1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18#include "ctvmem.h"
19#include "ctatc.h"
20#include <linux/slab.h>
21#include <linux/mm.h>
22#include <linux/io.h>
23#include <sound/pcm.h>
24
25#define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
26#define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
27
28
29
30
31
32static struct ct_vm_block *
33get_vm_block(struct ct_vm *vm, unsigned int size, struct ct_atc *atc)
34{
35 struct ct_vm_block *block = NULL, *entry;
36 struct list_head *pos;
37
38 size = CT_PAGE_ALIGN(size);
39 if (size > vm->size) {
40 dev_err(atc->card->dev,
41 "Fail! No sufficient device virtual memory space available!\n");
42 return NULL;
43 }
44
45 mutex_lock(&vm->lock);
46 list_for_each(pos, &vm->unused) {
47 entry = list_entry(pos, struct ct_vm_block, list);
48 if (entry->size >= size)
49 break;
50 }
51 if (pos == &vm->unused)
52 goto out;
53
54 if (entry->size == size) {
55
56 list_move(&entry->list, &vm->used);
57 vm->size -= size;
58 block = entry;
59 goto out;
60 }
61
62 block = kzalloc(sizeof(*block), GFP_KERNEL);
63 if (!block)
64 goto out;
65
66 block->addr = entry->addr;
67 block->size = size;
68 list_add(&block->list, &vm->used);
69 entry->addr += size;
70 entry->size -= size;
71 vm->size -= size;
72
73 out:
74 mutex_unlock(&vm->lock);
75 return block;
76}
77
78static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
79{
80 struct ct_vm_block *entry, *pre_ent;
81 struct list_head *pos, *pre;
82
83 block->size = CT_PAGE_ALIGN(block->size);
84
85 mutex_lock(&vm->lock);
86 list_del(&block->list);
87 vm->size += block->size;
88
89 list_for_each(pos, &vm->unused) {
90 entry = list_entry(pos, struct ct_vm_block, list);
91 if (entry->addr >= (block->addr + block->size))
92 break;
93 }
94 if (pos == &vm->unused) {
95 list_add_tail(&block->list, &vm->unused);
96 entry = block;
97 } else {
98 if ((block->addr + block->size) == entry->addr) {
99 entry->addr = block->addr;
100 entry->size += block->size;
101 kfree(block);
102 } else {
103 __list_add(&block->list, pos->prev, pos);
104 entry = block;
105 }
106 }
107
108 pos = &entry->list;
109 pre = pos->prev;
110 while (pre != &vm->unused) {
111 entry = list_entry(pos, struct ct_vm_block, list);
112 pre_ent = list_entry(pre, struct ct_vm_block, list);
113 if ((pre_ent->addr + pre_ent->size) > entry->addr)
114 break;
115
116 pre_ent->size += entry->size;
117 list_del(pos);
118 kfree(entry);
119 pos = pre;
120 pre = pos->prev;
121 }
122 mutex_unlock(&vm->lock);
123}
124
125
126static struct ct_vm_block *
127ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
128{
129 struct ct_vm_block *block;
130 unsigned int pte_start;
131 unsigned i, pages;
132 unsigned long *ptp;
133 struct ct_atc *atc = snd_pcm_substream_chip(substream);
134
135 block = get_vm_block(vm, size, atc);
136 if (block == NULL) {
137 dev_err(atc->card->dev,
138 "No virtual memory block that is big enough to allocate!\n");
139 return NULL;
140 }
141
142 ptp = (unsigned long *)vm->ptp[0].area;
143 pte_start = (block->addr >> CT_PAGE_SHIFT);
144 pages = block->size >> CT_PAGE_SHIFT;
145 for (i = 0; i < pages; i++) {
146 unsigned long addr;
147 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
148 ptp[pte_start + i] = addr;
149 }
150
151 block->size = size;
152 return block;
153}
154
155static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
156{
157
158 put_vm_block(vm, block);
159}
160
161
162
163
164
165
166static dma_addr_t
167ct_get_ptp_phys(struct ct_vm *vm, int index)
168{
169 return (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
170}
171
172int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
173{
174 struct ct_vm *vm;
175 struct ct_vm_block *block;
176 int i, err = 0;
177
178 *rvm = NULL;
179
180 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
181 if (!vm)
182 return -ENOMEM;
183
184 mutex_init(&vm->lock);
185
186
187 for (i = 0; i < CT_PTP_NUM; i++) {
188 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
189 snd_dma_pci_data(pci),
190 PAGE_SIZE, &vm->ptp[i]);
191 if (err < 0)
192 break;
193 }
194 if (err < 0) {
195
196 ct_vm_destroy(vm);
197 return -ENOMEM;
198 }
199 vm->size = CT_ADDRS_PER_PAGE * i;
200 vm->map = ct_vm_map;
201 vm->unmap = ct_vm_unmap;
202 vm->get_ptp_phys = ct_get_ptp_phys;
203 INIT_LIST_HEAD(&vm->unused);
204 INIT_LIST_HEAD(&vm->used);
205 block = kzalloc(sizeof(*block), GFP_KERNEL);
206 if (NULL != block) {
207 block->addr = 0;
208 block->size = vm->size;
209 list_add(&block->list, &vm->unused);
210 }
211
212 *rvm = vm;
213 return 0;
214}
215
216
217
218void ct_vm_destroy(struct ct_vm *vm)
219{
220 int i;
221 struct list_head *pos;
222 struct ct_vm_block *entry;
223
224
225 while (!list_empty(&vm->used)) {
226 pos = vm->used.next;
227 list_del(pos);
228 entry = list_entry(pos, struct ct_vm_block, list);
229 kfree(entry);
230 }
231 while (!list_empty(&vm->unused)) {
232 pos = vm->unused.next;
233 list_del(pos);
234 entry = list_entry(pos, struct ct_vm_block, list);
235 kfree(entry);
236 }
237
238
239 for (i = 0; i < CT_PTP_NUM; i++)
240 snd_dma_free_pages(&vm->ptp[i]);
241
242 vm->size = 0;
243
244 kfree(vm);
245}
246