linux/kernel/sched/topology.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include <linux/sched.h>
   6#include <linux/mutex.h>
   7
   8#include "sched.h"
   9
  10DEFINE_MUTEX(sched_domains_mutex);
  11
  12/* Protected by sched_domains_mutex: */
  13cpumask_var_t sched_domains_tmpmask;
  14cpumask_var_t sched_domains_tmpmask2;
  15
  16#ifdef CONFIG_SCHED_DEBUG
  17
  18static int __init sched_debug_setup(char *str)
  19{
  20        sched_debug_enabled = true;
  21
  22        return 0;
  23}
  24early_param("sched_debug", sched_debug_setup);
  25
  26static inline bool sched_debug(void)
  27{
  28        return sched_debug_enabled;
  29}
  30
  31static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  32                                  struct cpumask *groupmask)
  33{
  34        struct sched_group *group = sd->groups;
  35
  36        cpumask_clear(groupmask);
  37
  38        printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  39
  40        if (!(sd->flags & SD_LOAD_BALANCE)) {
  41                printk("does not load-balance\n");
  42                if (sd->parent)
  43                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  44                                        " has parent");
  45                return -1;
  46        }
  47
  48        printk(KERN_CONT "span=%*pbl level=%s\n",
  49               cpumask_pr_args(sched_domain_span(sd)), sd->name);
  50
  51        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  52                printk(KERN_ERR "ERROR: domain->span does not contain "
  53                                "CPU%d\n", cpu);
  54        }
  55        if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
  56                printk(KERN_ERR "ERROR: domain->groups does not contain"
  57                                " CPU%d\n", cpu);
  58        }
  59
  60        printk(KERN_DEBUG "%*s groups:", level + 1, "");
  61        do {
  62                if (!group) {
  63                        printk("\n");
  64                        printk(KERN_ERR "ERROR: group is NULL\n");
  65                        break;
  66                }
  67
  68                if (!cpumask_weight(sched_group_span(group))) {
  69                        printk(KERN_CONT "\n");
  70                        printk(KERN_ERR "ERROR: empty group\n");
  71                        break;
  72                }
  73
  74                if (!(sd->flags & SD_OVERLAP) &&
  75                    cpumask_intersects(groupmask, sched_group_span(group))) {
  76                        printk(KERN_CONT "\n");
  77                        printk(KERN_ERR "ERROR: repeated CPUs\n");
  78                        break;
  79                }
  80
  81                cpumask_or(groupmask, groupmask, sched_group_span(group));
  82
  83                printk(KERN_CONT " %d:{ span=%*pbl",
  84                                group->sgc->id,
  85                                cpumask_pr_args(sched_group_span(group)));
  86
  87                if ((sd->flags & SD_OVERLAP) &&
  88                    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  89                        printk(KERN_CONT " mask=%*pbl",
  90                                cpumask_pr_args(group_balance_mask(group)));
  91                }
  92
  93                if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
  94                        printk(KERN_CONT " cap=%lu", group->sgc->capacity);
  95
  96                if (group == sd->groups && sd->child &&
  97                    !cpumask_equal(sched_domain_span(sd->child),
  98                                   sched_group_span(group))) {
  99                        printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 100                }
 101
 102                printk(KERN_CONT " }");
 103
 104                group = group->next;
 105
 106                if (group != sd->groups)
 107                        printk(KERN_CONT ",");
 108
 109        } while (group != sd->groups);
 110        printk(KERN_CONT "\n");
 111
 112        if (!cpumask_equal(sched_domain_span(sd), groupmask))
 113                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 114
 115        if (sd->parent &&
 116            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 117                printk(KERN_ERR "ERROR: parent span is not a superset "
 118                        "of domain->span\n");
 119        return 0;
 120}
 121
 122static void sched_domain_debug(struct sched_domain *sd, int cpu)
 123{
 124        int level = 0;
 125
 126        if (!sched_debug_enabled)
 127                return;
 128
 129        if (!sd) {
 130                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 131                return;
 132        }
 133
 134        printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 135
 136        for (;;) {
 137                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 138                        break;
 139                level++;
 140                sd = sd->parent;
 141                if (!sd)
 142                        break;
 143        }
 144}
 145#else /* !CONFIG_SCHED_DEBUG */
 146
 147# define sched_debug_enabled 0
 148# define sched_domain_debug(sd, cpu) do { } while (0)
 149static inline bool sched_debug(void)
 150{
 151        return false;
 152}
 153#endif /* CONFIG_SCHED_DEBUG */
 154
 155static int sd_degenerate(struct sched_domain *sd)
 156{
 157        if (cpumask_weight(sched_domain_span(sd)) == 1)
 158                return 1;
 159
 160        /* Following flags need at least 2 groups */
 161        if (sd->flags & (SD_LOAD_BALANCE |
 162                         SD_BALANCE_NEWIDLE |
 163                         SD_BALANCE_FORK |
 164                         SD_BALANCE_EXEC |
 165                         SD_SHARE_CPUCAPACITY |
 166                         SD_ASYM_CPUCAPACITY |
 167                         SD_SHARE_PKG_RESOURCES |
 168                         SD_SHARE_POWERDOMAIN)) {
 169                if (sd->groups != sd->groups->next)
 170                        return 0;
 171        }
 172
 173        /* Following flags don't use groups */
 174        if (sd->flags & (SD_WAKE_AFFINE))
 175                return 0;
 176
 177        return 1;
 178}
 179
 180static int
 181sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 182{
 183        unsigned long cflags = sd->flags, pflags = parent->flags;
 184
 185        if (sd_degenerate(parent))
 186                return 1;
 187
 188        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 189                return 0;
 190
 191        /* Flags needing groups don't count if only 1 group in parent */
 192        if (parent->groups == parent->groups->next) {
 193                pflags &= ~(SD_LOAD_BALANCE |
 194                                SD_BALANCE_NEWIDLE |
 195                                SD_BALANCE_FORK |
 196                                SD_BALANCE_EXEC |
 197                                SD_ASYM_CPUCAPACITY |
 198                                SD_SHARE_CPUCAPACITY |
 199                                SD_SHARE_PKG_RESOURCES |
 200                                SD_PREFER_SIBLING |
 201                                SD_SHARE_POWERDOMAIN);
 202                if (nr_node_ids == 1)
 203                        pflags &= ~SD_SERIALIZE;
 204        }
 205        if (~cflags & pflags)
 206                return 0;
 207
 208        return 1;
 209}
 210
 211static void free_rootdomain(struct rcu_head *rcu)
 212{
 213        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 214
 215        cpupri_cleanup(&rd->cpupri);
 216        cpudl_cleanup(&rd->cpudl);
 217        free_cpumask_var(rd->dlo_mask);
 218        free_cpumask_var(rd->rto_mask);
 219        free_cpumask_var(rd->online);
 220        free_cpumask_var(rd->span);
 221        kfree(rd);
 222}
 223
 224void rq_attach_root(struct rq *rq, struct root_domain *rd)
 225{
 226        struct root_domain *old_rd = NULL;
 227        unsigned long flags;
 228
 229        raw_spin_lock_irqsave(&rq->lock, flags);
 230
 231        if (rq->rd) {
 232                old_rd = rq->rd;
 233
 234                if (cpumask_test_cpu(rq->cpu, old_rd->online))
 235                        set_rq_offline(rq);
 236
 237                cpumask_clear_cpu(rq->cpu, old_rd->span);
 238
 239                /*
 240                 * If we dont want to free the old_rd yet then
 241                 * set old_rd to NULL to skip the freeing later
 242                 * in this function:
 243                 */
 244                if (!atomic_dec_and_test(&old_rd->refcount))
 245                        old_rd = NULL;
 246        }
 247
 248        atomic_inc(&rd->refcount);
 249        rq->rd = rd;
 250
 251        cpumask_set_cpu(rq->cpu, rd->span);
 252        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 253                set_rq_online(rq);
 254
 255        raw_spin_unlock_irqrestore(&rq->lock, flags);
 256
 257        if (old_rd)
 258                call_rcu_sched(&old_rd->rcu, free_rootdomain);
 259}
 260
 261static int init_rootdomain(struct root_domain *rd)
 262{
 263        if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 264                goto out;
 265        if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 266                goto free_span;
 267        if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 268                goto free_online;
 269        if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 270                goto free_dlo_mask;
 271
 272        init_dl_bw(&rd->dl_bw);
 273        if (cpudl_init(&rd->cpudl) != 0)
 274                goto free_rto_mask;
 275
 276        if (cpupri_init(&rd->cpupri) != 0)
 277                goto free_cpudl;
 278        return 0;
 279
 280free_cpudl:
 281        cpudl_cleanup(&rd->cpudl);
 282free_rto_mask:
 283        free_cpumask_var(rd->rto_mask);
 284free_dlo_mask:
 285        free_cpumask_var(rd->dlo_mask);
 286free_online:
 287        free_cpumask_var(rd->online);
 288free_span:
 289        free_cpumask_var(rd->span);
 290out:
 291        return -ENOMEM;
 292}
 293
 294/*
 295 * By default the system creates a single root-domain with all CPUs as
 296 * members (mimicking the global state we have today).
 297 */
 298struct root_domain def_root_domain;
 299
 300void init_defrootdomain(void)
 301{
 302        init_rootdomain(&def_root_domain);
 303
 304        atomic_set(&def_root_domain.refcount, 1);
 305}
 306
 307static struct root_domain *alloc_rootdomain(void)
 308{
 309        struct root_domain *rd;
 310
 311        rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 312        if (!rd)
 313                return NULL;
 314
 315        if (init_rootdomain(rd) != 0) {
 316                kfree(rd);
 317                return NULL;
 318        }
 319
 320        return rd;
 321}
 322
 323static void free_sched_groups(struct sched_group *sg, int free_sgc)
 324{
 325        struct sched_group *tmp, *first;
 326
 327        if (!sg)
 328                return;
 329
 330        first = sg;
 331        do {
 332                tmp = sg->next;
 333
 334                if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 335                        kfree(sg->sgc);
 336
 337                if (atomic_dec_and_test(&sg->ref))
 338                        kfree(sg);
 339                sg = tmp;
 340        } while (sg != first);
 341}
 342
 343static void destroy_sched_domain(struct sched_domain *sd)
 344{
 345        /*
 346         * A normal sched domain may have multiple group references, an
 347         * overlapping domain, having private groups, only one.  Iterate,
 348         * dropping group/capacity references, freeing where none remain.
 349         */
 350        free_sched_groups(sd->groups, 1);
 351
 352        if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 353                kfree(sd->shared);
 354        kfree(sd);
 355}
 356
 357static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 358{
 359        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 360
 361        while (sd) {
 362                struct sched_domain *parent = sd->parent;
 363                destroy_sched_domain(sd);
 364                sd = parent;
 365        }
 366}
 367
 368static void destroy_sched_domains(struct sched_domain *sd)
 369{
 370        if (sd)
 371                call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 372}
 373
 374/*
 375 * Keep a special pointer to the highest sched_domain that has
 376 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 377 * allows us to avoid some pointer chasing select_idle_sibling().
 378 *
 379 * Also keep a unique ID per domain (we use the first CPU number in
 380 * the cpumask of the domain), this allows us to quickly tell if
 381 * two CPUs are in the same cache domain, see cpus_share_cache().
 382 */
 383DEFINE_PER_CPU(struct sched_domain *, sd_llc);
 384DEFINE_PER_CPU(int, sd_llc_size);
 385DEFINE_PER_CPU(int, sd_llc_id);
 386DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 387DEFINE_PER_CPU(struct sched_domain *, sd_numa);
 388DEFINE_PER_CPU(struct sched_domain *, sd_asym);
 389
 390static void update_top_cache_domain(int cpu)
 391{
 392        struct sched_domain_shared *sds = NULL;
 393        struct sched_domain *sd;
 394        int id = cpu;
 395        int size = 1;
 396
 397        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 398        if (sd) {
 399                id = cpumask_first(sched_domain_span(sd));
 400                size = cpumask_weight(sched_domain_span(sd));
 401                sds = sd->shared;
 402        }
 403
 404        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 405        per_cpu(sd_llc_size, cpu) = size;
 406        per_cpu(sd_llc_id, cpu) = id;
 407        rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 408
 409        sd = lowest_flag_domain(cpu, SD_NUMA);
 410        rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 411
 412        sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 413        rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
 414}
 415
 416/*
 417 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 418 * hold the hotplug lock.
 419 */
 420static void
 421cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 422{
 423        struct rq *rq = cpu_rq(cpu);
 424        struct sched_domain *tmp;
 425
 426        /* Remove the sched domains which do not contribute to scheduling. */
 427        for (tmp = sd; tmp; ) {
 428                struct sched_domain *parent = tmp->parent;
 429                if (!parent)
 430                        break;
 431
 432                if (sd_parent_degenerate(tmp, parent)) {
 433                        tmp->parent = parent->parent;
 434                        if (parent->parent)
 435                                parent->parent->child = tmp;
 436                        /*
 437                         * Transfer SD_PREFER_SIBLING down in case of a
 438                         * degenerate parent; the spans match for this
 439                         * so the property transfers.
 440                         */
 441                        if (parent->flags & SD_PREFER_SIBLING)
 442                                tmp->flags |= SD_PREFER_SIBLING;
 443                        destroy_sched_domain(parent);
 444                } else
 445                        tmp = tmp->parent;
 446        }
 447
 448        if (sd && sd_degenerate(sd)) {
 449                tmp = sd;
 450                sd = sd->parent;
 451                destroy_sched_domain(tmp);
 452                if (sd)
 453                        sd->child = NULL;
 454        }
 455
 456        sched_domain_debug(sd, cpu);
 457
 458        rq_attach_root(rq, rd);
 459        tmp = rq->sd;
 460        rcu_assign_pointer(rq->sd, sd);
 461        dirty_sched_domain_sysctl(cpu);
 462        destroy_sched_domains(tmp);
 463
 464        update_top_cache_domain(cpu);
 465}
 466
 467/* Setup the mask of CPUs configured for isolated domains */
 468static int __init isolated_cpu_setup(char *str)
 469{
 470        int ret;
 471
 472        alloc_bootmem_cpumask_var(&cpu_isolated_map);
 473        ret = cpulist_parse(str, cpu_isolated_map);
 474        if (ret) {
 475                pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids);
 476                return 0;
 477        }
 478        return 1;
 479}
 480__setup("isolcpus=", isolated_cpu_setup);
 481
 482struct s_data {
 483        struct sched_domain ** __percpu sd;
 484        struct root_domain      *rd;
 485};
 486
 487enum s_alloc {
 488        sa_rootdomain,
 489        sa_sd,
 490        sa_sd_storage,
 491        sa_none,
 492};
 493
 494/*
 495 * Return the canonical balance CPU for this group, this is the first CPU
 496 * of this group that's also in the balance mask.
 497 *
 498 * The balance mask are all those CPUs that could actually end up at this
 499 * group. See build_balance_mask().
 500 *
 501 * Also see should_we_balance().
 502 */
 503int group_balance_cpu(struct sched_group *sg)
 504{
 505        return cpumask_first(group_balance_mask(sg));
 506}
 507
 508
 509/*
 510 * NUMA topology (first read the regular topology blurb below)
 511 *
 512 * Given a node-distance table, for example:
 513 *
 514 *   node   0   1   2   3
 515 *     0:  10  20  30  20
 516 *     1:  20  10  20  30
 517 *     2:  30  20  10  20
 518 *     3:  20  30  20  10
 519 *
 520 * which represents a 4 node ring topology like:
 521 *
 522 *   0 ----- 1
 523 *   |       |
 524 *   |       |
 525 *   |       |
 526 *   3 ----- 2
 527 *
 528 * We want to construct domains and groups to represent this. The way we go
 529 * about doing this is to build the domains on 'hops'. For each NUMA level we
 530 * construct the mask of all nodes reachable in @level hops.
 531 *
 532 * For the above NUMA topology that gives 3 levels:
 533 *
 534 * NUMA-2       0-3             0-3             0-3             0-3
 535 *  groups:     {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
 536 *
 537 * NUMA-1       0-1,3           0-2             1-3             0,2-3
 538 *  groups:     {0},{1},{3}     {0},{1},{2}     {1},{2},{3}     {0},{2},{3}
 539 *
 540 * NUMA-0       0               1               2               3
 541 *
 542 *
 543 * As can be seen; things don't nicely line up as with the regular topology.
 544 * When we iterate a domain in child domain chunks some nodes can be
 545 * represented multiple times -- hence the "overlap" naming for this part of
 546 * the topology.
 547 *
 548 * In order to minimize this overlap, we only build enough groups to cover the
 549 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 550 *
 551 * Because:
 552 *
 553 *  - the first group of each domain is its child domain; this
 554 *    gets us the first 0-1,3
 555 *  - the only uncovered node is 2, who's child domain is 1-3.
 556 *
 557 * However, because of the overlap, computing a unique CPU for each group is
 558 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 559 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 560 * end up at those groups (they would end up in group: 0-1,3).
 561 *
 562 * To correct this we have to introduce the group balance mask. This mask
 563 * will contain those CPUs in the group that can reach this group given the
 564 * (child) domain tree.
 565 *
 566 * With this we can once again compute balance_cpu and sched_group_capacity
 567 * relations.
 568 *
 569 * XXX include words on how balance_cpu is unique and therefore can be
 570 * used for sched_group_capacity links.
 571 *
 572 *
 573 * Another 'interesting' topology is:
 574 *
 575 *   node   0   1   2   3
 576 *     0:  10  20  20  30
 577 *     1:  20  10  20  20
 578 *     2:  20  20  10  20
 579 *     3:  30  20  20  10
 580 *
 581 * Which looks a little like:
 582 *
 583 *   0 ----- 1
 584 *   |     / |
 585 *   |   /   |
 586 *   | /     |
 587 *   2 ----- 3
 588 *
 589 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 590 * are not.
 591 *
 592 * This leads to a few particularly weird cases where the sched_domain's are
 593 * not of the same number for each cpu. Consider:
 594 *
 595 * NUMA-2       0-3                                             0-3
 596 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
 597 *
 598 * NUMA-1       0-2             0-3             0-3             1-3
 599 *
 600 * NUMA-0       0               1               2               3
 601 *
 602 */
 603
 604
 605/*
 606 * Build the balance mask; it contains only those CPUs that can arrive at this
 607 * group and should be considered to continue balancing.
 608 *
 609 * We do this during the group creation pass, therefore the group information
 610 * isn't complete yet, however since each group represents a (child) domain we
 611 * can fully construct this using the sched_domain bits (which are already
 612 * complete).
 613 */
 614static void
 615build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 616{
 617        const struct cpumask *sg_span = sched_group_span(sg);
 618        struct sd_data *sdd = sd->private;
 619        struct sched_domain *sibling;
 620        int i;
 621
 622        cpumask_clear(mask);
 623
 624        for_each_cpu(i, sg_span) {
 625                sibling = *per_cpu_ptr(sdd->sd, i);
 626
 627                /*
 628                 * Can happen in the asymmetric case, where these siblings are
 629                 * unused. The mask will not be empty because those CPUs that
 630                 * do have the top domain _should_ span the domain.
 631                 */
 632                if (!sibling->child)
 633                        continue;
 634
 635                /* If we would not end up here, we can't continue from here */
 636                if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 637                        continue;
 638
 639                cpumask_set_cpu(i, mask);
 640        }
 641
 642        /* We must not have empty masks here */
 643        WARN_ON_ONCE(cpumask_empty(mask));
 644}
 645
 646/*
 647 * XXX: This creates per-node group entries; since the load-balancer will
 648 * immediately access remote memory to construct this group's load-balance
 649 * statistics having the groups node local is of dubious benefit.
 650 */
 651static struct sched_group *
 652build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 653{
 654        struct sched_group *sg;
 655        struct cpumask *sg_span;
 656
 657        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 658                        GFP_KERNEL, cpu_to_node(cpu));
 659
 660        if (!sg)
 661                return NULL;
 662
 663        sg_span = sched_group_span(sg);
 664        if (sd->child)
 665                cpumask_copy(sg_span, sched_domain_span(sd->child));
 666        else
 667                cpumask_copy(sg_span, sched_domain_span(sd));
 668
 669        atomic_inc(&sg->ref);
 670        return sg;
 671}
 672
 673static void init_overlap_sched_group(struct sched_domain *sd,
 674                                     struct sched_group *sg)
 675{
 676        struct cpumask *mask = sched_domains_tmpmask2;
 677        struct sd_data *sdd = sd->private;
 678        struct cpumask *sg_span;
 679        int cpu;
 680
 681        build_balance_mask(sd, sg, mask);
 682        cpu = cpumask_first_and(sched_group_span(sg), mask);
 683
 684        sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 685        if (atomic_inc_return(&sg->sgc->ref) == 1)
 686                cpumask_copy(group_balance_mask(sg), mask);
 687        else
 688                WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 689
 690        /*
 691         * Initialize sgc->capacity such that even if we mess up the
 692         * domains and no possible iteration will get us here, we won't
 693         * die on a /0 trap.
 694         */
 695        sg_span = sched_group_span(sg);
 696        sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 697        sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 698}
 699
 700static int
 701build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 702{
 703        struct sched_group *first = NULL, *last = NULL, *sg;
 704        const struct cpumask *span = sched_domain_span(sd);
 705        struct cpumask *covered = sched_domains_tmpmask;
 706        struct sd_data *sdd = sd->private;
 707        struct sched_domain *sibling;
 708        int i;
 709
 710        cpumask_clear(covered);
 711
 712        for_each_cpu_wrap(i, span, cpu) {
 713                struct cpumask *sg_span;
 714
 715                if (cpumask_test_cpu(i, covered))
 716                        continue;
 717
 718                sibling = *per_cpu_ptr(sdd->sd, i);
 719
 720                /*
 721                 * Asymmetric node setups can result in situations where the
 722                 * domain tree is of unequal depth, make sure to skip domains
 723                 * that already cover the entire range.
 724                 *
 725                 * In that case build_sched_domains() will have terminated the
 726                 * iteration early and our sibling sd spans will be empty.
 727                 * Domains should always include the CPU they're built on, so
 728                 * check that.
 729                 */
 730                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
 731                        continue;
 732
 733                sg = build_group_from_child_sched_domain(sibling, cpu);
 734                if (!sg)
 735                        goto fail;
 736
 737                sg_span = sched_group_span(sg);
 738                cpumask_or(covered, covered, sg_span);
 739
 740                init_overlap_sched_group(sd, sg);
 741
 742                if (!first)
 743                        first = sg;
 744                if (last)
 745                        last->next = sg;
 746                last = sg;
 747                last->next = first;
 748        }
 749        sd->groups = first;
 750
 751        return 0;
 752
 753fail:
 754        free_sched_groups(first, 0);
 755
 756        return -ENOMEM;
 757}
 758
 759
 760/*
 761 * Package topology (also see the load-balance blurb in fair.c)
 762 *
 763 * The scheduler builds a tree structure to represent a number of important
 764 * topology features. By default (default_topology[]) these include:
 765 *
 766 *  - Simultaneous multithreading (SMT)
 767 *  - Multi-Core Cache (MC)
 768 *  - Package (DIE)
 769 *
 770 * Where the last one more or less denotes everything up to a NUMA node.
 771 *
 772 * The tree consists of 3 primary data structures:
 773 *
 774 *      sched_domain -> sched_group -> sched_group_capacity
 775 *          ^ ^             ^ ^
 776 *          `-'             `-'
 777 *
 778 * The sched_domains are per-cpu and have a two way link (parent & child) and
 779 * denote the ever growing mask of CPUs belonging to that level of topology.
 780 *
 781 * Each sched_domain has a circular (double) linked list of sched_group's, each
 782 * denoting the domains of the level below (or individual CPUs in case of the
 783 * first domain level). The sched_group linked by a sched_domain includes the
 784 * CPU of that sched_domain [*].
 785 *
 786 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
 787 *
 788 * CPU   0   1   2   3   4   5   6   7
 789 *
 790 * DIE  [                             ]
 791 * MC   [             ] [             ]
 792 * SMT  [     ] [     ] [     ] [     ]
 793 *
 794 *  - or -
 795 *
 796 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
 797 * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
 798 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
 799 *
 800 * CPU   0   1   2   3   4   5   6   7
 801 *
 802 * One way to think about it is: sched_domain moves you up and down among these
 803 * topology levels, while sched_group moves you sideways through it, at child
 804 * domain granularity.
 805 *
 806 * sched_group_capacity ensures each unique sched_group has shared storage.
 807 *
 808 * There are two related construction problems, both require a CPU that
 809 * uniquely identify each group (for a given domain):
 810 *
 811 *  - The first is the balance_cpu (see should_we_balance() and the
 812 *    load-balance blub in fair.c); for each group we only want 1 CPU to
 813 *    continue balancing at a higher domain.
 814 *
 815 *  - The second is the sched_group_capacity; we want all identical groups
 816 *    to share a single sched_group_capacity.
 817 *
 818 * Since these topologies are exclusive by construction. That is, its
 819 * impossible for an SMT thread to belong to multiple cores, and cores to
 820 * be part of multiple caches. There is a very clear and unique location
 821 * for each CPU in the hierarchy.
 822 *
 823 * Therefore computing a unique CPU for each group is trivial (the iteration
 824 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
 825 * group), we can simply pick the first CPU in each group.
 826 *
 827 *
 828 * [*] in other words, the first group of each domain is its child domain.
 829 */
 830
 831static struct sched_group *get_group(int cpu, struct sd_data *sdd)
 832{
 833        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 834        struct sched_domain *child = sd->child;
 835        struct sched_group *sg;
 836
 837        if (child)
 838                cpu = cpumask_first(sched_domain_span(child));
 839
 840        sg = *per_cpu_ptr(sdd->sg, cpu);
 841        sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 842
 843        /* For claim_allocations: */
 844        atomic_inc(&sg->ref);
 845        atomic_inc(&sg->sgc->ref);
 846
 847        if (child) {
 848                cpumask_copy(sched_group_span(sg), sched_domain_span(child));
 849                cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
 850        } else {
 851                cpumask_set_cpu(cpu, sched_group_span(sg));
 852                cpumask_set_cpu(cpu, group_balance_mask(sg));
 853        }
 854
 855        sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
 856        sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 857
 858        return sg;
 859}
 860
 861/*
 862 * build_sched_groups will build a circular linked list of the groups
 863 * covered by the given span, and will set each group's ->cpumask correctly,
 864 * and ->cpu_capacity to 0.
 865 *
 866 * Assumes the sched_domain tree is fully constructed
 867 */
 868static int
 869build_sched_groups(struct sched_domain *sd, int cpu)
 870{
 871        struct sched_group *first = NULL, *last = NULL;
 872        struct sd_data *sdd = sd->private;
 873        const struct cpumask *span = sched_domain_span(sd);
 874        struct cpumask *covered;
 875        int i;
 876
 877        lockdep_assert_held(&sched_domains_mutex);
 878        covered = sched_domains_tmpmask;
 879
 880        cpumask_clear(covered);
 881
 882        for_each_cpu_wrap(i, span, cpu) {
 883                struct sched_group *sg;
 884
 885                if (cpumask_test_cpu(i, covered))
 886                        continue;
 887
 888                sg = get_group(i, sdd);
 889
 890                cpumask_or(covered, covered, sched_group_span(sg));
 891
 892                if (!first)
 893                        first = sg;
 894                if (last)
 895                        last->next = sg;
 896                last = sg;
 897        }
 898        last->next = first;
 899        sd->groups = first;
 900
 901        return 0;
 902}
 903
 904/*
 905 * Initialize sched groups cpu_capacity.
 906 *
 907 * cpu_capacity indicates the capacity of sched group, which is used while
 908 * distributing the load between different sched groups in a sched domain.
 909 * Typically cpu_capacity for all the groups in a sched domain will be same
 910 * unless there are asymmetries in the topology. If there are asymmetries,
 911 * group having more cpu_capacity will pickup more load compared to the
 912 * group having less cpu_capacity.
 913 */
 914static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
 915{
 916        struct sched_group *sg = sd->groups;
 917
 918        WARN_ON(!sg);
 919
 920        do {
 921                int cpu, max_cpu = -1;
 922
 923                sg->group_weight = cpumask_weight(sched_group_span(sg));
 924
 925                if (!(sd->flags & SD_ASYM_PACKING))
 926                        goto next;
 927
 928                for_each_cpu(cpu, sched_group_span(sg)) {
 929                        if (max_cpu < 0)
 930                                max_cpu = cpu;
 931                        else if (sched_asym_prefer(cpu, max_cpu))
 932                                max_cpu = cpu;
 933                }
 934                sg->asym_prefer_cpu = max_cpu;
 935
 936next:
 937                sg = sg->next;
 938        } while (sg != sd->groups);
 939
 940        if (cpu != group_balance_cpu(sg))
 941                return;
 942
 943        update_group_capacity(sd, cpu);
 944}
 945
 946/*
 947 * Initializers for schedule domains
 948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 949 */
 950
 951static int default_relax_domain_level = -1;
 952int sched_domain_level_max;
 953
 954static int __init setup_relax_domain_level(char *str)
 955{
 956        if (kstrtoint(str, 0, &default_relax_domain_level))
 957                pr_warn("Unable to set relax_domain_level\n");
 958
 959        return 1;
 960}
 961__setup("relax_domain_level=", setup_relax_domain_level);
 962
 963static void set_domain_attribute(struct sched_domain *sd,
 964                                 struct sched_domain_attr *attr)
 965{
 966        int request;
 967
 968        if (!attr || attr->relax_domain_level < 0) {
 969                if (default_relax_domain_level < 0)
 970                        return;
 971                else
 972                        request = default_relax_domain_level;
 973        } else
 974                request = attr->relax_domain_level;
 975        if (request < sd->level) {
 976                /* Turn off idle balance on this domain: */
 977                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 978        } else {
 979                /* Turn on idle balance on this domain: */
 980                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 981        }
 982}
 983
 984static void __sdt_free(const struct cpumask *cpu_map);
 985static int __sdt_alloc(const struct cpumask *cpu_map);
 986
 987static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 988                                 const struct cpumask *cpu_map)
 989{
 990        switch (what) {
 991        case sa_rootdomain:
 992                if (!atomic_read(&d->rd->refcount))
 993                        free_rootdomain(&d->rd->rcu);
 994                /* Fall through */
 995        case sa_sd:
 996                free_percpu(d->sd);
 997                /* Fall through */
 998        case sa_sd_storage:
 999                __sdt_free(cpu_map);
1000                /* Fall through */
1001        case sa_none:
1002                break;
1003        }
1004}
1005
1006static enum s_alloc
1007__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1008{
1009        memset(d, 0, sizeof(*d));
1010
1011        if (__sdt_alloc(cpu_map))
1012                return sa_sd_storage;
1013        d->sd = alloc_percpu(struct sched_domain *);
1014        if (!d->sd)
1015                return sa_sd_storage;
1016        d->rd = alloc_rootdomain();
1017        if (!d->rd)
1018                return sa_sd;
1019        return sa_rootdomain;
1020}
1021
1022/*
1023 * NULL the sd_data elements we've used to build the sched_domain and
1024 * sched_group structure so that the subsequent __free_domain_allocs()
1025 * will not free the data we're using.
1026 */
1027static void claim_allocations(int cpu, struct sched_domain *sd)
1028{
1029        struct sd_data *sdd = sd->private;
1030
1031        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1032        *per_cpu_ptr(sdd->sd, cpu) = NULL;
1033
1034        if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1035                *per_cpu_ptr(sdd->sds, cpu) = NULL;
1036
1037        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1038                *per_cpu_ptr(sdd->sg, cpu) = NULL;
1039
1040        if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1041                *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1042}
1043
1044#ifdef CONFIG_NUMA
1045static int sched_domains_numa_levels;
1046enum numa_topology_type sched_numa_topology_type;
1047static int *sched_domains_numa_distance;
1048int sched_max_numa_distance;
1049static struct cpumask ***sched_domains_numa_masks;
1050static int sched_domains_curr_level;
1051#endif
1052
1053/*
1054 * SD_flags allowed in topology descriptions.
1055 *
1056 * These flags are purely descriptive of the topology and do not prescribe
1057 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1058 * function:
1059 *
1060 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1061 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1062 *   SD_NUMA                - describes NUMA topologies
1063 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1064 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1065 *
1066 * Odd one out, which beside describing the topology has a quirk also
1067 * prescribes the desired behaviour that goes along with it:
1068 *
1069 *   SD_ASYM_PACKING        - describes SMT quirks
1070 */
1071#define TOPOLOGY_SD_FLAGS               \
1072        (SD_SHARE_CPUCAPACITY |         \
1073         SD_SHARE_PKG_RESOURCES |       \
1074         SD_NUMA |                      \
1075         SD_ASYM_PACKING |              \
1076         SD_ASYM_CPUCAPACITY |          \
1077         SD_SHARE_POWERDOMAIN)
1078
1079static struct sched_domain *
1080sd_init(struct sched_domain_topology_level *tl,
1081        const struct cpumask *cpu_map,
1082        struct sched_domain *child, int cpu)
1083{
1084        struct sd_data *sdd = &tl->data;
1085        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1086        int sd_id, sd_weight, sd_flags = 0;
1087
1088#ifdef CONFIG_NUMA
1089        /*
1090         * Ugly hack to pass state to sd_numa_mask()...
1091         */
1092        sched_domains_curr_level = tl->numa_level;
1093#endif
1094
1095        sd_weight = cpumask_weight(tl->mask(cpu));
1096
1097        if (tl->sd_flags)
1098                sd_flags = (*tl->sd_flags)();
1099        if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1100                        "wrong sd_flags in topology description\n"))
1101                sd_flags &= ~TOPOLOGY_SD_FLAGS;
1102
1103        *sd = (struct sched_domain){
1104                .min_interval           = sd_weight,
1105                .max_interval           = 2*sd_weight,
1106                .busy_factor            = 32,
1107                .imbalance_pct          = 125,
1108
1109                .cache_nice_tries       = 0,
1110                .busy_idx               = 0,
1111                .idle_idx               = 0,
1112                .newidle_idx            = 0,
1113                .wake_idx               = 0,
1114                .forkexec_idx           = 0,
1115
1116                .flags                  = 1*SD_LOAD_BALANCE
1117                                        | 1*SD_BALANCE_NEWIDLE
1118                                        | 1*SD_BALANCE_EXEC
1119                                        | 1*SD_BALANCE_FORK
1120                                        | 0*SD_BALANCE_WAKE
1121                                        | 1*SD_WAKE_AFFINE
1122                                        | 0*SD_SHARE_CPUCAPACITY
1123                                        | 0*SD_SHARE_PKG_RESOURCES
1124                                        | 0*SD_SERIALIZE
1125                                        | 0*SD_PREFER_SIBLING
1126                                        | 0*SD_NUMA
1127                                        | sd_flags
1128                                        ,
1129
1130                .last_balance           = jiffies,
1131                .balance_interval       = sd_weight,
1132                .smt_gain               = 0,
1133                .max_newidle_lb_cost    = 0,
1134                .next_decay_max_lb_cost = jiffies,
1135                .child                  = child,
1136#ifdef CONFIG_SCHED_DEBUG
1137                .name                   = tl->name,
1138#endif
1139        };
1140
1141        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1142        sd_id = cpumask_first(sched_domain_span(sd));
1143
1144        /*
1145         * Convert topological properties into behaviour.
1146         */
1147
1148        if (sd->flags & SD_ASYM_CPUCAPACITY) {
1149                struct sched_domain *t = sd;
1150
1151                for_each_lower_domain(t)
1152                        t->flags |= SD_BALANCE_WAKE;
1153        }
1154
1155        if (sd->flags & SD_SHARE_CPUCAPACITY) {
1156                sd->flags |= SD_PREFER_SIBLING;
1157                sd->imbalance_pct = 110;
1158                sd->smt_gain = 1178; /* ~15% */
1159
1160        } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1161                sd->imbalance_pct = 117;
1162                sd->cache_nice_tries = 1;
1163                sd->busy_idx = 2;
1164
1165#ifdef CONFIG_NUMA
1166        } else if (sd->flags & SD_NUMA) {
1167                sd->cache_nice_tries = 2;
1168                sd->busy_idx = 3;
1169                sd->idle_idx = 2;
1170
1171                sd->flags |= SD_SERIALIZE;
1172                if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1173                        sd->flags &= ~(SD_BALANCE_EXEC |
1174                                       SD_BALANCE_FORK |
1175                                       SD_WAKE_AFFINE);
1176                }
1177
1178#endif
1179        } else {
1180                sd->flags |= SD_PREFER_SIBLING;
1181                sd->cache_nice_tries = 1;
1182                sd->busy_idx = 2;
1183                sd->idle_idx = 1;
1184        }
1185
1186        /*
1187         * For all levels sharing cache; connect a sched_domain_shared
1188         * instance.
1189         */
1190        if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1191                sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1192                atomic_inc(&sd->shared->ref);
1193                atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1194        }
1195
1196        sd->private = sdd;
1197
1198        return sd;
1199}
1200
1201/*
1202 * Topology list, bottom-up.
1203 */
1204static struct sched_domain_topology_level default_topology[] = {
1205#ifdef CONFIG_SCHED_SMT
1206        { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1207#endif
1208#ifdef CONFIG_SCHED_MC
1209        { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1210#endif
1211        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1212        { NULL, },
1213};
1214
1215static struct sched_domain_topology_level *sched_domain_topology =
1216        default_topology;
1217
1218#define for_each_sd_topology(tl)                        \
1219        for (tl = sched_domain_topology; tl->mask; tl++)
1220
1221void set_sched_topology(struct sched_domain_topology_level *tl)
1222{
1223        if (WARN_ON_ONCE(sched_smp_initialized))
1224                return;
1225
1226        sched_domain_topology = tl;
1227}
1228
1229#ifdef CONFIG_NUMA
1230
1231static const struct cpumask *sd_numa_mask(int cpu)
1232{
1233        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1234}
1235
1236static void sched_numa_warn(const char *str)
1237{
1238        static int done = false;
1239        int i,j;
1240
1241        if (done)
1242                return;
1243
1244        done = true;
1245
1246        printk(KERN_WARNING "ERROR: %s\n\n", str);
1247
1248        for (i = 0; i < nr_node_ids; i++) {
1249                printk(KERN_WARNING "  ");
1250                for (j = 0; j < nr_node_ids; j++)
1251                        printk(KERN_CONT "%02d ", node_distance(i,j));
1252                printk(KERN_CONT "\n");
1253        }
1254        printk(KERN_WARNING "\n");
1255}
1256
1257bool find_numa_distance(int distance)
1258{
1259        int i;
1260
1261        if (distance == node_distance(0, 0))
1262                return true;
1263
1264        for (i = 0; i < sched_domains_numa_levels; i++) {
1265                if (sched_domains_numa_distance[i] == distance)
1266                        return true;
1267        }
1268
1269        return false;
1270}
1271
1272/*
1273 * A system can have three types of NUMA topology:
1274 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1275 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1276 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1277 *
1278 * The difference between a glueless mesh topology and a backplane
1279 * topology lies in whether communication between not directly
1280 * connected nodes goes through intermediary nodes (where programs
1281 * could run), or through backplane controllers. This affects
1282 * placement of programs.
1283 *
1284 * The type of topology can be discerned with the following tests:
1285 * - If the maximum distance between any nodes is 1 hop, the system
1286 *   is directly connected.
1287 * - If for two nodes A and B, located N > 1 hops away from each other,
1288 *   there is an intermediary node C, which is < N hops away from both
1289 *   nodes A and B, the system is a glueless mesh.
1290 */
1291static void init_numa_topology_type(void)
1292{
1293        int a, b, c, n;
1294
1295        n = sched_max_numa_distance;
1296
1297        if (sched_domains_numa_levels <= 1) {
1298                sched_numa_topology_type = NUMA_DIRECT;
1299                return;
1300        }
1301
1302        for_each_online_node(a) {
1303                for_each_online_node(b) {
1304                        /* Find two nodes furthest removed from each other. */
1305                        if (node_distance(a, b) < n)
1306                                continue;
1307
1308                        /* Is there an intermediary node between a and b? */
1309                        for_each_online_node(c) {
1310                                if (node_distance(a, c) < n &&
1311                                    node_distance(b, c) < n) {
1312                                        sched_numa_topology_type =
1313                                                        NUMA_GLUELESS_MESH;
1314                                        return;
1315                                }
1316                        }
1317
1318                        sched_numa_topology_type = NUMA_BACKPLANE;
1319                        return;
1320                }
1321        }
1322}
1323
1324void sched_init_numa(void)
1325{
1326        int next_distance, curr_distance = node_distance(0, 0);
1327        struct sched_domain_topology_level *tl;
1328        int level = 0;
1329        int i, j, k;
1330
1331        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1332        if (!sched_domains_numa_distance)
1333                return;
1334
1335        /*
1336         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1337         * unique distances in the node_distance() table.
1338         *
1339         * Assumes node_distance(0,j) includes all distances in
1340         * node_distance(i,j) in order to avoid cubic time.
1341         */
1342        next_distance = curr_distance;
1343        for (i = 0; i < nr_node_ids; i++) {
1344                for (j = 0; j < nr_node_ids; j++) {
1345                        for (k = 0; k < nr_node_ids; k++) {
1346                                int distance = node_distance(i, k);
1347
1348                                if (distance > curr_distance &&
1349                                    (distance < next_distance ||
1350                                     next_distance == curr_distance))
1351                                        next_distance = distance;
1352
1353                                /*
1354                                 * While not a strong assumption it would be nice to know
1355                                 * about cases where if node A is connected to B, B is not
1356                                 * equally connected to A.
1357                                 */
1358                                if (sched_debug() && node_distance(k, i) != distance)
1359                                        sched_numa_warn("Node-distance not symmetric");
1360
1361                                if (sched_debug() && i && !find_numa_distance(distance))
1362                                        sched_numa_warn("Node-0 not representative");
1363                        }
1364                        if (next_distance != curr_distance) {
1365                                sched_domains_numa_distance[level++] = next_distance;
1366                                sched_domains_numa_levels = level;
1367                                curr_distance = next_distance;
1368                        } else break;
1369                }
1370
1371                /*
1372                 * In case of sched_debug() we verify the above assumption.
1373                 */
1374                if (!sched_debug())
1375                        break;
1376        }
1377
1378        if (!level)
1379                return;
1380
1381        /*
1382         * 'level' contains the number of unique distances, excluding the
1383         * identity distance node_distance(i,i).
1384         *
1385         * The sched_domains_numa_distance[] array includes the actual distance
1386         * numbers.
1387         */
1388
1389        /*
1390         * Here, we should temporarily reset sched_domains_numa_levels to 0.
1391         * If it fails to allocate memory for array sched_domains_numa_masks[][],
1392         * the array will contain less then 'level' members. This could be
1393         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1394         * in other functions.
1395         *
1396         * We reset it to 'level' at the end of this function.
1397         */
1398        sched_domains_numa_levels = 0;
1399
1400        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1401        if (!sched_domains_numa_masks)
1402                return;
1403
1404        /*
1405         * Now for each level, construct a mask per node which contains all
1406         * CPUs of nodes that are that many hops away from us.
1407         */
1408        for (i = 0; i < level; i++) {
1409                sched_domains_numa_masks[i] =
1410                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1411                if (!sched_domains_numa_masks[i])
1412                        return;
1413
1414                for (j = 0; j < nr_node_ids; j++) {
1415                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1416                        if (!mask)
1417                                return;
1418
1419                        sched_domains_numa_masks[i][j] = mask;
1420
1421                        for_each_node(k) {
1422                                if (node_distance(j, k) > sched_domains_numa_distance[i])
1423                                        continue;
1424
1425                                cpumask_or(mask, mask, cpumask_of_node(k));
1426                        }
1427                }
1428        }
1429
1430        /* Compute default topology size */
1431        for (i = 0; sched_domain_topology[i].mask; i++);
1432
1433        tl = kzalloc((i + level + 1) *
1434                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1435        if (!tl)
1436                return;
1437
1438        /*
1439         * Copy the default topology bits..
1440         */
1441        for (i = 0; sched_domain_topology[i].mask; i++)
1442                tl[i] = sched_domain_topology[i];
1443
1444        /*
1445         * .. and append 'j' levels of NUMA goodness.
1446         */
1447        for (j = 0; j < level; i++, j++) {
1448                tl[i] = (struct sched_domain_topology_level){
1449                        .mask = sd_numa_mask,
1450                        .sd_flags = cpu_numa_flags,
1451                        .flags = SDTL_OVERLAP,
1452                        .numa_level = j,
1453                        SD_INIT_NAME(NUMA)
1454                };
1455        }
1456
1457        sched_domain_topology = tl;
1458
1459        sched_domains_numa_levels = level;
1460        sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1461
1462        init_numa_topology_type();
1463}
1464
1465void sched_domains_numa_masks_set(unsigned int cpu)
1466{
1467        int node = cpu_to_node(cpu);
1468        int i, j;
1469
1470        for (i = 0; i < sched_domains_numa_levels; i++) {
1471                for (j = 0; j < nr_node_ids; j++) {
1472                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
1473                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1474                }
1475        }
1476}
1477
1478void sched_domains_numa_masks_clear(unsigned int cpu)
1479{
1480        int i, j;
1481
1482        for (i = 0; i < sched_domains_numa_levels; i++) {
1483                for (j = 0; j < nr_node_ids; j++)
1484                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1485        }
1486}
1487
1488#endif /* CONFIG_NUMA */
1489
1490static int __sdt_alloc(const struct cpumask *cpu_map)
1491{
1492        struct sched_domain_topology_level *tl;
1493        int j;
1494
1495        for_each_sd_topology(tl) {
1496                struct sd_data *sdd = &tl->data;
1497
1498                sdd->sd = alloc_percpu(struct sched_domain *);
1499                if (!sdd->sd)
1500                        return -ENOMEM;
1501
1502                sdd->sds = alloc_percpu(struct sched_domain_shared *);
1503                if (!sdd->sds)
1504                        return -ENOMEM;
1505
1506                sdd->sg = alloc_percpu(struct sched_group *);
1507                if (!sdd->sg)
1508                        return -ENOMEM;
1509
1510                sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1511                if (!sdd->sgc)
1512                        return -ENOMEM;
1513
1514                for_each_cpu(j, cpu_map) {
1515                        struct sched_domain *sd;
1516                        struct sched_domain_shared *sds;
1517                        struct sched_group *sg;
1518                        struct sched_group_capacity *sgc;
1519
1520                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1521                                        GFP_KERNEL, cpu_to_node(j));
1522                        if (!sd)
1523                                return -ENOMEM;
1524
1525                        *per_cpu_ptr(sdd->sd, j) = sd;
1526
1527                        sds = kzalloc_node(sizeof(struct sched_domain_shared),
1528                                        GFP_KERNEL, cpu_to_node(j));
1529                        if (!sds)
1530                                return -ENOMEM;
1531
1532                        *per_cpu_ptr(sdd->sds, j) = sds;
1533
1534                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1535                                        GFP_KERNEL, cpu_to_node(j));
1536                        if (!sg)
1537                                return -ENOMEM;
1538
1539                        sg->next = sg;
1540
1541                        *per_cpu_ptr(sdd->sg, j) = sg;
1542
1543                        sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1544                                        GFP_KERNEL, cpu_to_node(j));
1545                        if (!sgc)
1546                                return -ENOMEM;
1547
1548#ifdef CONFIG_SCHED_DEBUG
1549                        sgc->id = j;
1550#endif
1551
1552                        *per_cpu_ptr(sdd->sgc, j) = sgc;
1553                }
1554        }
1555
1556        return 0;
1557}
1558
1559static void __sdt_free(const struct cpumask *cpu_map)
1560{
1561        struct sched_domain_topology_level *tl;
1562        int j;
1563
1564        for_each_sd_topology(tl) {
1565                struct sd_data *sdd = &tl->data;
1566
1567                for_each_cpu(j, cpu_map) {
1568                        struct sched_domain *sd;
1569
1570                        if (sdd->sd) {
1571                                sd = *per_cpu_ptr(sdd->sd, j);
1572                                if (sd && (sd->flags & SD_OVERLAP))
1573                                        free_sched_groups(sd->groups, 0);
1574                                kfree(*per_cpu_ptr(sdd->sd, j));
1575                        }
1576
1577                        if (sdd->sds)
1578                                kfree(*per_cpu_ptr(sdd->sds, j));
1579                        if (sdd->sg)
1580                                kfree(*per_cpu_ptr(sdd->sg, j));
1581                        if (sdd->sgc)
1582                                kfree(*per_cpu_ptr(sdd->sgc, j));
1583                }
1584                free_percpu(sdd->sd);
1585                sdd->sd = NULL;
1586                free_percpu(sdd->sds);
1587                sdd->sds = NULL;
1588                free_percpu(sdd->sg);
1589                sdd->sg = NULL;
1590                free_percpu(sdd->sgc);
1591                sdd->sgc = NULL;
1592        }
1593}
1594
1595static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1596                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1597                struct sched_domain *child, int cpu)
1598{
1599        struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1600
1601        if (child) {
1602                sd->level = child->level + 1;
1603                sched_domain_level_max = max(sched_domain_level_max, sd->level);
1604                child->parent = sd;
1605
1606                if (!cpumask_subset(sched_domain_span(child),
1607                                    sched_domain_span(sd))) {
1608                        pr_err("BUG: arch topology borken\n");
1609#ifdef CONFIG_SCHED_DEBUG
1610                        pr_err("     the %s domain not a subset of the %s domain\n",
1611                                        child->name, sd->name);
1612#endif
1613                        /* Fixup, ensure @sd has at least @child cpus. */
1614                        cpumask_or(sched_domain_span(sd),
1615                                   sched_domain_span(sd),
1616                                   sched_domain_span(child));
1617                }
1618
1619        }
1620        set_domain_attribute(sd, attr);
1621
1622        return sd;
1623}
1624
1625/*
1626 * Build sched domains for a given set of CPUs and attach the sched domains
1627 * to the individual CPUs
1628 */
1629static int
1630build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1631{
1632        enum s_alloc alloc_state;
1633        struct sched_domain *sd;
1634        struct s_data d;
1635        struct rq *rq = NULL;
1636        int i, ret = -ENOMEM;
1637
1638        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1639        if (alloc_state != sa_rootdomain)
1640                goto error;
1641
1642        /* Set up domains for CPUs specified by the cpu_map: */
1643        for_each_cpu(i, cpu_map) {
1644                struct sched_domain_topology_level *tl;
1645
1646                sd = NULL;
1647                for_each_sd_topology(tl) {
1648                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1649                        if (tl == sched_domain_topology)
1650                                *per_cpu_ptr(d.sd, i) = sd;
1651                        if (tl->flags & SDTL_OVERLAP)
1652                                sd->flags |= SD_OVERLAP;
1653                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1654                                break;
1655                }
1656        }
1657
1658        /* Build the groups for the domains */
1659        for_each_cpu(i, cpu_map) {
1660                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1661                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
1662                        if (sd->flags & SD_OVERLAP) {
1663                                if (build_overlap_sched_groups(sd, i))
1664                                        goto error;
1665                        } else {
1666                                if (build_sched_groups(sd, i))
1667                                        goto error;
1668                        }
1669                }
1670        }
1671
1672        /* Calculate CPU capacity for physical packages and nodes */
1673        for (i = nr_cpumask_bits-1; i >= 0; i--) {
1674                if (!cpumask_test_cpu(i, cpu_map))
1675                        continue;
1676
1677                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1678                        claim_allocations(i, sd);
1679                        init_sched_groups_capacity(i, sd);
1680                }
1681        }
1682
1683        /* Attach the domains */
1684        rcu_read_lock();
1685        for_each_cpu(i, cpu_map) {
1686                rq = cpu_rq(i);
1687                sd = *per_cpu_ptr(d.sd, i);
1688
1689                /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1690                if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1691                        WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1692
1693                cpu_attach_domain(sd, d.rd, i);
1694        }
1695        rcu_read_unlock();
1696
1697        if (rq && sched_debug_enabled) {
1698                pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1699                        cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1700        }
1701
1702        ret = 0;
1703error:
1704        __free_domain_allocs(&d, alloc_state, cpu_map);
1705        return ret;
1706}
1707
1708/* Current sched domains: */
1709static cpumask_var_t                    *doms_cur;
1710
1711/* Number of sched domains in 'doms_cur': */
1712static int                              ndoms_cur;
1713
1714/* Attribues of custom domains in 'doms_cur' */
1715static struct sched_domain_attr         *dattr_cur;
1716
1717/*
1718 * Special case: If a kmalloc() of a doms_cur partition (array of
1719 * cpumask) fails, then fallback to a single sched domain,
1720 * as determined by the single cpumask fallback_doms.
1721 */
1722static cpumask_var_t                    fallback_doms;
1723
1724/*
1725 * arch_update_cpu_topology lets virtualized architectures update the
1726 * CPU core maps. It is supposed to return 1 if the topology changed
1727 * or 0 if it stayed the same.
1728 */
1729int __weak arch_update_cpu_topology(void)
1730{
1731        return 0;
1732}
1733
1734cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1735{
1736        int i;
1737        cpumask_var_t *doms;
1738
1739        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1740        if (!doms)
1741                return NULL;
1742        for (i = 0; i < ndoms; i++) {
1743                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1744                        free_sched_domains(doms, i);
1745                        return NULL;
1746                }
1747        }
1748        return doms;
1749}
1750
1751void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1752{
1753        unsigned int i;
1754        for (i = 0; i < ndoms; i++)
1755                free_cpumask_var(doms[i]);
1756        kfree(doms);
1757}
1758
1759/*
1760 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1761 * For now this just excludes isolated CPUs, but could be used to
1762 * exclude other special cases in the future.
1763 */
1764int sched_init_domains(const struct cpumask *cpu_map)
1765{
1766        int err;
1767
1768        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1769        zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1770        zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1771
1772        arch_update_cpu_topology();
1773        ndoms_cur = 1;
1774        doms_cur = alloc_sched_domains(ndoms_cur);
1775        if (!doms_cur)
1776                doms_cur = &fallback_doms;
1777        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1778        err = build_sched_domains(doms_cur[0], NULL);
1779        register_sched_domain_sysctl();
1780
1781        return err;
1782}
1783
1784/*
1785 * Detach sched domains from a group of CPUs specified in cpu_map
1786 * These CPUs will now be attached to the NULL domain
1787 */
1788static void detach_destroy_domains(const struct cpumask *cpu_map)
1789{
1790        int i;
1791
1792        rcu_read_lock();
1793        for_each_cpu(i, cpu_map)
1794                cpu_attach_domain(NULL, &def_root_domain, i);
1795        rcu_read_unlock();
1796}
1797
1798/* handle null as "default" */
1799static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1800                        struct sched_domain_attr *new, int idx_new)
1801{
1802        struct sched_domain_attr tmp;
1803
1804        /* Fast path: */
1805        if (!new && !cur)
1806                return 1;
1807
1808        tmp = SD_ATTR_INIT;
1809        return !memcmp(cur ? (cur + idx_cur) : &tmp,
1810                        new ? (new + idx_new) : &tmp,
1811                        sizeof(struct sched_domain_attr));
1812}
1813
1814/*
1815 * Partition sched domains as specified by the 'ndoms_new'
1816 * cpumasks in the array doms_new[] of cpumasks. This compares
1817 * doms_new[] to the current sched domain partitioning, doms_cur[].
1818 * It destroys each deleted domain and builds each new domain.
1819 *
1820 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1821 * The masks don't intersect (don't overlap.) We should setup one
1822 * sched domain for each mask. CPUs not in any of the cpumasks will
1823 * not be load balanced. If the same cpumask appears both in the
1824 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1825 * it as it is.
1826 *
1827 * The passed in 'doms_new' should be allocated using
1828 * alloc_sched_domains.  This routine takes ownership of it and will
1829 * free_sched_domains it when done with it. If the caller failed the
1830 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1831 * and partition_sched_domains() will fallback to the single partition
1832 * 'fallback_doms', it also forces the domains to be rebuilt.
1833 *
1834 * If doms_new == NULL it will be replaced with cpu_online_mask.
1835 * ndoms_new == 0 is a special case for destroying existing domains,
1836 * and it will not create the default domain.
1837 *
1838 * Call with hotplug lock held
1839 */
1840void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1841                             struct sched_domain_attr *dattr_new)
1842{
1843        int i, j, n;
1844        int new_topology;
1845
1846        mutex_lock(&sched_domains_mutex);
1847
1848        /* Always unregister in case we don't destroy any domains: */
1849        unregister_sched_domain_sysctl();
1850
1851        /* Let the architecture update CPU core mappings: */
1852        new_topology = arch_update_cpu_topology();
1853
1854        if (!doms_new) {
1855                WARN_ON_ONCE(dattr_new);
1856                n = 0;
1857                doms_new = alloc_sched_domains(1);
1858                if (doms_new) {
1859                        n = 1;
1860                        cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1861                }
1862        } else {
1863                n = ndoms_new;
1864        }
1865
1866        /* Destroy deleted domains: */
1867        for (i = 0; i < ndoms_cur; i++) {
1868                for (j = 0; j < n && !new_topology; j++) {
1869                        if (cpumask_equal(doms_cur[i], doms_new[j])
1870                            && dattrs_equal(dattr_cur, i, dattr_new, j))
1871                                goto match1;
1872                }
1873                /* No match - a current sched domain not in new doms_new[] */
1874                detach_destroy_domains(doms_cur[i]);
1875match1:
1876                ;
1877        }
1878
1879        n = ndoms_cur;
1880        if (!doms_new) {
1881                n = 0;
1882                doms_new = &fallback_doms;
1883                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1884        }
1885
1886        /* Build new domains: */
1887        for (i = 0; i < ndoms_new; i++) {
1888                for (j = 0; j < n && !new_topology; j++) {
1889                        if (cpumask_equal(doms_new[i], doms_cur[j])
1890                            && dattrs_equal(dattr_new, i, dattr_cur, j))
1891                                goto match2;
1892                }
1893                /* No match - add a new doms_new */
1894                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1895match2:
1896                ;
1897        }
1898
1899        /* Remember the new sched domains: */
1900        if (doms_cur != &fallback_doms)
1901                free_sched_domains(doms_cur, ndoms_cur);
1902
1903        kfree(dattr_cur);
1904        doms_cur = doms_new;
1905        dattr_cur = dattr_new;
1906        ndoms_cur = ndoms_new;
1907
1908        register_sched_domain_sysctl();
1909
1910        mutex_unlock(&sched_domains_mutex);
1911}
1912
1913