linux/mm/slab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/slab.c
   4 * Written by Mark Hemment, 1996/97.
   5 * (markhe@nextd.demon.co.uk)
   6 *
   7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   8 *
   9 * Major cleanup, different bufctl logic, per-cpu arrays
  10 *      (c) 2000 Manfred Spraul
  11 *
  12 * Cleanup, make the head arrays unconditional, preparation for NUMA
  13 *      (c) 2002 Manfred Spraul
  14 *
  15 * An implementation of the Slab Allocator as described in outline in;
  16 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  17 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  18 * or with a little more detail in;
  19 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  20 *      Jeff Bonwick (Sun Microsystems).
  21 *      Presented at: USENIX Summer 1994 Technical Conference
  22 *
  23 * The memory is organized in caches, one cache for each object type.
  24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  25 * Each cache consists out of many slabs (they are small (usually one
  26 * page long) and always contiguous), and each slab contains multiple
  27 * initialized objects.
  28 *
  29 * This means, that your constructor is used only for newly allocated
  30 * slabs and you must pass objects with the same initializations to
  31 * kmem_cache_free.
  32 *
  33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  34 * normal). If you need a special memory type, then must create a new
  35 * cache for that memory type.
  36 *
  37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  38 *   full slabs with 0 free objects
  39 *   partial slabs
  40 *   empty slabs with no allocated objects
  41 *
  42 * If partial slabs exist, then new allocations come from these slabs,
  43 * otherwise from empty slabs or new slabs are allocated.
  44 *
  45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  47 *
  48 * Each cache has a short per-cpu head array, most allocs
  49 * and frees go into that array, and if that array overflows, then 1/2
  50 * of the entries in the array are given back into the global cache.
  51 * The head array is strictly LIFO and should improve the cache hit rates.
  52 * On SMP, it additionally reduces the spinlock operations.
  53 *
  54 * The c_cpuarray may not be read with enabled local interrupts -
  55 * it's changed with a smp_call_function().
  56 *
  57 * SMP synchronization:
  58 *  constructors and destructors are called without any locking.
  59 *  Several members in struct kmem_cache and struct slab never change, they
  60 *      are accessed without any locking.
  61 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  62 *      and local interrupts are disabled so slab code is preempt-safe.
  63 *  The non-constant members are protected with a per-cache irq spinlock.
  64 *
  65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  66 * in 2000 - many ideas in the current implementation are derived from
  67 * his patch.
  68 *
  69 * Further notes from the original documentation:
  70 *
  71 * 11 April '97.  Started multi-threading - markhe
  72 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  73 *      The sem is only needed when accessing/extending the cache-chain, which
  74 *      can never happen inside an interrupt (kmem_cache_create(),
  75 *      kmem_cache_shrink() and kmem_cache_reap()).
  76 *
  77 *      At present, each engine can be growing a cache.  This should be blocked.
  78 *
  79 * 15 March 2005. NUMA slab allocator.
  80 *      Shai Fultheim <shai@scalex86.org>.
  81 *      Shobhit Dayal <shobhit@calsoftinc.com>
  82 *      Alok N Kataria <alokk@calsoftinc.com>
  83 *      Christoph Lameter <christoph@lameter.com>
  84 *
  85 *      Modified the slab allocator to be node aware on NUMA systems.
  86 *      Each node has its own list of partial, free and full slabs.
  87 *      All object allocations for a node occur from node specific slab lists.
  88 */
  89
  90#include        <linux/slab.h>
  91#include        <linux/mm.h>
  92#include        <linux/poison.h>
  93#include        <linux/swap.h>
  94#include        <linux/cache.h>
  95#include        <linux/interrupt.h>
  96#include        <linux/init.h>
  97#include        <linux/compiler.h>
  98#include        <linux/cpuset.h>
  99#include        <linux/proc_fs.h>
 100#include        <linux/seq_file.h>
 101#include        <linux/notifier.h>
 102#include        <linux/kallsyms.h>
 103#include        <linux/cpu.h>
 104#include        <linux/sysctl.h>
 105#include        <linux/module.h>
 106#include        <linux/rcupdate.h>
 107#include        <linux/string.h>
 108#include        <linux/uaccess.h>
 109#include        <linux/nodemask.h>
 110#include        <linux/kmemleak.h>
 111#include        <linux/mempolicy.h>
 112#include        <linux/mutex.h>
 113#include        <linux/fault-inject.h>
 114#include        <linux/rtmutex.h>
 115#include        <linux/reciprocal_div.h>
 116#include        <linux/debugobjects.h>
 117#include        <linux/kmemcheck.h>
 118#include        <linux/memory.h>
 119#include        <linux/prefetch.h>
 120#include        <linux/sched/task_stack.h>
 121
 122#include        <net/sock.h>
 123
 124#include        <asm/cacheflush.h>
 125#include        <asm/tlbflush.h>
 126#include        <asm/page.h>
 127
 128#include <trace/events/kmem.h>
 129
 130#include        "internal.h"
 131
 132#include        "slab.h"
 133
 134/*
 135 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 136 *                0 for faster, smaller code (especially in the critical paths).
 137 *
 138 * STATS        - 1 to collect stats for /proc/slabinfo.
 139 *                0 for faster, smaller code (especially in the critical paths).
 140 *
 141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 142 */
 143
 144#ifdef CONFIG_DEBUG_SLAB
 145#define DEBUG           1
 146#define STATS           1
 147#define FORCED_DEBUG    1
 148#else
 149#define DEBUG           0
 150#define STATS           0
 151#define FORCED_DEBUG    0
 152#endif
 153
 154/* Shouldn't this be in a header file somewhere? */
 155#define BYTES_PER_WORD          sizeof(void *)
 156#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 157
 158#ifndef ARCH_KMALLOC_FLAGS
 159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 160#endif
 161
 162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 163                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 164
 165#if FREELIST_BYTE_INDEX
 166typedef unsigned char freelist_idx_t;
 167#else
 168typedef unsigned short freelist_idx_t;
 169#endif
 170
 171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 172
 173/*
 174 * struct array_cache
 175 *
 176 * Purpose:
 177 * - LIFO ordering, to hand out cache-warm objects from _alloc
 178 * - reduce the number of linked list operations
 179 * - reduce spinlock operations
 180 *
 181 * The limit is stored in the per-cpu structure to reduce the data cache
 182 * footprint.
 183 *
 184 */
 185struct array_cache {
 186        unsigned int avail;
 187        unsigned int limit;
 188        unsigned int batchcount;
 189        unsigned int touched;
 190        void *entry[];  /*
 191                         * Must have this definition in here for the proper
 192                         * alignment of array_cache. Also simplifies accessing
 193                         * the entries.
 194                         */
 195};
 196
 197struct alien_cache {
 198        spinlock_t lock;
 199        struct array_cache ac;
 200};
 201
 202/*
 203 * Need this for bootstrapping a per node allocator.
 204 */
 205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 207#define CACHE_CACHE 0
 208#define SIZE_NODE (MAX_NUMNODES)
 209
 210static int drain_freelist(struct kmem_cache *cache,
 211                        struct kmem_cache_node *n, int tofree);
 212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 213                        int node, struct list_head *list);
 214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 216static void cache_reap(struct work_struct *unused);
 217
 218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 219                                                void **list);
 220static inline void fixup_slab_list(struct kmem_cache *cachep,
 221                                struct kmem_cache_node *n, struct page *page,
 222                                void **list);
 223static int slab_early_init = 1;
 224
 225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 226
 227static void kmem_cache_node_init(struct kmem_cache_node *parent)
 228{
 229        INIT_LIST_HEAD(&parent->slabs_full);
 230        INIT_LIST_HEAD(&parent->slabs_partial);
 231        INIT_LIST_HEAD(&parent->slabs_free);
 232        parent->total_slabs = 0;
 233        parent->free_slabs = 0;
 234        parent->shared = NULL;
 235        parent->alien = NULL;
 236        parent->colour_next = 0;
 237        spin_lock_init(&parent->list_lock);
 238        parent->free_objects = 0;
 239        parent->free_touched = 0;
 240}
 241
 242#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 243        do {                                                            \
 244                INIT_LIST_HEAD(listp);                                  \
 245                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 246        } while (0)
 247
 248#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 249        do {                                                            \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 252        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 253        } while (0)
 254
 255#define CFLGS_OBJFREELIST_SLAB  (0x40000000UL)
 256#define CFLGS_OFF_SLAB          (0x80000000UL)
 257#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 258#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 259
 260#define BATCHREFILL_LIMIT       16
 261/*
 262 * Optimization question: fewer reaps means less probability for unnessary
 263 * cpucache drain/refill cycles.
 264 *
 265 * OTOH the cpuarrays can contain lots of objects,
 266 * which could lock up otherwise freeable slabs.
 267 */
 268#define REAPTIMEOUT_AC          (2*HZ)
 269#define REAPTIMEOUT_NODE        (4*HZ)
 270
 271#if STATS
 272#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 273#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 274#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 275#define STATS_INC_GROWN(x)      ((x)->grown++)
 276#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 277#define STATS_SET_HIGH(x)                                               \
 278        do {                                                            \
 279                if ((x)->num_active > (x)->high_mark)                   \
 280                        (x)->high_mark = (x)->num_active;               \
 281        } while (0)
 282#define STATS_INC_ERR(x)        ((x)->errors++)
 283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 284#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 285#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 286#define STATS_SET_FREEABLE(x, i)                                        \
 287        do {                                                            \
 288                if ((x)->max_freeable < i)                              \
 289                        (x)->max_freeable = i;                          \
 290        } while (0)
 291#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 292#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 293#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 294#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 295#else
 296#define STATS_INC_ACTIVE(x)     do { } while (0)
 297#define STATS_DEC_ACTIVE(x)     do { } while (0)
 298#define STATS_INC_ALLOCED(x)    do { } while (0)
 299#define STATS_INC_GROWN(x)      do { } while (0)
 300#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 301#define STATS_SET_HIGH(x)       do { } while (0)
 302#define STATS_INC_ERR(x)        do { } while (0)
 303#define STATS_INC_NODEALLOCS(x) do { } while (0)
 304#define STATS_INC_NODEFREES(x)  do { } while (0)
 305#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 306#define STATS_SET_FREEABLE(x, i) do { } while (0)
 307#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 308#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 309#define STATS_INC_FREEHIT(x)    do { } while (0)
 310#define STATS_INC_FREEMISS(x)   do { } while (0)
 311#endif
 312
 313#if DEBUG
 314
 315/*
 316 * memory layout of objects:
 317 * 0            : objp
 318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 319 *              the end of an object is aligned with the end of the real
 320 *              allocation. Catches writes behind the end of the allocation.
 321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 322 *              redzone word.
 323 * cachep->obj_offset: The real object.
 324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 325 * cachep->size - 1* BYTES_PER_WORD: last caller address
 326 *                                      [BYTES_PER_WORD long]
 327 */
 328static int obj_offset(struct kmem_cache *cachep)
 329{
 330        return cachep->obj_offset;
 331}
 332
 333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 334{
 335        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 336        return (unsigned long long*) (objp + obj_offset(cachep) -
 337                                      sizeof(unsigned long long));
 338}
 339
 340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 341{
 342        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 343        if (cachep->flags & SLAB_STORE_USER)
 344                return (unsigned long long *)(objp + cachep->size -
 345                                              sizeof(unsigned long long) -
 346                                              REDZONE_ALIGN);
 347        return (unsigned long long *) (objp + cachep->size -
 348                                       sizeof(unsigned long long));
 349}
 350
 351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 352{
 353        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 354        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 355}
 356
 357#else
 358
 359#define obj_offset(x)                   0
 360#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 362#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 363
 364#endif
 365
 366#ifdef CONFIG_DEBUG_SLAB_LEAK
 367
 368static inline bool is_store_user_clean(struct kmem_cache *cachep)
 369{
 370        return atomic_read(&cachep->store_user_clean) == 1;
 371}
 372
 373static inline void set_store_user_clean(struct kmem_cache *cachep)
 374{
 375        atomic_set(&cachep->store_user_clean, 1);
 376}
 377
 378static inline void set_store_user_dirty(struct kmem_cache *cachep)
 379{
 380        if (is_store_user_clean(cachep))
 381                atomic_set(&cachep->store_user_clean, 0);
 382}
 383
 384#else
 385static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 386
 387#endif
 388
 389/*
 390 * Do not go above this order unless 0 objects fit into the slab or
 391 * overridden on the command line.
 392 */
 393#define SLAB_MAX_ORDER_HI       1
 394#define SLAB_MAX_ORDER_LO       0
 395static int slab_max_order = SLAB_MAX_ORDER_LO;
 396static bool slab_max_order_set __initdata;
 397
 398static inline struct kmem_cache *virt_to_cache(const void *obj)
 399{
 400        struct page *page = virt_to_head_page(obj);
 401        return page->slab_cache;
 402}
 403
 404static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 405                                 unsigned int idx)
 406{
 407        return page->s_mem + cache->size * idx;
 408}
 409
 410/*
 411 * We want to avoid an expensive divide : (offset / cache->size)
 412 *   Using the fact that size is a constant for a particular cache,
 413 *   we can replace (offset / cache->size) by
 414 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 415 */
 416static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 417                                        const struct page *page, void *obj)
 418{
 419        u32 offset = (obj - page->s_mem);
 420        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 421}
 422
 423#define BOOT_CPUCACHE_ENTRIES   1
 424/* internal cache of cache description objs */
 425static struct kmem_cache kmem_cache_boot = {
 426        .batchcount = 1,
 427        .limit = BOOT_CPUCACHE_ENTRIES,
 428        .shared = 1,
 429        .size = sizeof(struct kmem_cache),
 430        .name = "kmem_cache",
 431};
 432
 433static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 434
 435static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 436{
 437        return this_cpu_ptr(cachep->cpu_cache);
 438}
 439
 440/*
 441 * Calculate the number of objects and left-over bytes for a given buffer size.
 442 */
 443static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 444                unsigned long flags, size_t *left_over)
 445{
 446        unsigned int num;
 447        size_t slab_size = PAGE_SIZE << gfporder;
 448
 449        /*
 450         * The slab management structure can be either off the slab or
 451         * on it. For the latter case, the memory allocated for a
 452         * slab is used for:
 453         *
 454         * - @buffer_size bytes for each object
 455         * - One freelist_idx_t for each object
 456         *
 457         * We don't need to consider alignment of freelist because
 458         * freelist will be at the end of slab page. The objects will be
 459         * at the correct alignment.
 460         *
 461         * If the slab management structure is off the slab, then the
 462         * alignment will already be calculated into the size. Because
 463         * the slabs are all pages aligned, the objects will be at the
 464         * correct alignment when allocated.
 465         */
 466        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 467                num = slab_size / buffer_size;
 468                *left_over = slab_size % buffer_size;
 469        } else {
 470                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 471                *left_over = slab_size %
 472                        (buffer_size + sizeof(freelist_idx_t));
 473        }
 474
 475        return num;
 476}
 477
 478#if DEBUG
 479#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 480
 481static void __slab_error(const char *function, struct kmem_cache *cachep,
 482                        char *msg)
 483{
 484        pr_err("slab error in %s(): cache `%s': %s\n",
 485               function, cachep->name, msg);
 486        dump_stack();
 487        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 488}
 489#endif
 490
 491/*
 492 * By default on NUMA we use alien caches to stage the freeing of
 493 * objects allocated from other nodes. This causes massive memory
 494 * inefficiencies when using fake NUMA setup to split memory into a
 495 * large number of small nodes, so it can be disabled on the command
 496 * line
 497  */
 498
 499static int use_alien_caches __read_mostly = 1;
 500static int __init noaliencache_setup(char *s)
 501{
 502        use_alien_caches = 0;
 503        return 1;
 504}
 505__setup("noaliencache", noaliencache_setup);
 506
 507static int __init slab_max_order_setup(char *str)
 508{
 509        get_option(&str, &slab_max_order);
 510        slab_max_order = slab_max_order < 0 ? 0 :
 511                                min(slab_max_order, MAX_ORDER - 1);
 512        slab_max_order_set = true;
 513
 514        return 1;
 515}
 516__setup("slab_max_order=", slab_max_order_setup);
 517
 518#ifdef CONFIG_NUMA
 519/*
 520 * Special reaping functions for NUMA systems called from cache_reap().
 521 * These take care of doing round robin flushing of alien caches (containing
 522 * objects freed on different nodes from which they were allocated) and the
 523 * flushing of remote pcps by calling drain_node_pages.
 524 */
 525static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 526
 527static void init_reap_node(int cpu)
 528{
 529        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 530                                                    node_online_map);
 531}
 532
 533static void next_reap_node(void)
 534{
 535        int node = __this_cpu_read(slab_reap_node);
 536
 537        node = next_node_in(node, node_online_map);
 538        __this_cpu_write(slab_reap_node, node);
 539}
 540
 541#else
 542#define init_reap_node(cpu) do { } while (0)
 543#define next_reap_node(void) do { } while (0)
 544#endif
 545
 546/*
 547 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 548 * via the workqueue/eventd.
 549 * Add the CPU number into the expiration time to minimize the possibility of
 550 * the CPUs getting into lockstep and contending for the global cache chain
 551 * lock.
 552 */
 553static void start_cpu_timer(int cpu)
 554{
 555        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 556
 557        if (reap_work->work.func == NULL) {
 558                init_reap_node(cpu);
 559                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 560                schedule_delayed_work_on(cpu, reap_work,
 561                                        __round_jiffies_relative(HZ, cpu));
 562        }
 563}
 564
 565static void init_arraycache(struct array_cache *ac, int limit, int batch)
 566{
 567        /*
 568         * The array_cache structures contain pointers to free object.
 569         * However, when such objects are allocated or transferred to another
 570         * cache the pointers are not cleared and they could be counted as
 571         * valid references during a kmemleak scan. Therefore, kmemleak must
 572         * not scan such objects.
 573         */
 574        kmemleak_no_scan(ac);
 575        if (ac) {
 576                ac->avail = 0;
 577                ac->limit = limit;
 578                ac->batchcount = batch;
 579                ac->touched = 0;
 580        }
 581}
 582
 583static struct array_cache *alloc_arraycache(int node, int entries,
 584                                            int batchcount, gfp_t gfp)
 585{
 586        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 587        struct array_cache *ac = NULL;
 588
 589        ac = kmalloc_node(memsize, gfp, node);
 590        init_arraycache(ac, entries, batchcount);
 591        return ac;
 592}
 593
 594static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 595                                        struct page *page, void *objp)
 596{
 597        struct kmem_cache_node *n;
 598        int page_node;
 599        LIST_HEAD(list);
 600
 601        page_node = page_to_nid(page);
 602        n = get_node(cachep, page_node);
 603
 604        spin_lock(&n->list_lock);
 605        free_block(cachep, &objp, 1, page_node, &list);
 606        spin_unlock(&n->list_lock);
 607
 608        slabs_destroy(cachep, &list);
 609}
 610
 611/*
 612 * Transfer objects in one arraycache to another.
 613 * Locking must be handled by the caller.
 614 *
 615 * Return the number of entries transferred.
 616 */
 617static int transfer_objects(struct array_cache *to,
 618                struct array_cache *from, unsigned int max)
 619{
 620        /* Figure out how many entries to transfer */
 621        int nr = min3(from->avail, max, to->limit - to->avail);
 622
 623        if (!nr)
 624                return 0;
 625
 626        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 627                        sizeof(void *) *nr);
 628
 629        from->avail -= nr;
 630        to->avail += nr;
 631        return nr;
 632}
 633
 634#ifndef CONFIG_NUMA
 635
 636#define drain_alien_cache(cachep, alien) do { } while (0)
 637#define reap_alien(cachep, n) do { } while (0)
 638
 639static inline struct alien_cache **alloc_alien_cache(int node,
 640                                                int limit, gfp_t gfp)
 641{
 642        return NULL;
 643}
 644
 645static inline void free_alien_cache(struct alien_cache **ac_ptr)
 646{
 647}
 648
 649static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 650{
 651        return 0;
 652}
 653
 654static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 655                gfp_t flags)
 656{
 657        return NULL;
 658}
 659
 660static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 661                 gfp_t flags, int nodeid)
 662{
 663        return NULL;
 664}
 665
 666static inline gfp_t gfp_exact_node(gfp_t flags)
 667{
 668        return flags & ~__GFP_NOFAIL;
 669}
 670
 671#else   /* CONFIG_NUMA */
 672
 673static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 674static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 675
 676static struct alien_cache *__alloc_alien_cache(int node, int entries,
 677                                                int batch, gfp_t gfp)
 678{
 679        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 680        struct alien_cache *alc = NULL;
 681
 682        alc = kmalloc_node(memsize, gfp, node);
 683        init_arraycache(&alc->ac, entries, batch);
 684        spin_lock_init(&alc->lock);
 685        return alc;
 686}
 687
 688static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 689{
 690        struct alien_cache **alc_ptr;
 691        size_t memsize = sizeof(void *) * nr_node_ids;
 692        int i;
 693
 694        if (limit > 1)
 695                limit = 12;
 696        alc_ptr = kzalloc_node(memsize, gfp, node);
 697        if (!alc_ptr)
 698                return NULL;
 699
 700        for_each_node(i) {
 701                if (i == node || !node_online(i))
 702                        continue;
 703                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 704                if (!alc_ptr[i]) {
 705                        for (i--; i >= 0; i--)
 706                                kfree(alc_ptr[i]);
 707                        kfree(alc_ptr);
 708                        return NULL;
 709                }
 710        }
 711        return alc_ptr;
 712}
 713
 714static void free_alien_cache(struct alien_cache **alc_ptr)
 715{
 716        int i;
 717
 718        if (!alc_ptr)
 719                return;
 720        for_each_node(i)
 721            kfree(alc_ptr[i]);
 722        kfree(alc_ptr);
 723}
 724
 725static void __drain_alien_cache(struct kmem_cache *cachep,
 726                                struct array_cache *ac, int node,
 727                                struct list_head *list)
 728{
 729        struct kmem_cache_node *n = get_node(cachep, node);
 730
 731        if (ac->avail) {
 732                spin_lock(&n->list_lock);
 733                /*
 734                 * Stuff objects into the remote nodes shared array first.
 735                 * That way we could avoid the overhead of putting the objects
 736                 * into the free lists and getting them back later.
 737                 */
 738                if (n->shared)
 739                        transfer_objects(n->shared, ac, ac->limit);
 740
 741                free_block(cachep, ac->entry, ac->avail, node, list);
 742                ac->avail = 0;
 743                spin_unlock(&n->list_lock);
 744        }
 745}
 746
 747/*
 748 * Called from cache_reap() to regularly drain alien caches round robin.
 749 */
 750static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 751{
 752        int node = __this_cpu_read(slab_reap_node);
 753
 754        if (n->alien) {
 755                struct alien_cache *alc = n->alien[node];
 756                struct array_cache *ac;
 757
 758                if (alc) {
 759                        ac = &alc->ac;
 760                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 761                                LIST_HEAD(list);
 762
 763                                __drain_alien_cache(cachep, ac, node, &list);
 764                                spin_unlock_irq(&alc->lock);
 765                                slabs_destroy(cachep, &list);
 766                        }
 767                }
 768        }
 769}
 770
 771static void drain_alien_cache(struct kmem_cache *cachep,
 772                                struct alien_cache **alien)
 773{
 774        int i = 0;
 775        struct alien_cache *alc;
 776        struct array_cache *ac;
 777        unsigned long flags;
 778
 779        for_each_online_node(i) {
 780                alc = alien[i];
 781                if (alc) {
 782                        LIST_HEAD(list);
 783
 784                        ac = &alc->ac;
 785                        spin_lock_irqsave(&alc->lock, flags);
 786                        __drain_alien_cache(cachep, ac, i, &list);
 787                        spin_unlock_irqrestore(&alc->lock, flags);
 788                        slabs_destroy(cachep, &list);
 789                }
 790        }
 791}
 792
 793static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 794                                int node, int page_node)
 795{
 796        struct kmem_cache_node *n;
 797        struct alien_cache *alien = NULL;
 798        struct array_cache *ac;
 799        LIST_HEAD(list);
 800
 801        n = get_node(cachep, node);
 802        STATS_INC_NODEFREES(cachep);
 803        if (n->alien && n->alien[page_node]) {
 804                alien = n->alien[page_node];
 805                ac = &alien->ac;
 806                spin_lock(&alien->lock);
 807                if (unlikely(ac->avail == ac->limit)) {
 808                        STATS_INC_ACOVERFLOW(cachep);
 809                        __drain_alien_cache(cachep, ac, page_node, &list);
 810                }
 811                ac->entry[ac->avail++] = objp;
 812                spin_unlock(&alien->lock);
 813                slabs_destroy(cachep, &list);
 814        } else {
 815                n = get_node(cachep, page_node);
 816                spin_lock(&n->list_lock);
 817                free_block(cachep, &objp, 1, page_node, &list);
 818                spin_unlock(&n->list_lock);
 819                slabs_destroy(cachep, &list);
 820        }
 821        return 1;
 822}
 823
 824static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 825{
 826        int page_node = page_to_nid(virt_to_page(objp));
 827        int node = numa_mem_id();
 828        /*
 829         * Make sure we are not freeing a object from another node to the array
 830         * cache on this cpu.
 831         */
 832        if (likely(node == page_node))
 833                return 0;
 834
 835        return __cache_free_alien(cachep, objp, node, page_node);
 836}
 837
 838/*
 839 * Construct gfp mask to allocate from a specific node but do not reclaim or
 840 * warn about failures.
 841 */
 842static inline gfp_t gfp_exact_node(gfp_t flags)
 843{
 844        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 845}
 846#endif
 847
 848static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 849{
 850        struct kmem_cache_node *n;
 851
 852        /*
 853         * Set up the kmem_cache_node for cpu before we can
 854         * begin anything. Make sure some other cpu on this
 855         * node has not already allocated this
 856         */
 857        n = get_node(cachep, node);
 858        if (n) {
 859                spin_lock_irq(&n->list_lock);
 860                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 861                                cachep->num;
 862                spin_unlock_irq(&n->list_lock);
 863
 864                return 0;
 865        }
 866
 867        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 868        if (!n)
 869                return -ENOMEM;
 870
 871        kmem_cache_node_init(n);
 872        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 873                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 874
 875        n->free_limit =
 876                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 877
 878        /*
 879         * The kmem_cache_nodes don't come and go as CPUs
 880         * come and go.  slab_mutex is sufficient
 881         * protection here.
 882         */
 883        cachep->node[node] = n;
 884
 885        return 0;
 886}
 887
 888#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 889/*
 890 * Allocates and initializes node for a node on each slab cache, used for
 891 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 892 * will be allocated off-node since memory is not yet online for the new node.
 893 * When hotplugging memory or a cpu, existing node are not replaced if
 894 * already in use.
 895 *
 896 * Must hold slab_mutex.
 897 */
 898static int init_cache_node_node(int node)
 899{
 900        int ret;
 901        struct kmem_cache *cachep;
 902
 903        list_for_each_entry(cachep, &slab_caches, list) {
 904                ret = init_cache_node(cachep, node, GFP_KERNEL);
 905                if (ret)
 906                        return ret;
 907        }
 908
 909        return 0;
 910}
 911#endif
 912
 913static int setup_kmem_cache_node(struct kmem_cache *cachep,
 914                                int node, gfp_t gfp, bool force_change)
 915{
 916        int ret = -ENOMEM;
 917        struct kmem_cache_node *n;
 918        struct array_cache *old_shared = NULL;
 919        struct array_cache *new_shared = NULL;
 920        struct alien_cache **new_alien = NULL;
 921        LIST_HEAD(list);
 922
 923        if (use_alien_caches) {
 924                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 925                if (!new_alien)
 926                        goto fail;
 927        }
 928
 929        if (cachep->shared) {
 930                new_shared = alloc_arraycache(node,
 931                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 932                if (!new_shared)
 933                        goto fail;
 934        }
 935
 936        ret = init_cache_node(cachep, node, gfp);
 937        if (ret)
 938                goto fail;
 939
 940        n = get_node(cachep, node);
 941        spin_lock_irq(&n->list_lock);
 942        if (n->shared && force_change) {
 943                free_block(cachep, n->shared->entry,
 944                                n->shared->avail, node, &list);
 945                n->shared->avail = 0;
 946        }
 947
 948        if (!n->shared || force_change) {
 949                old_shared = n->shared;
 950                n->shared = new_shared;
 951                new_shared = NULL;
 952        }
 953
 954        if (!n->alien) {
 955                n->alien = new_alien;
 956                new_alien = NULL;
 957        }
 958
 959        spin_unlock_irq(&n->list_lock);
 960        slabs_destroy(cachep, &list);
 961
 962        /*
 963         * To protect lockless access to n->shared during irq disabled context.
 964         * If n->shared isn't NULL in irq disabled context, accessing to it is
 965         * guaranteed to be valid until irq is re-enabled, because it will be
 966         * freed after synchronize_sched().
 967         */
 968        if (old_shared && force_change)
 969                synchronize_sched();
 970
 971fail:
 972        kfree(old_shared);
 973        kfree(new_shared);
 974        free_alien_cache(new_alien);
 975
 976        return ret;
 977}
 978
 979#ifdef CONFIG_SMP
 980
 981static void cpuup_canceled(long cpu)
 982{
 983        struct kmem_cache *cachep;
 984        struct kmem_cache_node *n = NULL;
 985        int node = cpu_to_mem(cpu);
 986        const struct cpumask *mask = cpumask_of_node(node);
 987
 988        list_for_each_entry(cachep, &slab_caches, list) {
 989                struct array_cache *nc;
 990                struct array_cache *shared;
 991                struct alien_cache **alien;
 992                LIST_HEAD(list);
 993
 994                n = get_node(cachep, node);
 995                if (!n)
 996                        continue;
 997
 998                spin_lock_irq(&n->list_lock);
 999
1000                /* Free limit for this kmem_cache_node */
1001                n->free_limit -= cachep->batchcount;
1002
1003                /* cpu is dead; no one can alloc from it. */
1004                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1005                if (nc) {
1006                        free_block(cachep, nc->entry, nc->avail, node, &list);
1007                        nc->avail = 0;
1008                }
1009
1010                if (!cpumask_empty(mask)) {
1011                        spin_unlock_irq(&n->list_lock);
1012                        goto free_slab;
1013                }
1014
1015                shared = n->shared;
1016                if (shared) {
1017                        free_block(cachep, shared->entry,
1018                                   shared->avail, node, &list);
1019                        n->shared = NULL;
1020                }
1021
1022                alien = n->alien;
1023                n->alien = NULL;
1024
1025                spin_unlock_irq(&n->list_lock);
1026
1027                kfree(shared);
1028                if (alien) {
1029                        drain_alien_cache(cachep, alien);
1030                        free_alien_cache(alien);
1031                }
1032
1033free_slab:
1034                slabs_destroy(cachep, &list);
1035        }
1036        /*
1037         * In the previous loop, all the objects were freed to
1038         * the respective cache's slabs,  now we can go ahead and
1039         * shrink each nodelist to its limit.
1040         */
1041        list_for_each_entry(cachep, &slab_caches, list) {
1042                n = get_node(cachep, node);
1043                if (!n)
1044                        continue;
1045                drain_freelist(cachep, n, INT_MAX);
1046        }
1047}
1048
1049static int cpuup_prepare(long cpu)
1050{
1051        struct kmem_cache *cachep;
1052        int node = cpu_to_mem(cpu);
1053        int err;
1054
1055        /*
1056         * We need to do this right in the beginning since
1057         * alloc_arraycache's are going to use this list.
1058         * kmalloc_node allows us to add the slab to the right
1059         * kmem_cache_node and not this cpu's kmem_cache_node
1060         */
1061        err = init_cache_node_node(node);
1062        if (err < 0)
1063                goto bad;
1064
1065        /*
1066         * Now we can go ahead with allocating the shared arrays and
1067         * array caches
1068         */
1069        list_for_each_entry(cachep, &slab_caches, list) {
1070                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1071                if (err)
1072                        goto bad;
1073        }
1074
1075        return 0;
1076bad:
1077        cpuup_canceled(cpu);
1078        return -ENOMEM;
1079}
1080
1081int slab_prepare_cpu(unsigned int cpu)
1082{
1083        int err;
1084
1085        mutex_lock(&slab_mutex);
1086        err = cpuup_prepare(cpu);
1087        mutex_unlock(&slab_mutex);
1088        return err;
1089}
1090
1091/*
1092 * This is called for a failed online attempt and for a successful
1093 * offline.
1094 *
1095 * Even if all the cpus of a node are down, we don't free the
1096 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1097 * a kmalloc allocation from another cpu for memory from the node of
1098 * the cpu going down.  The list3 structure is usually allocated from
1099 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1100 */
1101int slab_dead_cpu(unsigned int cpu)
1102{
1103        mutex_lock(&slab_mutex);
1104        cpuup_canceled(cpu);
1105        mutex_unlock(&slab_mutex);
1106        return 0;
1107}
1108#endif
1109
1110static int slab_online_cpu(unsigned int cpu)
1111{
1112        start_cpu_timer(cpu);
1113        return 0;
1114}
1115
1116static int slab_offline_cpu(unsigned int cpu)
1117{
1118        /*
1119         * Shutdown cache reaper. Note that the slab_mutex is held so
1120         * that if cache_reap() is invoked it cannot do anything
1121         * expensive but will only modify reap_work and reschedule the
1122         * timer.
1123         */
1124        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1125        /* Now the cache_reaper is guaranteed to be not running. */
1126        per_cpu(slab_reap_work, cpu).work.func = NULL;
1127        return 0;
1128}
1129
1130#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1131/*
1132 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1133 * Returns -EBUSY if all objects cannot be drained so that the node is not
1134 * removed.
1135 *
1136 * Must hold slab_mutex.
1137 */
1138static int __meminit drain_cache_node_node(int node)
1139{
1140        struct kmem_cache *cachep;
1141        int ret = 0;
1142
1143        list_for_each_entry(cachep, &slab_caches, list) {
1144                struct kmem_cache_node *n;
1145
1146                n = get_node(cachep, node);
1147                if (!n)
1148                        continue;
1149
1150                drain_freelist(cachep, n, INT_MAX);
1151
1152                if (!list_empty(&n->slabs_full) ||
1153                    !list_empty(&n->slabs_partial)) {
1154                        ret = -EBUSY;
1155                        break;
1156                }
1157        }
1158        return ret;
1159}
1160
1161static int __meminit slab_memory_callback(struct notifier_block *self,
1162                                        unsigned long action, void *arg)
1163{
1164        struct memory_notify *mnb = arg;
1165        int ret = 0;
1166        int nid;
1167
1168        nid = mnb->status_change_nid;
1169        if (nid < 0)
1170                goto out;
1171
1172        switch (action) {
1173        case MEM_GOING_ONLINE:
1174                mutex_lock(&slab_mutex);
1175                ret = init_cache_node_node(nid);
1176                mutex_unlock(&slab_mutex);
1177                break;
1178        case MEM_GOING_OFFLINE:
1179                mutex_lock(&slab_mutex);
1180                ret = drain_cache_node_node(nid);
1181                mutex_unlock(&slab_mutex);
1182                break;
1183        case MEM_ONLINE:
1184        case MEM_OFFLINE:
1185        case MEM_CANCEL_ONLINE:
1186        case MEM_CANCEL_OFFLINE:
1187                break;
1188        }
1189out:
1190        return notifier_from_errno(ret);
1191}
1192#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1193
1194/*
1195 * swap the static kmem_cache_node with kmalloced memory
1196 */
1197static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1198                                int nodeid)
1199{
1200        struct kmem_cache_node *ptr;
1201
1202        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1203        BUG_ON(!ptr);
1204
1205        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1206        /*
1207         * Do not assume that spinlocks can be initialized via memcpy:
1208         */
1209        spin_lock_init(&ptr->list_lock);
1210
1211        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1212        cachep->node[nodeid] = ptr;
1213}
1214
1215/*
1216 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1217 * size of kmem_cache_node.
1218 */
1219static void __init set_up_node(struct kmem_cache *cachep, int index)
1220{
1221        int node;
1222
1223        for_each_online_node(node) {
1224                cachep->node[node] = &init_kmem_cache_node[index + node];
1225                cachep->node[node]->next_reap = jiffies +
1226                    REAPTIMEOUT_NODE +
1227                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1228        }
1229}
1230
1231/*
1232 * Initialisation.  Called after the page allocator have been initialised and
1233 * before smp_init().
1234 */
1235void __init kmem_cache_init(void)
1236{
1237        int i;
1238
1239        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1240                                        sizeof(struct rcu_head));
1241        kmem_cache = &kmem_cache_boot;
1242
1243        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244                use_alien_caches = 0;
1245
1246        for (i = 0; i < NUM_INIT_LISTS; i++)
1247                kmem_cache_node_init(&init_kmem_cache_node[i]);
1248
1249        /*
1250         * Fragmentation resistance on low memory - only use bigger
1251         * page orders on machines with more than 32MB of memory if
1252         * not overridden on the command line.
1253         */
1254        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255                slab_max_order = SLAB_MAX_ORDER_HI;
1256
1257        /* Bootstrap is tricky, because several objects are allocated
1258         * from caches that do not exist yet:
1259         * 1) initialize the kmem_cache cache: it contains the struct
1260         *    kmem_cache structures of all caches, except kmem_cache itself:
1261         *    kmem_cache is statically allocated.
1262         *    Initially an __init data area is used for the head array and the
1263         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1264         *    array at the end of the bootstrap.
1265         * 2) Create the first kmalloc cache.
1266         *    The struct kmem_cache for the new cache is allocated normally.
1267         *    An __init data area is used for the head array.
1268         * 3) Create the remaining kmalloc caches, with minimally sized
1269         *    head arrays.
1270         * 4) Replace the __init data head arrays for kmem_cache and the first
1271         *    kmalloc cache with kmalloc allocated arrays.
1272         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1273         *    the other cache's with kmalloc allocated memory.
1274         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1275         */
1276
1277        /* 1) create the kmem_cache */
1278
1279        /*
1280         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1281         */
1282        create_boot_cache(kmem_cache, "kmem_cache",
1283                offsetof(struct kmem_cache, node) +
1284                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1285                                  SLAB_HWCACHE_ALIGN);
1286        list_add(&kmem_cache->list, &slab_caches);
1287        slab_state = PARTIAL;
1288
1289        /*
1290         * Initialize the caches that provide memory for the  kmem_cache_node
1291         * structures first.  Without this, further allocations will bug.
1292         */
1293        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294                                kmalloc_info[INDEX_NODE].name,
1295                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296        slab_state = PARTIAL_NODE;
1297        setup_kmalloc_cache_index_table();
1298
1299        slab_early_init = 0;
1300
1301        /* 5) Replace the bootstrap kmem_cache_node */
1302        {
1303                int nid;
1304
1305                for_each_online_node(nid) {
1306                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308                        init_list(kmalloc_caches[INDEX_NODE],
1309                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310                }
1311        }
1312
1313        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314}
1315
1316void __init kmem_cache_init_late(void)
1317{
1318        struct kmem_cache *cachep;
1319
1320        slab_state = UP;
1321
1322        /* 6) resize the head arrays to their final sizes */
1323        mutex_lock(&slab_mutex);
1324        list_for_each_entry(cachep, &slab_caches, list)
1325                if (enable_cpucache(cachep, GFP_NOWAIT))
1326                        BUG();
1327        mutex_unlock(&slab_mutex);
1328
1329        /* Done! */
1330        slab_state = FULL;
1331
1332#ifdef CONFIG_NUMA
1333        /*
1334         * Register a memory hotplug callback that initializes and frees
1335         * node.
1336         */
1337        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338#endif
1339
1340        /*
1341         * The reap timers are started later, with a module init call: That part
1342         * of the kernel is not yet operational.
1343         */
1344}
1345
1346static int __init cpucache_init(void)
1347{
1348        int ret;
1349
1350        /*
1351         * Register the timers that return unneeded pages to the page allocator
1352         */
1353        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354                                slab_online_cpu, slab_offline_cpu);
1355        WARN_ON(ret < 0);
1356
1357        /* Done! */
1358        slab_state = FULL;
1359        return 0;
1360}
1361__initcall(cpucache_init);
1362
1363static noinline void
1364slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365{
1366#if DEBUG
1367        struct kmem_cache_node *n;
1368        unsigned long flags;
1369        int node;
1370        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371                                      DEFAULT_RATELIMIT_BURST);
1372
1373        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374                return;
1375
1376        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377                nodeid, gfpflags, &gfpflags);
1378        pr_warn("  cache: %s, object size: %d, order: %d\n",
1379                cachep->name, cachep->size, cachep->gfporder);
1380
1381        for_each_kmem_cache_node(cachep, node, n) {
1382                unsigned long total_slabs, free_slabs, free_objs;
1383
1384                spin_lock_irqsave(&n->list_lock, flags);
1385                total_slabs = n->total_slabs;
1386                free_slabs = n->free_slabs;
1387                free_objs = n->free_objects;
1388                spin_unlock_irqrestore(&n->list_lock, flags);
1389
1390                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391                        node, total_slabs - free_slabs, total_slabs,
1392                        (total_slabs * cachep->num) - free_objs,
1393                        total_slabs * cachep->num);
1394        }
1395#endif
1396}
1397
1398/*
1399 * Interface to system's page allocator. No need to hold the
1400 * kmem_cache_node ->list_lock.
1401 *
1402 * If we requested dmaable memory, we will get it. Even if we
1403 * did not request dmaable memory, we might get it, but that
1404 * would be relatively rare and ignorable.
1405 */
1406static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407                                                                int nodeid)
1408{
1409        struct page *page;
1410        int nr_pages;
1411
1412        flags |= cachep->allocflags;
1413        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414                flags |= __GFP_RECLAIMABLE;
1415
1416        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1417        if (!page) {
1418                slab_out_of_memory(cachep, flags, nodeid);
1419                return NULL;
1420        }
1421
1422        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1423                __free_pages(page, cachep->gfporder);
1424                return NULL;
1425        }
1426
1427        nr_pages = (1 << cachep->gfporder);
1428        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1429                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1430        else
1431                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1432
1433        __SetPageSlab(page);
1434        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1435        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1436                SetPageSlabPfmemalloc(page);
1437
1438        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1439                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1440
1441                if (cachep->ctor)
1442                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1443                else
1444                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1445        }
1446
1447        return page;
1448}
1449
1450/*
1451 * Interface to system's page release.
1452 */
1453static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1454{
1455        int order = cachep->gfporder;
1456        unsigned long nr_freed = (1 << order);
1457
1458        kmemcheck_free_shadow(page, order);
1459
1460        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1461                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1462        else
1463                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1464
1465        BUG_ON(!PageSlab(page));
1466        __ClearPageSlabPfmemalloc(page);
1467        __ClearPageSlab(page);
1468        page_mapcount_reset(page);
1469        page->mapping = NULL;
1470
1471        if (current->reclaim_state)
1472                current->reclaim_state->reclaimed_slab += nr_freed;
1473        memcg_uncharge_slab(page, order, cachep);
1474        __free_pages(page, order);
1475}
1476
1477static void kmem_rcu_free(struct rcu_head *head)
1478{
1479        struct kmem_cache *cachep;
1480        struct page *page;
1481
1482        page = container_of(head, struct page, rcu_head);
1483        cachep = page->slab_cache;
1484
1485        kmem_freepages(cachep, page);
1486}
1487
1488#if DEBUG
1489static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1490{
1491        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1492                (cachep->size % PAGE_SIZE) == 0)
1493                return true;
1494
1495        return false;
1496}
1497
1498#ifdef CONFIG_DEBUG_PAGEALLOC
1499static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1500                            unsigned long caller)
1501{
1502        int size = cachep->object_size;
1503
1504        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1505
1506        if (size < 5 * sizeof(unsigned long))
1507                return;
1508
1509        *addr++ = 0x12345678;
1510        *addr++ = caller;
1511        *addr++ = smp_processor_id();
1512        size -= 3 * sizeof(unsigned long);
1513        {
1514                unsigned long *sptr = &caller;
1515                unsigned long svalue;
1516
1517                while (!kstack_end(sptr)) {
1518                        svalue = *sptr++;
1519                        if (kernel_text_address(svalue)) {
1520                                *addr++ = svalue;
1521                                size -= sizeof(unsigned long);
1522                                if (size <= sizeof(unsigned long))
1523                                        break;
1524                        }
1525                }
1526
1527        }
1528        *addr++ = 0x87654321;
1529}
1530
1531static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532                                int map, unsigned long caller)
1533{
1534        if (!is_debug_pagealloc_cache(cachep))
1535                return;
1536
1537        if (caller)
1538                store_stackinfo(cachep, objp, caller);
1539
1540        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1541}
1542
1543#else
1544static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1545                                int map, unsigned long caller) {}
1546
1547#endif
1548
1549static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1550{
1551        int size = cachep->object_size;
1552        addr = &((char *)addr)[obj_offset(cachep)];
1553
1554        memset(addr, val, size);
1555        *(unsigned char *)(addr + size - 1) = POISON_END;
1556}
1557
1558static void dump_line(char *data, int offset, int limit)
1559{
1560        int i;
1561        unsigned char error = 0;
1562        int bad_count = 0;
1563
1564        pr_err("%03x: ", offset);
1565        for (i = 0; i < limit; i++) {
1566                if (data[offset + i] != POISON_FREE) {
1567                        error = data[offset + i];
1568                        bad_count++;
1569                }
1570        }
1571        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1572                        &data[offset], limit, 1);
1573
1574        if (bad_count == 1) {
1575                error ^= POISON_FREE;
1576                if (!(error & (error - 1))) {
1577                        pr_err("Single bit error detected. Probably bad RAM.\n");
1578#ifdef CONFIG_X86
1579                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1580#else
1581                        pr_err("Run a memory test tool.\n");
1582#endif
1583                }
1584        }
1585}
1586#endif
1587
1588#if DEBUG
1589
1590static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1591{
1592        int i, size;
1593        char *realobj;
1594
1595        if (cachep->flags & SLAB_RED_ZONE) {
1596                pr_err("Redzone: 0x%llx/0x%llx\n",
1597                       *dbg_redzone1(cachep, objp),
1598                       *dbg_redzone2(cachep, objp));
1599        }
1600
1601        if (cachep->flags & SLAB_STORE_USER) {
1602                pr_err("Last user: [<%p>](%pSR)\n",
1603                       *dbg_userword(cachep, objp),
1604                       *dbg_userword(cachep, objp));
1605        }
1606        realobj = (char *)objp + obj_offset(cachep);
1607        size = cachep->object_size;
1608        for (i = 0; i < size && lines; i += 16, lines--) {
1609                int limit;
1610                limit = 16;
1611                if (i + limit > size)
1612                        limit = size - i;
1613                dump_line(realobj, i, limit);
1614        }
1615}
1616
1617static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1618{
1619        char *realobj;
1620        int size, i;
1621        int lines = 0;
1622
1623        if (is_debug_pagealloc_cache(cachep))
1624                return;
1625
1626        realobj = (char *)objp + obj_offset(cachep);
1627        size = cachep->object_size;
1628
1629        for (i = 0; i < size; i++) {
1630                char exp = POISON_FREE;
1631                if (i == size - 1)
1632                        exp = POISON_END;
1633                if (realobj[i] != exp) {
1634                        int limit;
1635                        /* Mismatch ! */
1636                        /* Print header */
1637                        if (lines == 0) {
1638                                pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1639                                       print_tainted(), cachep->name,
1640                                       realobj, size);
1641                                print_objinfo(cachep, objp, 0);
1642                        }
1643                        /* Hexdump the affected line */
1644                        i = (i / 16) * 16;
1645                        limit = 16;
1646                        if (i + limit > size)
1647                                limit = size - i;
1648                        dump_line(realobj, i, limit);
1649                        i += 16;
1650                        lines++;
1651                        /* Limit to 5 lines */
1652                        if (lines > 5)
1653                                break;
1654                }
1655        }
1656        if (lines != 0) {
1657                /* Print some data about the neighboring objects, if they
1658                 * exist:
1659                 */
1660                struct page *page = virt_to_head_page(objp);
1661                unsigned int objnr;
1662
1663                objnr = obj_to_index(cachep, page, objp);
1664                if (objnr) {
1665                        objp = index_to_obj(cachep, page, objnr - 1);
1666                        realobj = (char *)objp + obj_offset(cachep);
1667                        pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1668                        print_objinfo(cachep, objp, 2);
1669                }
1670                if (objnr + 1 < cachep->num) {
1671                        objp = index_to_obj(cachep, page, objnr + 1);
1672                        realobj = (char *)objp + obj_offset(cachep);
1673                        pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1674                        print_objinfo(cachep, objp, 2);
1675                }
1676        }
1677}
1678#endif
1679
1680#if DEBUG
1681static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682                                                struct page *page)
1683{
1684        int i;
1685
1686        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1687                poison_obj(cachep, page->freelist - obj_offset(cachep),
1688                        POISON_FREE);
1689        }
1690
1691        for (i = 0; i < cachep->num; i++) {
1692                void *objp = index_to_obj(cachep, page, i);
1693
1694                if (cachep->flags & SLAB_POISON) {
1695                        check_poison_obj(cachep, objp);
1696                        slab_kernel_map(cachep, objp, 1, 0);
1697                }
1698                if (cachep->flags & SLAB_RED_ZONE) {
1699                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1700                                slab_error(cachep, "start of a freed object was overwritten");
1701                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1702                                slab_error(cachep, "end of a freed object was overwritten");
1703                }
1704        }
1705}
1706#else
1707static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708                                                struct page *page)
1709{
1710}
1711#endif
1712
1713/**
1714 * slab_destroy - destroy and release all objects in a slab
1715 * @cachep: cache pointer being destroyed
1716 * @page: page pointer being destroyed
1717 *
1718 * Destroy all the objs in a slab page, and release the mem back to the system.
1719 * Before calling the slab page must have been unlinked from the cache. The
1720 * kmem_cache_node ->list_lock is not held/needed.
1721 */
1722static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1723{
1724        void *freelist;
1725
1726        freelist = page->freelist;
1727        slab_destroy_debugcheck(cachep, page);
1728        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1729                call_rcu(&page->rcu_head, kmem_rcu_free);
1730        else
1731                kmem_freepages(cachep, page);
1732
1733        /*
1734         * From now on, we don't use freelist
1735         * although actual page can be freed in rcu context
1736         */
1737        if (OFF_SLAB(cachep))
1738                kmem_cache_free(cachep->freelist_cache, freelist);
1739}
1740
1741static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1742{
1743        struct page *page, *n;
1744
1745        list_for_each_entry_safe(page, n, list, lru) {
1746                list_del(&page->lru);
1747                slab_destroy(cachep, page);
1748        }
1749}
1750
1751/**
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
1755 * @flags: slab allocation flags
1756 *
1757 * Also calculates the number of objects per slab.
1758 *
1759 * This could be made much more intelligent.  For now, try to avoid using
1760 * high order pages for slabs.  When the gfp() functions are more friendly
1761 * towards high-order requests, this should be changed.
1762 */
1763static size_t calculate_slab_order(struct kmem_cache *cachep,
1764                                size_t size, unsigned long flags)
1765{
1766        size_t left_over = 0;
1767        int gfporder;
1768
1769        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1770                unsigned int num;
1771                size_t remainder;
1772
1773                num = cache_estimate(gfporder, size, flags, &remainder);
1774                if (!num)
1775                        continue;
1776
1777                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1778                if (num > SLAB_OBJ_MAX_NUM)
1779                        break;
1780
1781                if (flags & CFLGS_OFF_SLAB) {
1782                        struct kmem_cache *freelist_cache;
1783                        size_t freelist_size;
1784
1785                        freelist_size = num * sizeof(freelist_idx_t);
1786                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1787                        if (!freelist_cache)
1788                                continue;
1789
1790                        /*
1791                         * Needed to avoid possible looping condition
1792                         * in cache_grow_begin()
1793                         */
1794                        if (OFF_SLAB(freelist_cache))
1795                                continue;
1796
1797                        /* check if off slab has enough benefit */
1798                        if (freelist_cache->size > cachep->size / 2)
1799                                continue;
1800                }
1801
1802                /* Found something acceptable - save it away */
1803                cachep->num = num;
1804                cachep->gfporder = gfporder;
1805                left_over = remainder;
1806
1807                /*
1808                 * A VFS-reclaimable slab tends to have most allocations
1809                 * as GFP_NOFS and we really don't want to have to be allocating
1810                 * higher-order pages when we are unable to shrink dcache.
1811                 */
1812                if (flags & SLAB_RECLAIM_ACCOUNT)
1813                        break;
1814
1815                /*
1816                 * Large number of objects is good, but very large slabs are
1817                 * currently bad for the gfp()s.
1818                 */
1819                if (gfporder >= slab_max_order)
1820                        break;
1821
1822                /*
1823                 * Acceptable internal fragmentation?
1824                 */
1825                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1826                        break;
1827        }
1828        return left_over;
1829}
1830
1831static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832                struct kmem_cache *cachep, int entries, int batchcount)
1833{
1834        int cpu;
1835        size_t size;
1836        struct array_cache __percpu *cpu_cache;
1837
1838        size = sizeof(void *) * entries + sizeof(struct array_cache);
1839        cpu_cache = __alloc_percpu(size, sizeof(void *));
1840
1841        if (!cpu_cache)
1842                return NULL;
1843
1844        for_each_possible_cpu(cpu) {
1845                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846                                entries, batchcount);
1847        }
1848
1849        return cpu_cache;
1850}
1851
1852static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1853{
1854        if (slab_state >= FULL)
1855                return enable_cpucache(cachep, gfp);
1856
1857        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858        if (!cachep->cpu_cache)
1859                return 1;
1860
1861        if (slab_state == DOWN) {
1862                /* Creation of first cache (kmem_cache). */
1863                set_up_node(kmem_cache, CACHE_CACHE);
1864        } else if (slab_state == PARTIAL) {
1865                /* For kmem_cache_node */
1866                set_up_node(cachep, SIZE_NODE);
1867        } else {
1868                int node;
1869
1870                for_each_online_node(node) {
1871                        cachep->node[node] = kmalloc_node(
1872                                sizeof(struct kmem_cache_node), gfp, node);
1873                        BUG_ON(!cachep->node[node]);
1874                        kmem_cache_node_init(cachep->node[node]);
1875                }
1876        }
1877
1878        cachep->node[numa_mem_id()]->next_reap =
1879                        jiffies + REAPTIMEOUT_NODE +
1880                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1881
1882        cpu_cache_get(cachep)->avail = 0;
1883        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884        cpu_cache_get(cachep)->batchcount = 1;
1885        cpu_cache_get(cachep)->touched = 0;
1886        cachep->batchcount = 1;
1887        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1888        return 0;
1889}
1890
1891unsigned long kmem_cache_flags(unsigned long object_size,
1892        unsigned long flags, const char *name,
1893        void (*ctor)(void *))
1894{
1895        return flags;
1896}
1897
1898struct kmem_cache *
1899__kmem_cache_alias(const char *name, size_t size, size_t align,
1900                   unsigned long flags, void (*ctor)(void *))
1901{
1902        struct kmem_cache *cachep;
1903
1904        cachep = find_mergeable(size, align, flags, name, ctor);
1905        if (cachep) {
1906                cachep->refcount++;
1907
1908                /*
1909                 * Adjust the object sizes so that we clear
1910                 * the complete object on kzalloc.
1911                 */
1912                cachep->object_size = max_t(int, cachep->object_size, size);
1913        }
1914        return cachep;
1915}
1916
1917static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918                        size_t size, unsigned long flags)
1919{
1920        size_t left;
1921
1922        cachep->num = 0;
1923
1924        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1925                return false;
1926
1927        left = calculate_slab_order(cachep, size,
1928                        flags | CFLGS_OBJFREELIST_SLAB);
1929        if (!cachep->num)
1930                return false;
1931
1932        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1933                return false;
1934
1935        cachep->colour = left / cachep->colour_off;
1936
1937        return true;
1938}
1939
1940static bool set_off_slab_cache(struct kmem_cache *cachep,
1941                        size_t size, unsigned long flags)
1942{
1943        size_t left;
1944
1945        cachep->num = 0;
1946
1947        /*
1948         * Always use on-slab management when SLAB_NOLEAKTRACE
1949         * to avoid recursive calls into kmemleak.
1950         */
1951        if (flags & SLAB_NOLEAKTRACE)
1952                return false;
1953
1954        /*
1955         * Size is large, assume best to place the slab management obj
1956         * off-slab (should allow better packing of objs).
1957         */
1958        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1959        if (!cachep->num)
1960                return false;
1961
1962        /*
1963         * If the slab has been placed off-slab, and we have enough space then
1964         * move it on-slab. This is at the expense of any extra colouring.
1965         */
1966        if (left >= cachep->num * sizeof(freelist_idx_t))
1967                return false;
1968
1969        cachep->colour = left / cachep->colour_off;
1970
1971        return true;
1972}
1973
1974static bool set_on_slab_cache(struct kmem_cache *cachep,
1975                        size_t size, unsigned long flags)
1976{
1977        size_t left;
1978
1979        cachep->num = 0;
1980
1981        left = calculate_slab_order(cachep, size, flags);
1982        if (!cachep->num)
1983                return false;
1984
1985        cachep->colour = left / cachep->colour_off;
1986
1987        return true;
1988}
1989
1990/**
1991 * __kmem_cache_create - Create a cache.
1992 * @cachep: cache management descriptor
1993 * @flags: SLAB flags
1994 *
1995 * Returns a ptr to the cache on success, NULL on failure.
1996 * Cannot be called within a int, but can be interrupted.
1997 * The @ctor is run when new pages are allocated by the cache.
1998 *
1999 * The flags are
2000 *
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2003 *
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2006 *
2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline.  This can be beneficial if you're counting cycles as closely
2009 * as davem.
2010 */
2011int
2012__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2013{
2014        size_t ralign = BYTES_PER_WORD;
2015        gfp_t gfp;
2016        int err;
2017        size_t size = cachep->size;
2018
2019#if DEBUG
2020#if FORCED_DEBUG
2021        /*
2022         * Enable redzoning and last user accounting, except for caches with
2023         * large objects, if the increased size would increase the object size
2024         * above the next power of two: caches with object sizes just above a
2025         * power of two have a significant amount of internal fragmentation.
2026         */
2027        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028                                                2 * sizeof(unsigned long long)))
2029                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2030        if (!(flags & SLAB_TYPESAFE_BY_RCU))
2031                flags |= SLAB_POISON;
2032#endif
2033#endif
2034
2035        /*
2036         * Check that size is in terms of words.  This is needed to avoid
2037         * unaligned accesses for some archs when redzoning is used, and makes
2038         * sure any on-slab bufctl's are also correctly aligned.
2039         */
2040        size = ALIGN(size, BYTES_PER_WORD);
2041
2042        if (flags & SLAB_RED_ZONE) {
2043                ralign = REDZONE_ALIGN;
2044                /* If redzoning, ensure that the second redzone is suitably
2045                 * aligned, by adjusting the object size accordingly. */
2046                size = ALIGN(size, REDZONE_ALIGN);
2047        }
2048
2049        /* 3) caller mandated alignment */
2050        if (ralign < cachep->align) {
2051                ralign = cachep->align;
2052        }
2053        /* disable debug if necessary */
2054        if (ralign > __alignof__(unsigned long long))
2055                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2056        /*
2057         * 4) Store it.
2058         */
2059        cachep->align = ralign;
2060        cachep->colour_off = cache_line_size();
2061        /* Offset must be a multiple of the alignment. */
2062        if (cachep->colour_off < cachep->align)
2063                cachep->colour_off = cachep->align;
2064
2065        if (slab_is_available())
2066                gfp = GFP_KERNEL;
2067        else
2068                gfp = GFP_NOWAIT;
2069
2070#if DEBUG
2071
2072        /*
2073         * Both debugging options require word-alignment which is calculated
2074         * into align above.
2075         */
2076        if (flags & SLAB_RED_ZONE) {
2077                /* add space for red zone words */
2078                cachep->obj_offset += sizeof(unsigned long long);
2079                size += 2 * sizeof(unsigned long long);
2080        }
2081        if (flags & SLAB_STORE_USER) {
2082                /* user store requires one word storage behind the end of
2083                 * the real object. But if the second red zone needs to be
2084                 * aligned to 64 bits, we must allow that much space.
2085                 */
2086                if (flags & SLAB_RED_ZONE)
2087                        size += REDZONE_ALIGN;
2088                else
2089                        size += BYTES_PER_WORD;
2090        }
2091#endif
2092
2093        kasan_cache_create(cachep, &size, &flags);
2094
2095        size = ALIGN(size, cachep->align);
2096        /*
2097         * We should restrict the number of objects in a slab to implement
2098         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2099         */
2100        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2101                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2102
2103#if DEBUG
2104        /*
2105         * To activate debug pagealloc, off-slab management is necessary
2106         * requirement. In early phase of initialization, small sized slab
2107         * doesn't get initialized so it would not be possible. So, we need
2108         * to check size >= 256. It guarantees that all necessary small
2109         * sized slab is initialized in current slab initialization sequence.
2110         */
2111        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2112                size >= 256 && cachep->object_size > cache_line_size()) {
2113                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2114                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2115
2116                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2117                                flags |= CFLGS_OFF_SLAB;
2118                                cachep->obj_offset += tmp_size - size;
2119                                size = tmp_size;
2120                                goto done;
2121                        }
2122                }
2123        }
2124#endif
2125
2126        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2127                flags |= CFLGS_OBJFREELIST_SLAB;
2128                goto done;
2129        }
2130
2131        if (set_off_slab_cache(cachep, size, flags)) {
2132                flags |= CFLGS_OFF_SLAB;
2133                goto done;
2134        }
2135
2136        if (set_on_slab_cache(cachep, size, flags))
2137                goto done;
2138
2139        return -E2BIG;
2140
2141done:
2142        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2143        cachep->flags = flags;
2144        cachep->allocflags = __GFP_COMP;
2145        if (flags & SLAB_CACHE_DMA)
2146                cachep->allocflags |= GFP_DMA;
2147        cachep->size = size;
2148        cachep->reciprocal_buffer_size = reciprocal_value(size);
2149
2150#if DEBUG
2151        /*
2152         * If we're going to use the generic kernel_map_pages()
2153         * poisoning, then it's going to smash the contents of
2154         * the redzone and userword anyhow, so switch them off.
2155         */
2156        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2157                (cachep->flags & SLAB_POISON) &&
2158                is_debug_pagealloc_cache(cachep))
2159                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160#endif
2161
2162        if (OFF_SLAB(cachep)) {
2163                cachep->freelist_cache =
2164                        kmalloc_slab(cachep->freelist_size, 0u);
2165        }
2166
2167        err = setup_cpu_cache(cachep, gfp);
2168        if (err) {
2169                __kmem_cache_release(cachep);
2170                return err;
2171        }
2172
2173        return 0;
2174}
2175
2176#if DEBUG
2177static void check_irq_off(void)
2178{
2179        BUG_ON(!irqs_disabled());
2180}
2181
2182static void check_irq_on(void)
2183{
2184        BUG_ON(irqs_disabled());
2185}
2186
2187static void check_mutex_acquired(void)
2188{
2189        BUG_ON(!mutex_is_locked(&slab_mutex));
2190}
2191
2192static void check_spinlock_acquired(struct kmem_cache *cachep)
2193{
2194#ifdef CONFIG_SMP
2195        check_irq_off();
2196        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2197#endif
2198}
2199
2200static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2201{
2202#ifdef CONFIG_SMP
2203        check_irq_off();
2204        assert_spin_locked(&get_node(cachep, node)->list_lock);
2205#endif
2206}
2207
2208#else
2209#define check_irq_off() do { } while(0)
2210#define check_irq_on()  do { } while(0)
2211#define check_mutex_acquired()  do { } while(0)
2212#define check_spinlock_acquired(x) do { } while(0)
2213#define check_spinlock_acquired_node(x, y) do { } while(0)
2214#endif
2215
2216static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2217                                int node, bool free_all, struct list_head *list)
2218{
2219        int tofree;
2220
2221        if (!ac || !ac->avail)
2222                return;
2223
2224        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2225        if (tofree > ac->avail)
2226                tofree = (ac->avail + 1) / 2;
2227
2228        free_block(cachep, ac->entry, tofree, node, list);
2229        ac->avail -= tofree;
2230        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2231}
2232
2233static void do_drain(void *arg)
2234{
2235        struct kmem_cache *cachep = arg;
2236        struct array_cache *ac;
2237        int node = numa_mem_id();
2238        struct kmem_cache_node *n;
2239        LIST_HEAD(list);
2240
2241        check_irq_off();
2242        ac = cpu_cache_get(cachep);
2243        n = get_node(cachep, node);
2244        spin_lock(&n->list_lock);
2245        free_block(cachep, ac->entry, ac->avail, node, &list);
2246        spin_unlock(&n->list_lock);
2247        slabs_destroy(cachep, &list);
2248        ac->avail = 0;
2249}
2250
2251static void drain_cpu_caches(struct kmem_cache *cachep)
2252{
2253        struct kmem_cache_node *n;
2254        int node;
2255        LIST_HEAD(list);
2256
2257        on_each_cpu(do_drain, cachep, 1);
2258        check_irq_on();
2259        for_each_kmem_cache_node(cachep, node, n)
2260                if (n->alien)
2261                        drain_alien_cache(cachep, n->alien);
2262
2263        for_each_kmem_cache_node(cachep, node, n) {
2264                spin_lock_irq(&n->list_lock);
2265                drain_array_locked(cachep, n->shared, node, true, &list);
2266                spin_unlock_irq(&n->list_lock);
2267
2268                slabs_destroy(cachep, &list);
2269        }
2270}
2271
2272/*
2273 * Remove slabs from the list of free slabs.
2274 * Specify the number of slabs to drain in tofree.
2275 *
2276 * Returns the actual number of slabs released.
2277 */
2278static int drain_freelist(struct kmem_cache *cache,
2279                        struct kmem_cache_node *n, int tofree)
2280{
2281        struct list_head *p;
2282        int nr_freed;
2283        struct page *page;
2284
2285        nr_freed = 0;
2286        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2287
2288                spin_lock_irq(&n->list_lock);
2289                p = n->slabs_free.prev;
2290                if (p == &n->slabs_free) {
2291                        spin_unlock_irq(&n->list_lock);
2292                        goto out;
2293                }
2294
2295                page = list_entry(p, struct page, lru);
2296                list_del(&page->lru);
2297                n->free_slabs--;
2298                n->total_slabs--;
2299                /*
2300                 * Safe to drop the lock. The slab is no longer linked
2301                 * to the cache.
2302                 */
2303                n->free_objects -= cache->num;
2304                spin_unlock_irq(&n->list_lock);
2305                slab_destroy(cache, page);
2306                nr_freed++;
2307        }
2308out:
2309        return nr_freed;
2310}
2311
2312int __kmem_cache_shrink(struct kmem_cache *cachep)
2313{
2314        int ret = 0;
2315        int node;
2316        struct kmem_cache_node *n;
2317
2318        drain_cpu_caches(cachep);
2319
2320        check_irq_on();
2321        for_each_kmem_cache_node(cachep, node, n) {
2322                drain_freelist(cachep, n, INT_MAX);
2323
2324                ret += !list_empty(&n->slabs_full) ||
2325                        !list_empty(&n->slabs_partial);
2326        }
2327        return (ret ? 1 : 0);
2328}
2329
2330#ifdef CONFIG_MEMCG
2331void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2332{
2333        __kmem_cache_shrink(cachep);
2334}
2335#endif
2336
2337int __kmem_cache_shutdown(struct kmem_cache *cachep)
2338{
2339        return __kmem_cache_shrink(cachep);
2340}
2341
2342void __kmem_cache_release(struct kmem_cache *cachep)
2343{
2344        int i;
2345        struct kmem_cache_node *n;
2346
2347        cache_random_seq_destroy(cachep);
2348
2349        free_percpu(cachep->cpu_cache);
2350
2351        /* NUMA: free the node structures */
2352        for_each_kmem_cache_node(cachep, i, n) {
2353                kfree(n->shared);
2354                free_alien_cache(n->alien);
2355                kfree(n);
2356                cachep->node[i] = NULL;
2357        }
2358}
2359
2360/*
2361 * Get the memory for a slab management obj.
2362 *
2363 * For a slab cache when the slab descriptor is off-slab, the
2364 * slab descriptor can't come from the same cache which is being created,
2365 * Because if it is the case, that means we defer the creation of
2366 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2367 * And we eventually call down to __kmem_cache_create(), which
2368 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2369 * This is a "chicken-and-egg" problem.
2370 *
2371 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2372 * which are all initialized during kmem_cache_init().
2373 */
2374static void *alloc_slabmgmt(struct kmem_cache *cachep,
2375                                   struct page *page, int colour_off,
2376                                   gfp_t local_flags, int nodeid)
2377{
2378        void *freelist;
2379        void *addr = page_address(page);
2380
2381        page->s_mem = addr + colour_off;
2382        page->active = 0;
2383
2384        if (OBJFREELIST_SLAB(cachep))
2385                freelist = NULL;
2386        else if (OFF_SLAB(cachep)) {
2387                /* Slab management obj is off-slab. */
2388                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2389                                              local_flags, nodeid);
2390                if (!freelist)
2391                        return NULL;
2392        } else {
2393                /* We will use last bytes at the slab for freelist */
2394                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2395                                cachep->freelist_size;
2396        }
2397
2398        return freelist;
2399}
2400
2401static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2402{
2403        return ((freelist_idx_t *)page->freelist)[idx];
2404}
2405
2406static inline void set_free_obj(struct page *page,
2407                                        unsigned int idx, freelist_idx_t val)
2408{
2409        ((freelist_idx_t *)(page->freelist))[idx] = val;
2410}
2411
2412static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2413{
2414#if DEBUG
2415        int i;
2416
2417        for (i = 0; i < cachep->num; i++) {
2418                void *objp = index_to_obj(cachep, page, i);
2419
2420                if (cachep->flags & SLAB_STORE_USER)
2421                        *dbg_userword(cachep, objp) = NULL;
2422
2423                if (cachep->flags & SLAB_RED_ZONE) {
2424                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2425                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2426                }
2427                /*
2428                 * Constructors are not allowed to allocate memory from the same
2429                 * cache which they are a constructor for.  Otherwise, deadlock.
2430                 * They must also be threaded.
2431                 */
2432                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2433                        kasan_unpoison_object_data(cachep,
2434                                                   objp + obj_offset(cachep));
2435                        cachep->ctor(objp + obj_offset(cachep));
2436                        kasan_poison_object_data(
2437                                cachep, objp + obj_offset(cachep));
2438                }
2439
2440                if (cachep->flags & SLAB_RED_ZONE) {
2441                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2442                                slab_error(cachep, "constructor overwrote the end of an object");
2443                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2444                                slab_error(cachep, "constructor overwrote the start of an object");
2445                }
2446                /* need to poison the objs? */
2447                if (cachep->flags & SLAB_POISON) {
2448                        poison_obj(cachep, objp, POISON_FREE);
2449                        slab_kernel_map(cachep, objp, 0, 0);
2450                }
2451        }
2452#endif
2453}
2454
2455#ifdef CONFIG_SLAB_FREELIST_RANDOM
2456/* Hold information during a freelist initialization */
2457union freelist_init_state {
2458        struct {
2459                unsigned int pos;
2460                unsigned int *list;
2461                unsigned int count;
2462        };
2463        struct rnd_state rnd_state;
2464};
2465
2466/*
2467 * Initialize the state based on the randomization methode available.
2468 * return true if the pre-computed list is available, false otherwize.
2469 */
2470static bool freelist_state_initialize(union freelist_init_state *state,
2471                                struct kmem_cache *cachep,
2472                                unsigned int count)
2473{
2474        bool ret;
2475        unsigned int rand;
2476
2477        /* Use best entropy available to define a random shift */
2478        rand = get_random_int();
2479
2480        /* Use a random state if the pre-computed list is not available */
2481        if (!cachep->random_seq) {
2482                prandom_seed_state(&state->rnd_state, rand);
2483                ret = false;
2484        } else {
2485                state->list = cachep->random_seq;
2486                state->count = count;
2487                state->pos = rand % count;
2488                ret = true;
2489        }
2490        return ret;
2491}
2492
2493/* Get the next entry on the list and randomize it using a random shift */
2494static freelist_idx_t next_random_slot(union freelist_init_state *state)
2495{
2496        if (state->pos >= state->count)
2497                state->pos = 0;
2498        return state->list[state->pos++];
2499}
2500
2501/* Swap two freelist entries */
2502static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2503{
2504        swap(((freelist_idx_t *)page->freelist)[a],
2505                ((freelist_idx_t *)page->freelist)[b]);
2506}
2507
2508/*
2509 * Shuffle the freelist initialization state based on pre-computed lists.
2510 * return true if the list was successfully shuffled, false otherwise.
2511 */
2512static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2513{
2514        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2515        union freelist_init_state state;
2516        bool precomputed;
2517
2518        if (count < 2)
2519                return false;
2520
2521        precomputed = freelist_state_initialize(&state, cachep, count);
2522
2523        /* Take a random entry as the objfreelist */
2524        if (OBJFREELIST_SLAB(cachep)) {
2525                if (!precomputed)
2526                        objfreelist = count - 1;
2527                else
2528                        objfreelist = next_random_slot(&state);
2529                page->freelist = index_to_obj(cachep, page, objfreelist) +
2530                                                obj_offset(cachep);
2531                count--;
2532        }
2533
2534        /*
2535         * On early boot, generate the list dynamically.
2536         * Later use a pre-computed list for speed.
2537         */
2538        if (!precomputed) {
2539                for (i = 0; i < count; i++)
2540                        set_free_obj(page, i, i);
2541
2542                /* Fisher-Yates shuffle */
2543                for (i = count - 1; i > 0; i--) {
2544                        rand = prandom_u32_state(&state.rnd_state);
2545                        rand %= (i + 1);
2546                        swap_free_obj(page, i, rand);
2547                }
2548        } else {
2549                for (i = 0; i < count; i++)
2550                        set_free_obj(page, i, next_random_slot(&state));
2551        }
2552
2553        if (OBJFREELIST_SLAB(cachep))
2554                set_free_obj(page, cachep->num - 1, objfreelist);
2555
2556        return true;
2557}
2558#else
2559static inline bool shuffle_freelist(struct kmem_cache *cachep,
2560                                struct page *page)
2561{
2562        return false;
2563}
2564#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2565
2566static void cache_init_objs(struct kmem_cache *cachep,
2567                            struct page *page)
2568{
2569        int i;
2570        void *objp;
2571        bool shuffled;
2572
2573        cache_init_objs_debug(cachep, page);
2574
2575        /* Try to randomize the freelist if enabled */
2576        shuffled = shuffle_freelist(cachep, page);
2577
2578        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2579                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2580                                                obj_offset(cachep);
2581        }
2582
2583        for (i = 0; i < cachep->num; i++) {
2584                objp = index_to_obj(cachep, page, i);
2585                kasan_init_slab_obj(cachep, objp);
2586
2587                /* constructor could break poison info */
2588                if (DEBUG == 0 && cachep->ctor) {
2589                        kasan_unpoison_object_data(cachep, objp);
2590                        cachep->ctor(objp);
2591                        kasan_poison_object_data(cachep, objp);
2592                }
2593
2594                if (!shuffled)
2595                        set_free_obj(page, i, i);
2596        }
2597}
2598
2599static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2600{
2601        void *objp;
2602
2603        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2604        page->active++;
2605
2606#if DEBUG
2607        if (cachep->flags & SLAB_STORE_USER)
2608                set_store_user_dirty(cachep);
2609#endif
2610
2611        return objp;
2612}
2613
2614static void slab_put_obj(struct kmem_cache *cachep,
2615                        struct page *page, void *objp)
2616{
2617        unsigned int objnr = obj_to_index(cachep, page, objp);
2618#if DEBUG
2619        unsigned int i;
2620
2621        /* Verify double free bug */
2622        for (i = page->active; i < cachep->num; i++) {
2623                if (get_free_obj(page, i) == objnr) {
2624                        pr_err("slab: double free detected in cache '%s', objp %p\n",
2625                               cachep->name, objp);
2626                        BUG();
2627                }
2628        }
2629#endif
2630        page->active--;
2631        if (!page->freelist)
2632                page->freelist = objp + obj_offset(cachep);
2633
2634        set_free_obj(page, page->active, objnr);
2635}
2636
2637/*
2638 * Map pages beginning at addr to the given cache and slab. This is required
2639 * for the slab allocator to be able to lookup the cache and slab of a
2640 * virtual address for kfree, ksize, and slab debugging.
2641 */
2642static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2643                           void *freelist)
2644{
2645        page->slab_cache = cache;
2646        page->freelist = freelist;
2647}
2648
2649/*
2650 * Grow (by 1) the number of slabs within a cache.  This is called by
2651 * kmem_cache_alloc() when there are no active objs left in a cache.
2652 */
2653static struct page *cache_grow_begin(struct kmem_cache *cachep,
2654                                gfp_t flags, int nodeid)
2655{
2656        void *freelist;
2657        size_t offset;
2658        gfp_t local_flags;
2659        int page_node;
2660        struct kmem_cache_node *n;
2661        struct page *page;
2662
2663        /*
2664         * Be lazy and only check for valid flags here,  keeping it out of the
2665         * critical path in kmem_cache_alloc().
2666         */
2667        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2668                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2669                flags &= ~GFP_SLAB_BUG_MASK;
2670                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2671                                invalid_mask, &invalid_mask, flags, &flags);
2672                dump_stack();
2673        }
2674        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2675
2676        check_irq_off();
2677        if (gfpflags_allow_blocking(local_flags))
2678                local_irq_enable();
2679
2680        /*
2681         * Get mem for the objs.  Attempt to allocate a physical page from
2682         * 'nodeid'.
2683         */
2684        page = kmem_getpages(cachep, local_flags, nodeid);
2685        if (!page)
2686                goto failed;
2687
2688        page_node = page_to_nid(page);
2689        n = get_node(cachep, page_node);
2690
2691        /* Get colour for the slab, and cal the next value. */
2692        n->colour_next++;
2693        if (n->colour_next >= cachep->colour)
2694                n->colour_next = 0;
2695
2696        offset = n->colour_next;
2697        if (offset >= cachep->colour)
2698                offset = 0;
2699
2700        offset *= cachep->colour_off;
2701
2702        /* Get slab management. */
2703        freelist = alloc_slabmgmt(cachep, page, offset,
2704                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2705        if (OFF_SLAB(cachep) && !freelist)
2706                goto opps1;
2707
2708        slab_map_pages(cachep, page, freelist);
2709
2710        kasan_poison_slab(page);
2711        cache_init_objs(cachep, page);
2712
2713        if (gfpflags_allow_blocking(local_flags))
2714                local_irq_disable();
2715
2716        return page;
2717
2718opps1:
2719        kmem_freepages(cachep, page);
2720failed:
2721        if (gfpflags_allow_blocking(local_flags))
2722                local_irq_disable();
2723        return NULL;
2724}
2725
2726static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2727{
2728        struct kmem_cache_node *n;
2729        void *list = NULL;
2730
2731        check_irq_off();
2732
2733        if (!page)
2734                return;
2735
2736        INIT_LIST_HEAD(&page->lru);
2737        n = get_node(cachep, page_to_nid(page));
2738
2739        spin_lock(&n->list_lock);
2740        n->total_slabs++;
2741        if (!page->active) {
2742                list_add_tail(&page->lru, &(n->slabs_free));
2743                n->free_slabs++;
2744        } else
2745                fixup_slab_list(cachep, n, page, &list);
2746
2747        STATS_INC_GROWN(cachep);
2748        n->free_objects += cachep->num - page->active;
2749        spin_unlock(&n->list_lock);
2750
2751        fixup_objfreelist_debug(cachep, &list);
2752}
2753
2754#if DEBUG
2755
2756/*
2757 * Perform extra freeing checks:
2758 * - detect bad pointers.
2759 * - POISON/RED_ZONE checking
2760 */
2761static void kfree_debugcheck(const void *objp)
2762{
2763        if (!virt_addr_valid(objp)) {
2764                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2765                       (unsigned long)objp);
2766                BUG();
2767        }
2768}
2769
2770static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2771{
2772        unsigned long long redzone1, redzone2;
2773
2774        redzone1 = *dbg_redzone1(cache, obj);
2775        redzone2 = *dbg_redzone2(cache, obj);
2776
2777        /*
2778         * Redzone is ok.
2779         */
2780        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2781                return;
2782
2783        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2784                slab_error(cache, "double free detected");
2785        else
2786                slab_error(cache, "memory outside object was overwritten");
2787
2788        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2789               obj, redzone1, redzone2);
2790}
2791
2792static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2793                                   unsigned long caller)
2794{
2795        unsigned int objnr;
2796        struct page *page;
2797
2798        BUG_ON(virt_to_cache(objp) != cachep);
2799
2800        objp -= obj_offset(cachep);
2801        kfree_debugcheck(objp);
2802        page = virt_to_head_page(objp);
2803
2804        if (cachep->flags & SLAB_RED_ZONE) {
2805                verify_redzone_free(cachep, objp);
2806                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2807                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2808        }
2809        if (cachep->flags & SLAB_STORE_USER) {
2810                set_store_user_dirty(cachep);
2811                *dbg_userword(cachep, objp) = (void *)caller;
2812        }
2813
2814        objnr = obj_to_index(cachep, page, objp);
2815
2816        BUG_ON(objnr >= cachep->num);
2817        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2818
2819        if (cachep->flags & SLAB_POISON) {
2820                poison_obj(cachep, objp, POISON_FREE);
2821                slab_kernel_map(cachep, objp, 0, caller);
2822        }
2823        return objp;
2824}
2825
2826#else
2827#define kfree_debugcheck(x) do { } while(0)
2828#define cache_free_debugcheck(x,objp,z) (objp)
2829#endif
2830
2831static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2832                                                void **list)
2833{
2834#if DEBUG
2835        void *next = *list;
2836        void *objp;
2837
2838        while (next) {
2839                objp = next - obj_offset(cachep);
2840                next = *(void **)next;
2841                poison_obj(cachep, objp, POISON_FREE);
2842        }
2843#endif
2844}
2845
2846static inline void fixup_slab_list(struct kmem_cache *cachep,
2847                                struct kmem_cache_node *n, struct page *page,
2848                                void **list)
2849{
2850        /* move slabp to correct slabp list: */
2851        list_del(&page->lru);
2852        if (page->active == cachep->num) {
2853                list_add(&page->lru, &n->slabs_full);
2854                if (OBJFREELIST_SLAB(cachep)) {
2855#if DEBUG
2856                        /* Poisoning will be done without holding the lock */
2857                        if (cachep->flags & SLAB_POISON) {
2858                                void **objp = page->freelist;
2859
2860                                *objp = *list;
2861                                *list = objp;
2862                        }
2863#endif
2864                        page->freelist = NULL;
2865                }
2866        } else
2867                list_add(&page->lru, &n->slabs_partial);
2868}
2869
2870/* Try to find non-pfmemalloc slab if needed */
2871static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2872                                        struct page *page, bool pfmemalloc)
2873{
2874        if (!page)
2875                return NULL;
2876
2877        if (pfmemalloc)
2878                return page;
2879
2880        if (!PageSlabPfmemalloc(page))
2881                return page;
2882
2883        /* No need to keep pfmemalloc slab if we have enough free objects */
2884        if (n->free_objects > n->free_limit) {
2885                ClearPageSlabPfmemalloc(page);
2886                return page;
2887        }
2888
2889        /* Move pfmemalloc slab to the end of list to speed up next search */
2890        list_del(&page->lru);
2891        if (!page->active) {
2892                list_add_tail(&page->lru, &n->slabs_free);
2893                n->free_slabs++;
2894        } else
2895                list_add_tail(&page->lru, &n->slabs_partial);
2896
2897        list_for_each_entry(page, &n->slabs_partial, lru) {
2898                if (!PageSlabPfmemalloc(page))
2899                        return page;
2900        }
2901
2902        n->free_touched = 1;
2903        list_for_each_entry(page, &n->slabs_free, lru) {
2904                if (!PageSlabPfmemalloc(page)) {
2905                        n->free_slabs--;
2906                        return page;
2907                }
2908        }
2909
2910        return NULL;
2911}
2912
2913static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2914{
2915        struct page *page;
2916
2917        assert_spin_locked(&n->list_lock);
2918        page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2919        if (!page) {
2920                n->free_touched = 1;
2921                page = list_first_entry_or_null(&n->slabs_free, struct page,
2922                                                lru);
2923                if (page)
2924                        n->free_slabs--;
2925        }
2926
2927        if (sk_memalloc_socks())
2928                page = get_valid_first_slab(n, page, pfmemalloc);
2929
2930        return page;
2931}
2932
2933static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2934                                struct kmem_cache_node *n, gfp_t flags)
2935{
2936        struct page *page;
2937        void *obj;
2938        void *list = NULL;
2939
2940        if (!gfp_pfmemalloc_allowed(flags))
2941                return NULL;
2942
2943        spin_lock(&n->list_lock);
2944        page = get_first_slab(n, true);
2945        if (!page) {
2946                spin_unlock(&n->list_lock);
2947                return NULL;
2948        }
2949
2950        obj = slab_get_obj(cachep, page);
2951        n->free_objects--;
2952
2953        fixup_slab_list(cachep, n, page, &list);
2954
2955        spin_unlock(&n->list_lock);
2956        fixup_objfreelist_debug(cachep, &list);
2957
2958        return obj;
2959}
2960
2961/*
2962 * Slab list should be fixed up by fixup_slab_list() for existing slab
2963 * or cache_grow_end() for new slab
2964 */
2965static __always_inline int alloc_block(struct kmem_cache *cachep,
2966                struct array_cache *ac, struct page *page, int batchcount)
2967{
2968        /*
2969         * There must be at least one object available for
2970         * allocation.
2971         */
2972        BUG_ON(page->active >= cachep->num);
2973
2974        while (page->active < cachep->num && batchcount--) {
2975                STATS_INC_ALLOCED(cachep);
2976                STATS_INC_ACTIVE(cachep);
2977                STATS_SET_HIGH(cachep);
2978
2979                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2980        }
2981
2982        return batchcount;
2983}
2984
2985static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2986{
2987        int batchcount;
2988        struct kmem_cache_node *n;
2989        struct array_cache *ac, *shared;
2990        int node;
2991        void *list = NULL;
2992        struct page *page;
2993
2994        check_irq_off();
2995        node = numa_mem_id();
2996
2997        ac = cpu_cache_get(cachep);
2998        batchcount = ac->batchcount;
2999        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3000                /*
3001                 * If there was little recent activity on this cache, then
3002                 * perform only a partial refill.  Otherwise we could generate
3003                 * refill bouncing.
3004                 */
3005                batchcount = BATCHREFILL_LIMIT;
3006        }
3007        n = get_node(cachep, node);
3008
3009        BUG_ON(ac->avail > 0 || !n);
3010        shared = READ_ONCE(n->shared);
3011        if (!n->free_objects && (!shared || !shared->avail))
3012                goto direct_grow;
3013
3014        spin_lock(&n->list_lock);
3015        shared = READ_ONCE(n->shared);
3016
3017        /* See if we can refill from the shared array */
3018        if (shared && transfer_objects(ac, shared, batchcount)) {
3019                shared->touched = 1;
3020                goto alloc_done;
3021        }
3022
3023        while (batchcount > 0) {
3024                /* Get slab alloc is to come from. */
3025                page = get_first_slab(n, false);
3026                if (!page)
3027                        goto must_grow;
3028
3029                check_spinlock_acquired(cachep);
3030
3031                batchcount = alloc_block(cachep, ac, page, batchcount);
3032                fixup_slab_list(cachep, n, page, &list);
3033        }
3034
3035must_grow:
3036        n->free_objects -= ac->avail;
3037alloc_done:
3038        spin_unlock(&n->list_lock);
3039        fixup_objfreelist_debug(cachep, &list);
3040
3041direct_grow:
3042        if (unlikely(!ac->avail)) {
3043                /* Check if we can use obj in pfmemalloc slab */
3044                if (sk_memalloc_socks()) {
3045                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3046
3047                        if (obj)
3048                                return obj;
3049                }
3050
3051                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3052
3053                /*
3054                 * cache_grow_begin() can reenable interrupts,
3055                 * then ac could change.
3056                 */
3057                ac = cpu_cache_get(cachep);
3058                if (!ac->avail && page)
3059                        alloc_block(cachep, ac, page, batchcount);
3060                cache_grow_end(cachep, page);
3061
3062                if (!ac->avail)
3063                        return NULL;
3064        }
3065        ac->touched = 1;
3066
3067        return ac->entry[--ac->avail];
3068}
3069
3070static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3071                                                gfp_t flags)
3072{
3073        might_sleep_if(gfpflags_allow_blocking(flags));
3074}
3075
3076#if DEBUG
3077static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3078                                gfp_t flags, void *objp, unsigned long caller)
3079{
3080        if (!objp)
3081                return objp;
3082        if (cachep->flags & SLAB_POISON) {
3083                check_poison_obj(cachep, objp);
3084                slab_kernel_map(cachep, objp, 1, 0);
3085                poison_obj(cachep, objp, POISON_INUSE);
3086        }
3087        if (cachep->flags & SLAB_STORE_USER)
3088                *dbg_userword(cachep, objp) = (void *)caller;
3089
3090        if (cachep->flags & SLAB_RED_ZONE) {
3091                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3092                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3093                        slab_error(cachep, "double free, or memory outside object was overwritten");
3094                        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3095                               objp, *dbg_redzone1(cachep, objp),
3096                               *dbg_redzone2(cachep, objp));
3097                }
3098                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3099                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3100        }
3101
3102        objp += obj_offset(cachep);
3103        if (cachep->ctor && cachep->flags & SLAB_POISON)
3104                cachep->ctor(objp);
3105        if (ARCH_SLAB_MINALIGN &&
3106            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3107                pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3108                       objp, (int)ARCH_SLAB_MINALIGN);
3109        }
3110        return objp;
3111}
3112#else
3113#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3114#endif
3115
3116static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3117{
3118        void *objp;
3119        struct array_cache *ac;
3120
3121        check_irq_off();
3122
3123        ac = cpu_cache_get(cachep);
3124        if (likely(ac->avail)) {
3125                ac->touched = 1;
3126                objp = ac->entry[--ac->avail];
3127
3128                STATS_INC_ALLOCHIT(cachep);
3129                goto out;
3130        }
3131
3132        STATS_INC_ALLOCMISS(cachep);
3133        objp = cache_alloc_refill(cachep, flags);
3134        /*
3135         * the 'ac' may be updated by cache_alloc_refill(),
3136         * and kmemleak_erase() requires its correct value.
3137         */
3138        ac = cpu_cache_get(cachep);
3139
3140out:
3141        /*
3142         * To avoid a false negative, if an object that is in one of the
3143         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3144         * treat the array pointers as a reference to the object.
3145         */
3146        if (objp)
3147                kmemleak_erase(&ac->entry[ac->avail]);
3148        return objp;
3149}
3150
3151#ifdef CONFIG_NUMA
3152/*
3153 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3154 *
3155 * If we are in_interrupt, then process context, including cpusets and
3156 * mempolicy, may not apply and should not be used for allocation policy.
3157 */
3158static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3159{
3160        int nid_alloc, nid_here;
3161
3162        if (in_interrupt() || (flags & __GFP_THISNODE))
3163                return NULL;
3164        nid_alloc = nid_here = numa_mem_id();
3165        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3166                nid_alloc = cpuset_slab_spread_node();
3167        else if (current->mempolicy)
3168                nid_alloc = mempolicy_slab_node();
3169        if (nid_alloc != nid_here)
3170                return ____cache_alloc_node(cachep, flags, nid_alloc);
3171        return NULL;
3172}
3173
3174/*
3175 * Fallback function if there was no memory available and no objects on a
3176 * certain node and fall back is permitted. First we scan all the
3177 * available node for available objects. If that fails then we
3178 * perform an allocation without specifying a node. This allows the page
3179 * allocator to do its reclaim / fallback magic. We then insert the
3180 * slab into the proper nodelist and then allocate from it.
3181 */
3182static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3183{
3184        struct zonelist *zonelist;
3185        struct zoneref *z;
3186        struct zone *zone;
3187        enum zone_type high_zoneidx = gfp_zone(flags);
3188        void *obj = NULL;
3189        struct page *page;
3190        int nid;
3191        unsigned int cpuset_mems_cookie;
3192
3193        if (flags & __GFP_THISNODE)
3194                return NULL;
3195
3196retry_cpuset:
3197        cpuset_mems_cookie = read_mems_allowed_begin();
3198        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3199
3200retry:
3201        /*
3202         * Look through allowed nodes for objects available
3203         * from existing per node queues.
3204         */
3205        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3206                nid = zone_to_nid(zone);
3207
3208                if (cpuset_zone_allowed(zone, flags) &&
3209                        get_node(cache, nid) &&
3210                        get_node(cache, nid)->free_objects) {
3211                                obj = ____cache_alloc_node(cache,
3212                                        gfp_exact_node(flags), nid);
3213                                if (obj)
3214                                        break;
3215                }
3216        }
3217
3218        if (!obj) {
3219                /*
3220                 * This allocation will be performed within the constraints
3221                 * of the current cpuset / memory policy requirements.
3222                 * We may trigger various forms of reclaim on the allowed
3223                 * set and go into memory reserves if necessary.
3224                 */
3225                page = cache_grow_begin(cache, flags, numa_mem_id());
3226                cache_grow_end(cache, page);
3227                if (page) {
3228                        nid = page_to_nid(page);
3229                        obj = ____cache_alloc_node(cache,
3230                                gfp_exact_node(flags), nid);
3231
3232                        /*
3233                         * Another processor may allocate the objects in
3234                         * the slab since we are not holding any locks.
3235                         */
3236                        if (!obj)
3237                                goto retry;
3238                }
3239        }
3240
3241        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3242                goto retry_cpuset;
3243        return obj;
3244}
3245
3246/*
3247 * A interface to enable slab creation on nodeid
3248 */
3249static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3250                                int nodeid)
3251{
3252        struct page *page;
3253        struct kmem_cache_node *n;
3254        void *obj = NULL;
3255        void *list = NULL;
3256
3257        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3258        n = get_node(cachep, nodeid);
3259        BUG_ON(!n);
3260
3261        check_irq_off();
3262        spin_lock(&n->list_lock);
3263        page = get_first_slab(n, false);
3264        if (!page)
3265                goto must_grow;
3266
3267        check_spinlock_acquired_node(cachep, nodeid);
3268
3269        STATS_INC_NODEALLOCS(cachep);
3270        STATS_INC_ACTIVE(cachep);
3271        STATS_SET_HIGH(cachep);
3272
3273        BUG_ON(page->active == cachep->num);
3274
3275        obj = slab_get_obj(cachep, page);
3276        n->free_objects--;
3277
3278        fixup_slab_list(cachep, n, page, &list);
3279
3280        spin_unlock(&n->list_lock);
3281        fixup_objfreelist_debug(cachep, &list);
3282        return obj;
3283
3284must_grow:
3285        spin_unlock(&n->list_lock);
3286        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3287        if (page) {
3288                /* This slab isn't counted yet so don't update free_objects */
3289                obj = slab_get_obj(cachep, page);
3290        }
3291        cache_grow_end(cachep, page);
3292
3293        return obj ? obj : fallback_alloc(cachep, flags);
3294}
3295
3296static __always_inline void *
3297slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3298                   unsigned long caller)
3299{
3300        unsigned long save_flags;
3301        void *ptr;
3302        int slab_node = numa_mem_id();
3303
3304        flags &= gfp_allowed_mask;
3305        cachep = slab_pre_alloc_hook(cachep, flags);
3306        if (unlikely(!cachep))
3307                return NULL;
3308
3309        cache_alloc_debugcheck_before(cachep, flags);
3310        local_irq_save(save_flags);
3311
3312        if (nodeid == NUMA_NO_NODE)
3313                nodeid = slab_node;
3314
3315        if (unlikely(!get_node(cachep, nodeid))) {
3316                /* Node not bootstrapped yet */
3317                ptr = fallback_alloc(cachep, flags);
3318                goto out;
3319        }
3320
3321        if (nodeid == slab_node) {
3322                /*
3323                 * Use the locally cached objects if possible.
3324                 * However ____cache_alloc does not allow fallback
3325                 * to other nodes. It may fail while we still have
3326                 * objects on other nodes available.
3327                 */
3328                ptr = ____cache_alloc(cachep, flags);
3329                if (ptr)
3330                        goto out;
3331        }
3332        /* ___cache_alloc_node can fall back to other nodes */
3333        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3334  out:
3335        local_irq_restore(save_flags);
3336        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3337
3338        if (unlikely(flags & __GFP_ZERO) && ptr)
3339                memset(ptr, 0, cachep->object_size);
3340
3341        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3342        return ptr;
3343}
3344
3345static __always_inline void *
3346__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3347{
3348        void *objp;
3349
3350        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3351                objp = alternate_node_alloc(cache, flags);
3352                if (objp)
3353                        goto out;
3354        }
3355        objp = ____cache_alloc(cache, flags);
3356
3357        /*
3358         * We may just have run out of memory on the local node.
3359         * ____cache_alloc_node() knows how to locate memory on other nodes
3360         */
3361        if (!objp)
3362                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3363
3364  out:
3365        return objp;
3366}
3367#else
3368
3369static __always_inline void *
3370__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3371{
3372        return ____cache_alloc(cachep, flags);
3373}
3374
3375#endif /* CONFIG_NUMA */
3376
3377static __always_inline void *
3378slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3379{
3380        unsigned long save_flags;
3381        void *objp;
3382
3383        flags &= gfp_allowed_mask;
3384        cachep = slab_pre_alloc_hook(cachep, flags);
3385        if (unlikely(!cachep))
3386                return NULL;
3387
3388        cache_alloc_debugcheck_before(cachep, flags);
3389        local_irq_save(save_flags);
3390        objp = __do_cache_alloc(cachep, flags);
3391        local_irq_restore(save_flags);
3392        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393        prefetchw(objp);
3394
3395        if (unlikely(flags & __GFP_ZERO) && objp)
3396                memset(objp, 0, cachep->object_size);
3397
3398        slab_post_alloc_hook(cachep, flags, 1, &objp);
3399        return objp;
3400}
3401
3402/*
3403 * Caller needs to acquire correct kmem_cache_node's list_lock
3404 * @list: List of detached free slabs should be freed by caller
3405 */
3406static void free_block(struct kmem_cache *cachep, void **objpp,
3407                        int nr_objects, int node, struct list_head *list)
3408{
3409        int i;
3410        struct kmem_cache_node *n = get_node(cachep, node);
3411        struct page *page;
3412
3413        n->free_objects += nr_objects;
3414
3415        for (i = 0; i < nr_objects; i++) {
3416                void *objp;
3417                struct page *page;
3418
3419                objp = objpp[i];
3420
3421                page = virt_to_head_page(objp);
3422                list_del(&page->lru);
3423                check_spinlock_acquired_node(cachep, node);
3424                slab_put_obj(cachep, page, objp);
3425                STATS_DEC_ACTIVE(cachep);
3426
3427                /* fixup slab chains */
3428                if (page->active == 0) {
3429                        list_add(&page->lru, &n->slabs_free);
3430                        n->free_slabs++;
3431                } else {
3432                        /* Unconditionally move a slab to the end of the
3433                         * partial list on free - maximum time for the
3434                         * other objects to be freed, too.
3435                         */
3436                        list_add_tail(&page->lru, &n->slabs_partial);
3437                }
3438        }
3439
3440        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3441                n->free_objects -= cachep->num;
3442
3443                page = list_last_entry(&n->slabs_free, struct page, lru);
3444                list_move(&page->lru, list);
3445                n->free_slabs--;
3446                n->total_slabs--;
3447        }
3448}
3449
3450static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3451{
3452        int batchcount;
3453        struct kmem_cache_node *n;
3454        int node = numa_mem_id();
3455        LIST_HEAD(list);
3456
3457        batchcount = ac->batchcount;
3458
3459        check_irq_off();
3460        n = get_node(cachep, node);
3461        spin_lock(&n->list_lock);
3462        if (n->shared) {
3463                struct array_cache *shared_array = n->shared;
3464                int max = shared_array->limit - shared_array->avail;
3465                if (max) {
3466                        if (batchcount > max)
3467                                batchcount = max;
3468                        memcpy(&(shared_array->entry[shared_array->avail]),
3469                               ac->entry, sizeof(void *) * batchcount);
3470                        shared_array->avail += batchcount;
3471                        goto free_done;
3472                }
3473        }
3474
3475        free_block(cachep, ac->entry, batchcount, node, &list);
3476free_done:
3477#if STATS
3478        {
3479                int i = 0;
3480                struct page *page;
3481
3482                list_for_each_entry(page, &n->slabs_free, lru) {
3483                        BUG_ON(page->active);
3484
3485                        i++;
3486                }
3487                STATS_SET_FREEABLE(cachep, i);
3488        }
3489#endif
3490        spin_unlock(&n->list_lock);
3491        slabs_destroy(cachep, &list);
3492        ac->avail -= batchcount;
3493        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3494}
3495
3496/*
3497 * Release an obj back to its cache. If the obj has a constructed state, it must
3498 * be in this state _before_ it is released.  Called with disabled ints.
3499 */
3500static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3501                                unsigned long caller)
3502{
3503        /* Put the object into the quarantine, don't touch it for now. */
3504        if (kasan_slab_free(cachep, objp))
3505                return;
3506
3507        ___cache_free(cachep, objp, caller);
3508}
3509
3510void ___cache_free(struct kmem_cache *cachep, void *objp,
3511                unsigned long caller)
3512{
3513        struct array_cache *ac = cpu_cache_get(cachep);
3514
3515        check_irq_off();
3516        kmemleak_free_recursive(objp, cachep->flags);
3517        objp = cache_free_debugcheck(cachep, objp, caller);
3518
3519        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3520
3521        /*
3522         * Skip calling cache_free_alien() when the platform is not numa.
3523         * This will avoid cache misses that happen while accessing slabp (which
3524         * is per page memory  reference) to get nodeid. Instead use a global
3525         * variable to skip the call, which is mostly likely to be present in
3526         * the cache.
3527         */
3528        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3529                return;
3530
3531        if (ac->avail < ac->limit) {
3532                STATS_INC_FREEHIT(cachep);
3533        } else {
3534                STATS_INC_FREEMISS(cachep);
3535                cache_flusharray(cachep, ac);
3536        }
3537
3538        if (sk_memalloc_socks()) {
3539                struct page *page = virt_to_head_page(objp);
3540
3541                if (unlikely(PageSlabPfmemalloc(page))) {
3542                        cache_free_pfmemalloc(cachep, page, objp);
3543                        return;
3544                }
3545        }
3546
3547        ac->entry[ac->avail++] = objp;
3548}
3549
3550/**
3551 * kmem_cache_alloc - Allocate an object
3552 * @cachep: The cache to allocate from.
3553 * @flags: See kmalloc().
3554 *
3555 * Allocate an object from this cache.  The flags are only relevant
3556 * if the cache has no available objects.
3557 */
3558void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3559{
3560        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3561
3562        kasan_slab_alloc(cachep, ret, flags);
3563        trace_kmem_cache_alloc(_RET_IP_, ret,
3564                               cachep->object_size, cachep->size, flags);
3565
3566        return ret;
3567}
3568EXPORT_SYMBOL(kmem_cache_alloc);
3569
3570static __always_inline void
3571cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3572                                  size_t size, void **p, unsigned long caller)
3573{
3574        size_t i;
3575
3576        for (i = 0; i < size; i++)
3577                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3578}
3579
3580int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3581                          void **p)
3582{
3583        size_t i;
3584
3585        s = slab_pre_alloc_hook(s, flags);
3586        if (!s)
3587                return 0;
3588
3589        cache_alloc_debugcheck_before(s, flags);
3590
3591        local_irq_disable();
3592        for (i = 0; i < size; i++) {
3593                void *objp = __do_cache_alloc(s, flags);
3594
3595                if (unlikely(!objp))
3596                        goto error;
3597                p[i] = objp;
3598        }
3599        local_irq_enable();
3600
3601        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3602
3603        /* Clear memory outside IRQ disabled section */
3604        if (unlikely(flags & __GFP_ZERO))
3605                for (i = 0; i < size; i++)
3606                        memset(p[i], 0, s->object_size);
3607
3608        slab_post_alloc_hook(s, flags, size, p);
3609        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3610        return size;
3611error:
3612        local_irq_enable();
3613        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3614        slab_post_alloc_hook(s, flags, i, p);
3615        __kmem_cache_free_bulk(s, i, p);
3616        return 0;
3617}
3618EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3619
3620#ifdef CONFIG_TRACING
3621void *
3622kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3623{
3624        void *ret;
3625
3626        ret = slab_alloc(cachep, flags, _RET_IP_);
3627
3628        kasan_kmalloc(cachep, ret, size, flags);
3629        trace_kmalloc(_RET_IP_, ret,
3630                      size, cachep->size, flags);
3631        return ret;
3632}
3633EXPORT_SYMBOL(kmem_cache_alloc_trace);
3634#endif
3635
3636#ifdef CONFIG_NUMA
3637/**
3638 * kmem_cache_alloc_node - Allocate an object on the specified node
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 * @nodeid: node number of the target node.
3642 *
3643 * Identical to kmem_cache_alloc but it will allocate memory on the given
3644 * node, which can improve the performance for cpu bound structures.
3645 *
3646 * Fallback to other node is possible if __GFP_THISNODE is not set.
3647 */
3648void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3649{
3650        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3651
3652        kasan_slab_alloc(cachep, ret, flags);
3653        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3654                                    cachep->object_size, cachep->size,
3655                                    flags, nodeid);
3656
3657        return ret;
3658}
3659EXPORT_SYMBOL(kmem_cache_alloc_node);
3660
3661#ifdef CONFIG_TRACING
3662void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3663                                  gfp_t flags,
3664                                  int nodeid,
3665                                  size_t size)
3666{
3667        void *ret;
3668
3669        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3670
3671        kasan_kmalloc(cachep, ret, size, flags);
3672        trace_kmalloc_node(_RET_IP_, ret,
3673                           size, cachep->size,
3674                           flags, nodeid);
3675        return ret;
3676}
3677EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3678#endif
3679
3680static __always_inline void *
3681__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3682{
3683        struct kmem_cache *cachep;
3684        void *ret;
3685
3686        cachep = kmalloc_slab(size, flags);
3687        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688                return cachep;
3689        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3690        kasan_kmalloc(cachep, ret, size, flags);
3691
3692        return ret;
3693}
3694
3695void *__kmalloc_node(size_t size, gfp_t flags, int node)
3696{
3697        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3698}
3699EXPORT_SYMBOL(__kmalloc_node);
3700
3701void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702                int node, unsigned long caller)
3703{
3704        return __do_kmalloc_node(size, flags, node, caller);
3705}
3706EXPORT_SYMBOL(__kmalloc_node_track_caller);
3707#endif /* CONFIG_NUMA */
3708
3709/**
3710 * __do_kmalloc - allocate memory
3711 * @size: how many bytes of memory are required.
3712 * @flags: the type of memory to allocate (see kmalloc).
3713 * @caller: function caller for debug tracking of the caller
3714 */
3715static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3716                                          unsigned long caller)
3717{
3718        struct kmem_cache *cachep;
3719        void *ret;
3720
3721        cachep = kmalloc_slab(size, flags);
3722        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3723                return cachep;
3724        ret = slab_alloc(cachep, flags, caller);
3725
3726        kasan_kmalloc(cachep, ret, size, flags);
3727        trace_kmalloc(caller, ret,
3728                      size, cachep->size, flags);
3729
3730        return ret;
3731}
3732
3733void *__kmalloc(size_t size, gfp_t flags)
3734{
3735        return __do_kmalloc(size, flags, _RET_IP_);
3736}
3737EXPORT_SYMBOL(__kmalloc);
3738
3739void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3740{
3741        return __do_kmalloc(size, flags, caller);
3742}
3743EXPORT_SYMBOL(__kmalloc_track_caller);
3744
3745/**
3746 * kmem_cache_free - Deallocate an object
3747 * @cachep: The cache the allocation was from.
3748 * @objp: The previously allocated object.
3749 *
3750 * Free an object which was previously allocated from this
3751 * cache.
3752 */
3753void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3754{
3755        unsigned long flags;
3756        cachep = cache_from_obj(cachep, objp);
3757        if (!cachep)
3758                return;
3759
3760        local_irq_save(flags);
3761        debug_check_no_locks_freed(objp, cachep->object_size);
3762        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3763                debug_check_no_obj_freed(objp, cachep->object_size);
3764        __cache_free(cachep, objp, _RET_IP_);
3765        local_irq_restore(flags);
3766
3767        trace_kmem_cache_free(_RET_IP_, objp);
3768}
3769EXPORT_SYMBOL(kmem_cache_free);
3770
3771void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3772{
3773        struct kmem_cache *s;
3774        size_t i;
3775
3776        local_irq_disable();
3777        for (i = 0; i < size; i++) {
3778                void *objp = p[i];
3779
3780                if (!orig_s) /* called via kfree_bulk */
3781                        s = virt_to_cache(objp);
3782                else
3783                        s = cache_from_obj(orig_s, objp);
3784
3785                debug_check_no_locks_freed(objp, s->object_size);
3786                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3787                        debug_check_no_obj_freed(objp, s->object_size);
3788
3789                __cache_free(s, objp, _RET_IP_);
3790        }
3791        local_irq_enable();
3792
3793        /* FIXME: add tracing */
3794}
3795EXPORT_SYMBOL(kmem_cache_free_bulk);
3796
3797/**
3798 * kfree - free previously allocated memory
3799 * @objp: pointer returned by kmalloc.
3800 *
3801 * If @objp is NULL, no operation is performed.
3802 *
3803 * Don't free memory not originally allocated by kmalloc()
3804 * or you will run into trouble.
3805 */
3806void kfree(const void *objp)
3807{
3808        struct kmem_cache *c;
3809        unsigned long flags;
3810
3811        trace_kfree(_RET_IP_, objp);
3812
3813        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3814                return;
3815        local_irq_save(flags);
3816        kfree_debugcheck(objp);
3817        c = virt_to_cache(objp);
3818        debug_check_no_locks_freed(objp, c->object_size);
3819
3820        debug_check_no_obj_freed(objp, c->object_size);
3821        __cache_free(c, (void *)objp, _RET_IP_);
3822        local_irq_restore(flags);
3823}
3824EXPORT_SYMBOL(kfree);
3825
3826/*
3827 * This initializes kmem_cache_node or resizes various caches for all nodes.
3828 */
3829static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3830{
3831        int ret;
3832        int node;
3833        struct kmem_cache_node *n;
3834
3835        for_each_online_node(node) {
3836                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3837                if (ret)
3838                        goto fail;
3839
3840        }
3841
3842        return 0;
3843
3844fail:
3845        if (!cachep->list.next) {
3846                /* Cache is not active yet. Roll back what we did */
3847                node--;
3848                while (node >= 0) {
3849                        n = get_node(cachep, node);
3850                        if (n) {
3851                                kfree(n->shared);
3852                                free_alien_cache(n->alien);
3853                                kfree(n);
3854                                cachep->node[node] = NULL;
3855                        }
3856                        node--;
3857                }
3858        }
3859        return -ENOMEM;
3860}
3861
3862/* Always called with the slab_mutex held */
3863static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3864                                int batchcount, int shared, gfp_t gfp)
3865{
3866        struct array_cache __percpu *cpu_cache, *prev;
3867        int cpu;
3868
3869        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3870        if (!cpu_cache)
3871                return -ENOMEM;
3872
3873        prev = cachep->cpu_cache;
3874        cachep->cpu_cache = cpu_cache;
3875        /*
3876         * Without a previous cpu_cache there's no need to synchronize remote
3877         * cpus, so skip the IPIs.
3878         */
3879        if (prev)
3880                kick_all_cpus_sync();
3881
3882        check_irq_on();
3883        cachep->batchcount = batchcount;
3884        cachep->limit = limit;
3885        cachep->shared = shared;
3886
3887        if (!prev)
3888                goto setup_node;
3889
3890        for_each_online_cpu(cpu) {
3891                LIST_HEAD(list);
3892                int node;
3893                struct kmem_cache_node *n;
3894                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3895
3896                node = cpu_to_mem(cpu);
3897                n = get_node(cachep, node);
3898                spin_lock_irq(&n->list_lock);
3899                free_block(cachep, ac->entry, ac->avail, node, &list);
3900                spin_unlock_irq(&n->list_lock);
3901                slabs_destroy(cachep, &list);
3902        }
3903        free_percpu(prev);
3904
3905setup_node:
3906        return setup_kmem_cache_nodes(cachep, gfp);
3907}
3908
3909static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3910                                int batchcount, int shared, gfp_t gfp)
3911{
3912        int ret;
3913        struct kmem_cache *c;
3914
3915        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3916
3917        if (slab_state < FULL)
3918                return ret;
3919
3920        if ((ret < 0) || !is_root_cache(cachep))
3921                return ret;
3922
3923        lockdep_assert_held(&slab_mutex);
3924        for_each_memcg_cache(c, cachep) {
3925                /* return value determined by the root cache only */
3926                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3927        }
3928
3929        return ret;
3930}
3931
3932/* Called with slab_mutex held always */
3933static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3934{
3935        int err;
3936        int limit = 0;
3937        int shared = 0;
3938        int batchcount = 0;
3939
3940        err = cache_random_seq_create(cachep, cachep->num, gfp);
3941        if (err)
3942                goto end;
3943
3944        if (!is_root_cache(cachep)) {
3945                struct kmem_cache *root = memcg_root_cache(cachep);
3946                limit = root->limit;
3947                shared = root->shared;
3948                batchcount = root->batchcount;
3949        }
3950
3951        if (limit && shared && batchcount)
3952                goto skip_setup;
3953        /*
3954         * The head array serves three purposes:
3955         * - create a LIFO ordering, i.e. return objects that are cache-warm
3956         * - reduce the number of spinlock operations.
3957         * - reduce the number of linked list operations on the slab and
3958         *   bufctl chains: array operations are cheaper.
3959         * The numbers are guessed, we should auto-tune as described by
3960         * Bonwick.
3961         */
3962        if (cachep->size > 131072)
3963                limit = 1;
3964        else if (cachep->size > PAGE_SIZE)
3965                limit = 8;
3966        else if (cachep->size > 1024)
3967                limit = 24;
3968        else if (cachep->size > 256)
3969                limit = 54;
3970        else
3971                limit = 120;
3972
3973        /*
3974         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3975         * allocation behaviour: Most allocs on one cpu, most free operations
3976         * on another cpu. For these cases, an efficient object passing between
3977         * cpus is necessary. This is provided by a shared array. The array
3978         * replaces Bonwick's magazine layer.
3979         * On uniprocessor, it's functionally equivalent (but less efficient)
3980         * to a larger limit. Thus disabled by default.
3981         */
3982        shared = 0;
3983        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3984                shared = 8;
3985
3986#if DEBUG
3987        /*
3988         * With debugging enabled, large batchcount lead to excessively long
3989         * periods with disabled local interrupts. Limit the batchcount
3990         */
3991        if (limit > 32)
3992                limit = 32;
3993#endif
3994        batchcount = (limit + 1) / 2;
3995skip_setup:
3996        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3997end:
3998        if (err)
3999                pr_err("enable_cpucache failed for %s, error %d\n",
4000                       cachep->name, -err);
4001        return err;
4002}
4003
4004/*
4005 * Drain an array if it contains any elements taking the node lock only if
4006 * necessary. Note that the node listlock also protects the array_cache
4007 * if drain_array() is used on the shared array.
4008 */
4009static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4010                         struct array_cache *ac, int node)
4011{
4012        LIST_HEAD(list);
4013
4014        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4015        check_mutex_acquired();
4016
4017        if (!ac || !ac->avail)
4018                return;
4019
4020        if (ac->touched) {
4021                ac->touched = 0;
4022                return;
4023        }
4024
4025        spin_lock_irq(&n->list_lock);
4026        drain_array_locked(cachep, ac, node, false, &list);
4027        spin_unlock_irq(&n->list_lock);
4028
4029        slabs_destroy(cachep, &list);
4030}
4031
4032/**
4033 * cache_reap - Reclaim memory from caches.
4034 * @w: work descriptor
4035 *
4036 * Called from workqueue/eventd every few seconds.
4037 * Purpose:
4038 * - clear the per-cpu caches for this CPU.
4039 * - return freeable pages to the main free memory pool.
4040 *
4041 * If we cannot acquire the cache chain mutex then just give up - we'll try
4042 * again on the next iteration.
4043 */
4044static void cache_reap(struct work_struct *w)
4045{
4046        struct kmem_cache *searchp;
4047        struct kmem_cache_node *n;
4048        int node = numa_mem_id();
4049        struct delayed_work *work = to_delayed_work(w);
4050
4051        if (!mutex_trylock(&slab_mutex))
4052                /* Give up. Setup the next iteration. */
4053                goto out;
4054
4055        list_for_each_entry(searchp, &slab_caches, list) {
4056                check_irq_on();
4057
4058                /*
4059                 * We only take the node lock if absolutely necessary and we
4060                 * have established with reasonable certainty that
4061                 * we can do some work if the lock was obtained.
4062                 */
4063                n = get_node(searchp, node);
4064
4065                reap_alien(searchp, n);
4066
4067                drain_array(searchp, n, cpu_cache_get(searchp), node);
4068
4069                /*
4070                 * These are racy checks but it does not matter
4071                 * if we skip one check or scan twice.
4072                 */
4073                if (time_after(n->next_reap, jiffies))
4074                        goto next;
4075
4076                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4077
4078                drain_array(searchp, n, n->shared, node);
4079
4080                if (n->free_touched)
4081                        n->free_touched = 0;
4082                else {
4083                        int freed;
4084
4085                        freed = drain_freelist(searchp, n, (n->free_limit +
4086                                5 * searchp->num - 1) / (5 * searchp->num));
4087                        STATS_ADD_REAPED(searchp, freed);
4088                }
4089next:
4090                cond_resched();
4091        }
4092        check_irq_on();
4093        mutex_unlock(&slab_mutex);
4094        next_reap_node();
4095out:
4096        /* Set up the next iteration */
4097        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4098}
4099
4100#ifdef CONFIG_SLABINFO
4101void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4102{
4103        unsigned long active_objs, num_objs, active_slabs;
4104        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4105        unsigned long free_slabs = 0;
4106        int node;
4107        struct kmem_cache_node *n;
4108
4109        for_each_kmem_cache_node(cachep, node, n) {
4110                check_irq_on();
4111                spin_lock_irq(&n->list_lock);
4112
4113                total_slabs += n->total_slabs;
4114                free_slabs += n->free_slabs;
4115                free_objs += n->free_objects;
4116
4117                if (n->shared)
4118                        shared_avail += n->shared->avail;
4119
4120                spin_unlock_irq(&n->list_lock);
4121        }
4122        num_objs = total_slabs * cachep->num;
4123        active_slabs = total_slabs - free_slabs;
4124        active_objs = num_objs - free_objs;
4125
4126        sinfo->active_objs = active_objs;
4127        sinfo->num_objs = num_objs;
4128        sinfo->active_slabs = active_slabs;
4129        sinfo->num_slabs = total_slabs;
4130        sinfo->shared_avail = shared_avail;
4131        sinfo->limit = cachep->limit;
4132        sinfo->batchcount = cachep->batchcount;
4133        sinfo->shared = cachep->shared;
4134        sinfo->objects_per_slab = cachep->num;
4135        sinfo->cache_order = cachep->gfporder;
4136}
4137
4138void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4139{
4140#if STATS
4141        {                       /* node stats */
4142                unsigned long high = cachep->high_mark;
4143                unsigned long allocs = cachep->num_allocations;
4144                unsigned long grown = cachep->grown;
4145                unsigned long reaped = cachep->reaped;
4146                unsigned long errors = cachep->errors;
4147                unsigned long max_freeable = cachep->max_freeable;
4148                unsigned long node_allocs = cachep->node_allocs;
4149                unsigned long node_frees = cachep->node_frees;
4150                unsigned long overflows = cachep->node_overflow;
4151
4152                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4153                           allocs, high, grown,
4154                           reaped, errors, max_freeable, node_allocs,
4155                           node_frees, overflows);
4156        }
4157        /* cpu stats */
4158        {
4159                unsigned long allochit = atomic_read(&cachep->allochit);
4160                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4161                unsigned long freehit = atomic_read(&cachep->freehit);
4162                unsigned long freemiss = atomic_read(&cachep->freemiss);
4163
4164                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4165                           allochit, allocmiss, freehit, freemiss);
4166        }
4167#endif
4168}
4169
4170#define MAX_SLABINFO_WRITE 128
4171/**
4172 * slabinfo_write - Tuning for the slab allocator
4173 * @file: unused
4174 * @buffer: user buffer
4175 * @count: data length
4176 * @ppos: unused
4177 */
4178ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4179                       size_t count, loff_t *ppos)
4180{
4181        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4182        int limit, batchcount, shared, res;
4183        struct kmem_cache *cachep;
4184
4185        if (count > MAX_SLABINFO_WRITE)
4186                return -EINVAL;
4187        if (copy_from_user(&kbuf, buffer, count))
4188                return -EFAULT;
4189        kbuf[MAX_SLABINFO_WRITE] = '\0';
4190
4191        tmp = strchr(kbuf, ' ');
4192        if (!tmp)
4193                return -EINVAL;
4194        *tmp = '\0';
4195        tmp++;
4196        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4197                return -EINVAL;
4198
4199        /* Find the cache in the chain of caches. */
4200        mutex_lock(&slab_mutex);
4201        res = -EINVAL;
4202        list_for_each_entry(cachep, &slab_caches, list) {
4203                if (!strcmp(cachep->name, kbuf)) {
4204                        if (limit < 1 || batchcount < 1 ||
4205                                        batchcount > limit || shared < 0) {
4206                                res = 0;
4207                        } else {
4208                                res = do_tune_cpucache(cachep, limit,
4209                                                       batchcount, shared,
4210                                                       GFP_KERNEL);
4211                        }
4212                        break;
4213                }
4214        }
4215        mutex_unlock(&slab_mutex);
4216        if (res >= 0)
4217                res = count;
4218        return res;
4219}
4220
4221#ifdef CONFIG_DEBUG_SLAB_LEAK
4222
4223static inline int add_caller(unsigned long *n, unsigned long v)
4224{
4225        unsigned long *p;
4226        int l;
4227        if (!v)
4228                return 1;
4229        l = n[1];
4230        p = n + 2;
4231        while (l) {
4232                int i = l/2;
4233                unsigned long *q = p + 2 * i;
4234                if (*q == v) {
4235                        q[1]++;
4236                        return 1;
4237                }
4238                if (*q > v) {
4239                        l = i;
4240                } else {
4241                        p = q + 2;
4242                        l -= i + 1;
4243                }
4244        }
4245        if (++n[1] == n[0])
4246                return 0;
4247        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4248        p[0] = v;
4249        p[1] = 1;
4250        return 1;
4251}
4252
4253static void handle_slab(unsigned long *n, struct kmem_cache *c,
4254                                                struct page *page)
4255{
4256        void *p;
4257        int i, j;
4258        unsigned long v;
4259
4260        if (n[0] == n[1])
4261                return;
4262        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4263                bool active = true;
4264
4265                for (j = page->active; j < c->num; j++) {
4266                        if (get_free_obj(page, j) == i) {
4267                                active = false;
4268                                break;
4269                        }
4270                }
4271
4272                if (!active)
4273                        continue;
4274
4275                /*
4276                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4277                 * mapping is established when actual object allocation and
4278                 * we could mistakenly access the unmapped object in the cpu
4279                 * cache.
4280                 */
4281                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4282                        continue;
4283
4284                if (!add_caller(n, v))
4285                        return;
4286        }
4287}
4288
4289static void show_symbol(struct seq_file *m, unsigned long address)
4290{
4291#ifdef CONFIG_KALLSYMS
4292        unsigned long offset, size;
4293        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4294
4295        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4296                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4297                if (modname[0])
4298                        seq_printf(m, " [%s]", modname);
4299                return;
4300        }
4301#endif
4302        seq_printf(m, "%p", (void *)address);
4303}
4304
4305static int leaks_show(struct seq_file *m, void *p)
4306{
4307        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4308        struct page *page;
4309        struct kmem_cache_node *n;
4310        const char *name;
4311        unsigned long *x = m->private;
4312        int node;
4313        int i;
4314
4315        if (!(cachep->flags & SLAB_STORE_USER))
4316                return 0;
4317        if (!(cachep->flags & SLAB_RED_ZONE))
4318                return 0;
4319
4320        /*
4321         * Set store_user_clean and start to grab stored user information
4322         * for all objects on this cache. If some alloc/free requests comes
4323         * during the processing, information would be wrong so restart
4324         * whole processing.
4325         */
4326        do {
4327                set_store_user_clean(cachep);
4328                drain_cpu_caches(cachep);
4329
4330                x[1] = 0;
4331
4332                for_each_kmem_cache_node(cachep, node, n) {
4333
4334                        check_irq_on();
4335                        spin_lock_irq(&n->list_lock);
4336
4337                        list_for_each_entry(page, &n->slabs_full, lru)
4338                                handle_slab(x, cachep, page);
4339                        list_for_each_entry(page, &n->slabs_partial, lru)
4340                                handle_slab(x, cachep, page);
4341                        spin_unlock_irq(&n->list_lock);
4342                }
4343        } while (!is_store_user_clean(cachep));
4344
4345        name = cachep->name;
4346        if (x[0] == x[1]) {
4347                /* Increase the buffer size */
4348                mutex_unlock(&slab_mutex);
4349                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4350                if (!m->private) {
4351                        /* Too bad, we are really out */
4352                        m->private = x;
4353                        mutex_lock(&slab_mutex);
4354                        return -ENOMEM;
4355                }
4356                *(unsigned long *)m->private = x[0] * 2;
4357                kfree(x);
4358                mutex_lock(&slab_mutex);
4359                /* Now make sure this entry will be retried */
4360                m->count = m->size;
4361                return 0;
4362        }
4363        for (i = 0; i < x[1]; i++) {
4364                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365                show_symbol(m, x[2*i+2]);
4366                seq_putc(m, '\n');
4367        }
4368
4369        return 0;
4370}
4371
4372static const struct seq_operations slabstats_op = {
4373        .start = slab_start,
4374        .next = slab_next,
4375        .stop = slab_stop,
4376        .show = leaks_show,
4377};
4378
4379static int slabstats_open(struct inode *inode, struct file *file)
4380{
4381        unsigned long *n;
4382
4383        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4384        if (!n)
4385                return -ENOMEM;
4386
4387        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4388
4389        return 0;
4390}
4391
4392static const struct file_operations proc_slabstats_operations = {
4393        .open           = slabstats_open,
4394        .read           = seq_read,
4395        .llseek         = seq_lseek,
4396        .release        = seq_release_private,
4397};
4398#endif
4399
4400static int __init slab_proc_init(void)
4401{
4402#ifdef CONFIG_DEBUG_SLAB_LEAK
4403        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4404#endif
4405        return 0;
4406}
4407module_init(slab_proc_init);
4408#endif
4409
4410#ifdef CONFIG_HARDENED_USERCOPY
4411/*
4412 * Rejects objects that are incorrectly sized.
4413 *
4414 * Returns NULL if check passes, otherwise const char * to name of cache
4415 * to indicate an error.
4416 */
4417const char *__check_heap_object(const void *ptr, unsigned long n,
4418                                struct page *page)
4419{
4420        struct kmem_cache *cachep;
4421        unsigned int objnr;
4422        unsigned long offset;
4423
4424        /* Find and validate object. */
4425        cachep = page->slab_cache;
4426        objnr = obj_to_index(cachep, page, (void *)ptr);
4427        BUG_ON(objnr >= cachep->num);
4428
4429        /* Find offset within object. */
4430        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4431
4432        /* Allow address range falling entirely within object size. */
4433        if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4434                return NULL;
4435
4436        return cachep->name;
4437}
4438#endif /* CONFIG_HARDENED_USERCOPY */
4439
4440/**
4441 * ksize - get the actual amount of memory allocated for a given object
4442 * @objp: Pointer to the object
4443 *
4444 * kmalloc may internally round up allocations and return more memory
4445 * than requested. ksize() can be used to determine the actual amount of
4446 * memory allocated. The caller may use this additional memory, even though
4447 * a smaller amount of memory was initially specified with the kmalloc call.
4448 * The caller must guarantee that objp points to a valid object previously
4449 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4450 * must not be freed during the duration of the call.
4451 */
4452size_t ksize(const void *objp)
4453{
4454        size_t size;
4455
4456        BUG_ON(!objp);
4457        if (unlikely(objp == ZERO_SIZE_PTR))
4458                return 0;
4459
4460        size = virt_to_cache(objp)->object_size;
4461        /* We assume that ksize callers could use the whole allocated area,
4462         * so we need to unpoison this area.
4463         */
4464        kasan_unpoison_shadow(objp, size);
4465
4466        return size;
4467}
4468EXPORT_SYMBOL(ksize);
4469