1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/poison.h>
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
98#include <linux/cpuset.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
107#include <linux/string.h>
108#include <linux/uaccess.h>
109#include <linux/nodemask.h>
110#include <linux/kmemleak.h>
111#include <linux/mempolicy.h>
112#include <linux/mutex.h>
113#include <linux/fault-inject.h>
114#include <linux/rtmutex.h>
115#include <linux/reciprocal_div.h>
116#include <linux/debugobjects.h>
117#include <linux/kmemcheck.h>
118#include <linux/memory.h>
119#include <linux/prefetch.h>
120#include <linux/sched/task_stack.h>
121
122#include <net/sock.h>
123
124#include <asm/cacheflush.h>
125#include <asm/tlbflush.h>
126#include <asm/page.h>
127
128#include <trace/events/kmem.h>
129
130#include "internal.h"
131
132#include "slab.h"
133
134
135
136
137
138
139
140
141
142
143
144#ifdef CONFIG_DEBUG_SLAB
145#define DEBUG 1
146#define STATS 1
147#define FORCED_DEBUG 1
148#else
149#define DEBUG 0
150#define STATS 0
151#define FORCED_DEBUG 0
152#endif
153
154
155#define BYTES_PER_WORD sizeof(void *)
156#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158#ifndef ARCH_KMALLOC_FLAGS
159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160#endif
161
162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165#if FREELIST_BYTE_INDEX
166typedef unsigned char freelist_idx_t;
167#else
168typedef unsigned short freelist_idx_t;
169#endif
170
171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173
174
175
176
177
178
179
180
181
182
183
184
185struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[];
191
192
193
194
195};
196
197struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200};
201
202
203
204
205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207#define CACHE_CACHE 0
208#define SIZE_NODE (MAX_NUMNODES)
209
210static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216static void cache_reap(struct work_struct *unused);
217
218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
223static int slab_early_init = 1;
224
225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226
227static void kmem_cache_node_init(struct kmem_cache_node *parent)
228{
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240}
241
242#define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
247
248#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
254
255#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
256#define CFLGS_OFF_SLAB (0x80000000UL)
257#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260#define BATCHREFILL_LIMIT 16
261
262
263
264
265
266
267
268#define REAPTIMEOUT_AC (2*HZ)
269#define REAPTIMEOUT_NODE (4*HZ)
270
271#if STATS
272#define STATS_INC_ACTIVE(x) ((x)->num_active++)
273#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275#define STATS_INC_GROWN(x) ((x)->grown++)
276#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
277#define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282#define STATS_INC_ERR(x) ((x)->errors++)
283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286#define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295#else
296#define STATS_INC_ACTIVE(x) do { } while (0)
297#define STATS_DEC_ACTIVE(x) do { } while (0)
298#define STATS_INC_ALLOCED(x) do { } while (0)
299#define STATS_INC_GROWN(x) do { } while (0)
300#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
301#define STATS_SET_HIGH(x) do { } while (0)
302#define STATS_INC_ERR(x) do { } while (0)
303#define STATS_INC_NODEALLOCS(x) do { } while (0)
304#define STATS_INC_NODEFREES(x) do { } while (0)
305#define STATS_INC_ACOVERFLOW(x) do { } while (0)
306#define STATS_SET_FREEABLE(x, i) do { } while (0)
307#define STATS_INC_ALLOCHIT(x) do { } while (0)
308#define STATS_INC_ALLOCMISS(x) do { } while (0)
309#define STATS_INC_FREEHIT(x) do { } while (0)
310#define STATS_INC_FREEMISS(x) do { } while (0)
311#endif
312
313#if DEBUG
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328static int obj_offset(struct kmem_cache *cachep)
329{
330 return cachep->obj_offset;
331}
332
333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334{
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long*) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
338}
339
340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341{
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
349}
350
351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352{
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
355}
356
357#else
358
359#define obj_offset(x) 0
360#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364#endif
365
366#ifdef CONFIG_DEBUG_SLAB_LEAK
367
368static inline bool is_store_user_clean(struct kmem_cache *cachep)
369{
370 return atomic_read(&cachep->store_user_clean) == 1;
371}
372
373static inline void set_store_user_clean(struct kmem_cache *cachep)
374{
375 atomic_set(&cachep->store_user_clean, 1);
376}
377
378static inline void set_store_user_dirty(struct kmem_cache *cachep)
379{
380 if (is_store_user_clean(cachep))
381 atomic_set(&cachep->store_user_clean, 0);
382}
383
384#else
385static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
386
387#endif
388
389
390
391
392
393#define SLAB_MAX_ORDER_HI 1
394#define SLAB_MAX_ORDER_LO 0
395static int slab_max_order = SLAB_MAX_ORDER_LO;
396static bool slab_max_order_set __initdata;
397
398static inline struct kmem_cache *virt_to_cache(const void *obj)
399{
400 struct page *page = virt_to_head_page(obj);
401 return page->slab_cache;
402}
403
404static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 unsigned int idx)
406{
407 return page->s_mem + cache->size * idx;
408}
409
410
411
412
413
414
415
416static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 const struct page *page, void *obj)
418{
419 u32 offset = (obj - page->s_mem);
420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421}
422
423#define BOOT_CPUCACHE_ENTRIES 1
424
425static struct kmem_cache kmem_cache_boot = {
426 .batchcount = 1,
427 .limit = BOOT_CPUCACHE_ENTRIES,
428 .shared = 1,
429 .size = sizeof(struct kmem_cache),
430 .name = "kmem_cache",
431};
432
433static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
434
435static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
436{
437 return this_cpu_ptr(cachep->cpu_cache);
438}
439
440
441
442
443static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
444 unsigned long flags, size_t *left_over)
445{
446 unsigned int num;
447 size_t slab_size = PAGE_SIZE << gfporder;
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
467 num = slab_size / buffer_size;
468 *left_over = slab_size % buffer_size;
469 } else {
470 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
471 *left_over = slab_size %
472 (buffer_size + sizeof(freelist_idx_t));
473 }
474
475 return num;
476}
477
478#if DEBUG
479#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
480
481static void __slab_error(const char *function, struct kmem_cache *cachep,
482 char *msg)
483{
484 pr_err("slab error in %s(): cache `%s': %s\n",
485 function, cachep->name, msg);
486 dump_stack();
487 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
488}
489#endif
490
491
492
493
494
495
496
497
498
499static int use_alien_caches __read_mostly = 1;
500static int __init noaliencache_setup(char *s)
501{
502 use_alien_caches = 0;
503 return 1;
504}
505__setup("noaliencache", noaliencache_setup);
506
507static int __init slab_max_order_setup(char *str)
508{
509 get_option(&str, &slab_max_order);
510 slab_max_order = slab_max_order < 0 ? 0 :
511 min(slab_max_order, MAX_ORDER - 1);
512 slab_max_order_set = true;
513
514 return 1;
515}
516__setup("slab_max_order=", slab_max_order_setup);
517
518#ifdef CONFIG_NUMA
519
520
521
522
523
524
525static DEFINE_PER_CPU(unsigned long, slab_reap_node);
526
527static void init_reap_node(int cpu)
528{
529 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
530 node_online_map);
531}
532
533static void next_reap_node(void)
534{
535 int node = __this_cpu_read(slab_reap_node);
536
537 node = next_node_in(node, node_online_map);
538 __this_cpu_write(slab_reap_node, node);
539}
540
541#else
542#define init_reap_node(cpu) do { } while (0)
543#define next_reap_node(void) do { } while (0)
544#endif
545
546
547
548
549
550
551
552
553static void start_cpu_timer(int cpu)
554{
555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
556
557 if (reap_work->work.func == NULL) {
558 init_reap_node(cpu);
559 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
560 schedule_delayed_work_on(cpu, reap_work,
561 __round_jiffies_relative(HZ, cpu));
562 }
563}
564
565static void init_arraycache(struct array_cache *ac, int limit, int batch)
566{
567
568
569
570
571
572
573
574 kmemleak_no_scan(ac);
575 if (ac) {
576 ac->avail = 0;
577 ac->limit = limit;
578 ac->batchcount = batch;
579 ac->touched = 0;
580 }
581}
582
583static struct array_cache *alloc_arraycache(int node, int entries,
584 int batchcount, gfp_t gfp)
585{
586 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
587 struct array_cache *ac = NULL;
588
589 ac = kmalloc_node(memsize, gfp, node);
590 init_arraycache(ac, entries, batchcount);
591 return ac;
592}
593
594static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
595 struct page *page, void *objp)
596{
597 struct kmem_cache_node *n;
598 int page_node;
599 LIST_HEAD(list);
600
601 page_node = page_to_nid(page);
602 n = get_node(cachep, page_node);
603
604 spin_lock(&n->list_lock);
605 free_block(cachep, &objp, 1, page_node, &list);
606 spin_unlock(&n->list_lock);
607
608 slabs_destroy(cachep, &list);
609}
610
611
612
613
614
615
616
617static int transfer_objects(struct array_cache *to,
618 struct array_cache *from, unsigned int max)
619{
620
621 int nr = min3(from->avail, max, to->limit - to->avail);
622
623 if (!nr)
624 return 0;
625
626 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
627 sizeof(void *) *nr);
628
629 from->avail -= nr;
630 to->avail += nr;
631 return nr;
632}
633
634#ifndef CONFIG_NUMA
635
636#define drain_alien_cache(cachep, alien) do { } while (0)
637#define reap_alien(cachep, n) do { } while (0)
638
639static inline struct alien_cache **alloc_alien_cache(int node,
640 int limit, gfp_t gfp)
641{
642 return NULL;
643}
644
645static inline void free_alien_cache(struct alien_cache **ac_ptr)
646{
647}
648
649static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
650{
651 return 0;
652}
653
654static inline void *alternate_node_alloc(struct kmem_cache *cachep,
655 gfp_t flags)
656{
657 return NULL;
658}
659
660static inline void *____cache_alloc_node(struct kmem_cache *cachep,
661 gfp_t flags, int nodeid)
662{
663 return NULL;
664}
665
666static inline gfp_t gfp_exact_node(gfp_t flags)
667{
668 return flags & ~__GFP_NOFAIL;
669}
670
671#else
672
673static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
674static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
675
676static struct alien_cache *__alloc_alien_cache(int node, int entries,
677 int batch, gfp_t gfp)
678{
679 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
680 struct alien_cache *alc = NULL;
681
682 alc = kmalloc_node(memsize, gfp, node);
683 init_arraycache(&alc->ac, entries, batch);
684 spin_lock_init(&alc->lock);
685 return alc;
686}
687
688static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
689{
690 struct alien_cache **alc_ptr;
691 size_t memsize = sizeof(void *) * nr_node_ids;
692 int i;
693
694 if (limit > 1)
695 limit = 12;
696 alc_ptr = kzalloc_node(memsize, gfp, node);
697 if (!alc_ptr)
698 return NULL;
699
700 for_each_node(i) {
701 if (i == node || !node_online(i))
702 continue;
703 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
704 if (!alc_ptr[i]) {
705 for (i--; i >= 0; i--)
706 kfree(alc_ptr[i]);
707 kfree(alc_ptr);
708 return NULL;
709 }
710 }
711 return alc_ptr;
712}
713
714static void free_alien_cache(struct alien_cache **alc_ptr)
715{
716 int i;
717
718 if (!alc_ptr)
719 return;
720 for_each_node(i)
721 kfree(alc_ptr[i]);
722 kfree(alc_ptr);
723}
724
725static void __drain_alien_cache(struct kmem_cache *cachep,
726 struct array_cache *ac, int node,
727 struct list_head *list)
728{
729 struct kmem_cache_node *n = get_node(cachep, node);
730
731 if (ac->avail) {
732 spin_lock(&n->list_lock);
733
734
735
736
737
738 if (n->shared)
739 transfer_objects(n->shared, ac, ac->limit);
740
741 free_block(cachep, ac->entry, ac->avail, node, list);
742 ac->avail = 0;
743 spin_unlock(&n->list_lock);
744 }
745}
746
747
748
749
750static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
751{
752 int node = __this_cpu_read(slab_reap_node);
753
754 if (n->alien) {
755 struct alien_cache *alc = n->alien[node];
756 struct array_cache *ac;
757
758 if (alc) {
759 ac = &alc->ac;
760 if (ac->avail && spin_trylock_irq(&alc->lock)) {
761 LIST_HEAD(list);
762
763 __drain_alien_cache(cachep, ac, node, &list);
764 spin_unlock_irq(&alc->lock);
765 slabs_destroy(cachep, &list);
766 }
767 }
768 }
769}
770
771static void drain_alien_cache(struct kmem_cache *cachep,
772 struct alien_cache **alien)
773{
774 int i = 0;
775 struct alien_cache *alc;
776 struct array_cache *ac;
777 unsigned long flags;
778
779 for_each_online_node(i) {
780 alc = alien[i];
781 if (alc) {
782 LIST_HEAD(list);
783
784 ac = &alc->ac;
785 spin_lock_irqsave(&alc->lock, flags);
786 __drain_alien_cache(cachep, ac, i, &list);
787 spin_unlock_irqrestore(&alc->lock, flags);
788 slabs_destroy(cachep, &list);
789 }
790 }
791}
792
793static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
794 int node, int page_node)
795{
796 struct kmem_cache_node *n;
797 struct alien_cache *alien = NULL;
798 struct array_cache *ac;
799 LIST_HEAD(list);
800
801 n = get_node(cachep, node);
802 STATS_INC_NODEFREES(cachep);
803 if (n->alien && n->alien[page_node]) {
804 alien = n->alien[page_node];
805 ac = &alien->ac;
806 spin_lock(&alien->lock);
807 if (unlikely(ac->avail == ac->limit)) {
808 STATS_INC_ACOVERFLOW(cachep);
809 __drain_alien_cache(cachep, ac, page_node, &list);
810 }
811 ac->entry[ac->avail++] = objp;
812 spin_unlock(&alien->lock);
813 slabs_destroy(cachep, &list);
814 } else {
815 n = get_node(cachep, page_node);
816 spin_lock(&n->list_lock);
817 free_block(cachep, &objp, 1, page_node, &list);
818 spin_unlock(&n->list_lock);
819 slabs_destroy(cachep, &list);
820 }
821 return 1;
822}
823
824static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
825{
826 int page_node = page_to_nid(virt_to_page(objp));
827 int node = numa_mem_id();
828
829
830
831
832 if (likely(node == page_node))
833 return 0;
834
835 return __cache_free_alien(cachep, objp, node, page_node);
836}
837
838
839
840
841
842static inline gfp_t gfp_exact_node(gfp_t flags)
843{
844 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
845}
846#endif
847
848static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
849{
850 struct kmem_cache_node *n;
851
852
853
854
855
856
857 n = get_node(cachep, node);
858 if (n) {
859 spin_lock_irq(&n->list_lock);
860 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
861 cachep->num;
862 spin_unlock_irq(&n->list_lock);
863
864 return 0;
865 }
866
867 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
868 if (!n)
869 return -ENOMEM;
870
871 kmem_cache_node_init(n);
872 n->next_reap = jiffies + REAPTIMEOUT_NODE +
873 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
874
875 n->free_limit =
876 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
877
878
879
880
881
882
883 cachep->node[node] = n;
884
885 return 0;
886}
887
888#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
889
890
891
892
893
894
895
896
897
898static int init_cache_node_node(int node)
899{
900 int ret;
901 struct kmem_cache *cachep;
902
903 list_for_each_entry(cachep, &slab_caches, list) {
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
907 }
908
909 return 0;
910}
911#endif
912
913static int setup_kmem_cache_node(struct kmem_cache *cachep,
914 int node, gfp_t gfp, bool force_change)
915{
916 int ret = -ENOMEM;
917 struct kmem_cache_node *n;
918 struct array_cache *old_shared = NULL;
919 struct array_cache *new_shared = NULL;
920 struct alien_cache **new_alien = NULL;
921 LIST_HEAD(list);
922
923 if (use_alien_caches) {
924 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
925 if (!new_alien)
926 goto fail;
927 }
928
929 if (cachep->shared) {
930 new_shared = alloc_arraycache(node,
931 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
932 if (!new_shared)
933 goto fail;
934 }
935
936 ret = init_cache_node(cachep, node, gfp);
937 if (ret)
938 goto fail;
939
940 n = get_node(cachep, node);
941 spin_lock_irq(&n->list_lock);
942 if (n->shared && force_change) {
943 free_block(cachep, n->shared->entry,
944 n->shared->avail, node, &list);
945 n->shared->avail = 0;
946 }
947
948 if (!n->shared || force_change) {
949 old_shared = n->shared;
950 n->shared = new_shared;
951 new_shared = NULL;
952 }
953
954 if (!n->alien) {
955 n->alien = new_alien;
956 new_alien = NULL;
957 }
958
959 spin_unlock_irq(&n->list_lock);
960 slabs_destroy(cachep, &list);
961
962
963
964
965
966
967
968 if (old_shared && force_change)
969 synchronize_sched();
970
971fail:
972 kfree(old_shared);
973 kfree(new_shared);
974 free_alien_cache(new_alien);
975
976 return ret;
977}
978
979#ifdef CONFIG_SMP
980
981static void cpuup_canceled(long cpu)
982{
983 struct kmem_cache *cachep;
984 struct kmem_cache_node *n = NULL;
985 int node = cpu_to_mem(cpu);
986 const struct cpumask *mask = cpumask_of_node(node);
987
988 list_for_each_entry(cachep, &slab_caches, list) {
989 struct array_cache *nc;
990 struct array_cache *shared;
991 struct alien_cache **alien;
992 LIST_HEAD(list);
993
994 n = get_node(cachep, node);
995 if (!n)
996 continue;
997
998 spin_lock_irq(&n->list_lock);
999
1000
1001 n->free_limit -= cachep->batchcount;
1002
1003
1004 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1005 if (nc) {
1006 free_block(cachep, nc->entry, nc->avail, node, &list);
1007 nc->avail = 0;
1008 }
1009
1010 if (!cpumask_empty(mask)) {
1011 spin_unlock_irq(&n->list_lock);
1012 goto free_slab;
1013 }
1014
1015 shared = n->shared;
1016 if (shared) {
1017 free_block(cachep, shared->entry,
1018 shared->avail, node, &list);
1019 n->shared = NULL;
1020 }
1021
1022 alien = n->alien;
1023 n->alien = NULL;
1024
1025 spin_unlock_irq(&n->list_lock);
1026
1027 kfree(shared);
1028 if (alien) {
1029 drain_alien_cache(cachep, alien);
1030 free_alien_cache(alien);
1031 }
1032
1033free_slab:
1034 slabs_destroy(cachep, &list);
1035 }
1036
1037
1038
1039
1040
1041 list_for_each_entry(cachep, &slab_caches, list) {
1042 n = get_node(cachep, node);
1043 if (!n)
1044 continue;
1045 drain_freelist(cachep, n, INT_MAX);
1046 }
1047}
1048
1049static int cpuup_prepare(long cpu)
1050{
1051 struct kmem_cache *cachep;
1052 int node = cpu_to_mem(cpu);
1053 int err;
1054
1055
1056
1057
1058
1059
1060
1061 err = init_cache_node_node(node);
1062 if (err < 0)
1063 goto bad;
1064
1065
1066
1067
1068
1069 list_for_each_entry(cachep, &slab_caches, list) {
1070 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1071 if (err)
1072 goto bad;
1073 }
1074
1075 return 0;
1076bad:
1077 cpuup_canceled(cpu);
1078 return -ENOMEM;
1079}
1080
1081int slab_prepare_cpu(unsigned int cpu)
1082{
1083 int err;
1084
1085 mutex_lock(&slab_mutex);
1086 err = cpuup_prepare(cpu);
1087 mutex_unlock(&slab_mutex);
1088 return err;
1089}
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101int slab_dead_cpu(unsigned int cpu)
1102{
1103 mutex_lock(&slab_mutex);
1104 cpuup_canceled(cpu);
1105 mutex_unlock(&slab_mutex);
1106 return 0;
1107}
1108#endif
1109
1110static int slab_online_cpu(unsigned int cpu)
1111{
1112 start_cpu_timer(cpu);
1113 return 0;
1114}
1115
1116static int slab_offline_cpu(unsigned int cpu)
1117{
1118
1119
1120
1121
1122
1123
1124 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1125
1126 per_cpu(slab_reap_work, cpu).work.func = NULL;
1127 return 0;
1128}
1129
1130#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1131
1132
1133
1134
1135
1136
1137
1138static int __meminit drain_cache_node_node(int node)
1139{
1140 struct kmem_cache *cachep;
1141 int ret = 0;
1142
1143 list_for_each_entry(cachep, &slab_caches, list) {
1144 struct kmem_cache_node *n;
1145
1146 n = get_node(cachep, node);
1147 if (!n)
1148 continue;
1149
1150 drain_freelist(cachep, n, INT_MAX);
1151
1152 if (!list_empty(&n->slabs_full) ||
1153 !list_empty(&n->slabs_partial)) {
1154 ret = -EBUSY;
1155 break;
1156 }
1157 }
1158 return ret;
1159}
1160
1161static int __meminit slab_memory_callback(struct notifier_block *self,
1162 unsigned long action, void *arg)
1163{
1164 struct memory_notify *mnb = arg;
1165 int ret = 0;
1166 int nid;
1167
1168 nid = mnb->status_change_nid;
1169 if (nid < 0)
1170 goto out;
1171
1172 switch (action) {
1173 case MEM_GOING_ONLINE:
1174 mutex_lock(&slab_mutex);
1175 ret = init_cache_node_node(nid);
1176 mutex_unlock(&slab_mutex);
1177 break;
1178 case MEM_GOING_OFFLINE:
1179 mutex_lock(&slab_mutex);
1180 ret = drain_cache_node_node(nid);
1181 mutex_unlock(&slab_mutex);
1182 break;
1183 case MEM_ONLINE:
1184 case MEM_OFFLINE:
1185 case MEM_CANCEL_ONLINE:
1186 case MEM_CANCEL_OFFLINE:
1187 break;
1188 }
1189out:
1190 return notifier_from_errno(ret);
1191}
1192#endif
1193
1194
1195
1196
1197static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1198 int nodeid)
1199{
1200 struct kmem_cache_node *ptr;
1201
1202 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1203 BUG_ON(!ptr);
1204
1205 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1206
1207
1208
1209 spin_lock_init(&ptr->list_lock);
1210
1211 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1212 cachep->node[nodeid] = ptr;
1213}
1214
1215
1216
1217
1218
1219static void __init set_up_node(struct kmem_cache *cachep, int index)
1220{
1221 int node;
1222
1223 for_each_online_node(node) {
1224 cachep->node[node] = &init_kmem_cache_node[index + node];
1225 cachep->node[node]->next_reap = jiffies +
1226 REAPTIMEOUT_NODE +
1227 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1228 }
1229}
1230
1231
1232
1233
1234
1235void __init kmem_cache_init(void)
1236{
1237 int i;
1238
1239 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1240 sizeof(struct rcu_head));
1241 kmem_cache = &kmem_cache_boot;
1242
1243 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244 use_alien_caches = 0;
1245
1246 for (i = 0; i < NUM_INIT_LISTS; i++)
1247 kmem_cache_node_init(&init_kmem_cache_node[i]);
1248
1249
1250
1251
1252
1253
1254 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255 slab_max_order = SLAB_MAX_ORDER_HI;
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282 create_boot_cache(kmem_cache, "kmem_cache",
1283 offsetof(struct kmem_cache, node) +
1284 nr_node_ids * sizeof(struct kmem_cache_node *),
1285 SLAB_HWCACHE_ALIGN);
1286 list_add(&kmem_cache->list, &slab_caches);
1287 slab_state = PARTIAL;
1288
1289
1290
1291
1292
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1298
1299 slab_early_init = 0;
1300
1301
1302 {
1303 int nid;
1304
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 }
1311 }
1312
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314}
1315
1316void __init kmem_cache_init_late(void)
1317{
1318 struct kmem_cache *cachep;
1319
1320 slab_state = UP;
1321
1322
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1328
1329
1330 slab_state = FULL;
1331
1332#ifdef CONFIG_NUMA
1333
1334
1335
1336
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338#endif
1339
1340
1341
1342
1343
1344}
1345
1346static int __init cpucache_init(void)
1347{
1348 int ret;
1349
1350
1351
1352
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
1356
1357
1358 slab_state = FULL;
1359 return 0;
1360}
1361__initcall(cpucache_init);
1362
1363static noinline void
1364slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365{
1366#if DEBUG
1367 struct kmem_cache_node *n;
1368 unsigned long flags;
1369 int node;
1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371 DEFAULT_RATELIMIT_BURST);
1372
1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374 return;
1375
1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377 nodeid, gfpflags, &gfpflags);
1378 pr_warn(" cache: %s, object size: %d, order: %d\n",
1379 cachep->name, cachep->size, cachep->gfporder);
1380
1381 for_each_kmem_cache_node(cachep, node, n) {
1382 unsigned long total_slabs, free_slabs, free_objs;
1383
1384 spin_lock_irqsave(&n->list_lock, flags);
1385 total_slabs = n->total_slabs;
1386 free_slabs = n->free_slabs;
1387 free_objs = n->free_objects;
1388 spin_unlock_irqrestore(&n->list_lock, flags);
1389
1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391 node, total_slabs - free_slabs, total_slabs,
1392 (total_slabs * cachep->num) - free_objs,
1393 total_slabs * cachep->num);
1394 }
1395#endif
1396}
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407 int nodeid)
1408{
1409 struct page *page;
1410 int nr_pages;
1411
1412 flags |= cachep->allocflags;
1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414 flags |= __GFP_RECLAIMABLE;
1415
1416 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1417 if (!page) {
1418 slab_out_of_memory(cachep, flags, nodeid);
1419 return NULL;
1420 }
1421
1422 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1423 __free_pages(page, cachep->gfporder);
1424 return NULL;
1425 }
1426
1427 nr_pages = (1 << cachep->gfporder);
1428 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1429 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1430 else
1431 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1432
1433 __SetPageSlab(page);
1434
1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1436 SetPageSlabPfmemalloc(page);
1437
1438 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1439 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1440
1441 if (cachep->ctor)
1442 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1443 else
1444 kmemcheck_mark_unallocated_pages(page, nr_pages);
1445 }
1446
1447 return page;
1448}
1449
1450
1451
1452
1453static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1454{
1455 int order = cachep->gfporder;
1456 unsigned long nr_freed = (1 << order);
1457
1458 kmemcheck_free_shadow(page, order);
1459
1460 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1461 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1462 else
1463 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1464
1465 BUG_ON(!PageSlab(page));
1466 __ClearPageSlabPfmemalloc(page);
1467 __ClearPageSlab(page);
1468 page_mapcount_reset(page);
1469 page->mapping = NULL;
1470
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += nr_freed;
1473 memcg_uncharge_slab(page, order, cachep);
1474 __free_pages(page, order);
1475}
1476
1477static void kmem_rcu_free(struct rcu_head *head)
1478{
1479 struct kmem_cache *cachep;
1480 struct page *page;
1481
1482 page = container_of(head, struct page, rcu_head);
1483 cachep = page->slab_cache;
1484
1485 kmem_freepages(cachep, page);
1486}
1487
1488#if DEBUG
1489static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1490{
1491 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1492 (cachep->size % PAGE_SIZE) == 0)
1493 return true;
1494
1495 return false;
1496}
1497
1498#ifdef CONFIG_DEBUG_PAGEALLOC
1499static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1500 unsigned long caller)
1501{
1502 int size = cachep->object_size;
1503
1504 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1505
1506 if (size < 5 * sizeof(unsigned long))
1507 return;
1508
1509 *addr++ = 0x12345678;
1510 *addr++ = caller;
1511 *addr++ = smp_processor_id();
1512 size -= 3 * sizeof(unsigned long);
1513 {
1514 unsigned long *sptr = &caller;
1515 unsigned long svalue;
1516
1517 while (!kstack_end(sptr)) {
1518 svalue = *sptr++;
1519 if (kernel_text_address(svalue)) {
1520 *addr++ = svalue;
1521 size -= sizeof(unsigned long);
1522 if (size <= sizeof(unsigned long))
1523 break;
1524 }
1525 }
1526
1527 }
1528 *addr++ = 0x87654321;
1529}
1530
1531static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532 int map, unsigned long caller)
1533{
1534 if (!is_debug_pagealloc_cache(cachep))
1535 return;
1536
1537 if (caller)
1538 store_stackinfo(cachep, objp, caller);
1539
1540 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1541}
1542
1543#else
1544static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1545 int map, unsigned long caller) {}
1546
1547#endif
1548
1549static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1550{
1551 int size = cachep->object_size;
1552 addr = &((char *)addr)[obj_offset(cachep)];
1553
1554 memset(addr, val, size);
1555 *(unsigned char *)(addr + size - 1) = POISON_END;
1556}
1557
1558static void dump_line(char *data, int offset, int limit)
1559{
1560 int i;
1561 unsigned char error = 0;
1562 int bad_count = 0;
1563
1564 pr_err("%03x: ", offset);
1565 for (i = 0; i < limit; i++) {
1566 if (data[offset + i] != POISON_FREE) {
1567 error = data[offset + i];
1568 bad_count++;
1569 }
1570 }
1571 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1572 &data[offset], limit, 1);
1573
1574 if (bad_count == 1) {
1575 error ^= POISON_FREE;
1576 if (!(error & (error - 1))) {
1577 pr_err("Single bit error detected. Probably bad RAM.\n");
1578#ifdef CONFIG_X86
1579 pr_err("Run memtest86+ or a similar memory test tool.\n");
1580#else
1581 pr_err("Run a memory test tool.\n");
1582#endif
1583 }
1584 }
1585}
1586#endif
1587
1588#if DEBUG
1589
1590static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1591{
1592 int i, size;
1593 char *realobj;
1594
1595 if (cachep->flags & SLAB_RED_ZONE) {
1596 pr_err("Redzone: 0x%llx/0x%llx\n",
1597 *dbg_redzone1(cachep, objp),
1598 *dbg_redzone2(cachep, objp));
1599 }
1600
1601 if (cachep->flags & SLAB_STORE_USER) {
1602 pr_err("Last user: [<%p>](%pSR)\n",
1603 *dbg_userword(cachep, objp),
1604 *dbg_userword(cachep, objp));
1605 }
1606 realobj = (char *)objp + obj_offset(cachep);
1607 size = cachep->object_size;
1608 for (i = 0; i < size && lines; i += 16, lines--) {
1609 int limit;
1610 limit = 16;
1611 if (i + limit > size)
1612 limit = size - i;
1613 dump_line(realobj, i, limit);
1614 }
1615}
1616
1617static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1618{
1619 char *realobj;
1620 int size, i;
1621 int lines = 0;
1622
1623 if (is_debug_pagealloc_cache(cachep))
1624 return;
1625
1626 realobj = (char *)objp + obj_offset(cachep);
1627 size = cachep->object_size;
1628
1629 for (i = 0; i < size; i++) {
1630 char exp = POISON_FREE;
1631 if (i == size - 1)
1632 exp = POISON_END;
1633 if (realobj[i] != exp) {
1634 int limit;
1635
1636
1637 if (lines == 0) {
1638 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1639 print_tainted(), cachep->name,
1640 realobj, size);
1641 print_objinfo(cachep, objp, 0);
1642 }
1643
1644 i = (i / 16) * 16;
1645 limit = 16;
1646 if (i + limit > size)
1647 limit = size - i;
1648 dump_line(realobj, i, limit);
1649 i += 16;
1650 lines++;
1651
1652 if (lines > 5)
1653 break;
1654 }
1655 }
1656 if (lines != 0) {
1657
1658
1659
1660 struct page *page = virt_to_head_page(objp);
1661 unsigned int objnr;
1662
1663 objnr = obj_to_index(cachep, page, objp);
1664 if (objnr) {
1665 objp = index_to_obj(cachep, page, objnr - 1);
1666 realobj = (char *)objp + obj_offset(cachep);
1667 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1668 print_objinfo(cachep, objp, 2);
1669 }
1670 if (objnr + 1 < cachep->num) {
1671 objp = index_to_obj(cachep, page, objnr + 1);
1672 realobj = (char *)objp + obj_offset(cachep);
1673 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1674 print_objinfo(cachep, objp, 2);
1675 }
1676 }
1677}
1678#endif
1679
1680#if DEBUG
1681static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682 struct page *page)
1683{
1684 int i;
1685
1686 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1687 poison_obj(cachep, page->freelist - obj_offset(cachep),
1688 POISON_FREE);
1689 }
1690
1691 for (i = 0; i < cachep->num; i++) {
1692 void *objp = index_to_obj(cachep, page, i);
1693
1694 if (cachep->flags & SLAB_POISON) {
1695 check_poison_obj(cachep, objp);
1696 slab_kernel_map(cachep, objp, 1, 0);
1697 }
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1700 slab_error(cachep, "start of a freed object was overwritten");
1701 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1702 slab_error(cachep, "end of a freed object was overwritten");
1703 }
1704 }
1705}
1706#else
1707static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708 struct page *page)
1709{
1710}
1711#endif
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1723{
1724 void *freelist;
1725
1726 freelist = page->freelist;
1727 slab_destroy_debugcheck(cachep, page);
1728 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1729 call_rcu(&page->rcu_head, kmem_rcu_free);
1730 else
1731 kmem_freepages(cachep, page);
1732
1733
1734
1735
1736
1737 if (OFF_SLAB(cachep))
1738 kmem_cache_free(cachep->freelist_cache, freelist);
1739}
1740
1741static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1742{
1743 struct page *page, *n;
1744
1745 list_for_each_entry_safe(page, n, list, lru) {
1746 list_del(&page->lru);
1747 slab_destroy(cachep, page);
1748 }
1749}
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763static size_t calculate_slab_order(struct kmem_cache *cachep,
1764 size_t size, unsigned long flags)
1765{
1766 size_t left_over = 0;
1767 int gfporder;
1768
1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1770 unsigned int num;
1771 size_t remainder;
1772
1773 num = cache_estimate(gfporder, size, flags, &remainder);
1774 if (!num)
1775 continue;
1776
1777
1778 if (num > SLAB_OBJ_MAX_NUM)
1779 break;
1780
1781 if (flags & CFLGS_OFF_SLAB) {
1782 struct kmem_cache *freelist_cache;
1783 size_t freelist_size;
1784
1785 freelist_size = num * sizeof(freelist_idx_t);
1786 freelist_cache = kmalloc_slab(freelist_size, 0u);
1787 if (!freelist_cache)
1788 continue;
1789
1790
1791
1792
1793
1794 if (OFF_SLAB(freelist_cache))
1795 continue;
1796
1797
1798 if (freelist_cache->size > cachep->size / 2)
1799 continue;
1800 }
1801
1802
1803 cachep->num = num;
1804 cachep->gfporder = gfporder;
1805 left_over = remainder;
1806
1807
1808
1809
1810
1811
1812 if (flags & SLAB_RECLAIM_ACCOUNT)
1813 break;
1814
1815
1816
1817
1818
1819 if (gfporder >= slab_max_order)
1820 break;
1821
1822
1823
1824
1825 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1826 break;
1827 }
1828 return left_over;
1829}
1830
1831static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832 struct kmem_cache *cachep, int entries, int batchcount)
1833{
1834 int cpu;
1835 size_t size;
1836 struct array_cache __percpu *cpu_cache;
1837
1838 size = sizeof(void *) * entries + sizeof(struct array_cache);
1839 cpu_cache = __alloc_percpu(size, sizeof(void *));
1840
1841 if (!cpu_cache)
1842 return NULL;
1843
1844 for_each_possible_cpu(cpu) {
1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846 entries, batchcount);
1847 }
1848
1849 return cpu_cache;
1850}
1851
1852static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1853{
1854 if (slab_state >= FULL)
1855 return enable_cpucache(cachep, gfp);
1856
1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858 if (!cachep->cpu_cache)
1859 return 1;
1860
1861 if (slab_state == DOWN) {
1862
1863 set_up_node(kmem_cache, CACHE_CACHE);
1864 } else if (slab_state == PARTIAL) {
1865
1866 set_up_node(cachep, SIZE_NODE);
1867 } else {
1868 int node;
1869
1870 for_each_online_node(node) {
1871 cachep->node[node] = kmalloc_node(
1872 sizeof(struct kmem_cache_node), gfp, node);
1873 BUG_ON(!cachep->node[node]);
1874 kmem_cache_node_init(cachep->node[node]);
1875 }
1876 }
1877
1878 cachep->node[numa_mem_id()]->next_reap =
1879 jiffies + REAPTIMEOUT_NODE +
1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1881
1882 cpu_cache_get(cachep)->avail = 0;
1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884 cpu_cache_get(cachep)->batchcount = 1;
1885 cpu_cache_get(cachep)->touched = 0;
1886 cachep->batchcount = 1;
1887 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1888 return 0;
1889}
1890
1891unsigned long kmem_cache_flags(unsigned long object_size,
1892 unsigned long flags, const char *name,
1893 void (*ctor)(void *))
1894{
1895 return flags;
1896}
1897
1898struct kmem_cache *
1899__kmem_cache_alias(const char *name, size_t size, size_t align,
1900 unsigned long flags, void (*ctor)(void *))
1901{
1902 struct kmem_cache *cachep;
1903
1904 cachep = find_mergeable(size, align, flags, name, ctor);
1905 if (cachep) {
1906 cachep->refcount++;
1907
1908
1909
1910
1911
1912 cachep->object_size = max_t(int, cachep->object_size, size);
1913 }
1914 return cachep;
1915}
1916
1917static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918 size_t size, unsigned long flags)
1919{
1920 size_t left;
1921
1922 cachep->num = 0;
1923
1924 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1925 return false;
1926
1927 left = calculate_slab_order(cachep, size,
1928 flags | CFLGS_OBJFREELIST_SLAB);
1929 if (!cachep->num)
1930 return false;
1931
1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1933 return false;
1934
1935 cachep->colour = left / cachep->colour_off;
1936
1937 return true;
1938}
1939
1940static bool set_off_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1942{
1943 size_t left;
1944
1945 cachep->num = 0;
1946
1947
1948
1949
1950
1951 if (flags & SLAB_NOLEAKTRACE)
1952 return false;
1953
1954
1955
1956
1957
1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1959 if (!cachep->num)
1960 return false;
1961
1962
1963
1964
1965
1966 if (left >= cachep->num * sizeof(freelist_idx_t))
1967 return false;
1968
1969 cachep->colour = left / cachep->colour_off;
1970
1971 return true;
1972}
1973
1974static bool set_on_slab_cache(struct kmem_cache *cachep,
1975 size_t size, unsigned long flags)
1976{
1977 size_t left;
1978
1979 cachep->num = 0;
1980
1981 left = calculate_slab_order(cachep, size, flags);
1982 if (!cachep->num)
1983 return false;
1984
1985 cachep->colour = left / cachep->colour_off;
1986
1987 return true;
1988}
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011int
2012__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2013{
2014 size_t ralign = BYTES_PER_WORD;
2015 gfp_t gfp;
2016 int err;
2017 size_t size = cachep->size;
2018
2019#if DEBUG
2020#if FORCED_DEBUG
2021
2022
2023
2024
2025
2026
2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028 2 * sizeof(unsigned long long)))
2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2030 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2031 flags |= SLAB_POISON;
2032#endif
2033#endif
2034
2035
2036
2037
2038
2039
2040 size = ALIGN(size, BYTES_PER_WORD);
2041
2042 if (flags & SLAB_RED_ZONE) {
2043 ralign = REDZONE_ALIGN;
2044
2045
2046 size = ALIGN(size, REDZONE_ALIGN);
2047 }
2048
2049
2050 if (ralign < cachep->align) {
2051 ralign = cachep->align;
2052 }
2053
2054 if (ralign > __alignof__(unsigned long long))
2055 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2056
2057
2058
2059 cachep->align = ralign;
2060 cachep->colour_off = cache_line_size();
2061
2062 if (cachep->colour_off < cachep->align)
2063 cachep->colour_off = cachep->align;
2064
2065 if (slab_is_available())
2066 gfp = GFP_KERNEL;
2067 else
2068 gfp = GFP_NOWAIT;
2069
2070#if DEBUG
2071
2072
2073
2074
2075
2076 if (flags & SLAB_RED_ZONE) {
2077
2078 cachep->obj_offset += sizeof(unsigned long long);
2079 size += 2 * sizeof(unsigned long long);
2080 }
2081 if (flags & SLAB_STORE_USER) {
2082
2083
2084
2085
2086 if (flags & SLAB_RED_ZONE)
2087 size += REDZONE_ALIGN;
2088 else
2089 size += BYTES_PER_WORD;
2090 }
2091#endif
2092
2093 kasan_cache_create(cachep, &size, &flags);
2094
2095 size = ALIGN(size, cachep->align);
2096
2097
2098
2099
2100 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2101 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2102
2103#if DEBUG
2104
2105
2106
2107
2108
2109
2110
2111 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2112 size >= 256 && cachep->object_size > cache_line_size()) {
2113 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2114 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2115
2116 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2117 flags |= CFLGS_OFF_SLAB;
2118 cachep->obj_offset += tmp_size - size;
2119 size = tmp_size;
2120 goto done;
2121 }
2122 }
2123 }
2124#endif
2125
2126 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2127 flags |= CFLGS_OBJFREELIST_SLAB;
2128 goto done;
2129 }
2130
2131 if (set_off_slab_cache(cachep, size, flags)) {
2132 flags |= CFLGS_OFF_SLAB;
2133 goto done;
2134 }
2135
2136 if (set_on_slab_cache(cachep, size, flags))
2137 goto done;
2138
2139 return -E2BIG;
2140
2141done:
2142 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2143 cachep->flags = flags;
2144 cachep->allocflags = __GFP_COMP;
2145 if (flags & SLAB_CACHE_DMA)
2146 cachep->allocflags |= GFP_DMA;
2147 cachep->size = size;
2148 cachep->reciprocal_buffer_size = reciprocal_value(size);
2149
2150#if DEBUG
2151
2152
2153
2154
2155
2156 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2157 (cachep->flags & SLAB_POISON) &&
2158 is_debug_pagealloc_cache(cachep))
2159 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160#endif
2161
2162 if (OFF_SLAB(cachep)) {
2163 cachep->freelist_cache =
2164 kmalloc_slab(cachep->freelist_size, 0u);
2165 }
2166
2167 err = setup_cpu_cache(cachep, gfp);
2168 if (err) {
2169 __kmem_cache_release(cachep);
2170 return err;
2171 }
2172
2173 return 0;
2174}
2175
2176#if DEBUG
2177static void check_irq_off(void)
2178{
2179 BUG_ON(!irqs_disabled());
2180}
2181
2182static void check_irq_on(void)
2183{
2184 BUG_ON(irqs_disabled());
2185}
2186
2187static void check_mutex_acquired(void)
2188{
2189 BUG_ON(!mutex_is_locked(&slab_mutex));
2190}
2191
2192static void check_spinlock_acquired(struct kmem_cache *cachep)
2193{
2194#ifdef CONFIG_SMP
2195 check_irq_off();
2196 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2197#endif
2198}
2199
2200static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2201{
2202#ifdef CONFIG_SMP
2203 check_irq_off();
2204 assert_spin_locked(&get_node(cachep, node)->list_lock);
2205#endif
2206}
2207
2208#else
2209#define check_irq_off() do { } while(0)
2210#define check_irq_on() do { } while(0)
2211#define check_mutex_acquired() do { } while(0)
2212#define check_spinlock_acquired(x) do { } while(0)
2213#define check_spinlock_acquired_node(x, y) do { } while(0)
2214#endif
2215
2216static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2217 int node, bool free_all, struct list_head *list)
2218{
2219 int tofree;
2220
2221 if (!ac || !ac->avail)
2222 return;
2223
2224 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2225 if (tofree > ac->avail)
2226 tofree = (ac->avail + 1) / 2;
2227
2228 free_block(cachep, ac->entry, tofree, node, list);
2229 ac->avail -= tofree;
2230 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2231}
2232
2233static void do_drain(void *arg)
2234{
2235 struct kmem_cache *cachep = arg;
2236 struct array_cache *ac;
2237 int node = numa_mem_id();
2238 struct kmem_cache_node *n;
2239 LIST_HEAD(list);
2240
2241 check_irq_off();
2242 ac = cpu_cache_get(cachep);
2243 n = get_node(cachep, node);
2244 spin_lock(&n->list_lock);
2245 free_block(cachep, ac->entry, ac->avail, node, &list);
2246 spin_unlock(&n->list_lock);
2247 slabs_destroy(cachep, &list);
2248 ac->avail = 0;
2249}
2250
2251static void drain_cpu_caches(struct kmem_cache *cachep)
2252{
2253 struct kmem_cache_node *n;
2254 int node;
2255 LIST_HEAD(list);
2256
2257 on_each_cpu(do_drain, cachep, 1);
2258 check_irq_on();
2259 for_each_kmem_cache_node(cachep, node, n)
2260 if (n->alien)
2261 drain_alien_cache(cachep, n->alien);
2262
2263 for_each_kmem_cache_node(cachep, node, n) {
2264 spin_lock_irq(&n->list_lock);
2265 drain_array_locked(cachep, n->shared, node, true, &list);
2266 spin_unlock_irq(&n->list_lock);
2267
2268 slabs_destroy(cachep, &list);
2269 }
2270}
2271
2272
2273
2274
2275
2276
2277
2278static int drain_freelist(struct kmem_cache *cache,
2279 struct kmem_cache_node *n, int tofree)
2280{
2281 struct list_head *p;
2282 int nr_freed;
2283 struct page *page;
2284
2285 nr_freed = 0;
2286 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2287
2288 spin_lock_irq(&n->list_lock);
2289 p = n->slabs_free.prev;
2290 if (p == &n->slabs_free) {
2291 spin_unlock_irq(&n->list_lock);
2292 goto out;
2293 }
2294
2295 page = list_entry(p, struct page, lru);
2296 list_del(&page->lru);
2297 n->free_slabs--;
2298 n->total_slabs--;
2299
2300
2301
2302
2303 n->free_objects -= cache->num;
2304 spin_unlock_irq(&n->list_lock);
2305 slab_destroy(cache, page);
2306 nr_freed++;
2307 }
2308out:
2309 return nr_freed;
2310}
2311
2312int __kmem_cache_shrink(struct kmem_cache *cachep)
2313{
2314 int ret = 0;
2315 int node;
2316 struct kmem_cache_node *n;
2317
2318 drain_cpu_caches(cachep);
2319
2320 check_irq_on();
2321 for_each_kmem_cache_node(cachep, node, n) {
2322 drain_freelist(cachep, n, INT_MAX);
2323
2324 ret += !list_empty(&n->slabs_full) ||
2325 !list_empty(&n->slabs_partial);
2326 }
2327 return (ret ? 1 : 0);
2328}
2329
2330#ifdef CONFIG_MEMCG
2331void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2332{
2333 __kmem_cache_shrink(cachep);
2334}
2335#endif
2336
2337int __kmem_cache_shutdown(struct kmem_cache *cachep)
2338{
2339 return __kmem_cache_shrink(cachep);
2340}
2341
2342void __kmem_cache_release(struct kmem_cache *cachep)
2343{
2344 int i;
2345 struct kmem_cache_node *n;
2346
2347 cache_random_seq_destroy(cachep);
2348
2349 free_percpu(cachep->cpu_cache);
2350
2351
2352 for_each_kmem_cache_node(cachep, i, n) {
2353 kfree(n->shared);
2354 free_alien_cache(n->alien);
2355 kfree(n);
2356 cachep->node[i] = NULL;
2357 }
2358}
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374static void *alloc_slabmgmt(struct kmem_cache *cachep,
2375 struct page *page, int colour_off,
2376 gfp_t local_flags, int nodeid)
2377{
2378 void *freelist;
2379 void *addr = page_address(page);
2380
2381 page->s_mem = addr + colour_off;
2382 page->active = 0;
2383
2384 if (OBJFREELIST_SLAB(cachep))
2385 freelist = NULL;
2386 else if (OFF_SLAB(cachep)) {
2387
2388 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2389 local_flags, nodeid);
2390 if (!freelist)
2391 return NULL;
2392 } else {
2393
2394 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2395 cachep->freelist_size;
2396 }
2397
2398 return freelist;
2399}
2400
2401static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2402{
2403 return ((freelist_idx_t *)page->freelist)[idx];
2404}
2405
2406static inline void set_free_obj(struct page *page,
2407 unsigned int idx, freelist_idx_t val)
2408{
2409 ((freelist_idx_t *)(page->freelist))[idx] = val;
2410}
2411
2412static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2413{
2414#if DEBUG
2415 int i;
2416
2417 for (i = 0; i < cachep->num; i++) {
2418 void *objp = index_to_obj(cachep, page, i);
2419
2420 if (cachep->flags & SLAB_STORE_USER)
2421 *dbg_userword(cachep, objp) = NULL;
2422
2423 if (cachep->flags & SLAB_RED_ZONE) {
2424 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2425 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2426 }
2427
2428
2429
2430
2431
2432 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2433 kasan_unpoison_object_data(cachep,
2434 objp + obj_offset(cachep));
2435 cachep->ctor(objp + obj_offset(cachep));
2436 kasan_poison_object_data(
2437 cachep, objp + obj_offset(cachep));
2438 }
2439
2440 if (cachep->flags & SLAB_RED_ZONE) {
2441 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2442 slab_error(cachep, "constructor overwrote the end of an object");
2443 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2444 slab_error(cachep, "constructor overwrote the start of an object");
2445 }
2446
2447 if (cachep->flags & SLAB_POISON) {
2448 poison_obj(cachep, objp, POISON_FREE);
2449 slab_kernel_map(cachep, objp, 0, 0);
2450 }
2451 }
2452#endif
2453}
2454
2455#ifdef CONFIG_SLAB_FREELIST_RANDOM
2456
2457union freelist_init_state {
2458 struct {
2459 unsigned int pos;
2460 unsigned int *list;
2461 unsigned int count;
2462 };
2463 struct rnd_state rnd_state;
2464};
2465
2466
2467
2468
2469
2470static bool freelist_state_initialize(union freelist_init_state *state,
2471 struct kmem_cache *cachep,
2472 unsigned int count)
2473{
2474 bool ret;
2475 unsigned int rand;
2476
2477
2478 rand = get_random_int();
2479
2480
2481 if (!cachep->random_seq) {
2482 prandom_seed_state(&state->rnd_state, rand);
2483 ret = false;
2484 } else {
2485 state->list = cachep->random_seq;
2486 state->count = count;
2487 state->pos = rand % count;
2488 ret = true;
2489 }
2490 return ret;
2491}
2492
2493
2494static freelist_idx_t next_random_slot(union freelist_init_state *state)
2495{
2496 if (state->pos >= state->count)
2497 state->pos = 0;
2498 return state->list[state->pos++];
2499}
2500
2501
2502static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2503{
2504 swap(((freelist_idx_t *)page->freelist)[a],
2505 ((freelist_idx_t *)page->freelist)[b]);
2506}
2507
2508
2509
2510
2511
2512static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2513{
2514 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2515 union freelist_init_state state;
2516 bool precomputed;
2517
2518 if (count < 2)
2519 return false;
2520
2521 precomputed = freelist_state_initialize(&state, cachep, count);
2522
2523
2524 if (OBJFREELIST_SLAB(cachep)) {
2525 if (!precomputed)
2526 objfreelist = count - 1;
2527 else
2528 objfreelist = next_random_slot(&state);
2529 page->freelist = index_to_obj(cachep, page, objfreelist) +
2530 obj_offset(cachep);
2531 count--;
2532 }
2533
2534
2535
2536
2537
2538 if (!precomputed) {
2539 for (i = 0; i < count; i++)
2540 set_free_obj(page, i, i);
2541
2542
2543 for (i = count - 1; i > 0; i--) {
2544 rand = prandom_u32_state(&state.rnd_state);
2545 rand %= (i + 1);
2546 swap_free_obj(page, i, rand);
2547 }
2548 } else {
2549 for (i = 0; i < count; i++)
2550 set_free_obj(page, i, next_random_slot(&state));
2551 }
2552
2553 if (OBJFREELIST_SLAB(cachep))
2554 set_free_obj(page, cachep->num - 1, objfreelist);
2555
2556 return true;
2557}
2558#else
2559static inline bool shuffle_freelist(struct kmem_cache *cachep,
2560 struct page *page)
2561{
2562 return false;
2563}
2564#endif
2565
2566static void cache_init_objs(struct kmem_cache *cachep,
2567 struct page *page)
2568{
2569 int i;
2570 void *objp;
2571 bool shuffled;
2572
2573 cache_init_objs_debug(cachep, page);
2574
2575
2576 shuffled = shuffle_freelist(cachep, page);
2577
2578 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2579 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2580 obj_offset(cachep);
2581 }
2582
2583 for (i = 0; i < cachep->num; i++) {
2584 objp = index_to_obj(cachep, page, i);
2585 kasan_init_slab_obj(cachep, objp);
2586
2587
2588 if (DEBUG == 0 && cachep->ctor) {
2589 kasan_unpoison_object_data(cachep, objp);
2590 cachep->ctor(objp);
2591 kasan_poison_object_data(cachep, objp);
2592 }
2593
2594 if (!shuffled)
2595 set_free_obj(page, i, i);
2596 }
2597}
2598
2599static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2600{
2601 void *objp;
2602
2603 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2604 page->active++;
2605
2606#if DEBUG
2607 if (cachep->flags & SLAB_STORE_USER)
2608 set_store_user_dirty(cachep);
2609#endif
2610
2611 return objp;
2612}
2613
2614static void slab_put_obj(struct kmem_cache *cachep,
2615 struct page *page, void *objp)
2616{
2617 unsigned int objnr = obj_to_index(cachep, page, objp);
2618#if DEBUG
2619 unsigned int i;
2620
2621
2622 for (i = page->active; i < cachep->num; i++) {
2623 if (get_free_obj(page, i) == objnr) {
2624 pr_err("slab: double free detected in cache '%s', objp %p\n",
2625 cachep->name, objp);
2626 BUG();
2627 }
2628 }
2629#endif
2630 page->active--;
2631 if (!page->freelist)
2632 page->freelist = objp + obj_offset(cachep);
2633
2634 set_free_obj(page, page->active, objnr);
2635}
2636
2637
2638
2639
2640
2641
2642static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2643 void *freelist)
2644{
2645 page->slab_cache = cache;
2646 page->freelist = freelist;
2647}
2648
2649
2650
2651
2652
2653static struct page *cache_grow_begin(struct kmem_cache *cachep,
2654 gfp_t flags, int nodeid)
2655{
2656 void *freelist;
2657 size_t offset;
2658 gfp_t local_flags;
2659 int page_node;
2660 struct kmem_cache_node *n;
2661 struct page *page;
2662
2663
2664
2665
2666
2667 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2668 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2669 flags &= ~GFP_SLAB_BUG_MASK;
2670 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2671 invalid_mask, &invalid_mask, flags, &flags);
2672 dump_stack();
2673 }
2674 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2675
2676 check_irq_off();
2677 if (gfpflags_allow_blocking(local_flags))
2678 local_irq_enable();
2679
2680
2681
2682
2683
2684 page = kmem_getpages(cachep, local_flags, nodeid);
2685 if (!page)
2686 goto failed;
2687
2688 page_node = page_to_nid(page);
2689 n = get_node(cachep, page_node);
2690
2691
2692 n->colour_next++;
2693 if (n->colour_next >= cachep->colour)
2694 n->colour_next = 0;
2695
2696 offset = n->colour_next;
2697 if (offset >= cachep->colour)
2698 offset = 0;
2699
2700 offset *= cachep->colour_off;
2701
2702
2703 freelist = alloc_slabmgmt(cachep, page, offset,
2704 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2705 if (OFF_SLAB(cachep) && !freelist)
2706 goto opps1;
2707
2708 slab_map_pages(cachep, page, freelist);
2709
2710 kasan_poison_slab(page);
2711 cache_init_objs(cachep, page);
2712
2713 if (gfpflags_allow_blocking(local_flags))
2714 local_irq_disable();
2715
2716 return page;
2717
2718opps1:
2719 kmem_freepages(cachep, page);
2720failed:
2721 if (gfpflags_allow_blocking(local_flags))
2722 local_irq_disable();
2723 return NULL;
2724}
2725
2726static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2727{
2728 struct kmem_cache_node *n;
2729 void *list = NULL;
2730
2731 check_irq_off();
2732
2733 if (!page)
2734 return;
2735
2736 INIT_LIST_HEAD(&page->lru);
2737 n = get_node(cachep, page_to_nid(page));
2738
2739 spin_lock(&n->list_lock);
2740 n->total_slabs++;
2741 if (!page->active) {
2742 list_add_tail(&page->lru, &(n->slabs_free));
2743 n->free_slabs++;
2744 } else
2745 fixup_slab_list(cachep, n, page, &list);
2746
2747 STATS_INC_GROWN(cachep);
2748 n->free_objects += cachep->num - page->active;
2749 spin_unlock(&n->list_lock);
2750
2751 fixup_objfreelist_debug(cachep, &list);
2752}
2753
2754#if DEBUG
2755
2756
2757
2758
2759
2760
2761static void kfree_debugcheck(const void *objp)
2762{
2763 if (!virt_addr_valid(objp)) {
2764 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2765 (unsigned long)objp);
2766 BUG();
2767 }
2768}
2769
2770static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2771{
2772 unsigned long long redzone1, redzone2;
2773
2774 redzone1 = *dbg_redzone1(cache, obj);
2775 redzone2 = *dbg_redzone2(cache, obj);
2776
2777
2778
2779
2780 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2781 return;
2782
2783 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2784 slab_error(cache, "double free detected");
2785 else
2786 slab_error(cache, "memory outside object was overwritten");
2787
2788 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2789 obj, redzone1, redzone2);
2790}
2791
2792static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2793 unsigned long caller)
2794{
2795 unsigned int objnr;
2796 struct page *page;
2797
2798 BUG_ON(virt_to_cache(objp) != cachep);
2799
2800 objp -= obj_offset(cachep);
2801 kfree_debugcheck(objp);
2802 page = virt_to_head_page(objp);
2803
2804 if (cachep->flags & SLAB_RED_ZONE) {
2805 verify_redzone_free(cachep, objp);
2806 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2807 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2808 }
2809 if (cachep->flags & SLAB_STORE_USER) {
2810 set_store_user_dirty(cachep);
2811 *dbg_userword(cachep, objp) = (void *)caller;
2812 }
2813
2814 objnr = obj_to_index(cachep, page, objp);
2815
2816 BUG_ON(objnr >= cachep->num);
2817 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2818
2819 if (cachep->flags & SLAB_POISON) {
2820 poison_obj(cachep, objp, POISON_FREE);
2821 slab_kernel_map(cachep, objp, 0, caller);
2822 }
2823 return objp;
2824}
2825
2826#else
2827#define kfree_debugcheck(x) do { } while(0)
2828#define cache_free_debugcheck(x,objp,z) (objp)
2829#endif
2830
2831static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2832 void **list)
2833{
2834#if DEBUG
2835 void *next = *list;
2836 void *objp;
2837
2838 while (next) {
2839 objp = next - obj_offset(cachep);
2840 next = *(void **)next;
2841 poison_obj(cachep, objp, POISON_FREE);
2842 }
2843#endif
2844}
2845
2846static inline void fixup_slab_list(struct kmem_cache *cachep,
2847 struct kmem_cache_node *n, struct page *page,
2848 void **list)
2849{
2850
2851 list_del(&page->lru);
2852 if (page->active == cachep->num) {
2853 list_add(&page->lru, &n->slabs_full);
2854 if (OBJFREELIST_SLAB(cachep)) {
2855#if DEBUG
2856
2857 if (cachep->flags & SLAB_POISON) {
2858 void **objp = page->freelist;
2859
2860 *objp = *list;
2861 *list = objp;
2862 }
2863#endif
2864 page->freelist = NULL;
2865 }
2866 } else
2867 list_add(&page->lru, &n->slabs_partial);
2868}
2869
2870
2871static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2872 struct page *page, bool pfmemalloc)
2873{
2874 if (!page)
2875 return NULL;
2876
2877 if (pfmemalloc)
2878 return page;
2879
2880 if (!PageSlabPfmemalloc(page))
2881 return page;
2882
2883
2884 if (n->free_objects > n->free_limit) {
2885 ClearPageSlabPfmemalloc(page);
2886 return page;
2887 }
2888
2889
2890 list_del(&page->lru);
2891 if (!page->active) {
2892 list_add_tail(&page->lru, &n->slabs_free);
2893 n->free_slabs++;
2894 } else
2895 list_add_tail(&page->lru, &n->slabs_partial);
2896
2897 list_for_each_entry(page, &n->slabs_partial, lru) {
2898 if (!PageSlabPfmemalloc(page))
2899 return page;
2900 }
2901
2902 n->free_touched = 1;
2903 list_for_each_entry(page, &n->slabs_free, lru) {
2904 if (!PageSlabPfmemalloc(page)) {
2905 n->free_slabs--;
2906 return page;
2907 }
2908 }
2909
2910 return NULL;
2911}
2912
2913static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2914{
2915 struct page *page;
2916
2917 assert_spin_locked(&n->list_lock);
2918 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2919 if (!page) {
2920 n->free_touched = 1;
2921 page = list_first_entry_or_null(&n->slabs_free, struct page,
2922 lru);
2923 if (page)
2924 n->free_slabs--;
2925 }
2926
2927 if (sk_memalloc_socks())
2928 page = get_valid_first_slab(n, page, pfmemalloc);
2929
2930 return page;
2931}
2932
2933static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2934 struct kmem_cache_node *n, gfp_t flags)
2935{
2936 struct page *page;
2937 void *obj;
2938 void *list = NULL;
2939
2940 if (!gfp_pfmemalloc_allowed(flags))
2941 return NULL;
2942
2943 spin_lock(&n->list_lock);
2944 page = get_first_slab(n, true);
2945 if (!page) {
2946 spin_unlock(&n->list_lock);
2947 return NULL;
2948 }
2949
2950 obj = slab_get_obj(cachep, page);
2951 n->free_objects--;
2952
2953 fixup_slab_list(cachep, n, page, &list);
2954
2955 spin_unlock(&n->list_lock);
2956 fixup_objfreelist_debug(cachep, &list);
2957
2958 return obj;
2959}
2960
2961
2962
2963
2964
2965static __always_inline int alloc_block(struct kmem_cache *cachep,
2966 struct array_cache *ac, struct page *page, int batchcount)
2967{
2968
2969
2970
2971
2972 BUG_ON(page->active >= cachep->num);
2973
2974 while (page->active < cachep->num && batchcount--) {
2975 STATS_INC_ALLOCED(cachep);
2976 STATS_INC_ACTIVE(cachep);
2977 STATS_SET_HIGH(cachep);
2978
2979 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2980 }
2981
2982 return batchcount;
2983}
2984
2985static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2986{
2987 int batchcount;
2988 struct kmem_cache_node *n;
2989 struct array_cache *ac, *shared;
2990 int node;
2991 void *list = NULL;
2992 struct page *page;
2993
2994 check_irq_off();
2995 node = numa_mem_id();
2996
2997 ac = cpu_cache_get(cachep);
2998 batchcount = ac->batchcount;
2999 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3000
3001
3002
3003
3004
3005 batchcount = BATCHREFILL_LIMIT;
3006 }
3007 n = get_node(cachep, node);
3008
3009 BUG_ON(ac->avail > 0 || !n);
3010 shared = READ_ONCE(n->shared);
3011 if (!n->free_objects && (!shared || !shared->avail))
3012 goto direct_grow;
3013
3014 spin_lock(&n->list_lock);
3015 shared = READ_ONCE(n->shared);
3016
3017
3018 if (shared && transfer_objects(ac, shared, batchcount)) {
3019 shared->touched = 1;
3020 goto alloc_done;
3021 }
3022
3023 while (batchcount > 0) {
3024
3025 page = get_first_slab(n, false);
3026 if (!page)
3027 goto must_grow;
3028
3029 check_spinlock_acquired(cachep);
3030
3031 batchcount = alloc_block(cachep, ac, page, batchcount);
3032 fixup_slab_list(cachep, n, page, &list);
3033 }
3034
3035must_grow:
3036 n->free_objects -= ac->avail;
3037alloc_done:
3038 spin_unlock(&n->list_lock);
3039 fixup_objfreelist_debug(cachep, &list);
3040
3041direct_grow:
3042 if (unlikely(!ac->avail)) {
3043
3044 if (sk_memalloc_socks()) {
3045 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3046
3047 if (obj)
3048 return obj;
3049 }
3050
3051 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3052
3053
3054
3055
3056
3057 ac = cpu_cache_get(cachep);
3058 if (!ac->avail && page)
3059 alloc_block(cachep, ac, page, batchcount);
3060 cache_grow_end(cachep, page);
3061
3062 if (!ac->avail)
3063 return NULL;
3064 }
3065 ac->touched = 1;
3066
3067 return ac->entry[--ac->avail];
3068}
3069
3070static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3071 gfp_t flags)
3072{
3073 might_sleep_if(gfpflags_allow_blocking(flags));
3074}
3075
3076#if DEBUG
3077static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3078 gfp_t flags, void *objp, unsigned long caller)
3079{
3080 if (!objp)
3081 return objp;
3082 if (cachep->flags & SLAB_POISON) {
3083 check_poison_obj(cachep, objp);
3084 slab_kernel_map(cachep, objp, 1, 0);
3085 poison_obj(cachep, objp, POISON_INUSE);
3086 }
3087 if (cachep->flags & SLAB_STORE_USER)
3088 *dbg_userword(cachep, objp) = (void *)caller;
3089
3090 if (cachep->flags & SLAB_RED_ZONE) {
3091 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3092 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3093 slab_error(cachep, "double free, or memory outside object was overwritten");
3094 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3095 objp, *dbg_redzone1(cachep, objp),
3096 *dbg_redzone2(cachep, objp));
3097 }
3098 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3099 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3100 }
3101
3102 objp += obj_offset(cachep);
3103 if (cachep->ctor && cachep->flags & SLAB_POISON)
3104 cachep->ctor(objp);
3105 if (ARCH_SLAB_MINALIGN &&
3106 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3107 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3108 objp, (int)ARCH_SLAB_MINALIGN);
3109 }
3110 return objp;
3111}
3112#else
3113#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3114#endif
3115
3116static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3117{
3118 void *objp;
3119 struct array_cache *ac;
3120
3121 check_irq_off();
3122
3123 ac = cpu_cache_get(cachep);
3124 if (likely(ac->avail)) {
3125 ac->touched = 1;
3126 objp = ac->entry[--ac->avail];
3127
3128 STATS_INC_ALLOCHIT(cachep);
3129 goto out;
3130 }
3131
3132 STATS_INC_ALLOCMISS(cachep);
3133 objp = cache_alloc_refill(cachep, flags);
3134
3135
3136
3137
3138 ac = cpu_cache_get(cachep);
3139
3140out:
3141
3142
3143
3144
3145
3146 if (objp)
3147 kmemleak_erase(&ac->entry[ac->avail]);
3148 return objp;
3149}
3150
3151#ifdef CONFIG_NUMA
3152
3153
3154
3155
3156
3157
3158static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3159{
3160 int nid_alloc, nid_here;
3161
3162 if (in_interrupt() || (flags & __GFP_THISNODE))
3163 return NULL;
3164 nid_alloc = nid_here = numa_mem_id();
3165 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3166 nid_alloc = cpuset_slab_spread_node();
3167 else if (current->mempolicy)
3168 nid_alloc = mempolicy_slab_node();
3169 if (nid_alloc != nid_here)
3170 return ____cache_alloc_node(cachep, flags, nid_alloc);
3171 return NULL;
3172}
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3183{
3184 struct zonelist *zonelist;
3185 struct zoneref *z;
3186 struct zone *zone;
3187 enum zone_type high_zoneidx = gfp_zone(flags);
3188 void *obj = NULL;
3189 struct page *page;
3190 int nid;
3191 unsigned int cpuset_mems_cookie;
3192
3193 if (flags & __GFP_THISNODE)
3194 return NULL;
3195
3196retry_cpuset:
3197 cpuset_mems_cookie = read_mems_allowed_begin();
3198 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3199
3200retry:
3201
3202
3203
3204
3205 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3206 nid = zone_to_nid(zone);
3207
3208 if (cpuset_zone_allowed(zone, flags) &&
3209 get_node(cache, nid) &&
3210 get_node(cache, nid)->free_objects) {
3211 obj = ____cache_alloc_node(cache,
3212 gfp_exact_node(flags), nid);
3213 if (obj)
3214 break;
3215 }
3216 }
3217
3218 if (!obj) {
3219
3220
3221
3222
3223
3224
3225 page = cache_grow_begin(cache, flags, numa_mem_id());
3226 cache_grow_end(cache, page);
3227 if (page) {
3228 nid = page_to_nid(page);
3229 obj = ____cache_alloc_node(cache,
3230 gfp_exact_node(flags), nid);
3231
3232
3233
3234
3235
3236 if (!obj)
3237 goto retry;
3238 }
3239 }
3240
3241 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3242 goto retry_cpuset;
3243 return obj;
3244}
3245
3246
3247
3248
3249static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3250 int nodeid)
3251{
3252 struct page *page;
3253 struct kmem_cache_node *n;
3254 void *obj = NULL;
3255 void *list = NULL;
3256
3257 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3258 n = get_node(cachep, nodeid);
3259 BUG_ON(!n);
3260
3261 check_irq_off();
3262 spin_lock(&n->list_lock);
3263 page = get_first_slab(n, false);
3264 if (!page)
3265 goto must_grow;
3266
3267 check_spinlock_acquired_node(cachep, nodeid);
3268
3269 STATS_INC_NODEALLOCS(cachep);
3270 STATS_INC_ACTIVE(cachep);
3271 STATS_SET_HIGH(cachep);
3272
3273 BUG_ON(page->active == cachep->num);
3274
3275 obj = slab_get_obj(cachep, page);
3276 n->free_objects--;
3277
3278 fixup_slab_list(cachep, n, page, &list);
3279
3280 spin_unlock(&n->list_lock);
3281 fixup_objfreelist_debug(cachep, &list);
3282 return obj;
3283
3284must_grow:
3285 spin_unlock(&n->list_lock);
3286 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3287 if (page) {
3288
3289 obj = slab_get_obj(cachep, page);
3290 }
3291 cache_grow_end(cachep, page);
3292
3293 return obj ? obj : fallback_alloc(cachep, flags);
3294}
3295
3296static __always_inline void *
3297slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3298 unsigned long caller)
3299{
3300 unsigned long save_flags;
3301 void *ptr;
3302 int slab_node = numa_mem_id();
3303
3304 flags &= gfp_allowed_mask;
3305 cachep = slab_pre_alloc_hook(cachep, flags);
3306 if (unlikely(!cachep))
3307 return NULL;
3308
3309 cache_alloc_debugcheck_before(cachep, flags);
3310 local_irq_save(save_flags);
3311
3312 if (nodeid == NUMA_NO_NODE)
3313 nodeid = slab_node;
3314
3315 if (unlikely(!get_node(cachep, nodeid))) {
3316
3317 ptr = fallback_alloc(cachep, flags);
3318 goto out;
3319 }
3320
3321 if (nodeid == slab_node) {
3322
3323
3324
3325
3326
3327
3328 ptr = ____cache_alloc(cachep, flags);
3329 if (ptr)
3330 goto out;
3331 }
3332
3333 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3334 out:
3335 local_irq_restore(save_flags);
3336 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3337
3338 if (unlikely(flags & __GFP_ZERO) && ptr)
3339 memset(ptr, 0, cachep->object_size);
3340
3341 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3342 return ptr;
3343}
3344
3345static __always_inline void *
3346__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3347{
3348 void *objp;
3349
3350 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3351 objp = alternate_node_alloc(cache, flags);
3352 if (objp)
3353 goto out;
3354 }
3355 objp = ____cache_alloc(cache, flags);
3356
3357
3358
3359
3360
3361 if (!objp)
3362 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3363
3364 out:
3365 return objp;
3366}
3367#else
3368
3369static __always_inline void *
3370__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3371{
3372 return ____cache_alloc(cachep, flags);
3373}
3374
3375#endif
3376
3377static __always_inline void *
3378slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3379{
3380 unsigned long save_flags;
3381 void *objp;
3382
3383 flags &= gfp_allowed_mask;
3384 cachep = slab_pre_alloc_hook(cachep, flags);
3385 if (unlikely(!cachep))
3386 return NULL;
3387
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390 objp = __do_cache_alloc(cachep, flags);
3391 local_irq_restore(save_flags);
3392 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393 prefetchw(objp);
3394
3395 if (unlikely(flags & __GFP_ZERO) && objp)
3396 memset(objp, 0, cachep->object_size);
3397
3398 slab_post_alloc_hook(cachep, flags, 1, &objp);
3399 return objp;
3400}
3401
3402
3403
3404
3405
3406static void free_block(struct kmem_cache *cachep, void **objpp,
3407 int nr_objects, int node, struct list_head *list)
3408{
3409 int i;
3410 struct kmem_cache_node *n = get_node(cachep, node);
3411 struct page *page;
3412
3413 n->free_objects += nr_objects;
3414
3415 for (i = 0; i < nr_objects; i++) {
3416 void *objp;
3417 struct page *page;
3418
3419 objp = objpp[i];
3420
3421 page = virt_to_head_page(objp);
3422 list_del(&page->lru);
3423 check_spinlock_acquired_node(cachep, node);
3424 slab_put_obj(cachep, page, objp);
3425 STATS_DEC_ACTIVE(cachep);
3426
3427
3428 if (page->active == 0) {
3429 list_add(&page->lru, &n->slabs_free);
3430 n->free_slabs++;
3431 } else {
3432
3433
3434
3435
3436 list_add_tail(&page->lru, &n->slabs_partial);
3437 }
3438 }
3439
3440 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3441 n->free_objects -= cachep->num;
3442
3443 page = list_last_entry(&n->slabs_free, struct page, lru);
3444 list_move(&page->lru, list);
3445 n->free_slabs--;
3446 n->total_slabs--;
3447 }
3448}
3449
3450static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3451{
3452 int batchcount;
3453 struct kmem_cache_node *n;
3454 int node = numa_mem_id();
3455 LIST_HEAD(list);
3456
3457 batchcount = ac->batchcount;
3458
3459 check_irq_off();
3460 n = get_node(cachep, node);
3461 spin_lock(&n->list_lock);
3462 if (n->shared) {
3463 struct array_cache *shared_array = n->shared;
3464 int max = shared_array->limit - shared_array->avail;
3465 if (max) {
3466 if (batchcount > max)
3467 batchcount = max;
3468 memcpy(&(shared_array->entry[shared_array->avail]),
3469 ac->entry, sizeof(void *) * batchcount);
3470 shared_array->avail += batchcount;
3471 goto free_done;
3472 }
3473 }
3474
3475 free_block(cachep, ac->entry, batchcount, node, &list);
3476free_done:
3477#if STATS
3478 {
3479 int i = 0;
3480 struct page *page;
3481
3482 list_for_each_entry(page, &n->slabs_free, lru) {
3483 BUG_ON(page->active);
3484
3485 i++;
3486 }
3487 STATS_SET_FREEABLE(cachep, i);
3488 }
3489#endif
3490 spin_unlock(&n->list_lock);
3491 slabs_destroy(cachep, &list);
3492 ac->avail -= batchcount;
3493 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3494}
3495
3496
3497
3498
3499
3500static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3501 unsigned long caller)
3502{
3503
3504 if (kasan_slab_free(cachep, objp))
3505 return;
3506
3507 ___cache_free(cachep, objp, caller);
3508}
3509
3510void ___cache_free(struct kmem_cache *cachep, void *objp,
3511 unsigned long caller)
3512{
3513 struct array_cache *ac = cpu_cache_get(cachep);
3514
3515 check_irq_off();
3516 kmemleak_free_recursive(objp, cachep->flags);
3517 objp = cache_free_debugcheck(cachep, objp, caller);
3518
3519 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3520
3521
3522
3523
3524
3525
3526
3527
3528 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3529 return;
3530
3531 if (ac->avail < ac->limit) {
3532 STATS_INC_FREEHIT(cachep);
3533 } else {
3534 STATS_INC_FREEMISS(cachep);
3535 cache_flusharray(cachep, ac);
3536 }
3537
3538 if (sk_memalloc_socks()) {
3539 struct page *page = virt_to_head_page(objp);
3540
3541 if (unlikely(PageSlabPfmemalloc(page))) {
3542 cache_free_pfmemalloc(cachep, page, objp);
3543 return;
3544 }
3545 }
3546
3547 ac->entry[ac->avail++] = objp;
3548}
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3559{
3560 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3561
3562 kasan_slab_alloc(cachep, ret, flags);
3563 trace_kmem_cache_alloc(_RET_IP_, ret,
3564 cachep->object_size, cachep->size, flags);
3565
3566 return ret;
3567}
3568EXPORT_SYMBOL(kmem_cache_alloc);
3569
3570static __always_inline void
3571cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3572 size_t size, void **p, unsigned long caller)
3573{
3574 size_t i;
3575
3576 for (i = 0; i < size; i++)
3577 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3578}
3579
3580int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3581 void **p)
3582{
3583 size_t i;
3584
3585 s = slab_pre_alloc_hook(s, flags);
3586 if (!s)
3587 return 0;
3588
3589 cache_alloc_debugcheck_before(s, flags);
3590
3591 local_irq_disable();
3592 for (i = 0; i < size; i++) {
3593 void *objp = __do_cache_alloc(s, flags);
3594
3595 if (unlikely(!objp))
3596 goto error;
3597 p[i] = objp;
3598 }
3599 local_irq_enable();
3600
3601 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3602
3603
3604 if (unlikely(flags & __GFP_ZERO))
3605 for (i = 0; i < size; i++)
3606 memset(p[i], 0, s->object_size);
3607
3608 slab_post_alloc_hook(s, flags, size, p);
3609
3610 return size;
3611error:
3612 local_irq_enable();
3613 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3614 slab_post_alloc_hook(s, flags, i, p);
3615 __kmem_cache_free_bulk(s, i, p);
3616 return 0;
3617}
3618EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3619
3620#ifdef CONFIG_TRACING
3621void *
3622kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3623{
3624 void *ret;
3625
3626 ret = slab_alloc(cachep, flags, _RET_IP_);
3627
3628 kasan_kmalloc(cachep, ret, size, flags);
3629 trace_kmalloc(_RET_IP_, ret,
3630 size, cachep->size, flags);
3631 return ret;
3632}
3633EXPORT_SYMBOL(kmem_cache_alloc_trace);
3634#endif
3635
3636#ifdef CONFIG_NUMA
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3649{
3650 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3651
3652 kasan_slab_alloc(cachep, ret, flags);
3653 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3654 cachep->object_size, cachep->size,
3655 flags, nodeid);
3656
3657 return ret;
3658}
3659EXPORT_SYMBOL(kmem_cache_alloc_node);
3660
3661#ifdef CONFIG_TRACING
3662void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3663 gfp_t flags,
3664 int nodeid,
3665 size_t size)
3666{
3667 void *ret;
3668
3669 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3670
3671 kasan_kmalloc(cachep, ret, size, flags);
3672 trace_kmalloc_node(_RET_IP_, ret,
3673 size, cachep->size,
3674 flags, nodeid);
3675 return ret;
3676}
3677EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3678#endif
3679
3680static __always_inline void *
3681__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3682{
3683 struct kmem_cache *cachep;
3684 void *ret;
3685
3686 cachep = kmalloc_slab(size, flags);
3687 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 return cachep;
3689 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3690 kasan_kmalloc(cachep, ret, size, flags);
3691
3692 return ret;
3693}
3694
3695void *__kmalloc_node(size_t size, gfp_t flags, int node)
3696{
3697 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3698}
3699EXPORT_SYMBOL(__kmalloc_node);
3700
3701void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702 int node, unsigned long caller)
3703{
3704 return __do_kmalloc_node(size, flags, node, caller);
3705}
3706EXPORT_SYMBOL(__kmalloc_node_track_caller);
3707#endif
3708
3709
3710
3711
3712
3713
3714
3715static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3716 unsigned long caller)
3717{
3718 struct kmem_cache *cachep;
3719 void *ret;
3720
3721 cachep = kmalloc_slab(size, flags);
3722 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3723 return cachep;
3724 ret = slab_alloc(cachep, flags, caller);
3725
3726 kasan_kmalloc(cachep, ret, size, flags);
3727 trace_kmalloc(caller, ret,
3728 size, cachep->size, flags);
3729
3730 return ret;
3731}
3732
3733void *__kmalloc(size_t size, gfp_t flags)
3734{
3735 return __do_kmalloc(size, flags, _RET_IP_);
3736}
3737EXPORT_SYMBOL(__kmalloc);
3738
3739void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3740{
3741 return __do_kmalloc(size, flags, caller);
3742}
3743EXPORT_SYMBOL(__kmalloc_track_caller);
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3754{
3755 unsigned long flags;
3756 cachep = cache_from_obj(cachep, objp);
3757 if (!cachep)
3758 return;
3759
3760 local_irq_save(flags);
3761 debug_check_no_locks_freed(objp, cachep->object_size);
3762 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3763 debug_check_no_obj_freed(objp, cachep->object_size);
3764 __cache_free(cachep, objp, _RET_IP_);
3765 local_irq_restore(flags);
3766
3767 trace_kmem_cache_free(_RET_IP_, objp);
3768}
3769EXPORT_SYMBOL(kmem_cache_free);
3770
3771void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3772{
3773 struct kmem_cache *s;
3774 size_t i;
3775
3776 local_irq_disable();
3777 for (i = 0; i < size; i++) {
3778 void *objp = p[i];
3779
3780 if (!orig_s)
3781 s = virt_to_cache(objp);
3782 else
3783 s = cache_from_obj(orig_s, objp);
3784
3785 debug_check_no_locks_freed(objp, s->object_size);
3786 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3787 debug_check_no_obj_freed(objp, s->object_size);
3788
3789 __cache_free(s, objp, _RET_IP_);
3790 }
3791 local_irq_enable();
3792
3793
3794}
3795EXPORT_SYMBOL(kmem_cache_free_bulk);
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806void kfree(const void *objp)
3807{
3808 struct kmem_cache *c;
3809 unsigned long flags;
3810
3811 trace_kfree(_RET_IP_, objp);
3812
3813 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3814 return;
3815 local_irq_save(flags);
3816 kfree_debugcheck(objp);
3817 c = virt_to_cache(objp);
3818 debug_check_no_locks_freed(objp, c->object_size);
3819
3820 debug_check_no_obj_freed(objp, c->object_size);
3821 __cache_free(c, (void *)objp, _RET_IP_);
3822 local_irq_restore(flags);
3823}
3824EXPORT_SYMBOL(kfree);
3825
3826
3827
3828
3829static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3830{
3831 int ret;
3832 int node;
3833 struct kmem_cache_node *n;
3834
3835 for_each_online_node(node) {
3836 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3837 if (ret)
3838 goto fail;
3839
3840 }
3841
3842 return 0;
3843
3844fail:
3845 if (!cachep->list.next) {
3846
3847 node--;
3848 while (node >= 0) {
3849 n = get_node(cachep, node);
3850 if (n) {
3851 kfree(n->shared);
3852 free_alien_cache(n->alien);
3853 kfree(n);
3854 cachep->node[node] = NULL;
3855 }
3856 node--;
3857 }
3858 }
3859 return -ENOMEM;
3860}
3861
3862
3863static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3864 int batchcount, int shared, gfp_t gfp)
3865{
3866 struct array_cache __percpu *cpu_cache, *prev;
3867 int cpu;
3868
3869 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3870 if (!cpu_cache)
3871 return -ENOMEM;
3872
3873 prev = cachep->cpu_cache;
3874 cachep->cpu_cache = cpu_cache;
3875
3876
3877
3878
3879 if (prev)
3880 kick_all_cpus_sync();
3881
3882 check_irq_on();
3883 cachep->batchcount = batchcount;
3884 cachep->limit = limit;
3885 cachep->shared = shared;
3886
3887 if (!prev)
3888 goto setup_node;
3889
3890 for_each_online_cpu(cpu) {
3891 LIST_HEAD(list);
3892 int node;
3893 struct kmem_cache_node *n;
3894 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3895
3896 node = cpu_to_mem(cpu);
3897 n = get_node(cachep, node);
3898 spin_lock_irq(&n->list_lock);
3899 free_block(cachep, ac->entry, ac->avail, node, &list);
3900 spin_unlock_irq(&n->list_lock);
3901 slabs_destroy(cachep, &list);
3902 }
3903 free_percpu(prev);
3904
3905setup_node:
3906 return setup_kmem_cache_nodes(cachep, gfp);
3907}
3908
3909static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3910 int batchcount, int shared, gfp_t gfp)
3911{
3912 int ret;
3913 struct kmem_cache *c;
3914
3915 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3916
3917 if (slab_state < FULL)
3918 return ret;
3919
3920 if ((ret < 0) || !is_root_cache(cachep))
3921 return ret;
3922
3923 lockdep_assert_held(&slab_mutex);
3924 for_each_memcg_cache(c, cachep) {
3925
3926 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3927 }
3928
3929 return ret;
3930}
3931
3932
3933static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3934{
3935 int err;
3936 int limit = 0;
3937 int shared = 0;
3938 int batchcount = 0;
3939
3940 err = cache_random_seq_create(cachep, cachep->num, gfp);
3941 if (err)
3942 goto end;
3943
3944 if (!is_root_cache(cachep)) {
3945 struct kmem_cache *root = memcg_root_cache(cachep);
3946 limit = root->limit;
3947 shared = root->shared;
3948 batchcount = root->batchcount;
3949 }
3950
3951 if (limit && shared && batchcount)
3952 goto skip_setup;
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962 if (cachep->size > 131072)
3963 limit = 1;
3964 else if (cachep->size > PAGE_SIZE)
3965 limit = 8;
3966 else if (cachep->size > 1024)
3967 limit = 24;
3968 else if (cachep->size > 256)
3969 limit = 54;
3970 else
3971 limit = 120;
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982 shared = 0;
3983 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3984 shared = 8;
3985
3986#if DEBUG
3987
3988
3989
3990
3991 if (limit > 32)
3992 limit = 32;
3993#endif
3994 batchcount = (limit + 1) / 2;
3995skip_setup:
3996 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3997end:
3998 if (err)
3999 pr_err("enable_cpucache failed for %s, error %d\n",
4000 cachep->name, -err);
4001 return err;
4002}
4003
4004
4005
4006
4007
4008
4009static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4010 struct array_cache *ac, int node)
4011{
4012 LIST_HEAD(list);
4013
4014
4015 check_mutex_acquired();
4016
4017 if (!ac || !ac->avail)
4018 return;
4019
4020 if (ac->touched) {
4021 ac->touched = 0;
4022 return;
4023 }
4024
4025 spin_lock_irq(&n->list_lock);
4026 drain_array_locked(cachep, ac, node, false, &list);
4027 spin_unlock_irq(&n->list_lock);
4028
4029 slabs_destroy(cachep, &list);
4030}
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044static void cache_reap(struct work_struct *w)
4045{
4046 struct kmem_cache *searchp;
4047 struct kmem_cache_node *n;
4048 int node = numa_mem_id();
4049 struct delayed_work *work = to_delayed_work(w);
4050
4051 if (!mutex_trylock(&slab_mutex))
4052
4053 goto out;
4054
4055 list_for_each_entry(searchp, &slab_caches, list) {
4056 check_irq_on();
4057
4058
4059
4060
4061
4062
4063 n = get_node(searchp, node);
4064
4065 reap_alien(searchp, n);
4066
4067 drain_array(searchp, n, cpu_cache_get(searchp), node);
4068
4069
4070
4071
4072
4073 if (time_after(n->next_reap, jiffies))
4074 goto next;
4075
4076 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4077
4078 drain_array(searchp, n, n->shared, node);
4079
4080 if (n->free_touched)
4081 n->free_touched = 0;
4082 else {
4083 int freed;
4084
4085 freed = drain_freelist(searchp, n, (n->free_limit +
4086 5 * searchp->num - 1) / (5 * searchp->num));
4087 STATS_ADD_REAPED(searchp, freed);
4088 }
4089next:
4090 cond_resched();
4091 }
4092 check_irq_on();
4093 mutex_unlock(&slab_mutex);
4094 next_reap_node();
4095out:
4096
4097 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4098}
4099
4100#ifdef CONFIG_SLABINFO
4101void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4102{
4103 unsigned long active_objs, num_objs, active_slabs;
4104 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4105 unsigned long free_slabs = 0;
4106 int node;
4107 struct kmem_cache_node *n;
4108
4109 for_each_kmem_cache_node(cachep, node, n) {
4110 check_irq_on();
4111 spin_lock_irq(&n->list_lock);
4112
4113 total_slabs += n->total_slabs;
4114 free_slabs += n->free_slabs;
4115 free_objs += n->free_objects;
4116
4117 if (n->shared)
4118 shared_avail += n->shared->avail;
4119
4120 spin_unlock_irq(&n->list_lock);
4121 }
4122 num_objs = total_slabs * cachep->num;
4123 active_slabs = total_slabs - free_slabs;
4124 active_objs = num_objs - free_objs;
4125
4126 sinfo->active_objs = active_objs;
4127 sinfo->num_objs = num_objs;
4128 sinfo->active_slabs = active_slabs;
4129 sinfo->num_slabs = total_slabs;
4130 sinfo->shared_avail = shared_avail;
4131 sinfo->limit = cachep->limit;
4132 sinfo->batchcount = cachep->batchcount;
4133 sinfo->shared = cachep->shared;
4134 sinfo->objects_per_slab = cachep->num;
4135 sinfo->cache_order = cachep->gfporder;
4136}
4137
4138void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4139{
4140#if STATS
4141 {
4142 unsigned long high = cachep->high_mark;
4143 unsigned long allocs = cachep->num_allocations;
4144 unsigned long grown = cachep->grown;
4145 unsigned long reaped = cachep->reaped;
4146 unsigned long errors = cachep->errors;
4147 unsigned long max_freeable = cachep->max_freeable;
4148 unsigned long node_allocs = cachep->node_allocs;
4149 unsigned long node_frees = cachep->node_frees;
4150 unsigned long overflows = cachep->node_overflow;
4151
4152 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4153 allocs, high, grown,
4154 reaped, errors, max_freeable, node_allocs,
4155 node_frees, overflows);
4156 }
4157
4158 {
4159 unsigned long allochit = atomic_read(&cachep->allochit);
4160 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4161 unsigned long freehit = atomic_read(&cachep->freehit);
4162 unsigned long freemiss = atomic_read(&cachep->freemiss);
4163
4164 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4165 allochit, allocmiss, freehit, freemiss);
4166 }
4167#endif
4168}
4169
4170#define MAX_SLABINFO_WRITE 128
4171
4172
4173
4174
4175
4176
4177
4178ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4179 size_t count, loff_t *ppos)
4180{
4181 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4182 int limit, batchcount, shared, res;
4183 struct kmem_cache *cachep;
4184
4185 if (count > MAX_SLABINFO_WRITE)
4186 return -EINVAL;
4187 if (copy_from_user(&kbuf, buffer, count))
4188 return -EFAULT;
4189 kbuf[MAX_SLABINFO_WRITE] = '\0';
4190
4191 tmp = strchr(kbuf, ' ');
4192 if (!tmp)
4193 return -EINVAL;
4194 *tmp = '\0';
4195 tmp++;
4196 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4197 return -EINVAL;
4198
4199
4200 mutex_lock(&slab_mutex);
4201 res = -EINVAL;
4202 list_for_each_entry(cachep, &slab_caches, list) {
4203 if (!strcmp(cachep->name, kbuf)) {
4204 if (limit < 1 || batchcount < 1 ||
4205 batchcount > limit || shared < 0) {
4206 res = 0;
4207 } else {
4208 res = do_tune_cpucache(cachep, limit,
4209 batchcount, shared,
4210 GFP_KERNEL);
4211 }
4212 break;
4213 }
4214 }
4215 mutex_unlock(&slab_mutex);
4216 if (res >= 0)
4217 res = count;
4218 return res;
4219}
4220
4221#ifdef CONFIG_DEBUG_SLAB_LEAK
4222
4223static inline int add_caller(unsigned long *n, unsigned long v)
4224{
4225 unsigned long *p;
4226 int l;
4227 if (!v)
4228 return 1;
4229 l = n[1];
4230 p = n + 2;
4231 while (l) {
4232 int i = l/2;
4233 unsigned long *q = p + 2 * i;
4234 if (*q == v) {
4235 q[1]++;
4236 return 1;
4237 }
4238 if (*q > v) {
4239 l = i;
4240 } else {
4241 p = q + 2;
4242 l -= i + 1;
4243 }
4244 }
4245 if (++n[1] == n[0])
4246 return 0;
4247 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4248 p[0] = v;
4249 p[1] = 1;
4250 return 1;
4251}
4252
4253static void handle_slab(unsigned long *n, struct kmem_cache *c,
4254 struct page *page)
4255{
4256 void *p;
4257 int i, j;
4258 unsigned long v;
4259
4260 if (n[0] == n[1])
4261 return;
4262 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4263 bool active = true;
4264
4265 for (j = page->active; j < c->num; j++) {
4266 if (get_free_obj(page, j) == i) {
4267 active = false;
4268 break;
4269 }
4270 }
4271
4272 if (!active)
4273 continue;
4274
4275
4276
4277
4278
4279
4280
4281 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4282 continue;
4283
4284 if (!add_caller(n, v))
4285 return;
4286 }
4287}
4288
4289static void show_symbol(struct seq_file *m, unsigned long address)
4290{
4291#ifdef CONFIG_KALLSYMS
4292 unsigned long offset, size;
4293 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4294
4295 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4296 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4297 if (modname[0])
4298 seq_printf(m, " [%s]", modname);
4299 return;
4300 }
4301#endif
4302 seq_printf(m, "%p", (void *)address);
4303}
4304
4305static int leaks_show(struct seq_file *m, void *p)
4306{
4307 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4308 struct page *page;
4309 struct kmem_cache_node *n;
4310 const char *name;
4311 unsigned long *x = m->private;
4312 int node;
4313 int i;
4314
4315 if (!(cachep->flags & SLAB_STORE_USER))
4316 return 0;
4317 if (!(cachep->flags & SLAB_RED_ZONE))
4318 return 0;
4319
4320
4321
4322
4323
4324
4325
4326 do {
4327 set_store_user_clean(cachep);
4328 drain_cpu_caches(cachep);
4329
4330 x[1] = 0;
4331
4332 for_each_kmem_cache_node(cachep, node, n) {
4333
4334 check_irq_on();
4335 spin_lock_irq(&n->list_lock);
4336
4337 list_for_each_entry(page, &n->slabs_full, lru)
4338 handle_slab(x, cachep, page);
4339 list_for_each_entry(page, &n->slabs_partial, lru)
4340 handle_slab(x, cachep, page);
4341 spin_unlock_irq(&n->list_lock);
4342 }
4343 } while (!is_store_user_clean(cachep));
4344
4345 name = cachep->name;
4346 if (x[0] == x[1]) {
4347
4348 mutex_unlock(&slab_mutex);
4349 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4350 if (!m->private) {
4351
4352 m->private = x;
4353 mutex_lock(&slab_mutex);
4354 return -ENOMEM;
4355 }
4356 *(unsigned long *)m->private = x[0] * 2;
4357 kfree(x);
4358 mutex_lock(&slab_mutex);
4359
4360 m->count = m->size;
4361 return 0;
4362 }
4363 for (i = 0; i < x[1]; i++) {
4364 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365 show_symbol(m, x[2*i+2]);
4366 seq_putc(m, '\n');
4367 }
4368
4369 return 0;
4370}
4371
4372static const struct seq_operations slabstats_op = {
4373 .start = slab_start,
4374 .next = slab_next,
4375 .stop = slab_stop,
4376 .show = leaks_show,
4377};
4378
4379static int slabstats_open(struct inode *inode, struct file *file)
4380{
4381 unsigned long *n;
4382
4383 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4384 if (!n)
4385 return -ENOMEM;
4386
4387 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4388
4389 return 0;
4390}
4391
4392static const struct file_operations proc_slabstats_operations = {
4393 .open = slabstats_open,
4394 .read = seq_read,
4395 .llseek = seq_lseek,
4396 .release = seq_release_private,
4397};
4398#endif
4399
4400static int __init slab_proc_init(void)
4401{
4402#ifdef CONFIG_DEBUG_SLAB_LEAK
4403 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4404#endif
4405 return 0;
4406}
4407module_init(slab_proc_init);
4408#endif
4409
4410#ifdef CONFIG_HARDENED_USERCOPY
4411
4412
4413
4414
4415
4416
4417const char *__check_heap_object(const void *ptr, unsigned long n,
4418 struct page *page)
4419{
4420 struct kmem_cache *cachep;
4421 unsigned int objnr;
4422 unsigned long offset;
4423
4424
4425 cachep = page->slab_cache;
4426 objnr = obj_to_index(cachep, page, (void *)ptr);
4427 BUG_ON(objnr >= cachep->num);
4428
4429
4430 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4431
4432
4433 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4434 return NULL;
4435
4436 return cachep->name;
4437}
4438#endif
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452size_t ksize(const void *objp)
4453{
4454 size_t size;
4455
4456 BUG_ON(!objp);
4457 if (unlikely(objp == ZERO_SIZE_PTR))
4458 return 0;
4459
4460 size = virt_to_cache(objp)->object_size;
4461
4462
4463
4464 kasan_unpoison_shadow(objp, size);
4465
4466 return size;
4467}
4468EXPORT_SYMBOL(ksize);
4469