u16                   inner_network_header;
 820        __u16                   inner_mac_header;
 821
 822        __be16                  protocol;
 823        __u16                   transport_header;
 824        __u16                   network_header;
 825        __u16                   mac_header;
 826
 827        /* private: */
 828        __u32                   headers_end[0];
 829        /* public: */
 830
 831        /* These elements must be at the end, see alloc_skb() for details.  */
 832        sk_buff_data_t          tail;
 833        sk_buff_data_t          end;
 834        unsigned char           *head,
 835                                *data;
 836        unsigned int            truesize;
 837        refcount_t              users;
 838};
 839
 840#ifdef __KERNEL__
 841/*
 842 *      Handling routines are only of interest to the kernel
 843 */
 844#include <linux/slab.h>
 845
 846
 847#define SKB_ALLOC_FCLONE        0x01
 848#define SKB_ALLOC_RX            0x02
 849#define SKB_ALLOC_NAPI          0x04
 850
 851/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 852static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 853{
 854        return unlikely(skb->pfmemalloc);
 855}
 856
 857/*
 858 * skb might have a dst pointer attached, refcounted or not.
 859 * _skb_refdst low order bit is set if refcount was _not_ taken
 860 */
 861#define SKB_DST_NOREF   1UL
 862#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 863
 864#define SKB_NFCT_PTRMASK        ~(7UL)
 865/**
 866 * skb_dst - returns skb dst_entry
 867 * @skb: buffer
 868 *
 869 * Returns skb dst_entry, regardless of reference taken or not.
 870 */
 871static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 872{
 873        /* If refdst was not refcounted, check we still are in a 
 874         * rcu_read_lock section
 875         */
 876        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 877                !rcu_read_lock_held() &&
 878                !rcu_read_lock_bh_held());
 879        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 880}
 881
 882/**
 883 * skb_dst_set - sets skb dst
 884 * @skb: buffer
 885 * @dst: dst entry
 886 *
 887 * Sets skb dst, assuming a reference was taken on dst and should
 888 * be released by skb_dst_drop()
 889 */
 890static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 891{
 892        skb->_skb_refdst = (unsigned long)dst;
 893}
 894
 895/**
 896 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 897 * @skb: buffer
 898 * @dst: dst entry
 899 *
 900 * Sets skb dst, assuming a reference was not taken on dst.
 901 * If dst entry is cached, we do not take reference and dst_release
 902 * will be avoided by refdst_drop. If dst entry is not cached, we take
 903 * reference, so that last dst_release can destroy the dst immediately.
 904 */
 905static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 906{
 907        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 908        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 909}
 910
 911/**
 912 * skb_dst_is_noref - Test if skb dst isn't refcounted
 913 * @skb: buffer
 914 */
 915static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 916{
 917        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 918}
 919
 920static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 921{
 922        return (struct rtable *)skb_dst(skb);
 923}
 924
 925/* For mangling skb->pkt_type from user space side from applications
 926 * such as nft, tc, etc, we only allow a conservative subset of
 927 * possible pkt_types to be set.
 928*/
 929static inline bool skb_pkt_type_ok(u32 ptype)
 930{
 931        return ptype <= PACKET_OTHERHOST;
 932}
 933
 934static inline unsigned int skb_napi_id(const struct sk_buff *skb)
 935{
 936#ifdef CONFIG_NET_RX_BUSY_POLL
 937        return skb->napi_id;
 938#else
 939        return 0;
 940#endif
 941}
 942
 943/* decrement the reference count and return true if we can free the skb */
 944static inline bool skb_unref(struct sk_buff *skb)
 945{
 946        if (unlikely(!skb))
 947                return false;
 948        if (likely(refcount_read(&skb->users) == 1))
 949                smp_rmb();
 950        else if (likely(!refcount_dec_and_test(&skb->users)))
 951                return false;
 952
 953        return true;
 954}
 955
 956void skb_release_head_state(struct sk_buff *skb);
 957void kfree_skb(struct sk_buff *skb);
 958void kfree_skb_list(struct sk_buff *segs);
 959void skb_tx_error(struct sk_buff *skb);
 960void consume_skb(struct sk_buff *skb);
 961void __consume_stateless_skb(struct sk_buff *skb);
 962void  __kfree_skb(struct sk_buff *skb);
 963extern struct kmem_cache *skbuff_head_cache;
 964
 965void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 966bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 967                      bool *fragstolen, int *delta_truesize);
 968
 969struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 970                            int node);
 971struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 972struct sk_buff *build_skb(void *data, unsigned int frag_size);
 973static inline struct sk_buff *alloc_skb(unsigned int size,
 974                                        gfp_t priority)
 975{
 976        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 977}
 978
 979struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 980                                     unsigned long data_len,
 981                                     int max_page_order,
 982                                     int *errcode,
 983                                     gfp_t gfp_mask);
 984
 985/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 986struct sk_buff_fclones {
 987        struct sk_buff  skb1;
 988
 989        struct sk_buff  skb2;
 990
 991        refcount_t      fclone_ref;
 992};
 993
 994/**
 995 *      skb_fclone_busy - check if fclone is busy
 996 *      @sk: socket
 997 *      @skb: buffer
 998 *
 999 * Returns true if skb is a fast clone, and its clone is not freed.
1000 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1001 * so we also check that this didnt happen.
1002 */
1003static inline bool skb_fclone_busy(const struct sock *sk,
1004                                   const struct sk_buff *skb)
1005{
1006        const struct sk_buff_fclones *fclones;
1007
1008        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1009
1010        return skb->fclone == SKB_FCLONE_ORIG &&
1011               refcount_read(&fclones->fclone_ref) > 1 &&
1012               fclones->skb2.sk == sk;
1013}
1014
1015static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1016                                               gfp_t priority)
1017{
1018        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1019}
1020
1021struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1022int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1023struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1024struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1025struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1026                                   gfp_t gfp_mask, bool fclone);
1027static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1028                                          gfp_t gfp_mask)
1029{
1030        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1031}
1032
1033int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1034struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1035                                     unsigned int headroom);
1036struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1037                                int newtailroom, gfp_t priority);
1038int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1039                                     int offset, int len);
1040int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1041                              int offset, int len);
1042int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1043int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1044
1045/**
1046 *      skb_pad                 -       zero pad the tail of an skb
1047 *      @skb: buffer to pad
1048 *      @pad: space to pad
1049 *
1050 *      Ensure that a buffer is followed by a padding area that is zero
1051 *      filled. Used by network drivers which may DMA or transfer data
1052 *      beyond the buffer end onto the wire.
1053 *
1054 *      May return error in out of memory cases. The skb is freed on error.
1055 */
1056static inline int skb_pad(struct sk_buff *skb, int pad)
1057{
1058        return __skb_pad(skb, pad, true);
1059}
1060#define dev_kfree_skb(a)        consume_skb(a)
1061
1062int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1063                            int getfrag(void *from, char *to, int offset,
1064                                        int len, int odd, struct sk_buff *skb),
1065                            void *from, int length);
1066
1067int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1068                         int offset, size_t size);
1069
1070struct skb_seq_state {
1071        __u32           lower_offset;
1072        __u32           upper_offset;
1073        __u32           frag_idx;
1074        __u32           stepped_offset;
1075        struct sk_buff  *root_skb;
1076        struct sk_buff  *cur_skb;
1077        __u8            *frag_data;
1078};
1079
1080void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1081                          unsigned int to, struct skb_seq_state *st);
1082unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1083                          struct skb_seq_state *st);
1084void skb_abort_seq_read(struct skb_seq_state *st);
1085
1086unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1087                           unsigned int to, struct ts_config *config);
1088
1089/*
1090 * Packet hash types specify the type of hash in skb_set_hash.
1091 *
1092 * Hash types refer to the protocol layer addresses which are used to
1093 * construct a packet's hash. The hashes are used to differentiate or identify
1094 * flows of the protocol layer for the hash type. Hash types are either
1095 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1096 *
1097 * Properties of hashes:
1098 *
1099 * 1) Two packets in different flows have different hash values
1100 * 2) Two packets in the same flow should have the same hash value
1101 *
1102 * A hash at a higher layer is considered to be more specific. A driver should
1103 * set the most specific hash possible.
1104 *
1105 * A driver cannot indicate a more specific hash than the layer at which a hash
1106 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1107 *
1108 * A driver may indicate a hash level which is less specific than the
1109 * actual layer the hash was computed on. For instance, a hash computed
1110 * at L4 may be considered an L3 hash. This should only be done if the
1111 * driver can't unambiguously determine that the HW computed the hash at
1112 * the higher layer. Note that the "should" in the second property above
1113 * permits this.
1114 */
1115enum pkt_hash_types {
1116        PKT_HASH_TYPE_NONE,     /* Undefined type */
1117        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1118        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1119        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1120};
1121
1122static inline void skb_clear_hash(struct sk_buff *skb)
1123{
1124        skb->hash = 0;
1125        skb->sw_hash = 0;
1126        skb->l4_hash = 0;
1127}
1128
1129static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1130{
1131        if (!skb->l4_hash)
1132                skb_clear_hash(skb);
1133}
1134
1135static inline void
1136__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1137{
1138        skb->l4_hash = is_l4;
1139        skb->sw_hash = is_sw;
1140        skb->hash = hash;
1141}
1142
1143static inline void
1144skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1145{
1146        /* Used by drivers to set hash from HW */
1147        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1148}
1149
1150static inline void
1151__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1152{
1153        __skb_set_hash(skb, hash, true, is_l4);
1154}
1155
1156void __skb_get_hash(struct sk_buff *skb);
1157u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1158u32 skb_get_poff(const struct sk_buff *skb);
1159u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1160                   const struct flow_keys *keys, int hlen);
1161__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1162                            void *data, int hlen_proto);
1163
1164static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1165                                        int thoff, u8 ip_proto)
1166{
1167        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1168}
1169
1170void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1171                             const struct flow_dissector_key *key,
1172                             unsigned int key_count);
1173
1174bool __skb_flow_dissect(const struct sk_buff *skb,
1175                        struct flow_dissector *flow_dissector,
1176                        void *target_container,
1177                        void *data, __be16 proto, int nhoff, int hlen,
1178                        unsigned int flags);
1179
1180static inline bool skb_flow_dissect(const struct sk_buff *skb,
1181                                    struct flow_dissector *flow_dissector,
1182                                    void *target_container, unsigned int flags)
1183{
1184        return __skb_flow_dissect(skb, flow_dissector, target_container,
1185                                  NULL, 0, 0, 0, flags);
1186}
1187
1188static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1189                                              struct flow_keys *flow,
1190                                              unsigned int flags)
1191{
1192        memset(flow, 0, sizeof(*flow));
1193        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1194                                  NULL, 0, 0, 0, flags);
1195}
1196
1197static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1198                                                  void *data, __be16 proto,
1199                                                  int nhoff, int hlen,
1200                                                  unsigned int flags)
1201{
1202        memset(flow, 0, sizeof(*flow));
1203        return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1204                                  data, proto, nhoff, hlen, flags);
1205}
1206
1207static inline __u32 skb_get_hash(struct sk_buff *skb)
1208{
1209        if (!skb->l4_hash && !skb->sw_hash)
1210                __skb_get_hash(skb);
1211
1212        return skb->hash;
1213}
1214
1215static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1216{
1217        if (!skb->l4_hash && !skb->sw_hash) {
1218                struct flow_keys keys;
1219                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1220
1221                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1222        }
1223
1224        return skb->hash;
1225}
1226
1227__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1228
1229static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1230{
1231        return skb->hash;
1232}
1233
1234static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1235{
1236        to->hash = from->hash;
1237        to->sw_hash = from->sw_hash;
1238        to->l4_hash = from->l4_hash;
1239};
1240
1241#ifdef NET_SKBUFF_DATA_USES_OFFSET
1242static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1243{
1244        return skb->head + skb->end;
1245}
1246
1247static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1248{
1249        return skb->end;
1250}
1251#else
1252static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1253{
1254        return skb->end;
1255}
1256
1257static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1258{
1259        return skb->end - skb->head;
1260}
1261#endif
1262
1263/* Internal */
1264#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1265
1266static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1267{
1268        return &skb_shinfo(skb)->hwtstamps;
1269}
1270
1271static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1272{
1273        bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1274
1275        return is_zcopy ? skb_uarg(skb) : NULL;
1276}
1277
1278static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1279{
1280        if (skb && uarg && !skb_zcopy(skb)) {
1281                sock_zerocopy_get(uarg);
1282                skb_shinfo(skb)->destructor_arg = uarg;
1283                skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1284        }
1285}
1286
1287/* Release a reference on a zerocopy structure */
1288static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1289{
1290        struct ubuf_info *uarg = skb_zcopy(skb);
1291
1292        if (uarg) {
1293                if (uarg->callback == sock_zerocopy_callback) {
1294                        uarg->zerocopy = uarg->zerocopy && zerocopy;
1295                        sock_zerocopy_put(uarg);
1296                } else {
1297                        uarg->callback(uarg, zerocopy);
1298                }
1299
1300                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1301        }
1302}
1303
1304/* Abort a zerocopy operation and revert zckey on error in send syscall */
1305static inline void skb_zcopy_abort(struct sk_buff *skb)
1306{
1307        struct ubuf_info *uarg = skb_zcopy(skb);
1308
1309        if (uarg) {
1310                sock_zerocopy_put_abort(uarg);
1311                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1312        }
1313}
1314
1315/**
1316 *      skb_queue_empty - check if a queue is empty
1317 *      @list: queue head
1318 *
1319 *      Returns true if the queue is empty, false otherwise.
1320 */
1321static inline int skb_queue_empty(const struct sk_buff_head *list)
1322{
1323        return list->next == (const struct sk_buff *) list;
1324}
1325
1326/**
1327 *      skb_queue_is_last - check if skb is the last entry in the queue
1328 *      @list: queue head
1329 *      @skb: buffer
1330 *
1331 *      Returns true if @skb is the last buffer on the list.
1332 */
1333static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1334                                     const struct sk_buff *skb)
1335{
1336        return skb->next == (const struct sk_buff *) list;
1337}
1338
1339/**
1340 *      skb_queue_is_first - check if skb is the first entry in the queue
1341 *      @list: queue head
1342 *      @skb: buffer
1343 *
1344 *      Returns true if @skb is the first buffer on the list.
1345 */
1346static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1347                                      const struct sk_buff *skb)
1348{
1349        return skb->prev == (const struct sk_buff *) list;
1350}
1351
1352/**
1353 *      skb_queue_next - return the next packet in the queue
1354 *      @list: queue head
1355 *      @skb: current buffer
1356 *
1357 *      Return the next packet in @list after @skb.  It is only valid to
1358 *      call this if skb_queue_is_last() evaluates to false.
1359 */
1360static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1361                                             const struct sk_buff *skb)
1362{
1363        /* This BUG_ON may seem severe, but if we just return then we
1364         * are going to dereference garbage.
1365         */
1366        BUG_ON(skb_queue_is_last(list, skb));
1367        return skb->next;
1368}
1369
1370/**
1371 *      skb_queue_prev - return the prev packet in the queue
1372 *      @list: queue head
1373 *      @skb: current buffer
1374 *
1375 *      Return the prev packet in @list before @skb.  It is only valid to
1376 *      call this if skb_queue_is_first() evaluates to false.
1377 */
1378static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1379                                             const struct sk_buff *skb)
1380{
1381        /* This BUG_ON may seem severe, but if we just return then we
1382         * are going to dereference garbage.
1383         */
1384        BUG_ON(skb_queue_is_first(list, skb));
1385        return skb->prev;
1386}
1387
1388/**
1389 *      skb_get - reference buffer
1390 *      @skb: buffer to reference
1391 *
1392 *      Makes another reference to a socket buffer and returns a pointer
1393 *      to the buffer.
1394 */
1395static inline struct sk_buff *skb_get(struct sk_buff *skb)
1396{
1397        refcount_inc(&skb->users);
1398        return skb;
1399}
1400
1401/*
1402 * If users == 1, we are the only owner and are can avoid redundant
1403 * atomic change.
1404 */
1405
1406/**
1407 *      skb_cloned - is the buffer a clone
1408 *      @skb: buffer to check
1409 *
1410 *      Returns true if the buffer was generated with skb_clone() and is
1411 *      one of multiple shared copies of the buffer. Cloned buffers are
1412 *      shared data so must not be written to under normal circumstances.
1413 */
1414static inline int skb_cloned(const struct sk_buff *skb)
1415{
1416        return skb->cloned &&
1417               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1418}
1419
1420static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1421{
1422        might_sleep_if(gfpflags_allow_blocking(pri));
1423
1424        if (skb_cloned(skb))
1425                return pskb_expand_head(skb, 0, 0, pri);
1426
1427        return 0;
1428}
1429
1430/**
1431 *      skb_header_cloned - is the header a clone
1432 *      @skb: buffer to check
1433 *
1434 *      Returns true if modifying the header part of the buffer requires
1435 *      the data to be copied.
1436 */
1437static inline int skb_header_cloned(const struct sk_buff *skb)
1438{
1439        int dataref;
1440
1441        if (!skb->cloned)
1442                return 0;
1443
1444        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1445        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1446        return dataref != 1;
1447}
1448
1449static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1450{
1451        might_sleep_if(gfpflags_allow_blocking(pri));
1452
1453        if (skb_header_cloned(skb))
1454                return pskb_expand_head(skb, 0, 0, pri);
1455
1456        return 0;
1457}
1458
1459/**
1460 *      skb_header_release - release reference to header
1461 *      @skb: buffer to operate on
1462 *
1463 *      Drop a reference to the header part of the buffer.  This is done
1464 *      by acquiring a payload reference.  You must not read from the header
1465 *      part of skb->data after this.
1466 *      Note : Check if you can use __skb_header_release() instead.
1467 */
1468static inline void skb_header_release(struct sk_buff *skb)
1469{
1470        BUG_ON(skb->nohdr);
1471        skb->nohdr = 1;
1472        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1473}
1474
1475/**
1476 *      __skb_header_release - release reference to header
1477 *      @skb: buffer to operate on
1478 *
1479 *      Variant of skb_header_release() assuming skb is private to caller.
1480 *      We can avoid one atomic operation.
1481 */
1482static inline void __skb_header_release(struct sk_buff *skb)
1483{
1484        skb->nohdr = 1;
1485        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1486}
1487
1488
1489/**
1490 *      skb_shared - is the buffer shared
1491 *      @skb: buffer to check
1492 *
1493 *      Returns true if more than one person has a reference to this
1494 *      buffer.
1495 */
1496static inline int skb_shared(const struct sk_buff *skb)
1497{
1498        return refcount_read(&skb->users) != 1;
1499}
1500
1501/**
1502 *      skb_share_check - check if buffer is shared and if so clone it
1503 *      @skb: buffer to check
1504 *      @pri: priority for memory allocation
1505 *
1506 *      If the buffer is shared the buffer is cloned and the old copy
1507 *      drops a reference. A new clone with a single reference is returned.
1508 *      If the buffer is not shared the original buffer is returned. When
1509 *      being called from interrupt status or with spinlocks held pri must
1510 *      be GFP_ATOMIC.
1511 *
1512 *      NULL is returned on a memory allocation failure.
1513 */
1514static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1515{
1516        might_sleep_if(gfpflags_allow_blocking(pri));
1517        if (skb_shared(skb)) {
1518                struct sk_buff *nskb = skb_clone(skb, pri);
1519
1520                if (likely(nskb))
1521                        consume_skb(skb);
1522                else
1523                        kfree_skb(skb);
1524                skb = nskb;
1525        }
1526        return skb;
1527}
1528
1529/*
1530 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1531 *      packets to handle cases where we have a local reader and forward
1532 *      and a couple of other messy ones. The normal one is tcpdumping
1533 *      a packet thats being forwarded.
1534 */
1535
1536/**
1537 *      skb_unshare - make a copy of a shared buffer
1538 *      @skb: buffer to check
1539 *      @pri: priority for memory allocation
1540 *
1541 *      If the socket buffer is a clone then this function creates a new
1542 *      copy of the data, drops a reference count on the old copy and returns
1543 *      the new copy with the reference count at 1. If the buffer is not a clone
1544 *      the original buffer is returned. When called with a spinlock held or
1545 *      from interrupt state @pri must be %GFP_ATOMIC
1546 *
1547 *      %NULL is returned on a memory allocation failure.
1548 */
1549static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1550                                          gfp_t pri)
1551{
1552        might_sleep_if(gfpflags_allow_blocking(pri));
1553        if (skb_cloned(skb)) {
1554                struct sk_buff *nskb = skb_copy(skb, pri);
1555
1556                /* Free our shared copy */
1557                if (likely(nskb))
1558                        consume_skb(skb);
1559                else
1560                        kfree_skb(skb);
1561                skb = nskb;
1562        }
1563        return skb;
1564}
1565
1566/**
1567 *      skb_peek - peek at the head of an &sk_buff_head
1568 *      @list_: list to peek at
1569 *
1570 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1571 *      be careful with this one. A peek leaves the buffer on the
1572 *      list and someone else may run off with it. You must hold
1573 *      the appropriate locks or have a private queue to do this.
1574 *
1575 *      Returns %NULL for an empty list or a pointer to the head element.
1576 *      The reference count is not incremented and the reference is therefore
1577 *      volatile. Use with caution.
1578 */
1579static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1580{
1581        struct sk_buff *skb = list_->next;
1582
1583        if (skb == (struct sk_buff *)list_)
1584                skb = NULL;
1585        return skb;
1586}
1587
1588/**
1589 *      skb_peek_next - peek skb following the given one from a queue
1590 *      @skb: skb to start from
1591 *      @list_: list to peek at
1592 *
1593 *      Returns %NULL when the end of the list is met or a pointer to the
1594 *      next element. The reference count is not incremented and the
1595 *      reference is therefore volatile. Use with caution.
1596 */
1597static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1598                const struct sk_buff_head *list_)
1599{
1600        struct sk_buff *next = skb->next;
1601
1602        if (next == (struct sk_buff *)list_)
1603                next = NULL;
1604        return next;
1605}
1606
1607/**
1608 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1609 *      @list_: list to peek at
1610 *
1611 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1612 *      be careful with this one. A peek leaves the buffer on the
1613 *      list and someone else may run off with it. You must hold
1614 *      the appropriate locks or have a private queue to do this.
1615 *
1616 *      Returns %NULL for an empty list or a pointer to the tail element.
1617 *      The reference count is not incremented and the reference is therefore
1618 *      volatile. Use with caution.
1619 */
1620static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1621{
1622        struct sk_buff *skb = list_->prev;
1623
1624        if (skb == (struct sk_buff *)list_)
1625                skb = NULL;
1626        return skb;
1627
1628}
1629
1630/**
1631 *      skb_queue_len   - get queue length
1632 *      @list_: list to measure
1633 *
1634 *      Return the length of an &sk_buff queue.
1635 */
1636static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1637{
1638        return list_->qlen;
1639}
1640
1641/**
1642 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1643 *      @list: queue to initialize
1644 *
1645 *      This initializes only the list and queue length aspects of
1646 *      an sk_buff_head object.  This allows to initialize the list
1647 *      aspects of an sk_buff_head without reinitializing things like
1648 *      the spinlock.  It can also be used for on-stack sk_buff_head
1649 *      objects where the spinlock is known to not be used.
1650 */
1651static inline void __skb_queue_head_init(struct sk_buff_head *list)
1652{
1653        list->prev = list->next = (struct sk_buff *)list;
1654        list->qlen = 0;
1655}
1656
1657/*
1658 * This function creates a split out lock class for each invocation;
1659 * this is needed for now since a whole lot of users of the skb-queue
1660 * infrastructure in drivers have different locking usage (in hardirq)
1661 * than the networking core (in softirq only). In the long run either the
1662 * network layer or drivers should need annotation to consolidate the
1663 * main types of usage into 3 classes.
1664 */
1665static inline void skb_queue_head_init(struct sk_buff_head *list)
1666{
1667        spin_lock_init(&list->lock);
1668        __skb_queue_head_init(list);
1669}
1670
1671static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1672                struct lock_class_key *class)
1673{
1674        skb_queue_head_init(list);
1675        lockdep_set_class(&list->lock, class);
1676}
1677
1678/*
1679 *      Insert an sk_buff on a list.
1680 *
1681 *      The "__skb_xxxx()" functions are the non-atomic ones that
1682 *      can only be called with interrupts disabled.
1683 */
1684void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1685                struct sk_buff_head *list);
1686static inline void __skb_insert(struct sk_buff *newsk,
1687                                struct sk_buff *prev, struct sk_buff *next,
1688                                struct sk_buff_head *list)
1689{
1690        newsk->next = next;
1691        newsk->prev = prev;
1692        next->prev  = prev->next = newsk;
1693        list->qlen++;
1694}
1695
1696static inline void __skb_queue_splice(const struct sk_buff_head *list,
1697                                      struct sk_buff *prev,
1698                                      struct sk_buff *next)
1699{
1700        struct sk_buff *first = list->next;
1701        struct sk_buff *last = list->prev;
1702
1703        first->prev = prev;
1704        prev->next = first;
1705
1706        last->next = next;
1707        next->prev = last;
1708}
1709
1710/**
1711 *      skb_queue_splice - join two skb lists, this is designed for stacks
1712 *      @list: the new list to add
1713 *      @head: the place to add it in the first list
1714 */
1715static inline void skb_queue_splice(const struct sk_buff_head *list,
1716                                    struct sk_buff_head *head)
1717{
1718        if (!skb_queue_empty(list)) {
1719                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1720                head->qlen += list->qlen;
1721        }
1722}
1723
1724/**
1725 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1726 *      @list: the new list to add
1727 *      @head: the place to add it in the first list
1728 *
1729 *      The list at @list is reinitialised
1730 */
1731static inline void skb_queue_splice_init(struct sk_buff_head *list,
1732                                         struct sk_buff_head *head)
1733{
1734        if (!skb_queue_empty(list)) {
1735                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1736                head->qlen += list->qlen;
1737                __skb_queue_head_init(list);
1738        }
1739}
1740
1741/**
1742 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1743 *      @list: the new list to add
1744 *      @head: the place to add it in the first list
1745 */
1746static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1747                                         struct sk_buff_head *head)
1748{
1749        if (!skb_queue_empty(list)) {
1750                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1751                head->qlen += list->qlen;
1752        }
1753}
1754
1755/**
1756 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1757 *      @list: the new list to add
1758 *      @head: the place to add it in the first list
1759 *
1760 *      Each of the lists is a queue.
1761 *      The list at @list is reinitialised
1762 */
1763static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1764                                              struct sk_buff_head *head)
1765{
1766        if (!skb_queue_empty(list)) {
1767                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1768                head->qlen += list->qlen;
1769                __skb_queue_head_init(list);
1770        }
1771}
1772
1773/**
1774 *      __skb_queue_after - queue a buffer at the list head
1775 *      @list: list to use
1776 *      @prev: place after this buffer
1777 *      @newsk: buffer to queue
1778 *
1779 *      Queue a buffer int the middle of a list. This function takes no locks
1780 *      and you must therefore hold required locks before calling it.
1781 *
1782 *      A buffer cannot be placed on two lists at the same time.
1783 */
1784static inline void __skb_queue_after(struct sk_buff_head *list,
1785                                     struct sk_buff *prev,
1786                                     struct sk_buff *newsk)
1787{
1788        __skb_insert(newsk, prev, prev->next, list);
1789}
1790
1791void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1792                struct sk_buff_head *list);
1793
1794static inline void __skb_queue_before(struct sk_buff_head *list,
1795                                      struct sk_buff *next,
1796                                      struct sk_buff *newsk)
1797{
1798        __skb_insert(newsk, next->prev, next, list);
1799}
1800
1801/**
1802 *      __skb_queue_head - queue a buffer at the list head
1803 *      @list: list to use
1804 *      @newsk: buffer to queue
1805 *
1806 *      Queue a buffer at the start of a list. This function takes no locks
1807 *      and you must therefore hold required locks before calling it.
1808 *
1809 *      A buffer cannot be placed on two lists at the same time.
1810 */
1811void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1812static inline void __skb_queue_head(struct sk_buff_head *list,
1813                                    struct sk_buff *newsk)
1814{
1815        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1816}
1817
1818/**
1819 *      __skb_queue_tail - queue a buffer at the list tail
1820 *      @list: list to use
1821 *      @newsk: buffer to queue
1822 *
1823 *      Queue a buffer at the end of a list. This function takes no locks
1824 *      and you must therefore hold required locks before calling it.
1825 *
1826 *      A buffer cannot be placed on two lists at the same time.
1827 */
1828void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1829static inline void __skb_queue_tail(struct sk_buff_head *list,
1830                                   struct sk_buff *newsk)
1831{
1832        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1833}
1834
1835/*
1836 * remove sk_buff from list. _Must_ be called atomically, and with
1837 * the list known..
1838 */
1839void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1840static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1841{
1842        struct sk_buff *next, *prev;
1843
1844        list->qlen--;
1845        next       = skb->next;
1846        prev       = skb->prev;
1847        skb->next  = skb->prev = NULL;
1848        next->prev = prev;
1849        prev->next = next;
1850}
1851
1852/**
1853 *      __skb_dequeue - remove from the head of the queue
1854 *      @list: list to dequeue from
1855 *
1856 *      Remove the head of the list. This function does not take any locks
1857 *      so must be used with appropriate locks held only. The head item is
1858 *      returned or %NULL if the list is empty.
1859 */
1860struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1861static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1862{
1863        struct sk_buff *skb = skb_peek(list);
1864        if (skb)
1865                __skb_unlink(skb, list);
1866        return skb;
1867}
1868
1869/**
1870 *      __skb_dequeue_tail - remove from the tail of the queue
1871 *      @list: list to dequeue from
1872 *
1873 *      Remove the tail of the list. This function does not take any locks
1874 *      so must be used with appropriate locks held only. The tail item is
1875 *      returned or %NULL if the list is empty.
1876 */
1877struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1878static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1879{
1880        struct sk_buff *skb = skb_peek_tail(list);
1881        if (skb)
1882                __skb_unlink(skb, list);
1883        return skb;
1884}
1885
1886
1887static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1888{
1889        return skb->data_len;
1890}
1891
1892static inline unsigned int skb_headlen(const struct sk_buff *skb)
1893{
1894        return skb->len - skb->data_len;
1895}
1896
1897static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1898{
1899        unsigned int i, len = 0;
1900
1901        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1902                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1903        return len;
1904}
1905
1906static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1907{
1908        return skb_headlen(skb) + __skb_pagelen(skb);
1909}
1910
1911/**
1912 * __skb_fill_page_desc - initialise a paged fragment in an skb
1913 * @skb: buffer containing fragment to be initialised
1914 * @i: paged fragment index to initialise
1915 * @page: the page to use for this fragment
1916 * @off: the offset to the data with @page
1917 * @size: the length of the data
1918 *
1919 * Initialises the @i'th fragment of @skb to point to &size bytes at
1920 * offset @off within @page.
1921 *
1922 * Does not take any additional reference on the fragment.
1923 */
1924static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1925                                        struct page *page, int off, int size)
1926{
1927        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1928
1929        /*
1930         * Propagate page pfmemalloc to the skb if we can. The problem is
1931         * that not all callers have unique ownership of the page but rely
1932         * on page_is_pfmemalloc doing the right thing(tm).
1933         */
1934        frag->page.p              = page;
1935        frag->page_offset         = off;
1936        skb_frag_size_set(frag, size);
1937
1938        page = compound_head(page);
1939        if (page_is_pfmemalloc(page))
1940                skb->pfmemalloc = true;
1941}
1942
1943/**
1944 * skb_fill_page_desc - initialise a paged fragment in an skb
1945 * @skb: buffer containing fragment to be initialised
1946 * @i: paged fragment index to initialise
1947 * @page: the page to use for this fragment
1948 * @off: the offset to the data with @page
1949 * @size: the length of the data
1950 *
1951 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1952 * @skb to point to @size bytes at offset @off within @page. In
1953 * addition updates @skb such that @i is the last fragment.
1954 *
1955 * Does not take any additional reference on the fragment.
1956 */
1957static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1958                                      struct page *page, int off, int size)
1959{
1960        __skb_fill_page_desc(skb, i, page, off, size);
1961        skb_shinfo(skb)->nr_frags = i + 1;
1962}
1963
1964void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1965                     int size, unsigned int truesize);
1966
1967void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1968                          unsigned int truesize);
1969
1970#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1971#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1972#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1973
1974#ifdef NET_SKBUFF_DATA_USES_OFFSET
1975static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1976{
1977        return skb->head + skb->tail;
1978}
1979
1980static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1981{
1982        skb->tail = skb->data - skb->head;
1983}
1984
1985static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1986{
1987        skb_reset_tail_pointer(skb);
1988        skb->tail += offset;
1989}
1990
1991#else /* NET_SKBUFF_DATA_USES_OFFSET */
1992static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1993{
1994        return skb->tail;
1995}
1996
1997static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1998{
1999        skb->tail = skb->data;
2000}
2001
2002static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2003{
2004        skb->tail = skb->data + offset;
2005}
2006
2007#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2008
2009/*
2010 *      Add data to an sk_buff
2011 */
2012void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2013void *skb_put(struct sk_buff *skb, unsigned int len);
2014static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2015{
2016        void *tmp = skb_tail_pointer(skb);
2017        SKB_LINEAR_ASSERT(skb);
2018        skb->tail += len;
2019        skb->len  += len;
2020        return tmp;
2021}
2022
2023static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2024{
2025        void *tmp = __skb_put(skb, len);
2026
2027        memset(tmp, 0, len);
2028        return tmp;
2029}
2030
2031static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2032                                   unsigned int len)
2033{
2034        void *tmp = __skb_put(skb, len);
2035
2036        memcpy(tmp, data, len);
2037        return tmp;
2038}
2039
2040static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2041{
2042        *(u8 *)__skb_put(skb, 1) = val;
2043}
2044
2045static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2046{
2047        void *tmp = skb_put(skb, len);
2048
2049        memset(tmp, 0, len);
2050
2051        return tmp;
2052}
2053
2054static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2055                                 unsigned int len)
2056{
2057        void *tmp = skb_put(skb, len);
2058
2059        memcpy(tmp, data, len);
2060
2061        return tmp;
2062}
2063
2064static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2065{
2066        *(u8 *)skb_put(skb, 1) = val;
2067}
2068
2069void *skb_push(struct sk_buff *skb, unsigned int len);
2070static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2071{
2072        skb->data -= len;
2073        skb->len  += len;
2074        return skb->data;
2075}
2076
2077void *skb_pull(struct sk_buff *skb, unsigned int len);
2078static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2079{
2080        skb->len -= len;
2081        BUG_ON(skb->len < skb->data_len);
2082        return skb->data += len;
2083}
2084
2085static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2086{
2087        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2088}
2089
2090void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2091
2092static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2093{
2094        if (len > skb_headlen(skb) &&
2095            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2096                return NULL;
2097        skb->len -= len;
2098        return skb->data += len;
2099}
2100
2101static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2102{
2103        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2104}
2105
2106static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2107{
2108        if (likely(len <= skb_headlen(skb)))
2109                return 1;
2110        if (unlikely(len > skb->len))
2111                return 0;
2112        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2113}
2114
2115void skb_condense(struct sk_buff *skb);
2116
2117/**
2118 *      skb_headroom - bytes at buffer head
2119 *      @skb: buffer to check
2120 *
2121 *      Return the number of bytes of free space at the head of an &sk_buff.
2122 */
2123static inline unsigned int skb_headroom(const struct sk_buff *skb)
2124{
2125        return skb->data - skb->head;
2126}
2127
2128/**
2129 *      skb_tailroom - bytes at buffer end
2130 *      @skb: buffer to check
2131 *
2132 *      Return the number of bytes of free space at the tail of an sk_buff
2133 */
2134static inline int skb_tailroom(const struct sk_buff *skb)
2135{
2136        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2137}
2138
2139/**
2140 *      skb_availroom - bytes at buffer end
2141 *      @skb: buffer to check
2142 *
2143 *      Return the number of bytes of free space at the tail of an sk_buff
2144 *      allocated by sk_stream_alloc()
2145 */
2146static inline int skb_availroom(const struct sk_buff *skb)
2147{
2148        if (skb_is_nonlinear(skb))
2149                return 0;
2150
2151        return skb->end - skb->tail - skb->reserved_tailroom;
2152}
2153
2154/**
2155 *      skb_reserve - adjust headroom
2156 *      @skb: buffer to alter
2157 *      @len: bytes to move
2158 *
2159 *      Increase the headroom of an empty &sk_buff by reducing the tail
2160 *      room. This is only allowed for an empty buffer.
2161 */
2162static inline void skb_reserve(struct sk_buff *skb, int len)
2163{
2164        skb->data += len;
2165        skb->tail += len;
2166}
2167
2168/**
2169 *      skb_tailroom_reserve - adjust reserved_tailroom
2170 *      @skb: buffer to alter
2171 *      @mtu: maximum amount of headlen permitted
2172 *      @needed_tailroom: minimum amount of reserved_tailroom
2173 *
2174 *      Set reserved_tailroom so that headlen can be as large as possible but
2175 *      not larger than mtu and tailroom cannot be smaller than
2176 *      needed_tailroom.
2177 *      The required headroom should already have been reserved before using
2178 *      this function.
2179 */
2180static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2181                                        unsigned int needed_tailroom)
2182{
2183        SKB_LINEAR_ASSERT(skb);
2184        if (mtu < skb_tailroom(skb) - needed_tailroom)
2185                /* use at most mtu */
2186                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2187        else
2188                /* use up to all available space */
2189                skb->reserved_tailroom = needed_tailroom;
2190}
2191
2192#define ENCAP_TYPE_ETHER        0
2193#define ENCAP_TYPE_IPPROTO      1
2194
2195static inline void skb_set_inner_protocol(struct sk_buff *skb,
2196                                          __be16 protocol)
2197{
2198        skb->inner_protocol = protocol;
2199        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2200}
2201
2202static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2203                                         __u8 ipproto)
2204{
2205        skb->inner_ipproto = ipproto;
2206        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2207}
2208
2209static inline void skb_reset_inner_headers(struct sk_buff *skb)
2210{
2211        skb->inner_mac_header = skb->mac_header;
2212        skb->inner_network_header = skb->network_header;
2213        skb->inner_transport_header = skb->transport_header;
2214}
2215
2216static inline void skb_reset_mac_len(struct sk_buff *skb)
2217{
2218        skb->mac_len = skb->network_header - skb->mac_header;
2219}
2220
2221static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2222                                                        *skb)
2223{
2224        return skb->head + skb->inner_transport_header;
2225}
2226
2227static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2228{
2229        return skb_inner_transport_header(skb) - skb->data;
2230}
2231
2232static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2233{
2234        skb->inner_transport_header = skb->data - skb->head;
2235}
2236
2237static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2238                                                   const int offset)
2239{
2240        skb_reset_inner_transport_header(skb);
2241        skb->inner_transport_header += offset;
2242}
2243
2244static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2245{
2246        return skb->head + skb->inner_network_header;
2247}
2248
2249static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2250{
2251        skb->inner_network_header = skb->data - skb->head;
2252}
2253
2254static inline void skb_set_inner_network_header(struct sk_buff *skb,
2255                                                const int offset)
2256{
2257        skb_reset_inner_network_header(skb);
2258        skb->inner_network_header += offset;
2259}
2260
2261static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2262{
2263        return skb->head + skb->inner_mac_header;
2264}
2265
2266static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2267{
2268        skb->inner_mac_header = skb->data - skb->head;
2269}
2270
2271static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2272                                            const int offset)
2273{
2274        skb_reset_inner_mac_header(skb);
2275        skb->inner_mac_header += offset;
2276}
2277static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2278{
2279        return skb->transport_header != (typeof(skb->transport_header))~0U;
2280}
2281
2282static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2283{
2284        return skb->head + skb->transport_header;
2285}
2286
2287static inline void skb_reset_transport_header(struct sk_buff *skb)
2288{
2289        skb->transport_header = skb->data - skb->head;
2290}
2291
2292static inline void skb_set_transport_header(struct sk_buff *skb,
2293                                            const int offset)
2294{
2295        skb_reset_transport_header(skb);
2296        skb->transport_header += offset;
2297}
2298
2299static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2300{
2301        return skb->head + skb->network_header;
2302}
2303
2304static inline void skb_reset_network_header(struct sk_buff *skb)
2305{
2306        skb->network_header = skb->data - skb->head;
2307}
2308
2309static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2310{
2311        skb_reset_network_header(skb);
2312        skb->network_header += offset;
2313}
2314
2315static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2316{
2317        return skb->head + skb->mac_header;
2318}
2319
2320static inline int skb_mac_offset(const struct sk_buff *skb)
2321{
2322        return skb_mac_header(skb) - skb->data;
2323}
2324
2325static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2326{
2327        return skb->network_header - skb->mac_header;
2328}
2329
2330static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2331{
2332        return skb->mac_header != (typeof(skb->mac_header))~0U;
2333}
2334
2335static inline void skb_reset_mac_header(struct sk_buff *skb)
2336{
2337        skb->mac_header = skb->data - skb->head;
2338}
2339
2340static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2341{
2342        skb_reset_mac_header(skb);
2343        skb->mac_header += offset;
2344}
2345
2346static inline void skb_pop_mac_header(struct sk_buff *skb)
2347{
2348        skb->mac_header = skb->network_header;
2349}
2350
2351static inline void skb_probe_transport_header(struct sk_buff *skb,
2352                                              const int offset_hint)
2353{
2354        struct flow_keys keys;
2355
2356        if (skb_transport_header_was_set(skb))
2357                return;
2358        else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2359                skb_set_transport_header(skb, keys.control.thoff);
2360        else
2361                skb_set_transport_header(skb, offset_hint);
2362}
2363
2364static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365{
2366        if (skb_mac_header_was_set(skb)) {
2367                const unsigned char *old_mac = skb_mac_header(skb);
2368
2369                skb_set_mac_header(skb, -skb->mac_len);
2370                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2371        }
2372}
2373
2374static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375{
2376        return skb->csum_start - skb_headroom(skb);
2377}
2378
2379static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380{
2381        return skb->head + skb->csum_start;
2382}
2383
2384static inline int skb_transport_offset(const struct sk_buff *skb)
2385{
2386        return skb_transport_header(skb) - skb->data;
2387}
2388
2389static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390{
2391        return skb->transport_header - skb->network_header;
2392}
2393
2394static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395{
2396        return skb->inner_transport_header - skb->inner_network_header;
2397}
2398
2399static inline int skb_network_offset(const struct sk_buff *skb)
2400{
2401        return skb_network_header(skb) - skb->data;
2402}
2403
2404static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405{
2406        return skb_inner_network_header(skb) - skb->data;
2407}
2408
2409static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410{
2411        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2412}
2413
2414/*
2415 * CPUs often take a performance hit when accessing unaligned memory
2416 * locations. The actual performance hit varies, it can be small if the
2417 * hardware handles it or large if we have to take an exception and fix it
2418 * in software.
2419 *
2420 * Since an ethernet header is 14 bytes network drivers often end up with
2421 * the IP header at an unaligned offset. The IP header can be aligned by
2422 * shifting the start of the packet by 2 bytes. Drivers should do this
2423 * with:
2424 *
2425 * skb_reserve(skb, NET_IP_ALIGN);
2426 *
2427 * The downside to this alignment of the IP header is that the DMA is now
2428 * unaligned. On some architectures the cost of an unaligned DMA is high
2429 * and this cost outweighs the gains made by aligning the IP header.
2430 *
2431 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2432 * to be overridden.
2433 */
2434#ifndef NET_IP_ALIGN
2435#define NET_IP_ALIGN    2
2436#endif
2437
2438/*
2439 * The networking layer reserves some headroom in skb data (via
2440 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2441 * the header has to grow. In the default case, if the header has to grow
2442 * 32 bytes or less we avoid the reallocation.
2443 *
2444 * Unfortunately this headroom changes the DMA alignment of the resulting
2445 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2446 * on some architectures. An architecture can override this value,
2447 * perhaps setting it to a cacheline in size (since that will maintain
2448 * cacheline alignment of the DMA). It must be a power of 2.
2449 *
2450 * Various parts of the networking layer expect at least 32 bytes of
2451 * headroom, you should not reduce this.
2452 *
2453 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2454 * to reduce average number of cache lines per packet.
2455 * get_rps_cpus() for example only access one 64 bytes aligned block :
2456 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2457 */
2458#ifndef NET_SKB_PAD
2459#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2460#endif
2461
2462int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2463
2464static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2465{
2466        if (unlikely(skb_is_nonlinear(skb))) {
2467                WARN_ON(1);
2468                return;
2469        }
2470        skb->len = len;
2471        skb_set_tail_pointer(skb, len);
2472}
2473
2474static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475{
2476        __skb_set_length(skb, len);
2477}
2478
2479void skb_trim(struct sk_buff *skb, unsigned int len);
2480
2481static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2482{
2483        if (skb->data_len)
2484                return ___pskb_trim(skb, len);
2485        __skb_trim(skb, len);
2486        return 0;
2487}
2488
2489static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490{
2491        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2492}
2493
2494/**
2495 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2496 *      @skb: buffer to alter
2497 *      @len: new length
2498 *
2499 *      This is identical to pskb_trim except that the caller knows that
2500 *      the skb is not cloned so we should never get an error due to out-
2501 *      of-memory.
2502 */
2503static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504{
2505        int err = pskb_trim(skb, len);
2506        BUG_ON(err);
2507}
2508
2509static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510{
2511        unsigned int diff = len - skb->len;
2512
2513        if (skb_tailroom(skb) < diff) {
2514                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2515                                           GFP_ATOMIC);
2516                if (ret)
2517                        return ret;
2518        }
2519        __skb_set_length(skb, len);
2520        return 0;
2521}
2522
2523/**
2524 *      skb_orphan - orphan a buffer
2525 *      @skb: buffer to orphan
2526 *
2527 *      If a buffer currently has an owner then we call the owner's
2528 *      destructor function and make the @skb unowned. The buffer continues
2529 *      to exist but is no longer charged to its former owner.
2530 */
2531static inline void skb_orphan(struct sk_buff *skb)
2532{
2533        if (skb->destructor) {
2534                skb->destructor(skb);
2535                skb->destructor = NULL;
2536                skb->sk         = NULL;
2537        } else {
2538                BUG_ON(skb->sk);
2539        }
2540}
2541
2542/**
2543 *      skb_orphan_frags - orphan the frags contained in a buffer
2544 *      @skb: buffer to orphan frags from
2545 *      @gfp_mask: allocation mask for replacement pages
2546 *
2547 *      For each frag in the SKB which needs a destructor (i.e. has an
2548 *      owner) create a copy of that frag and release the original
2549 *      page by calling the destructor.
2550 */
2551static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552{
2553        if (likely(!skb_zcopy(skb)))
2554                return 0;
2555        if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556                return 0;
2557        return skb_copy_ubufs(skb, gfp_mask);
2558}
2559
2560/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2561static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562{
2563        if (likely(!skb_zcopy(skb)))
2564                return 0;
2565        return skb_copy_ubufs(skb, gfp_mask);
2566}
2567
2568/**
2569 *      __skb_queue_purge - empty a list
2570 *      @list: list to empty
2571 *
2572 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2573 *      the list and one reference dropped. This function does not take the
2574 *      list lock and the caller must hold the relevant locks to use it.
2575 */
2576void skb_queue_purge(struct sk_buff_head *list);
2577static inline void __skb_queue_purge(struct sk_buff_head *list)
2578{
2579        struct sk_buff *skb;
2580        while ((skb = __skb_dequeue(list)) != NULL)
2581                kfree_skb(skb);
2582}
2583
2584void skb_rbtree_purge(struct rb_root *root);
2585
2586void *netdev_alloc_frag(unsigned int fragsz);
2587
2588struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2589                                   gfp_t gfp_mask);
2590
2591/**
2592 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2593 *      @dev: network device to receive on
2594 *      @length: length to allocate
2595 *
2596 *      Allocate a new &sk_buff and assign it a usage count of one. The
2597 *      buffer has unspecified headroom built in. Users should allocate
2598 *      the headroom they think they need without accounting for the
2599 *      built in space. The built in space is used for optimisations.
2600 *
2601 *      %NULL is returned if there is no free memory. Although this function
2602 *      allocates memory it can be called from an interrupt.
2603 */
2604static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2605                                               unsigned int length)
2606{
2607        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2608}
2609
2610/* legacy helper around __netdev_alloc_skb() */
2611static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2612                                              gfp_t gfp_mask)
2613{
2614        return __netdev_alloc_skb(NULL, length, gfp_mask);
2615}
2616
2617/* legacy helper around netdev_alloc_skb() */
2618static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619{
2620        return netdev_alloc_skb(NULL, length);
2621}
2622
2623
2624static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2625                unsigned int length, gfp_t gfp)
2626{
2627        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2628
2629        if (NET_IP_ALIGN && skb)
2630                skb_reserve(skb, NET_IP_ALIGN);
2631        return skb;
2632}
2633
2634static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2635                unsigned int length)
2636{
2637        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2638}
2639
2640static inline void skb_free_frag(void *addr)
2641{
2642        page_frag_free(addr);
2643}
2644
2645void *napi_alloc_frag(unsigned int fragsz);
2646struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2647                                 unsigned int length, gfp_t gfp_mask);
2648static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2649                                             unsigned int length)
2650{
2651        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652}
2653void napi_consume_skb(struct sk_buff *skb, int budget);
2654
2655void __kfree_skb_flush(void);
2656void __kfree_skb_defer(struct sk_buff *skb);
2657
2658/**
2659 * __dev_alloc_pages - allocate page for network Rx
2660 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2661 * @order: size of the allocation
2662 *
2663 * Allocate a new page.
2664 *
2665 * %NULL is returned if there is no free memory.
2666*/
2667static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2668                                             unsigned int order)
2669{
2670        /* This piece of code contains several assumptions.
2671         * 1.  This is for device Rx, therefor a cold page is preferred.
2672         * 2.  The expectation is the user wants a compound page.
2673         * 3.  If requesting a order 0 page it will not be compound
2674         *     due to the check to see if order has a value in prep_new_page
2675         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2676         *     code in gfp_to_alloc_flags that should be enforcing this.
2677         */
2678        gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2679
2680        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2681}
2682
2683static inline struct page *dev_alloc_pages(unsigned int order)
2684{
2685        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2686}
2687
2688/**
2689 * __dev_alloc_page - allocate a page for network Rx
2690 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691 *
2692 * Allocate a new page.
2693 *
2694 * %NULL is returned if there is no free memory.
2695 */
2696static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697{
2698        return __dev_alloc_pages(gfp_mask, 0);
2699}
2700
2701static inline struct page *dev_alloc_page(void)
2702{
2703        return dev_alloc_pages(0);
2704}
2705
2706/**
2707 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2708 *      @page: The page that was allocated from skb_alloc_page
2709 *      @skb: The skb that may need pfmemalloc set
2710 */
2711static inline void skb_propagate_pfmemalloc(struct page *page,
2712                                             struct sk_buff *skb)
2713{
2714        if (page_is_pfmemalloc(page))
2715                skb->pfmemalloc = true;
2716}
2717
2718/**
2719 * skb_frag_page - retrieve the page referred to by a paged fragment
2720 * @frag: the paged fragment
2721 *
2722 * Returns the &struct page associated with @frag.
2723 */
2724static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725{
2726        return frag->page.p;
2727}
2728
2729/**
2730 * __skb_frag_ref - take an addition reference on a paged fragment.
2731 * @frag: the paged fragment
2732 *
2733 * Takes an additional reference on the paged fragment @frag.
2734 */
2735static inline void __skb_frag_ref(skb_frag_t *frag)
2736{
2737        get_page(skb_frag_page(frag));
2738}
2739
2740/**
2741 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742 * @skb: the buffer
2743 * @f: the fragment offset.
2744 *
2745 * Takes an additional reference on the @f'th paged fragment of @skb.
2746 */
2747static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748{
2749        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2750}
2751
2752/**
2753 * __skb_frag_unref - release a reference on a paged fragment.
2754 * @frag: the paged fragment
2755 *
2756 * Releases a reference on the paged fragment @frag.
2757 */
2758static inline void __skb_frag_unref(skb_frag_t *frag)
2759{
2760        put_page(skb_frag_page(frag));
2761}
2762
2763/**
2764 * skb_frag_unref - release a reference on a paged fragment of an skb.
2765 * @skb: the buffer
2766 * @f: the fragment offset
2767 *
2768 * Releases a reference on the @f'th paged fragment of @skb.
2769 */
2770static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771{
2772        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2773}
2774
2775/**
2776 * skb_frag_address - gets the address of the data contained in a paged fragment
2777 * @frag: the paged fragment buffer
2778 *
2779 * Returns the address of the data within @frag. The page must already
2780 * be mapped.
2781 */
2782static inline void *skb_frag_address(const skb_frag_t *frag)
2783{
2784        return page_address(skb_frag_page(frag)) + frag->page_offset;
2785}
2786
2787/**
2788 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2789 * @frag: the paged fragment buffer
2790 *
2791 * Returns the address of the data within @frag. Checks that the page
2792 * is mapped and returns %NULL otherwise.
2793 */
2794static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795{
2796        void *ptr = page_address(skb_frag_page(frag));
2797        if (unlikely(!ptr))
2798                return NULL;
2799
2800        return ptr + frag->page_offset;
2801}
2802
2803/**
2804 * __skb_frag_set_page - sets the page contained in a paged fragment
2805 * @frag: the paged fragment
2806 * @page: the page to set
2807 *
2808 * Sets the fragment @frag to contain @page.
2809 */
2810static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811{
2812        frag->page.p = page;
2813}
2814
2815/**
2816 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817 * @skb: the buffer
2818 * @f: the fragment offset
2819 * @page: the page to set
2820 *
2821 * Sets the @f'th fragment of @skb to contain @page.
2822 */
2823static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2824                                     struct page *page)
2825{
2826        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2827}
2828
2829bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2830
2831/**
2832 * skb_frag_dma_map - maps a paged fragment via the DMA API
2833 * @dev: the device to map the fragment to
2834 * @frag: the paged fragment to map
2835 * @offset: the offset within the fragment (starting at the
2836 *          fragment's own offset)
2837 * @size: the number of bytes to map
2838 * @dir: the direction of the mapping (``PCI_DMA_*``)
2839 *
2840 * Maps the page associated with @frag to @device.
2841 */
2842static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2843                                          const skb_frag_t *frag,
2844                                          size_t offset, size_t size,
2845                                          enum dma_data_direction dir)
2846{
2847        return dma_map_page(dev, skb_frag_page(frag),
2848                            frag->page_offset + offset, size, dir);
2849}
2850
2851static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2852                                        gfp_t gfp_mask)
2853{
2854        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2855}
2856
2857
2858static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2859                                                  gfp_t gfp_mask)
2860{
2861        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2862}
2863
2864
2865/**
2866 *      skb_clone_writable - is the header of a clone writable
2867 *      @skb: buffer to check
2868 *      @len: length up to which to write
2869 *
2870 *      Returns true if modifying the header part of the cloned buffer
2871 *      does not requires the data to be copied.
2872 */
2873static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2874{
2875        return !skb_header_cloned(skb) &&
2876               skb_headroom(skb) + len <= skb->hdr_len;
2877}
2878
2879static inline int skb_try_make_writable(struct sk_buff *skb,
2880                                        unsigned int write_len)
2881{
2882        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2883               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2884}
2885
2886static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2887                            int cloned)
2888{
2889        int delta = 0;
2890
2891        if (headroom > skb_headroom(skb))
2892                delta = headroom - skb_headroom(skb);
2893
2894        if (delta || cloned)
2895                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2896                                        GFP_ATOMIC);
2897        return 0;
2898}
2899
2900/**
2901 *      skb_cow - copy header of skb when it is required
2902 *      @skb: buffer to cow
2903 *      @headroom: needed headroom
2904 *
2905 *      If the skb passed lacks sufficient headroom or its data part
2906 *      is shared, data is reallocated. If reallocation fails, an error
2907 *      is returned and original skb is not changed.
2908 *
2909 *      The result is skb with writable area skb->head...skb->tail
2910 *      and at least @headroom of space at head.
2911 */
2912static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913{
2914        return __skb_cow(skb, headroom, skb_cloned(skb));
2915}
2916
2917/**
2918 *      skb_cow_head - skb_cow but only making the head writable
2919 *      @skb: buffer to cow
2920 *      @headroom: needed headroom
2921 *
2922 *      This function is identical to skb_cow except that we replace the
2923 *      skb_cloned check by skb_header_cloned.  It should be used when
2924 *      you only need to push on some header and do not need to modify
2925 *      the data.
2926 */
2927static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928{
2929        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2930}
2931
2932/**
2933 *      skb_padto       - pad an skbuff up to a minimal size
2934 *      @skb: buffer to pad
2935 *      @len: minimal length
2936 *
2937 *      Pads up a buffer to ensure the trailing bytes exist and are
2938 *      blanked. If the buffer already contains sufficient data it
2939 *      is untouched. Otherwise it is extended. Returns zero on
2940 *      success. The skb is freed on error.
2941 */
2942static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2943{
2944        unsigned int size = skb->len;
2945        if (likely(size >= len))
2946                return 0;
2947        return skb_pad(skb, len - size);
2948}
2949
2950/**
2951 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2952 *      @skb: buffer to pad
2953 *      @len: minimal length
2954 *      @free_on_error: free buffer on error
2955 *
2956 *      Pads up a buffer to ensure the trailing bytes exist and are
2957 *      blanked. If the buffer already contains sufficient data it
2958 *      is untouched. Otherwise it is extended. Returns zero on
2959 *      success. The skb is freed on error if @free_on_error is true.
2960 */
2961static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2962                                  bool free_on_error)
2963{
2964        unsigned int size = skb->len;
2965
2966        if (unlikely(size < len)) {
2967                len -= size;
2968                if (__skb_pad(skb, len, free_on_error))
2969                        return -ENOMEM;
2970                __skb_put(skb, len);
2971        }
2972        return 0;
2973}
2974
2975/**
2976 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2977 *      @skb: buffer to pad
2978 *      @len: minimal length
2979 *
2980 *      Pads up a buffer to ensure the trailing bytes exist and are
2981 *      blanked. If the buffer already contains sufficient data it
2982 *      is untouched. Otherwise it is extended. Returns zero on
2983 *      success. The skb is freed on error.
2984 */
2985static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986{
2987        return __skb_put_padto(skb, len, true);
2988}
2989
2990static inline int skb_add_data(struct sk_buff *skb,
2991                               struct iov_iter *from, int copy)
2992{
2993        const int off = skb->len;
2994
2995        if (skb->ip_summed == CHECKSUM_NONE) {
2996                __wsum csum = 0;
2997                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998                                                 &csum, from)) {
2999                        skb->csum = csum_block_add(skb->csum, csum, off);
3000                        return 0;
3001                }
3002        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3003                return 0;
3004
3005        __skb_trim(skb, off);
3006        return -EFAULT;
3007}
3008
3009static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3010                                    const struct page *page, int off)
3011{
3012        if (skb_zcopy(skb))
3013                return false;
3014        if (i) {
3015                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3016
3017                return page == skb_frag_page(frag) &&
3018                       off == frag->page_offset + skb_frag_size(frag);
3019        }
3020        return false;
3021}
3022
3023static inline int __skb_linearize(struct sk_buff *skb)
3024{
3025        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3026}
3027
3028/**
3029 *      skb_linearize - convert paged skb to linear one
3030 *      @skb: buffer to linarize
3031 *
3032 *      If there is no free memory -ENOMEM is returned, otherwise zero
3033 *      is returned and the old skb data released.
3034 */
3035static inline int skb_linearize(struct sk_buff *skb)
3036{
3037        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3038}
3039
3040/**
3041 * skb_has_shared_frag - can any frag be overwritten
3042 * @skb: buffer to test
3043 *
3044 * Return true if the skb has at least one frag that might be modified
3045 * by an external entity (as in vmsplice()/sendfile())
3046 */
3047static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048{
3049        return skb_is_nonlinear(skb) &&
3050               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3051}
3052
3053/**
3054 *      skb_linearize_cow - make sure skb is linear and writable
3055 *      @skb: buffer to process
3056 *
3057 *      If there is no free memory -ENOMEM is returned, otherwise zero
3058 *      is returned and the old skb data released.
3059 */
3060static inline int skb_linearize_cow(struct sk_buff *skb)
3061{
3062        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3063               __skb_linearize(skb) : 0;
3064}
3065
3066static __always_inline void
3067__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3068                     unsigned int off)
3069{
3070        if (skb->ip_summed == CHECKSUM_COMPLETE)
3071                skb->csum = csum_block_sub(skb->csum,
3072                                           csum_partial(start, len, 0), off);
3073        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3074                 skb_checksum_start_offset(skb) < 0)
3075                skb->ip_summed = CHECKSUM_NONE;
3076}
3077
3078/**
3079 *      skb_postpull_rcsum - update checksum for received skb after pull
3080 *      @skb: buffer to update
3081 *      @start: start of data before pull
3082 *      @len: length of data pulled
3083 *
3084 *      After doing a pull on a received packet, you need to call this to
3085 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3086 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3087 */
3088static inline void skb_postpull_rcsum(struct sk_buff *skb,
3089                                      const void *start, unsigned int len)
3090{
3091        __skb_postpull_rcsum(skb, start, len, 0);
3092}
3093
3094static __always_inline void
3095__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3096                     unsigned int off)
3097{
3098        if (skb->ip_summed == CHECKSUM_COMPLETE)
3099                skb->csum = csum_block_add(skb->csum,
3100                                           csum_partial(start, len, 0), off);
3101}
3102
3103/**
3104 *      skb_postpush_rcsum - update checksum for received skb after push
3105 *      @skb: buffer to update
3106 *      @start: start of data after push
3107 *      @len: length of data pushed
3108 *
3109 *      After doing a push on a received packet, you need to call this to
3110 *      update the CHECKSUM_COMPLETE checksum.
3111 */
3112static inline void skb_postpush_rcsum(struct sk_buff *skb,
3113                                      const void *start, unsigned int len)
3114{
3115        __skb_postpush_rcsum(skb, start, len, 0);
3116}
3117
3118void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3119
3120/**
3121 *      skb_push_rcsum - push skb and update receive checksum
3122 *      @skb: buffer to update
3123 *      @len: length of data pulled
3124 *
3125 *      This function performs an skb_push on the packet and updates
3126 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3127 *      receive path processing instead of skb_push unless you know
3128 *      that the checksum difference is zero (e.g., a valid IP header)
3129 *      or you are setting ip_summed to CHECKSUM_NONE.
3130 */
3131static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3132{
3133        skb_push(skb, len);
3134        skb_postpush_rcsum(skb, skb->data, len);
3135        return skb->data;
3136}
3137
3138/**
3139 *      pskb_trim_rcsum - trim received skb and update checksum
3140 *      @skb: buffer to trim
3141 *      @len: new length
3142 *
3143 *      This is exactly the same as pskb_trim except that it ensures the
3144 *      checksum of received packets are still valid after the operation.
3145 */
3146
3147static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3148{
3149        if (likely(len >= skb->len))
3150                return 0;
3151        if (skb->ip_summed == CHECKSUM_COMPLETE)
3152                skb->ip_summed = CHECKSUM_NONE;
3153        return __pskb_trim(skb, len);
3154}
3155
3156static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3157{
3158        if (skb->ip_summed == CHECKSUM_COMPLETE)
3159                skb->ip_summed = CHECKSUM_NONE;
3160        __skb_trim(skb, len);
3161        return 0;
3162}
3163
3164static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3165{
3166        if (skb->ip_summed == CHECKSUM_COMPLETE)
3167                skb->ip_summed = CHECKSUM_NONE;
3168        return __skb_grow(skb, len);
3169}
3170
3171#define skb_queue_walk(queue, skb) \
3172                for (skb = (queue)->next;                                       \
3173                     skb != (struct sk_buff *)(queue);                          \
3174                     skb = skb->next)
3175
3176#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3177                for (skb = (queue)->next, tmp = skb->next;                      \
3178                     skb != (struct sk_buff *)(queue);                          \
3179                     skb = tmp, tmp = skb->next)
3180
3181#define skb_queue_walk_from(queue, skb)                                         \
3182                for (; skb != (struct sk_buff *)(queue);                        \
3183                     skb = skb->next)
3184
3185#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3186                for (tmp = skb->next;                                           \
3187                     skb != (struct sk_buff *)(queue);                          \
3188                     skb = tmp, tmp = skb->next)
3189
3190#define skb_queue_reverse_walk(queue, skb) \
3191                for (skb = (queue)->prev;                                       \
3192                     skb != (struct sk_buff *)(queue);                          \
3193                     skb = skb->prev)
3194
3195#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3196                for (skb = (queue)->prev, tmp = skb->prev;                      \
3197                     skb != (struct sk_buff *)(queue);                          \
3198                     skb = tmp, tmp = skb->prev)
3199
3200#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3201                for (tmp = skb->prev;                                           \
3202                     skb != (struct sk_buff *)(queue);                          \
3203                     skb = tmp, tmp = skb->prev)
3204
3205static inline bool skb_has_frag_list(const struct sk_buff *skb)
3206{
3207        return skb_shinfo(skb)->frag_list != NULL;
3208}
3209
3210static inline void skb_frag_list_init(struct sk_buff *skb)
3211{
3212        skb_shinfo(skb)->frag_list = NULL;
3213}
3214
3215#define skb_walk_frags(skb, iter)       \
3216        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3217
3218
3219int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3220                                const struct sk_buff *skb);
3221struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3222                                          struct sk_buff_head *queue,
3223                                          unsigned int flags,
3224                                          void (*destructor)(struct sock *sk,
3225                                                           struct sk_buff *skb),
3226                                          int *peeked, int *off, int *err,
3227                                          struct sk_buff **last);
3228struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3229                                        void (*destructor)(struct sock *sk,
3230                                                           struct sk_buff *skb),
3231                                        int *peeked, int *off, int *err,
3232                                        struct sk_buff **last);
3233struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3234                                    void (*destructor)(struct sock *sk,
3235                                                       struct sk_buff *skb),
3236                                    int *peeked, int *off, int *err);
3237struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3238                                  int *err);
3239unsigned int datagram_poll(struct file *file, struct socket *sock,
3240                           struct poll_table_struct *wait);
3241int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3242                           struct iov_iter *to, int size);
3243static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3244                                        struct msghdr *msg, int size)
3245{
3246        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3247}
3248int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3249                                   struct msghdr *msg);
3250int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3251                                 struct iov_iter *from, int len);
3252int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3253void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3254void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3255static inline void skb_free_datagram_locked(struct sock *sk,
3256                                            struct sk_buff *skb)
3257{
3258        __skb_free_datagram_locked(sk, skb, 0);
3259}
3260int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3261int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3262int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3263__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3264                              int len, __wsum csum);
3265int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3266                    struct pipe_inode_info *pipe, unsigned int len,
3267                    unsigned int flags);
3268int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3269                         int len);
3270int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3271void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3272unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3273int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3274                 int len, int hlen);
3275void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3276int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3277void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3278unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3279bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3280struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3281struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3282int skb_ensure_writable(struct sk_buff *skb, int write_len);
3283int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3284int skb_vlan_pop(struct sk_buff *skb);
3285int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3286struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3287                             gfp_t gfp);
3288
3289static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3290{
3291        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3292}
3293
3294static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3295{
3296        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3297}
3298
3299struct skb_checksum_ops {
3300        __wsum (*update)(const void *mem, int len, __wsum wsum);
3301        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3302};
3303
3304extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3305
3306__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3307                      __wsum csum, const struct skb_checksum_ops *ops);
3308__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3309                    __wsum csum);
3310
3311static inline void * __must_check
3312__skb_header_pointer(const struct sk_buff *skb, int offset,
3313                     int len, void *data, int hlen, void *buffer)
3314{
3315        if (hlen - offset >= len)
3316                return data + offset;
3317
3318        if (!skb ||
3319            skb_copy_bits(skb, offset, buffer, len) < 0)
3320                return NULL;
3321
3322        return buffer;
3323}
3324
3325static inline void * __must_check
3326skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3327{
3328        return __skb_header_pointer(skb, offset, len, skb->data,
3329                                    skb_headlen(skb), buffer);
3330}
3331
3332/**
3333 *      skb_needs_linearize - check if we need to linearize a given skb
3334 *                            depending on the given device features.
3335 *      @skb: socket buffer to check
3336 *      @features: net device features
3337 *
3338 *      Returns true if either:
3339 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3340 *      2. skb is fragmented and the device does not support SG.
3341 */
3342static inline bool skb_needs_linearize(struct sk_buff *skb,
3343                                       netdev_features_t features)
3344{
3345        return skb_is_nonlinear(skb) &&
3346               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3347                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3348}
3349
3350static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3351                                             void *to,
3352                                             const unsigned int len)
3353{
3354        memcpy(to, skb->data, len);
3355}
3356
3357static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3358                                                    const int offset, void *to,
3359                                                    const unsigned int len)
3360{
3361        memcpy(to, skb->data + offset, len);
3362}
3363
3364static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3365                                           const void *from,
3366                                           const unsigned int len)
3367{
3368        memcpy(skb->data, from, len);
3369}
3370
3371static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3372                                                  const int offset,
3373                                                  const void *from,
3374                                                  const unsigned int len)
3375{
3376        memcpy(skb->data + offset, from, len);
3377}
3378
3379void skb_init(void);
3380
3381static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3382{
3383        return skb->tstamp;
3384}
3385
3386/**
3387 *      skb_get_timestamp - get timestamp from a skb
3388 *      @skb: skb to get stamp from
3389 *      @stamp: pointer to struct timeval to store stamp in
3390 *
3391 *      Timestamps are stored in the skb as offsets to a base timestamp.
3392 *      This function converts the offset back to a struct timeval and stores
3393 *      it in stamp.
3394 */
3395static inline void skb_get_timestamp(const struct sk_buff *skb,
3396                                     struct timeval *stamp)
3397{
3398        *stamp = ktime_to_timeval(skb->tstamp);
3399}
3400
3401static inline void skb_get_timestampns(const struct sk_buff *skb,
3402                                       struct timespec *stamp)
3403{
3404        *stamp = ktime_to_timespec(skb->tstamp);
3405}
3406
3407static inline void __net_timestamp(struct sk_buff *skb)
3408{
3409        skb->tstamp = ktime_get_real();
3410}
3411
3412static inline ktime_t net_timedelta(ktime_t t)
3413{
3414        return ktime_sub(ktime_get_real(), t);
3415}
3416
3417static inline ktime_t net_invalid_timestamp(void)
3418{
3419        return 0;
3420}
3421
3422struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3423
3424#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3425
3426void skb_clone_tx_timestamp(struct sk_buff *skb);
3427bool skb_defer_rx_timestamp(struct sk_buff *skb);
3428
3429#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3430
3431static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3432{
3433}
3434
3435static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3436{
3437        return false;
3438}
3439
3440#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3441
3442/**
3443 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3444 *
3445 * PHY drivers may accept clones of transmitted packets for
3446 * timestamping via their phy_driver.txtstamp method. These drivers
3447 * must call this function to return the skb back to the stack with a
3448 * timestamp.
3449 *
3450 * @skb: clone of the the original outgoing packet
3451 * @hwtstamps: hardware time stamps
3452 *
3453 */
3454void skb_complete_tx_timestamp(struct sk_buff *skb,
3455                               struct skb_shared_hwtstamps *hwtstamps);
3456
3457void __skb_tstamp_tx(struct sk_buff *orig_skb,
3458                     struct skb_shared_hwtstamps *hwtstamps,
3459                     struct sock *sk, int tstype);
3460
3461/**
3462 * skb_tstamp_tx - queue clone of skb with send time stamps
3463 * @orig_skb:   the original outgoing packet
3464 * @hwtstamps:  hardware time stamps, may be NULL if not available
3465 *
3466 * If the skb has a socket associated, then this function clones the
3467 * skb (thus sharing the actual data and optional structures), stores
3468 * the optional hardware time stamping information (if non NULL) or
3469 * generates a software time stamp (otherwise), then queues the clone
3470 * to the error queue of the socket.  Errors are silently ignored.
3471 */
3472void skb_tstamp_tx(struct sk_buff *orig_skb,
3473                   struct skb_shared_hwtstamps *hwtstamps);
3474
3475/**
3476 * skb_tx_timestamp() - Driver hook for transmit timestamping
3477 *
3478 * Ethernet MAC Drivers should call this function in their hard_xmit()
3479 * function immediately before giving the sk_buff to the MAC hardware.
3480 *
3481 * Specifically, one should make absolutely sure that this function is
3482 * called before TX completion of this packet can trigger.  Otherwise
3483 * the packet could potentially already be freed.
3484 *
3485 * @skb: A socket buffer.
3486 */
3487static inline void skb_tx_timestamp(struct sk_buff *skb)
3488{
3489        skb_clone_tx_timestamp(skb);
3490        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3491                skb_tstamp_tx(skb, NULL);
3492}
3493
3494/**
3495 * skb_complete_wifi_ack - deliver skb with wifi status
3496 *
3497 * @skb: the original outgoing packet
3498 * @acked: ack status
3499 *
3500 */
3501void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3502
3503__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3504__sum16 __skb_checksum_complete(struct sk_buff *skb);
3505
3506static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3507{
3508        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3509                skb->csum_valid ||
3510                (skb->ip_summed == CHECKSUM_PARTIAL &&
3511                 skb_checksum_start_offset(skb) >= 0));
3512}
3513
3514/**
3515 *      skb_checksum_complete - Calculate checksum of an entire packet
3516 *      @skb: packet to process
3517 *
3518 *      This function calculates the checksum over the entire packet plus
3519 *      the value of skb->csum.  The latter can be used to supply the
3520 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3521 *      checksum.
3522 *
3523 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3524 *      this function can be used to verify that checksum on received
3525 *      packets.  In that case the function should return zero if the
3526 *      checksum is correct.  In particular, this function will return zero
3527 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3528 *      hardware has already verified the correctness of the checksum.
3529 */
3530static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3531{
3532        return skb_csum_unnecessary(skb) ?
3533               0 : __skb_checksum_complete(skb);
3534}
3535
3536static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3537{
3538        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3539                if (skb->csum_level == 0)
3540                        skb->ip_summed = CHECKSUM_NONE;
3541                else
3542                        skb->csum_level--;
3543        }
3544}
3545
3546static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3547{
3548        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3549                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3550                        skb->csum_level++;
3551        } else if (skb->ip_summed == CHECKSUM_NONE) {
3552                skb->ip_summed = CHECKSUM_UNNECESSARY;
3553                skb->csum_level = 0;
3554        }
3555}
3556
3557/* Check if we need to perform checksum complete validation.
3558 *
3559 * Returns true if checksum complete is needed, false otherwise
3560 * (either checksum is unnecessary or zero checksum is allowed).
3561 */
3562static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3563                                                  bool zero_okay,
3564                                                  __sum16 check)
3565{
3566        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3567                skb->csum_valid = 1;
3568                __skb_decr_checksum_unnecessary(skb);
3569                return false;
3570        }
3571
3572        return true;
3573}
3574
3575/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3576 * in checksum_init.
3577 */
3578#define CHECKSUM_BREAK 76
3579
3580/* Unset checksum-complete
3581 *
3582 * Unset checksum complete can be done when packet is being modified
3583 * (uncompressed for instance) and checksum-complete value is
3584 * invalidated.
3585 */
3586static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3587{
3588        if (skb->ip_summed == CHECKSUM_COMPLETE)
3589                skb->ip_summed = CHECKSUM_NONE;
3590}
3591
3592/* Validate (init) checksum based on checksum complete.
3593 *
3594 * Return values:
3595 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3596 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3597 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3598 *   non-zero: value of invalid checksum
3599 *
3600 */
3601static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3602                                                       bool complete,
3603                                                       __wsum psum)
3604{
3605        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3606                if (!csum_fold(csum_add(psum, skb->csum))) {
3607                        skb->csum_valid = 1;
3608                        return 0;
3609                }
3610        }
3611
3612        skb->csum = psum;
3613
3614        if (complete || skb->len <= CHECKSUM_BREAK) {
3615                __sum16 csum;
3616
3617                csum = __skb_checksum_complete(skb);
3618                skb->csum_valid = !csum;
3619                return csum;
3620        }
3621
3622        return 0;
3623}
3624
3625static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3626{
3627        return 0;
3628}
3629
3630/* Perform checksum validate (init). Note that this is a macro since we only
3631 * want to calculate the pseudo header which is an input function if necessary.
3632 * First we try to validate without any computation (checksum unnecessary) and
3633 * then calculate based on checksum complete calling the function to compute
3634 * pseudo header.
3635 *
3636 * Return values:
3637 *   0: checksum is validated or try to in skb_checksum_complete
3638 *   non-zero: value of invalid checksum
3639 */
3640#define __skb_checksum_validate(skb, proto, complete,                   \
3641                                zero_okay, check, compute_pseudo)       \
3642({                                                                      \
3643        __sum16 __ret = 0;                                              \
3644        skb->csum_valid = 0;                                            \
3645        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3646                __ret = __skb_checksum_validate_complete(skb,           \
3647                                complete, compute_pseudo(skb, proto));  \
3648        __ret;                                                          \
3649})
3650
3651#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3652        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3653
3654#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3655        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3656
3657#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3658        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3659
3660#define skb_checksum_validate_zero_check(skb, proto, check,             \
3661                                         compute_pseudo)                \
3662        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3663
3664#define skb_checksum_simple_validate(skb)                               \
3665        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3666
3667static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3668{
3669        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3670}
3671
3672static inline void __skb_checksum_convert(struct sk_buff *skb,
3673                                          __sum16 check, __wsum pseudo)
3674{
3675        skb->csum = ~pseudo;
3676        skb->ip_summed = CHECKSUM_COMPLETE;
3677}
3678
3679#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3680do {                                                                    \
3681        if (__skb_checksum_convert_check(skb))                          \
3682                __skb_checksum_convert(skb, check,                      \
3683                                       compute_pseudo(skb, proto));     \
3684} while (0)
3685
3686static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3687                                              u16 start, u16 offset)
3688{
3689        skb->ip_summed = CHECKSUM_PARTIAL;
3690        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3691        skb->csum_offset = offset - start;
3692}
3693
3694/* Update skbuf and packet to reflect the remote checksum offload operation.
3695 * When called, ptr indicates the starting point for skb->csum when
3696 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3697 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3698 */
3699static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3700                                       int start, int offset, bool nopartial)
3701{
3702        __wsum delta;
3703
3704        if (!nopartial) {
3705                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3706                return;
3707        }
3708
3709         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3710                __skb_checksum_complete(skb);
3711                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3712        }
3713
3714        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3715
3716        /* Adjust skb->csum since we changed the packet */
3717        skb->csum = csum_add(skb->csum, delta);
3718}
3719
3720static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3721{
3722#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3723        return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3724#else
3725        return NULL;
3726#endif
3727}
3728
3729#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3730void nf_conntrack_destroy(struct nf_conntrack *nfct);
3731static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3732{
3733        if (nfct && atomic_dec_and_test(&nfct->use))
3734                nf_conntrack_destroy(nfct);
3735}
3736static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3737{
3738        if (nfct)
3739                atomic_inc(&nfct->use);
3740}
3741#endif
3742#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3743static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3744{
3745        if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3746                kfree(nf_bridge);
3747}
3748static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3749{
3750        if (nf_bridge)
3751                refcount_inc(&nf_bridge->use);
3752}
3753#endif /* CONFIG_BRIDGE_NETFILTER */
3754static inline void nf_reset(struct sk_buff *skb)
3755{
3756#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3757        nf_conntrack_put(skb_nfct(skb));
3758        skb->_nfct = 0;
3759#endif
3760#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3761        nf_bridge_put(skb->nf_bridge);
3762        skb->nf_bridge = NULL;
3763#endif
3764}
3765
3766static inline void nf_reset_trace(struct sk_buff *skb)
3767{
3768#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3769        skb->nf_trace = 0;
3770#endif
3771}
3772
3773static inline void ipvs_reset(struct sk_buff *skb)
3774{
3775#if IS_ENABLED(CONFIG_IP_VS)
3776        skb->ipvs_property = 0;
3777#endif
3778}
3779
3780/* Note: This doesn't put any conntrack and bridge info in dst. */
3781static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3782                             bool copy)
3783{
3784#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3785        dst->_nfct = src->_nfct;
3786        nf_conntrack_get(skb_nfct(src));
3787#endif
3788#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3789        dst->nf_bridge  = src->nf_bridge;
3790        nf_bridge_get(src->nf_bridge);
3791#endif
3792#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3793        if (copy)
3794                dst->nf_trace = src->nf_trace;
3795#endif
3796}
3797
3798static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3799{
3800#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3801        nf_conntrack_put(skb_nfct(dst));
3802#endif
3803#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3804        nf_bridge_put(dst->nf_bridge);
3805#endif
3806        __nf_copy(dst, src, true);
3807}
3808
3809#ifdef CONFIG_NETWORK_SECMARK
3810static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3811{
3812        to->secmark = from->secmark;
3813}
3814
3815static inline void skb_init_secmark(struct sk_buff *skb)
3816{
3817        skb->secmark = 0;
3818}
3819#else
3820static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3821{ }
3822
3823static inline void skb_init_secmark(struct sk_buff *skb)
3824{ }
3825#endif
3826
3827static inline bool skb_irq_freeable(const struct sk_buff *skb)
3828{
3829        return !skb->destructor &&
3830#if IS_ENABLED(CONFIG_XFRM)
3831                !skb->sp &&
3832#endif
3833                !skb_nfct(skb) &&
3834                !skb->_skb_refdst &&
3835                !skb_has_frag_list(skb);
3836}
3837
3838static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3839{
3840        skb->queue_mapping = queue_mapping;
3841}
3842
3843static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3844{
3845        return skb->queue_mapping;
3846}
3847
3848static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3849{
3850        to->queue_mapping = from->queue_mapping;
3851}
3852
3853static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3854{
3855        skb->queue_mapping = rx_queue + 1;
3856}
3857
3858static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3859{
3860        return skb->queue_mapping - 1;
3861}
3862
3863static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3864{
3865        return skb->queue_mapping != 0;
3866}
3867
3868static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3869{
3870        skb->dst_pending_confirm = val;
3871}
3872
3873static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3874{
3875        return skb->dst_pending_confirm != 0;
3876}
3877
3878static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3879{
3880#ifdef CONFIG_XFRM
3881        return skb->sp;
3882#else
3883        return NULL;
3884#endif
3885}
3886
3887/* Keeps track of mac header offset relative to skb->head.
3888 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3889 * For non-tunnel skb it points to skb_mac_header() and for
3890 * tunnel skb it points to outer mac header.
3891 * Keeps track of level of encapsulation of network headers.
3892 */
3893struct skb_gso_cb {
3894        union {
3895                int     mac_offset;
3896                int     data_offset;
3897        };
3898        int     encap_level;
3899        __wsum  csum;
3900        __u16   csum_start;
3901};
3902#define SKB_SGO_CB_OFFSET       32
3903#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3904
3905static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3906{
3907        return (skb_mac_header(inner_skb) - inner_skb->head) -
3908                SKB_GSO_CB(inner_skb)->mac_offset;
3909}
3910
3911static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3912{
3913        int new_headroom, headroom;
3914        int ret;
3915
3916        headroom = skb_headroom(skb);
3917        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3918        if (ret)
3919                return ret;
3920
3921        new_headroom = skb_headroom(skb);
3922        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3923        return 0;
3924}
3925
3926static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3927{
3928        /* Do not update partial checksums if remote checksum is enabled. */
3929        if (skb->remcsum_offload)
3930                return;
3931
3932        SKB_GSO_CB(skb)->csum = res;
3933        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3934}
3935
3936/* Compute the checksum for a gso segment. First compute the checksum value
3937 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3938 * then add in skb->csum (checksum from csum_start to end of packet).
3939 * skb->csum and csum_start are then updated to reflect the checksum of the
3940 * resultant packet starting from the transport header-- the resultant checksum
3941 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3942 * header.
3943 */
3944static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3945{
3946        unsigned char *csum_start = skb_transport_header(skb);
3947        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3948        __wsum partial = SKB_GSO_CB(skb)->csum;
3949
3950        SKB_GSO_CB(skb)->csum = res;
3951        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3952
3953        return csum_fold(csum_partial(csum_start, plen, partial));
3954}
3955
3956static inline bool skb_is_gso(const struct sk_buff *skb)
3957{
3958        return skb_shinfo(skb)->gso_size;
3959}
3960
3961/* Note: Should be called only if skb_is_gso(skb) is true */
3962static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3963{
3964        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3965}
3966
3967static inline void skb_gso_reset(struct sk_buff *skb)
3968{
3969        skb_shinfo(skb)->gso_size = 0;
3970        skb_shinfo(skb)->gso_segs = 0;
3971        skb_shinfo(skb)->gso_type = 0;
3972}
3973
3974void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3975
3976static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3977{
3978        /* LRO sets gso_size but not gso_type, whereas if GSO is really
3979         * wanted then gso_type will be set. */
3980        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3981
3982        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3983            unlikely(shinfo->gso_type == 0)) {
3984                __skb_warn_lro_forwarding(skb);
3985                return true;
3986        }
3987        return false;
3988}
3989
3990static inline void skb_forward_csum(struct sk_buff *skb)
3991{
3992        /* Unfortunately we don't support this one.  Any brave souls? */
3993        if (skb->ip_summed == CHECKSUM_COMPLETE)
3994                skb->ip_summed = CHECKSUM_NONE;
3995}
3996
3997/**
3998 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3999 * @skb: skb to check
4000 *
4001 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4002 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4003 * use this helper, to document places where we make this assertion.
4004 */
4005static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4006{
4007#ifdef DEBUG
4008        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4009#endif
4010}
4011
4012bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4013
4014int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4015struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4016                                     unsigned int transport_len,
4017                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4018
4019/**
4020 * skb_head_is_locked - Determine if the skb->head is locked down
4021 * @skb: skb to check
4022 *
4023 * The head on skbs build around a head frag can be removed if they are
4024 * not cloned.  This function returns true if the skb head is locked down
4025 * due to either being allocated via kmalloc, or by being a clone with
4026 * multiple references to the head.
4027 */
4028static inline bool skb_head_is_locked(const struct sk_buff *skb)
4029{
4030        return !skb->head_frag || skb_cloned(skb);
4031}
4032
4033/**
4034 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4035 *
4036 * @skb: GSO skb
4037 *
4038 * skb_gso_network_seglen is used to determine the real size of the
4039 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4040 *
4041 * The MAC/L2 header is not accounted for.
4042 */
4043static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4044{
4045        unsigned int hdr_len = skb_transport_header(skb) -
4046                               skb_network_header(skb);
4047        return hdr_len + skb_gso_transport_seglen(skb);
4048}
4049
4050/* Local Checksum Offload.
4051 * Compute outer checksum based on the assumption that the
4052 * inner checksum will be offloaded later.
4053 * See Documentation/networking/checksum-offloads.txt for
4054 * explanation of how this works.
4055 * Fill in outer checksum adjustment (e.g. with sum of outer
4056 * pseudo-header) before calling.
4057 * Also ensure that inner checksum is in linear data area.
4058 */
4059static inline __wsum lco_csum(struct sk_buff *skb)
4060{
4061        unsigned char *csum_start = skb_checksum_start(skb);
4062        unsigned char *l4_hdr = skb_transport_header(skb);
4063        __wsum partial;
4064
4065        /* Start with complement of inner checksum adjustment */
4066        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4067                                                    skb->csum_offset));
4068
4069        /* Add in checksum of our headers (incl. outer checksum
4070         * adjustment filled in by caller) and return result.
4071         */
4072        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4073}
4074
4075#endif  /* __KERNEL__ */
4076#endif  /* _LINUX_SKBUFF_H */
4077