linux/mm/percpu-vm.c
<<
>>
Prefs
   1/*
   2 * mm/percpu-vm.c - vmalloc area based chunk allocation
   3 *
   4 * Copyright (C) 2010           SUSE Linux Products GmbH
   5 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * Chunks are mapped into vmalloc areas and populated page by page.
  10 * This is the default chunk allocator.
  11 */
  12
  13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
  14                                    unsigned int cpu, int page_idx)
  15{
  16        /* must not be used on pre-mapped chunk */
  17        WARN_ON(chunk->immutable);
  18
  19        return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
  20}
  21
  22/**
  23 * pcpu_get_pages - get temp pages array
  24 *
  25 * Returns pointer to array of pointers to struct page which can be indexed
  26 * with pcpu_page_idx().  Note that there is only one array and accesses
  27 * should be serialized by pcpu_alloc_mutex.
  28 *
  29 * RETURNS:
  30 * Pointer to temp pages array on success.
  31 */
  32static struct page **pcpu_get_pages(void)
  33{
  34        static struct page **pages;
  35        size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
  36
  37        lockdep_assert_held(&pcpu_alloc_mutex);
  38
  39        if (!pages)
  40                pages = pcpu_mem_zalloc(pages_size);
  41        return pages;
  42}
  43
  44/**
  45 * pcpu_free_pages - free pages which were allocated for @chunk
  46 * @chunk: chunk pages were allocated for
  47 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
  48 * @page_start: page index of the first page to be freed
  49 * @page_end: page index of the last page to be freed + 1
  50 *
  51 * Free pages [@page_start and @page_end) in @pages for all units.
  52 * The pages were allocated for @chunk.
  53 */
  54static void pcpu_free_pages(struct pcpu_chunk *chunk,
  55                            struct page **pages, int page_start, int page_end)
  56{
  57        unsigned int cpu;
  58        int i;
  59
  60        for_each_possible_cpu(cpu) {
  61                for (i = page_start; i < page_end; i++) {
  62                        struct page *page = pages[pcpu_page_idx(cpu, i)];
  63
  64                        if (page)
  65                                __free_page(page);
  66                }
  67        }
  68}
  69
  70/**
  71 * pcpu_alloc_pages - allocates pages for @chunk
  72 * @chunk: target chunk
  73 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
  74 * @page_start: page index of the first page to be allocated
  75 * @page_end: page index of the last page to be allocated + 1
  76 *
  77 * Allocate pages [@page_start,@page_end) into @pages for all units.
  78 * The allocation is for @chunk.  Percpu core doesn't care about the
  79 * content of @pages and will pass it verbatim to pcpu_map_pages().
  80 */
  81static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
  82                            struct page **pages, int page_start, int page_end)
  83{
  84        const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
  85        unsigned int cpu, tcpu;
  86        int i;
  87
  88        for_each_possible_cpu(cpu) {
  89                for (i = page_start; i < page_end; i++) {
  90                        struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
  91
  92                        *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
  93                        if (!*pagep)
  94                                goto err;
  95                }
  96        }
  97        return 0;
  98
  99err:
 100        while (--i >= page_start)
 101                __free_page(pages[pcpu_page_idx(cpu, i)]);
 102
 103        for_each_possible_cpu(tcpu) {
 104                if (tcpu == cpu)
 105                        break;
 106                for (i = page_start; i < page_end; i++)
 107                        __free_page(pages[pcpu_page_idx(tcpu, i)]);
 108        }
 109        return -ENOMEM;
 110}
 111
 112/**
 113 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 114 * @chunk: chunk the regions to be flushed belongs to
 115 * @page_start: page index of the first page to be flushed
 116 * @page_end: page index of the last page to be flushed + 1
 117 *
 118 * Pages in [@page_start,@page_end) of @chunk are about to be
 119 * unmapped.  Flush cache.  As each flushing trial can be very
 120 * expensive, issue flush on the whole region at once rather than
 121 * doing it for each cpu.  This could be an overkill but is more
 122 * scalable.
 123 */
 124static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
 125                                 int page_start, int page_end)
 126{
 127        flush_cache_vunmap(
 128                pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 129                pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 130}
 131
 132static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
 133{
 134        unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
 135}
 136
 137/**
 138 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
 139 * @chunk: chunk of interest
 140 * @pages: pages array which can be used to pass information to free
 141 * @page_start: page index of the first page to unmap
 142 * @page_end: page index of the last page to unmap + 1
 143 *
 144 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 145 * Corresponding elements in @pages were cleared by the caller and can
 146 * be used to carry information to pcpu_free_pages() which will be
 147 * called after all unmaps are finished.  The caller should call
 148 * proper pre/post flush functions.
 149 */
 150static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
 151                             struct page **pages, int page_start, int page_end)
 152{
 153        unsigned int cpu;
 154        int i;
 155
 156        for_each_possible_cpu(cpu) {
 157                for (i = page_start; i < page_end; i++) {
 158                        struct page *page;
 159
 160                        page = pcpu_chunk_page(chunk, cpu, i);
 161                        WARN_ON(!page);
 162                        pages[pcpu_page_idx(cpu, i)] = page;
 163                }
 164                __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 165                                   page_end - page_start);
 166        }
 167}
 168
 169/**
 170 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 171 * @chunk: pcpu_chunk the regions to be flushed belong to
 172 * @page_start: page index of the first page to be flushed
 173 * @page_end: page index of the last page to be flushed + 1
 174 *
 175 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 176 * TLB for the regions.  This can be skipped if the area is to be
 177 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 178 *
 179 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 180 * for the whole region.
 181 */
 182static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
 183                                      int page_start, int page_end)
 184{
 185        flush_tlb_kernel_range(
 186                pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 187                pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 188}
 189
 190static int __pcpu_map_pages(unsigned long addr, struct page **pages,
 191                            int nr_pages)
 192{
 193        return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
 194                                        PAGE_KERNEL, pages);
 195}
 196
 197/**
 198 * pcpu_map_pages - map pages into a pcpu_chunk
 199 * @chunk: chunk of interest
 200 * @pages: pages array containing pages to be mapped
 201 * @page_start: page index of the first page to map
 202 * @page_end: page index of the last page to map + 1
 203 *
 204 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 205 * caller is responsible for calling pcpu_post_map_flush() after all
 206 * mappings are complete.
 207 *
 208 * This function is responsible for setting up whatever is necessary for
 209 * reverse lookup (addr -> chunk).
 210 */
 211static int pcpu_map_pages(struct pcpu_chunk *chunk,
 212                          struct page **pages, int page_start, int page_end)
 213{
 214        unsigned int cpu, tcpu;
 215        int i, err;
 216
 217        for_each_possible_cpu(cpu) {
 218                err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
 219                                       &pages[pcpu_page_idx(cpu, page_start)],
 220                                       page_end - page_start);
 221                if (err < 0)
 222                        goto err;
 223
 224                for (i = page_start; i < page_end; i++)
 225                        pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
 226                                            chunk);
 227        }
 228        return 0;
 229err:
 230        for_each_possible_cpu(tcpu) {
 231                if (tcpu == cpu)
 232                        break;
 233                __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
 234                                   page_end - page_start);
 235        }
 236        pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
 237        return err;
 238}
 239
 240/**
 241 * pcpu_post_map_flush - flush cache after mapping
 242 * @chunk: pcpu_chunk the regions to be flushed belong to
 243 * @page_start: page index of the first page to be flushed
 244 * @page_end: page index of the last page to be flushed + 1
 245 *
 246 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 247 * cache.
 248 *
 249 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 250 * for the whole region.
 251 */
 252static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
 253                                int page_start, int page_end)
 254{
 255        flush_cache_vmap(
 256                pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
 257                pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
 258}
 259
 260/**
 261 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 262 * @chunk: chunk of interest
 263 * @page_start: the start page
 264 * @page_end: the end page
 265 *
 266 * For each cpu, populate and map pages [@page_start,@page_end) into
 267 * @chunk.
 268 *
 269 * CONTEXT:
 270 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
 271 */
 272static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
 273                               int page_start, int page_end)
 274{
 275        struct page **pages;
 276
 277        pages = pcpu_get_pages();
 278        if (!pages)
 279                return -ENOMEM;
 280
 281        if (pcpu_alloc_pages(chunk, pages, page_start, page_end))
 282                return -ENOMEM;
 283
 284        if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
 285                pcpu_free_pages(chunk, pages, page_start, page_end);
 286                return -ENOMEM;
 287        }
 288        pcpu_post_map_flush(chunk, page_start, page_end);
 289
 290        return 0;
 291}
 292
 293/**
 294 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 295 * @chunk: chunk to depopulate
 296 * @page_start: the start page
 297 * @page_end: the end page
 298 *
 299 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 300 * from @chunk.
 301 *
 302 * CONTEXT:
 303 * pcpu_alloc_mutex.
 304 */
 305static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
 306                                  int page_start, int page_end)
 307{
 308        struct page **pages;
 309
 310        /*
 311         * If control reaches here, there must have been at least one
 312         * successful population attempt so the temp pages array must
 313         * be available now.
 314         */
 315        pages = pcpu_get_pages();
 316        BUG_ON(!pages);
 317
 318        /* unmap and free */
 319        pcpu_pre_unmap_flush(chunk, page_start, page_end);
 320
 321        pcpu_unmap_pages(chunk, pages, page_start, page_end);
 322
 323        /* no need to flush tlb, vmalloc will handle it lazily */
 324
 325        pcpu_free_pages(chunk, pages, page_start, page_end);
 326}
 327
 328static struct pcpu_chunk *pcpu_create_chunk(void)
 329{
 330        struct pcpu_chunk *chunk;
 331        struct vm_struct **vms;
 332
 333        chunk = pcpu_alloc_chunk();
 334        if (!chunk)
 335                return NULL;
 336
 337        vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
 338                                pcpu_nr_groups, pcpu_atom_size);
 339        if (!vms) {
 340                pcpu_free_chunk(chunk);
 341                return NULL;
 342        }
 343
 344        chunk->data = vms;
 345        chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
 346
 347        pcpu_stats_chunk_alloc();
 348        trace_percpu_create_chunk(chunk->base_addr);
 349
 350        return chunk;
 351}
 352
 353static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
 354{
 355        if (!chunk)
 356                return;
 357
 358        pcpu_stats_chunk_dealloc();
 359        trace_percpu_destroy_chunk(chunk->base_addr);
 360
 361        if (chunk->data)
 362                pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
 363        pcpu_free_chunk(chunk);
 364}
 365
 366static struct page *pcpu_addr_to_page(void *addr)
 367{
 368        return vmalloc_to_page(addr);
 369}
 370
 371static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
 372{
 373        /* no extra restriction */
 374        return 0;
 375}
 376