linux/sound/soc/codecs/nau8825.c
<<
>>
Prefs
   1/*
   2 * Nuvoton NAU8825 audio codec driver
   3 *
   4 * Copyright 2015 Google Chromium project.
   5 *  Author: Anatol Pomozov <anatol@chromium.org>
   6 * Copyright 2015 Nuvoton Technology Corp.
   7 *  Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
   8 *
   9 * Licensed under the GPL-2.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/delay.h>
  14#include <linux/init.h>
  15#include <linux/i2c.h>
  16#include <linux/regmap.h>
  17#include <linux/slab.h>
  18#include <linux/clk.h>
  19#include <linux/acpi.h>
  20#include <linux/math64.h>
  21#include <linux/semaphore.h>
  22
  23#include <sound/initval.h>
  24#include <sound/tlv.h>
  25#include <sound/core.h>
  26#include <sound/pcm.h>
  27#include <sound/pcm_params.h>
  28#include <sound/soc.h>
  29#include <sound/jack.h>
  30
  31
  32#include "nau8825.h"
  33
  34
  35#define NUVOTON_CODEC_DAI "nau8825-hifi"
  36
  37#define NAU_FREF_MAX 13500000
  38#define NAU_FVCO_MAX 124000000
  39#define NAU_FVCO_MIN 90000000
  40
  41/* cross talk suppression detection */
  42#define LOG10_MAGIC 646456993
  43#define GAIN_AUGMENT 22500
  44#define SIDETONE_BASE 207000
  45
  46/* the maximum frequency of CLK_ADC and CLK_DAC */
  47#define CLK_DA_AD_MAX 6144000
  48
  49static int nau8825_configure_sysclk(struct nau8825 *nau8825,
  50                int clk_id, unsigned int freq);
  51
  52struct nau8825_fll {
  53        int mclk_src;
  54        int ratio;
  55        int fll_frac;
  56        int fll_int;
  57        int clk_ref_div;
  58};
  59
  60struct nau8825_fll_attr {
  61        unsigned int param;
  62        unsigned int val;
  63};
  64
  65/* scaling for mclk from sysclk_src output */
  66static const struct nau8825_fll_attr mclk_src_scaling[] = {
  67        { 1, 0x0 },
  68        { 2, 0x2 },
  69        { 4, 0x3 },
  70        { 8, 0x4 },
  71        { 16, 0x5 },
  72        { 32, 0x6 },
  73        { 3, 0x7 },
  74        { 6, 0xa },
  75        { 12, 0xb },
  76        { 24, 0xc },
  77        { 48, 0xd },
  78        { 96, 0xe },
  79        { 5, 0xf },
  80};
  81
  82/* ratio for input clk freq */
  83static const struct nau8825_fll_attr fll_ratio[] = {
  84        { 512000, 0x01 },
  85        { 256000, 0x02 },
  86        { 128000, 0x04 },
  87        { 64000, 0x08 },
  88        { 32000, 0x10 },
  89        { 8000, 0x20 },
  90        { 4000, 0x40 },
  91};
  92
  93static const struct nau8825_fll_attr fll_pre_scalar[] = {
  94        { 1, 0x0 },
  95        { 2, 0x1 },
  96        { 4, 0x2 },
  97        { 8, 0x3 },
  98};
  99
 100/* over sampling rate */
 101struct nau8825_osr_attr {
 102        unsigned int osr;
 103        unsigned int clk_src;
 104};
 105
 106static const struct nau8825_osr_attr osr_dac_sel[] = {
 107        { 64, 2 },      /* OSR 64, SRC 1/4 */
 108        { 256, 0 },     /* OSR 256, SRC 1 */
 109        { 128, 1 },     /* OSR 128, SRC 1/2 */
 110        { 0, 0 },
 111        { 32, 3 },      /* OSR 32, SRC 1/8 */
 112};
 113
 114static const struct nau8825_osr_attr osr_adc_sel[] = {
 115        { 32, 3 },      /* OSR 32, SRC 1/8 */
 116        { 64, 2 },      /* OSR 64, SRC 1/4 */
 117        { 128, 1 },     /* OSR 128, SRC 1/2 */
 118        { 256, 0 },     /* OSR 256, SRC 1 */
 119};
 120
 121static const struct reg_default nau8825_reg_defaults[] = {
 122        { NAU8825_REG_ENA_CTRL, 0x00ff },
 123        { NAU8825_REG_IIC_ADDR_SET, 0x0 },
 124        { NAU8825_REG_CLK_DIVIDER, 0x0050 },
 125        { NAU8825_REG_FLL1, 0x0 },
 126        { NAU8825_REG_FLL2, 0x3126 },
 127        { NAU8825_REG_FLL3, 0x0008 },
 128        { NAU8825_REG_FLL4, 0x0010 },
 129        { NAU8825_REG_FLL5, 0x0 },
 130        { NAU8825_REG_FLL6, 0x6000 },
 131        { NAU8825_REG_FLL_VCO_RSV, 0xf13c },
 132        { NAU8825_REG_HSD_CTRL, 0x000c },
 133        { NAU8825_REG_JACK_DET_CTRL, 0x0 },
 134        { NAU8825_REG_INTERRUPT_MASK, 0x0 },
 135        { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
 136        { NAU8825_REG_SAR_CTRL, 0x0015 },
 137        { NAU8825_REG_KEYDET_CTRL, 0x0110 },
 138        { NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
 139        { NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
 140        { NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
 141        { NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
 142        { NAU8825_REG_GPIO34_CTRL, 0x0 },
 143        { NAU8825_REG_GPIO12_CTRL, 0x0 },
 144        { NAU8825_REG_TDM_CTRL, 0x0 },
 145        { NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
 146        { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
 147        { NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
 148        { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
 149        { NAU8825_REG_BIQ_CTRL, 0x0 },
 150        { NAU8825_REG_BIQ_COF1, 0x0 },
 151        { NAU8825_REG_BIQ_COF2, 0x0 },
 152        { NAU8825_REG_BIQ_COF3, 0x0 },
 153        { NAU8825_REG_BIQ_COF4, 0x0 },
 154        { NAU8825_REG_BIQ_COF5, 0x0 },
 155        { NAU8825_REG_BIQ_COF6, 0x0 },
 156        { NAU8825_REG_BIQ_COF7, 0x0 },
 157        { NAU8825_REG_BIQ_COF8, 0x0 },
 158        { NAU8825_REG_BIQ_COF9, 0x0 },
 159        { NAU8825_REG_BIQ_COF10, 0x0 },
 160        { NAU8825_REG_ADC_RATE, 0x0010 },
 161        { NAU8825_REG_DAC_CTRL1, 0x0001 },
 162        { NAU8825_REG_DAC_CTRL2, 0x0 },
 163        { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
 164        { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
 165        { NAU8825_REG_MUTE_CTRL, 0x0 },
 166        { NAU8825_REG_HSVOL_CTRL, 0x0 },
 167        { NAU8825_REG_DACL_CTRL, 0x02cf },
 168        { NAU8825_REG_DACR_CTRL, 0x00cf },
 169        { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
 170        { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
 171        { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
 172        { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
 173        { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
 174        { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
 175        { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
 176        { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
 177        { NAU8825_REG_IMM_MODE_CTRL, 0x0 },
 178        { NAU8825_REG_CLASSG_CTRL, 0x0 },
 179        { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
 180        { NAU8825_REG_MISC_CTRL, 0x0 },
 181        { NAU8825_REG_BIAS_ADJ, 0x0 },
 182        { NAU8825_REG_TRIM_SETTINGS, 0x0 },
 183        { NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
 184        { NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
 185        { NAU8825_REG_ANALOG_ADC_1, 0x0011 },
 186        { NAU8825_REG_ANALOG_ADC_2, 0x0020 },
 187        { NAU8825_REG_RDAC, 0x0008 },
 188        { NAU8825_REG_MIC_BIAS, 0x0006 },
 189        { NAU8825_REG_BOOST, 0x0 },
 190        { NAU8825_REG_FEPGA, 0x0 },
 191        { NAU8825_REG_POWER_UP_CONTROL, 0x0 },
 192        { NAU8825_REG_CHARGE_PUMP, 0x0 },
 193};
 194
 195/* register backup table when cross talk detection */
 196static struct reg_default nau8825_xtalk_baktab[] = {
 197        { NAU8825_REG_ADC_DGAIN_CTRL, 0 },
 198        { NAU8825_REG_HSVOL_CTRL, 0 },
 199        { NAU8825_REG_DACL_CTRL, 0 },
 200        { NAU8825_REG_DACR_CTRL, 0 },
 201};
 202
 203static const unsigned short logtable[256] = {
 204        0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
 205        0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
 206        0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
 207        0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
 208        0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
 209        0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
 210        0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
 211        0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
 212        0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
 213        0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
 214        0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
 215        0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
 216        0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
 217        0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
 218        0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
 219        0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
 220        0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
 221        0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
 222        0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
 223        0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
 224        0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
 225        0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
 226        0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
 227        0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
 228        0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
 229        0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
 230        0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
 231        0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
 232        0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
 233        0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
 234        0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
 235        0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
 236};
 237
 238/**
 239 * nau8825_sema_acquire - acquire the semaphore of nau88l25
 240 * @nau8825:  component to register the codec private data with
 241 * @timeout: how long in jiffies to wait before failure or zero to wait
 242 * until release
 243 *
 244 * Attempts to acquire the semaphore with number of jiffies. If no more
 245 * tasks are allowed to acquire the semaphore, calling this function will
 246 * put the task to sleep. If the semaphore is not released within the
 247 * specified number of jiffies, this function returns.
 248 * Acquires the semaphore without jiffies. If no more tasks are allowed
 249 * to acquire the semaphore, calling this function will put the task to
 250 * sleep until the semaphore is released.
 251 * If the semaphore is not released within the specified number of jiffies,
 252 * this function returns -ETIME.
 253 * If the sleep is interrupted by a signal, this function will return -EINTR.
 254 * It returns 0 if the semaphore was acquired successfully.
 255 */
 256static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
 257{
 258        int ret;
 259
 260        if (timeout) {
 261                ret = down_timeout(&nau8825->xtalk_sem, timeout);
 262                if (ret < 0)
 263                        dev_warn(nau8825->dev, "Acquire semaphore timeout\n");
 264        } else {
 265                ret = down_interruptible(&nau8825->xtalk_sem);
 266                if (ret < 0)
 267                        dev_warn(nau8825->dev, "Acquire semaphore fail\n");
 268        }
 269
 270        return ret;
 271}
 272
 273/**
 274 * nau8825_sema_release - release the semaphore of nau88l25
 275 * @nau8825:  component to register the codec private data with
 276 *
 277 * Release the semaphore which may be called from any context and
 278 * even by tasks which have never called down().
 279 */
 280static inline void nau8825_sema_release(struct nau8825 *nau8825)
 281{
 282        up(&nau8825->xtalk_sem);
 283}
 284
 285/**
 286 * nau8825_sema_reset - reset the semaphore for nau88l25
 287 * @nau8825:  component to register the codec private data with
 288 *
 289 * Reset the counter of the semaphore. Call this function to restart
 290 * a new round task management.
 291 */
 292static inline void nau8825_sema_reset(struct nau8825 *nau8825)
 293{
 294        nau8825->xtalk_sem.count = 1;
 295}
 296
 297/**
 298 * Ramp up the headphone volume change gradually to target level.
 299 *
 300 * @nau8825:  component to register the codec private data with
 301 * @vol_from: the volume to start up
 302 * @vol_to: the target volume
 303 * @step: the volume span to move on
 304 *
 305 * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
 306 * If the volume changes sharp, there is a pop noise heard in headphone. We
 307 * provide the function to ramp up the volume up or down by delaying 10ms
 308 * per step.
 309 */
 310static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
 311        unsigned int vol_from, unsigned int vol_to, unsigned int step)
 312{
 313        unsigned int value, volume, ramp_up, from, to;
 314
 315        if (vol_from == vol_to || step == 0) {
 316                return;
 317        } else if (vol_from < vol_to) {
 318                ramp_up = true;
 319                from = vol_from;
 320                to = vol_to;
 321        } else {
 322                ramp_up = false;
 323                from = vol_to;
 324                to = vol_from;
 325        }
 326        /* only handle volume from 0dB to minimum -54dB */
 327        if (to > NAU8825_HP_VOL_MIN)
 328                to = NAU8825_HP_VOL_MIN;
 329
 330        for (volume = from; volume < to; volume += step) {
 331                if (ramp_up)
 332                        value = volume;
 333                else
 334                        value = to - volume + from;
 335                regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
 336                        NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
 337                        (value << NAU8825_HPL_VOL_SFT) | value);
 338                usleep_range(10000, 10500);
 339        }
 340        if (ramp_up)
 341                value = to;
 342        else
 343                value = from;
 344        regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
 345                NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
 346                (value << NAU8825_HPL_VOL_SFT) | value);
 347}
 348
 349/**
 350 * Computes log10 of a value; the result is round off to 3 decimal. This func-
 351 * tion takes reference to dvb-math. The source code locates as the following.
 352 * Linux/drivers/media/dvb-core/dvb_math.c
 353 *
 354 * return log10(value) * 1000
 355 */
 356static u32 nau8825_intlog10_dec3(u32 value)
 357{
 358        u32 msb, logentry, significand, interpolation, log10val;
 359        u64 log2val;
 360
 361        /* first detect the msb (count begins at 0) */
 362        msb = fls(value) - 1;
 363        /**
 364         *      now we use a logtable after the following method:
 365         *
 366         *      log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
 367         *      where x = msb and therefore 1 <= y < 2
 368         *      first y is determined by shifting the value left
 369         *      so that msb is bit 31
 370         *              0x00231f56 -> 0x8C7D5800
 371         *      the result is y * 2^31 -> "significand"
 372         *      then the highest 9 bits are used for a table lookup
 373         *      the highest bit is discarded because it's always set
 374         *      the highest nine bits in our example are 100011000
 375         *      so we would use the entry 0x18
 376         */
 377        significand = value << (31 - msb);
 378        logentry = (significand >> 23) & 0xff;
 379        /**
 380         *      last step we do is interpolation because of the
 381         *      limitations of the log table the error is that part of
 382         *      the significand which isn't used for lookup then we
 383         *      compute the ratio between the error and the next table entry
 384         *      and interpolate it between the log table entry used and the
 385         *      next one the biggest error possible is 0x7fffff
 386         *      (in our example it's 0x7D5800)
 387         *      needed value for next table entry is 0x800000
 388         *      so the interpolation is
 389         *      (error / 0x800000) * (logtable_next - logtable_current)
 390         *      in the implementation the division is moved to the end for
 391         *      better accuracy there is also an overflow correction if
 392         *      logtable_next is 256
 393         */
 394        interpolation = ((significand & 0x7fffff) *
 395                ((logtable[(logentry + 1) & 0xff] -
 396                logtable[logentry]) & 0xffff)) >> 15;
 397
 398        log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
 399        /**
 400         *      log10(x) = log2(x) * log10(2)
 401         */
 402        log10val = (log2val * LOG10_MAGIC) >> 31;
 403        /**
 404         *      the result is round off to 3 decimal
 405         */
 406        return log10val / ((1 << 24) / 1000);
 407}
 408
 409/**
 410 * computes cross talk suppression sidetone gain.
 411 *
 412 * @sig_org: orignal signal level
 413 * @sig_cros: cross talk signal level
 414 *
 415 * The orignal and cross talk signal vlues need to be characterized.
 416 * Once these values have been characterized, this sidetone value
 417 * can be converted to decibel with the equation below.
 418 * sidetone = 20 * log (original signal level / crosstalk signal level)
 419 *
 420 * return cross talk sidetone gain
 421 */
 422static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
 423{
 424        u32 gain, sidetone;
 425
 426        if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
 427                WARN_ON(1);
 428                return 0;
 429        }
 430
 431        sig_org = nau8825_intlog10_dec3(sig_org);
 432        sig_cros = nau8825_intlog10_dec3(sig_cros);
 433        if (sig_org >= sig_cros)
 434                gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
 435        else
 436                gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
 437        sidetone = SIDETONE_BASE - gain * 2;
 438        sidetone /= 1000;
 439
 440        return sidetone;
 441}
 442
 443static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
 444{
 445        int index;
 446
 447        for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
 448                if (nau8825_xtalk_baktab[index].reg == reg)
 449                        return index;
 450        return -EINVAL;
 451}
 452
 453static void nau8825_xtalk_backup(struct nau8825 *nau8825)
 454{
 455        int i;
 456
 457        /* Backup some register values to backup table */
 458        for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
 459                regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
 460                                &nau8825_xtalk_baktab[i].def);
 461}
 462
 463static void nau8825_xtalk_restore(struct nau8825 *nau8825)
 464{
 465        int i, volume;
 466
 467        /* Restore register values from backup table; When the driver restores
 468         * the headphone volumem, it needs recover to original level gradually
 469         * with 3dB per step for less pop noise.
 470         */
 471        for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
 472                if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
 473                        /* Ramping up the volume change to reduce pop noise */
 474                        volume = nau8825_xtalk_baktab[i].def &
 475                                NAU8825_HPR_VOL_MASK;
 476                        nau8825_hpvol_ramp(nau8825, 0, volume, 3);
 477                        continue;
 478                }
 479                regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
 480                                nau8825_xtalk_baktab[i].def);
 481        }
 482}
 483
 484static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
 485{
 486        /* Enable power of DAC path */
 487        regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
 488                NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
 489                NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
 490                NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
 491                NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
 492                NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
 493        /* Prevent startup click by letting charge pump to ramp up and
 494         * change bump enable
 495         */
 496        regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
 497                NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
 498                NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
 499        /* Enable clock sync of DAC and DAC clock */
 500        regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
 501                NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
 502                NAU8825_RDAC_FS_BCLK_ENB,
 503                NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
 504        /* Power up output driver with 2 stage */
 505        regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
 506                NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
 507                NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
 508                NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
 509                NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
 510        regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
 511                NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
 512                NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
 513        /* HP outputs not shouted to ground  */
 514        regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
 515                NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
 516        /* Enable HP boost driver */
 517        regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
 518                NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
 519        /* Enable class G compare path to supply 1.8V or 0.9V. */
 520        regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
 521                NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
 522                NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
 523}
 524
 525static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
 526{
 527        /* Power up left ADC and raise 5dB than Vmid for Vref  */
 528        regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
 529                NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
 530                NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
 531}
 532
 533static void nau8825_xtalk_clock(struct nau8825 *nau8825)
 534{
 535        /* Recover FLL default value */
 536        regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
 537        regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
 538        regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
 539        regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
 540        regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
 541        regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
 542        /* Enable internal VCO clock for detection signal generated */
 543        regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
 544                NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
 545        regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
 546                NAU8825_DCO_EN);
 547        /* Given specific clock frequency of internal clock to
 548         * generate signal.
 549         */
 550        regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
 551                NAU8825_CLK_MCLK_SRC_MASK, 0xf);
 552        regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
 553                NAU8825_FLL_RATIO_MASK, 0x10);
 554}
 555
 556static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
 557{
 558        int volume, index;
 559
 560        /* Backup those registers changed by cross talk detection */
 561        nau8825_xtalk_backup(nau8825);
 562        /* Config IIS as master to output signal by codec */
 563        regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
 564                NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
 565                NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
 566                (0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1);
 567        /* Ramp up headphone volume to 0dB to get better performance and
 568         * avoid pop noise in headphone.
 569         */
 570        index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
 571        if (index != -EINVAL) {
 572                volume = nau8825_xtalk_baktab[index].def &
 573                                NAU8825_HPR_VOL_MASK;
 574                nau8825_hpvol_ramp(nau8825, volume, 0, 3);
 575        }
 576        nau8825_xtalk_clock(nau8825);
 577        nau8825_xtalk_prepare_dac(nau8825);
 578        nau8825_xtalk_prepare_adc(nau8825);
 579        /* Config channel path and digital gain */
 580        regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
 581                NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
 582                NAU8825_DACL_CH_SEL_L | 0xab);
 583        regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
 584                NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
 585                NAU8825_DACR_CH_SEL_R | 0xab);
 586        /* Config cross talk parameters and generate the 23Hz sine wave with
 587         * 1/16 full scale of signal level for impedance measurement.
 588         */
 589        regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
 590                NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
 591                NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
 592                (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
 593                NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
 594        /* RMS intrruption enable */
 595        regmap_update_bits(nau8825->regmap,
 596                NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
 597        /* Power up left and right DAC */
 598        regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
 599                NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
 600}
 601
 602static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
 603{
 604        /* Disable HP boost driver */
 605        regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
 606                NAU8825_HP_BOOST_DIS, 0);
 607        /* HP outputs shouted to ground  */
 608        regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
 609                NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
 610                NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
 611        /* Power down left and right DAC */
 612        regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
 613                NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
 614                NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
 615        /* Enable the TESTDAC and  disable L/R HP impedance */
 616        regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
 617                NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
 618                NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
 619        /* Power down output driver with 2 stage */
 620        regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
 621                NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
 622        regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
 623                NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
 624                NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
 625        /* Disable clock sync of DAC and DAC clock */
 626        regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
 627                NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
 628        /* Disable charge pump ramp up function and change bump */
 629        regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
 630                NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
 631        /* Disable power of DAC path */
 632        regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
 633                NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
 634                NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
 635        if (!nau8825->irq)
 636                regmap_update_bits(nau8825->regmap,
 637                        NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
 638}
 639
 640static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
 641{
 642        /* Power down left ADC and restore voltage to Vmid */
 643        regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
 644                NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
 645}
 646
 647static void nau8825_xtalk_clean(struct nau8825 *nau8825)
 648{
 649        /* Enable internal VCO needed for interruptions */
 650        nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
 651        nau8825_xtalk_clean_dac(nau8825);
 652        nau8825_xtalk_clean_adc(nau8825);
 653        /* Clear cross talk parameters and disable */
 654        regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
 655        /* RMS intrruption disable */
 656        regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
 657                NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
 658        /* Recover default value for IIS */
 659        regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
 660                NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK |
 661                NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
 662        /* Restore value of specific register for cross talk */
 663        nau8825_xtalk_restore(nau8825);
 664}
 665
 666static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
 667{
 668        /* Apply ADC volume for better cross talk performance */
 669        regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
 670                                NAU8825_ADC_DIG_VOL_MASK, vol);
 671        /* Disables JKTIP(HPL) DAC channel for right to left measurement.
 672         * Do it before sending signal in order to erase pop noise.
 673         */
 674        regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
 675                NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
 676                NAU8825_BIAS_TESTDACL_EN);
 677        switch (nau8825->xtalk_state) {
 678        case NAU8825_XTALK_HPR_R2L:
 679                /* Enable right headphone impedance */
 680                regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
 681                        NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
 682                        NAU8825_BIAS_HPR_IMP);
 683                break;
 684        case NAU8825_XTALK_HPL_R2L:
 685                /* Enable left headphone impedance */
 686                regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
 687                        NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
 688                        NAU8825_BIAS_HPL_IMP);
 689                break;
 690        default:
 691                break;
 692        }
 693        msleep(100);
 694        /* Impedance measurement mode enable */
 695        regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
 696                                NAU8825_IMM_EN, NAU8825_IMM_EN);
 697}
 698
 699static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
 700{
 701        /* Impedance measurement mode disable */
 702        regmap_update_bits(nau8825->regmap,
 703                NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
 704}
 705
 706/* The cross talk measurement function can reduce cross talk across the
 707 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
 708 * level to determine what cross talk reduction gain is. This system works by
 709 * sending a 23Hz -24dBV sine wave into the headset output DAC and through
 710 * the PGA. The output of the PGA is then connected to an internal current
 711 * sense which measures the attenuated 23Hz signal and passing the output to
 712 * an ADC which converts the measurement to a binary code. With two separated
 713 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
 714 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
 715 * Thus, the measurement function has four states to complete whole sequence.
 716 * 1. Prepare state : Prepare the resource for detection and transfer to HPR
 717 *     IMM stat to make JKR1(HPR) impedance measure.
 718 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
 719 *     to HPL IMM state to make JKTIP(HPL) impedance measure.
 720 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
 721 *     transfer to IMM state to determine suppression sidetone gain.
 722 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
 723 *     and cross talk signal level. Apply this gain and then restore codec
 724 *     configuration. Then transfer to Done state for ending.
 725 */
 726static void nau8825_xtalk_measure(struct nau8825 *nau8825)
 727{
 728        u32 sidetone;
 729
 730        switch (nau8825->xtalk_state) {
 731        case NAU8825_XTALK_PREPARE:
 732                /* In prepare state, set up clock, intrruption, DAC path, ADC
 733                 * path and cross talk detection parameters for preparation.
 734                 */
 735                nau8825_xtalk_prepare(nau8825);
 736                msleep(280);
 737                /* Trigger right headphone impedance detection */
 738                nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
 739                nau8825_xtalk_imm_start(nau8825, 0x00d2);
 740                break;
 741        case NAU8825_XTALK_HPR_R2L:
 742                /* In right headphone IMM state, read out right headphone
 743                 * impedance measure result, and then start up left side.
 744                 */
 745                regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
 746                        &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
 747                dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
 748                        nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
 749                /* Disable then re-enable IMM mode to update */
 750                nau8825_xtalk_imm_stop(nau8825);
 751                /* Trigger left headphone impedance detection */
 752                nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
 753                nau8825_xtalk_imm_start(nau8825, 0x00ff);
 754                break;
 755        case NAU8825_XTALK_HPL_R2L:
 756                /* In left headphone IMM state, read out left headphone
 757                 * impedance measure result, and delay some time to wait
 758                 * detection sine wave output finish. Then, we can calculate
 759                 * the cross talk suppresstion side tone according to the L/R
 760                 * headphone imedance.
 761                 */
 762                regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
 763                        &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
 764                dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
 765                        nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
 766                nau8825_xtalk_imm_stop(nau8825);
 767                msleep(150);
 768                nau8825->xtalk_state = NAU8825_XTALK_IMM;
 769                break;
 770        case NAU8825_XTALK_IMM:
 771                /* In impedance measure state, the orignal and cross talk
 772                 * signal level vlues are ready. The side tone gain is deter-
 773                 * mined with these signal level. After all, restore codec
 774                 * configuration.
 775                 */
 776                sidetone = nau8825_xtalk_sidetone(
 777                        nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
 778                        nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
 779                dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
 780                regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
 781                                        (sidetone << 8) | sidetone);
 782                nau8825_xtalk_clean(nau8825);
 783                nau8825->xtalk_state = NAU8825_XTALK_DONE;
 784                break;
 785        default:
 786                break;
 787        }
 788}
 789
 790static void nau8825_xtalk_work(struct work_struct *work)
 791{
 792        struct nau8825 *nau8825 = container_of(
 793                work, struct nau8825, xtalk_work);
 794
 795        nau8825_xtalk_measure(nau8825);
 796        /* To determine the cross talk side tone gain when reach
 797         * the impedance measure state.
 798         */
 799        if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
 800                nau8825_xtalk_measure(nau8825);
 801
 802        /* Delay jack report until cross talk detection process
 803         * completed. It can avoid application to do playback
 804         * preparation before cross talk detection is still working.
 805         * Meanwhile, the protection of the cross talk detection
 806         * is released.
 807         */
 808        if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
 809                snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
 810                                nau8825->xtalk_event_mask);
 811                nau8825_sema_release(nau8825);
 812                nau8825->xtalk_protect = false;
 813        }
 814}
 815
 816static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
 817{
 818        /* If the xtalk_protect is true, that means the process is still
 819         * on going. The driver forces to cancel the cross talk task and
 820         * restores the configuration to original status.
 821         */
 822        if (nau8825->xtalk_protect) {
 823                cancel_work_sync(&nau8825->xtalk_work);
 824                nau8825_xtalk_clean(nau8825);
 825        }
 826        /* Reset parameters for cross talk suppression function */
 827        nau8825_sema_reset(nau8825);
 828        nau8825->xtalk_state = NAU8825_XTALK_DONE;
 829        nau8825->xtalk_protect = false;
 830}
 831
 832static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
 833{
 834        switch (reg) {
 835        case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
 836        case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
 837        case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
 838        case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
 839        case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
 840        case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
 841        case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
 842        case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
 843        case NAU8825_REG_MISC_CTRL:
 844        case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
 845        case NAU8825_REG_BIAS_ADJ:
 846        case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
 847        case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
 848        case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
 849        case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
 850                return true;
 851        default:
 852                return false;
 853        }
 854
 855}
 856
 857static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
 858{
 859        switch (reg) {
 860        case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
 861        case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
 862        case NAU8825_REG_INTERRUPT_MASK:
 863        case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
 864        case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
 865        case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
 866        case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
 867        case NAU8825_REG_IMM_MODE_CTRL:
 868        case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
 869        case NAU8825_REG_MISC_CTRL:
 870        case NAU8825_REG_BIAS_ADJ:
 871        case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
 872        case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
 873        case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
 874        case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
 875                return true;
 876        default:
 877                return false;
 878        }
 879}
 880
 881static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
 882{
 883        switch (reg) {
 884        case NAU8825_REG_RESET:
 885        case NAU8825_REG_IRQ_STATUS:
 886        case NAU8825_REG_INT_CLR_KEY_STATUS:
 887        case NAU8825_REG_IMM_RMS_L:
 888        case NAU8825_REG_IMM_RMS_R:
 889        case NAU8825_REG_I2C_DEVICE_ID:
 890        case NAU8825_REG_SARDOUT_RAM_STATUS:
 891        case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
 892        case NAU8825_REG_GENERAL_STATUS:
 893        case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
 894                return true;
 895        default:
 896                return false;
 897        }
 898}
 899
 900static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
 901                struct snd_kcontrol *kcontrol, int event)
 902{
 903        struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
 904        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
 905
 906        switch (event) {
 907        case SND_SOC_DAPM_POST_PMU:
 908                regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
 909                        NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
 910                break;
 911        case SND_SOC_DAPM_POST_PMD:
 912                if (!nau8825->irq)
 913                        regmap_update_bits(nau8825->regmap,
 914                                NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
 915                break;
 916        default:
 917                return -EINVAL;
 918        }
 919
 920        return 0;
 921}
 922
 923static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
 924        struct snd_kcontrol *kcontrol, int event)
 925{
 926        struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
 927        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
 928
 929        switch (event) {
 930        case SND_SOC_DAPM_POST_PMU:
 931                /* Prevent startup click by letting charge pump to ramp up */
 932                msleep(10);
 933                regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
 934                        NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
 935                break;
 936        case SND_SOC_DAPM_PRE_PMD:
 937                regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
 938                        NAU8825_JAMNODCLOW, 0);
 939                break;
 940        default:
 941                return -EINVAL;
 942        }
 943
 944        return 0;
 945}
 946
 947static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
 948        struct snd_kcontrol *kcontrol, int event)
 949{
 950        struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
 951        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
 952
 953        switch (event) {
 954        case SND_SOC_DAPM_PRE_PMU:
 955                /* Disables the TESTDAC to let DAC signal pass through. */
 956                regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
 957                        NAU8825_BIAS_TESTDAC_EN, 0);
 958                break;
 959        case SND_SOC_DAPM_POST_PMD:
 960                regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
 961                        NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
 962                break;
 963        default:
 964                return -EINVAL;
 965        }
 966
 967        return 0;
 968}
 969
 970static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
 971                                     struct snd_ctl_elem_value *ucontrol)
 972{
 973        struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 974        struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 975
 976        if (!component->regmap)
 977                return -EINVAL;
 978
 979        regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
 980                ucontrol->value.bytes.data, params->max);
 981        return 0;
 982}
 983
 984static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
 985                                     struct snd_ctl_elem_value *ucontrol)
 986{
 987        struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
 988        struct soc_bytes_ext *params = (void *)kcontrol->private_value;
 989        void *data;
 990
 991        if (!component->regmap)
 992                return -EINVAL;
 993
 994        data = kmemdup(ucontrol->value.bytes.data,
 995                params->max, GFP_KERNEL | GFP_DMA);
 996        if (!data)
 997                return -ENOMEM;
 998
 999        regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1000                NAU8825_BIQ_WRT_EN, 0);
1001        regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1002                data, params->max);
1003        regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1004                NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1005
1006        kfree(data);
1007        return 0;
1008}
1009
1010static const char * const nau8825_biq_path[] = {
1011        "ADC", "DAC"
1012};
1013
1014static const struct soc_enum nau8825_biq_path_enum =
1015        SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1016                ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1017
1018static const char * const nau8825_adc_decimation[] = {
1019        "32", "64", "128", "256"
1020};
1021
1022static const struct soc_enum nau8825_adc_decimation_enum =
1023        SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1024                ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1025
1026static const char * const nau8825_dac_oversampl[] = {
1027        "64", "256", "128", "", "32"
1028};
1029
1030static const struct soc_enum nau8825_dac_oversampl_enum =
1031        SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1032                ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1033
1034static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1035static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1036static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1037static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1038static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1039
1040static const struct snd_kcontrol_new nau8825_controls[] = {
1041        SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1042                0, 0xff, 0, adc_vol_tlv),
1043        SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1044                12, 8, 0x0f, 0, sidetone_vol_tlv),
1045        SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1046                6, 0, 0x3f, 1, dac_vol_tlv),
1047        SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1048                8, 37, 0, fepga_gain_tlv),
1049        SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1050                0, 8, 0xff, 0, crosstalk_vol_tlv),
1051
1052        SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1053        SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1054        /* programmable biquad filter */
1055        SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1056        SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1057                  nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1058};
1059
1060/* DAC Mux 0x33[9] and 0x34[9] */
1061static const char * const nau8825_dac_src[] = {
1062        "DACL", "DACR",
1063};
1064
1065static SOC_ENUM_SINGLE_DECL(
1066        nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1067        NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1068
1069static SOC_ENUM_SINGLE_DECL(
1070        nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1071        NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1072
1073static const struct snd_kcontrol_new nau8825_dacl_mux =
1074        SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1075
1076static const struct snd_kcontrol_new nau8825_dacr_mux =
1077        SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1078
1079
1080static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1081        SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1082                15, 1),
1083
1084        SND_SOC_DAPM_INPUT("MIC"),
1085        SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1086
1087        SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1088                NULL, 0),
1089
1090        SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1091                nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1092                SND_SOC_DAPM_POST_PMD),
1093        SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1094        SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1095                0),
1096
1097        /* ADC for button press detection. A dapm supply widget is used to
1098         * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1099         * during suspend.
1100         */
1101        SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1102                NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1103
1104        SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1105        SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1106        SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1107        SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1108
1109        SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1110                NAU8825_ENABLE_DACR_SFT, 0),
1111        SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1112                NAU8825_ENABLE_DACL_SFT, 0),
1113        SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1114
1115        SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1116        SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1117
1118        SND_SOC_DAPM_PGA_S("HP amp L", 0,
1119                NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1120        SND_SOC_DAPM_PGA_S("HP amp R", 0,
1121                NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1122
1123        SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1124                nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1125                SND_SOC_DAPM_PRE_PMD),
1126
1127        SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1128                NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1129        SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1130                NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1131        SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1132                NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1133        SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1134                NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1135        SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1136                NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1137        SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1138                NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1139
1140        SND_SOC_DAPM_PGA_S("Output DACL", 7,
1141                NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1142                SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1143        SND_SOC_DAPM_PGA_S("Output DACR", 7,
1144                NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1145                SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1146
1147        /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1148        SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1149                NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1150        SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1151                NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1152
1153        /* High current HPOL/R boost driver */
1154        SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1155                NAU8825_REG_BOOST, 9, 1, NULL, 0),
1156
1157        /* Class G operation control*/
1158        SND_SOC_DAPM_PGA_S("Class G", 10,
1159                NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1160
1161        SND_SOC_DAPM_OUTPUT("HPOL"),
1162        SND_SOC_DAPM_OUTPUT("HPOR"),
1163};
1164
1165static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1166        {"Frontend PGA", NULL, "MIC"},
1167        {"ADC", NULL, "Frontend PGA"},
1168        {"ADC", NULL, "ADC Clock"},
1169        {"ADC", NULL, "ADC Power"},
1170        {"AIFTX", NULL, "ADC"},
1171
1172        {"DDACL", NULL, "Playback"},
1173        {"DDACR", NULL, "Playback"},
1174        {"DDACL", NULL, "DDAC Clock"},
1175        {"DDACR", NULL, "DDAC Clock"},
1176        {"DACL Mux", "DACL", "DDACL"},
1177        {"DACL Mux", "DACR", "DDACR"},
1178        {"DACR Mux", "DACL", "DDACL"},
1179        {"DACR Mux", "DACR", "DDACR"},
1180        {"HP amp L", NULL, "DACL Mux"},
1181        {"HP amp R", NULL, "DACR Mux"},
1182        {"Charge Pump", NULL, "HP amp L"},
1183        {"Charge Pump", NULL, "HP amp R"},
1184        {"ADACL", NULL, "Charge Pump"},
1185        {"ADACR", NULL, "Charge Pump"},
1186        {"ADACL Clock", NULL, "ADACL"},
1187        {"ADACR Clock", NULL, "ADACR"},
1188        {"Output Driver L Stage 1", NULL, "ADACL Clock"},
1189        {"Output Driver R Stage 1", NULL, "ADACR Clock"},
1190        {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1191        {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1192        {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1193        {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1194        {"Output DACL", NULL, "Output Driver L Stage 3"},
1195        {"Output DACR", NULL, "Output Driver R Stage 3"},
1196        {"HPOL Pulldown", NULL, "Output DACL"},
1197        {"HPOR Pulldown", NULL, "Output DACR"},
1198        {"HP Boost Driver", NULL, "HPOL Pulldown"},
1199        {"HP Boost Driver", NULL, "HPOR Pulldown"},
1200        {"Class G", NULL, "HP Boost Driver"},
1201        {"HPOL", NULL, "Class G"},
1202        {"HPOR", NULL, "Class G"},
1203};
1204
1205static int nau8825_clock_check(struct nau8825 *nau8825,
1206        int stream, int rate, int osr)
1207{
1208        int osrate;
1209
1210        if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1211                if (osr >= ARRAY_SIZE(osr_dac_sel))
1212                        return -EINVAL;
1213                osrate = osr_dac_sel[osr].osr;
1214        } else {
1215                if (osr >= ARRAY_SIZE(osr_adc_sel))
1216                        return -EINVAL;
1217                osrate = osr_adc_sel[osr].osr;
1218        }
1219
1220        if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1221                dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1222                return -EINVAL;
1223        }
1224
1225        return 0;
1226}
1227
1228static int nau8825_hw_params(struct snd_pcm_substream *substream,
1229                                struct snd_pcm_hw_params *params,
1230                                struct snd_soc_dai *dai)
1231{
1232        struct snd_soc_codec *codec = dai->codec;
1233        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1234        unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
1235
1236        nau8825_sema_acquire(nau8825, 3 * HZ);
1237
1238        /* CLK_DAC or CLK_ADC = OSR * FS
1239         * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1240         * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1241         * values must be selected such that the maximum frequency is less
1242         * than 6.144 MHz.
1243         */
1244        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1245                regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1246                osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1247                if (nau8825_clock_check(nau8825, substream->stream,
1248                        params_rate(params), osr))
1249                        return -EINVAL;
1250                regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1251                        NAU8825_CLK_DAC_SRC_MASK,
1252                        osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1253        } else {
1254                regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1255                osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1256                if (nau8825_clock_check(nau8825, substream->stream,
1257                        params_rate(params), osr))
1258                        return -EINVAL;
1259                regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1260                        NAU8825_CLK_ADC_SRC_MASK,
1261                        osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1262        }
1263
1264        /* make BCLK and LRC divde configuration if the codec as master. */
1265        regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val);
1266        if (ctrl_val & NAU8825_I2S_MS_MASTER) {
1267                /* get the bclk and fs ratio */
1268                bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params);
1269                if (bclk_fs <= 32)
1270                        bclk_div = 2;
1271                else if (bclk_fs <= 64)
1272                        bclk_div = 1;
1273                else if (bclk_fs <= 128)
1274                        bclk_div = 0;
1275                else
1276                        return -EINVAL;
1277                regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1278                        NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK,
1279                        ((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div);
1280        }
1281
1282        switch (params_width(params)) {
1283        case 16:
1284                val_len |= NAU8825_I2S_DL_16;
1285                break;
1286        case 20:
1287                val_len |= NAU8825_I2S_DL_20;
1288                break;
1289        case 24:
1290                val_len |= NAU8825_I2S_DL_24;
1291                break;
1292        case 32:
1293                val_len |= NAU8825_I2S_DL_32;
1294                break;
1295        default:
1296                return -EINVAL;
1297        }
1298
1299        regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1300                NAU8825_I2S_DL_MASK, val_len);
1301
1302        /* Release the semaphore. */
1303        nau8825_sema_release(nau8825);
1304
1305        return 0;
1306}
1307
1308static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1309{
1310        struct snd_soc_codec *codec = codec_dai->codec;
1311        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1312        unsigned int ctrl1_val = 0, ctrl2_val = 0;
1313
1314        nau8825_sema_acquire(nau8825, 3 * HZ);
1315
1316        switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1317        case SND_SOC_DAIFMT_CBM_CFM:
1318                ctrl2_val |= NAU8825_I2S_MS_MASTER;
1319                break;
1320        case SND_SOC_DAIFMT_CBS_CFS:
1321                break;
1322        default:
1323                return -EINVAL;
1324        }
1325
1326        switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1327        case SND_SOC_DAIFMT_NB_NF:
1328                break;
1329        case SND_SOC_DAIFMT_IB_NF:
1330                ctrl1_val |= NAU8825_I2S_BP_INV;
1331                break;
1332        default:
1333                return -EINVAL;
1334        }
1335
1336        switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1337        case SND_SOC_DAIFMT_I2S:
1338                ctrl1_val |= NAU8825_I2S_DF_I2S;
1339                break;
1340        case SND_SOC_DAIFMT_LEFT_J:
1341                ctrl1_val |= NAU8825_I2S_DF_LEFT;
1342                break;
1343        case SND_SOC_DAIFMT_RIGHT_J:
1344                ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1345                break;
1346        case SND_SOC_DAIFMT_DSP_A:
1347                ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1348                break;
1349        case SND_SOC_DAIFMT_DSP_B:
1350                ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1351                ctrl1_val |= NAU8825_I2S_PCMB_EN;
1352                break;
1353        default:
1354                return -EINVAL;
1355        }
1356
1357        regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1358                NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1359                NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1360                ctrl1_val);
1361        regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1362                NAU8825_I2S_MS_MASK, ctrl2_val);
1363
1364        /* Release the semaphore. */
1365        nau8825_sema_release(nau8825);
1366
1367        return 0;
1368}
1369
1370static const struct snd_soc_dai_ops nau8825_dai_ops = {
1371        .hw_params      = nau8825_hw_params,
1372        .set_fmt        = nau8825_set_dai_fmt,
1373};
1374
1375#define NAU8825_RATES   SNDRV_PCM_RATE_8000_192000
1376#define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1377                         | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1378
1379static struct snd_soc_dai_driver nau8825_dai = {
1380        .name = "nau8825-hifi",
1381        .playback = {
1382                .stream_name     = "Playback",
1383                .channels_min    = 1,
1384                .channels_max    = 2,
1385                .rates           = NAU8825_RATES,
1386                .formats         = NAU8825_FORMATS,
1387        },
1388        .capture = {
1389                .stream_name     = "Capture",
1390                .channels_min    = 1,
1391                .channels_max    = 1,
1392                .rates           = NAU8825_RATES,
1393                .formats         = NAU8825_FORMATS,
1394        },
1395        .ops = &nau8825_dai_ops,
1396};
1397
1398/**
1399 * nau8825_enable_jack_detect - Specify a jack for event reporting
1400 *
1401 * @component:  component to register the jack with
1402 * @jack: jack to use to report headset and button events on
1403 *
1404 * After this function has been called the headset insert/remove and button
1405 * events will be routed to the given jack.  Jack can be null to stop
1406 * reporting.
1407 */
1408int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1409                                struct snd_soc_jack *jack)
1410{
1411        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1412        struct regmap *regmap = nau8825->regmap;
1413
1414        nau8825->jack = jack;
1415
1416        /* Ground HP Outputs[1:0], needed for headset auto detection
1417         * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1418         */
1419        regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1420                NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1421                NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1422
1423        return 0;
1424}
1425EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1426
1427
1428static bool nau8825_is_jack_inserted(struct regmap *regmap)
1429{
1430        bool active_high, is_high;
1431        int status, jkdet;
1432
1433        regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1434        active_high = jkdet & NAU8825_JACK_POLARITY;
1435        regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1436        is_high = status & NAU8825_GPIO2JD1;
1437        /* return jack connection status according to jack insertion logic
1438         * active high or active low.
1439         */
1440        return active_high == is_high;
1441}
1442
1443static void nau8825_restart_jack_detection(struct regmap *regmap)
1444{
1445        /* this will restart the entire jack detection process including MIC/GND
1446         * switching and create interrupts. We have to go from 0 to 1 and back
1447         * to 0 to restart.
1448         */
1449        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1450                NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1451        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1452                NAU8825_JACK_DET_RESTART, 0);
1453}
1454
1455static void nau8825_int_status_clear_all(struct regmap *regmap)
1456{
1457        int active_irq, clear_irq, i;
1458
1459        /* Reset the intrruption status from rightmost bit if the corres-
1460         * ponding irq event occurs.
1461         */
1462        regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1463        for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1464                clear_irq = (0x1 << i);
1465                if (active_irq & clear_irq)
1466                        regmap_write(regmap,
1467                                NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1468        }
1469}
1470
1471static void nau8825_eject_jack(struct nau8825 *nau8825)
1472{
1473        struct snd_soc_dapm_context *dapm = nau8825->dapm;
1474        struct regmap *regmap = nau8825->regmap;
1475
1476        /* Force to cancel the cross talk detection process */
1477        nau8825_xtalk_cancel(nau8825);
1478
1479        snd_soc_dapm_disable_pin(dapm, "SAR");
1480        snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1481        /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1482        regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1483                NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1484        /* ground HPL/HPR, MICGRND1/2 */
1485        regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1486
1487        snd_soc_dapm_sync(dapm);
1488
1489        /* Clear all interruption status */
1490        nau8825_int_status_clear_all(regmap);
1491
1492        /* Enable the insertion interruption, disable the ejection inter-
1493         * ruption, and then bypass de-bounce circuit.
1494         */
1495        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1496                NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1497                NAU8825_IRQ_EJECT_DIS);
1498        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1499                NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1500                NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1501                NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1502                NAU8825_IRQ_HEADSET_COMPLETE_EN);
1503        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1504                NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1505
1506        /* Disable ADC needed for interruptions at audo mode */
1507        regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1508                NAU8825_ENABLE_ADC, 0);
1509
1510        /* Close clock for jack type detection at manual mode */
1511        nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1512}
1513
1514/* Enable audo mode interruptions with internal clock. */
1515static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1516{
1517        struct regmap *regmap = nau8825->regmap;
1518
1519        /* Enable headset jack type detection complete interruption and
1520         * jack ejection interruption.
1521         */
1522        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1523                NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1524
1525        /* Enable internal VCO needed for interruptions */
1526        nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1527
1528        /* Enable ADC needed for interruptions */
1529        regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1530                NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1531
1532        /* Chip needs one FSCLK cycle in order to generate interruptions,
1533         * as we cannot guarantee one will be provided by the system. Turning
1534         * master mode on then off enables us to generate that FSCLK cycle
1535         * with a minimum of contention on the clock bus.
1536         */
1537        regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1538                NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1539        regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1540                NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1541
1542        /* Not bypass de-bounce circuit */
1543        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1544                NAU8825_JACK_DET_DB_BYPASS, 0);
1545
1546        /* Unmask all interruptions */
1547        regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1548
1549        /* Restart the jack detection process at auto mode */
1550        nau8825_restart_jack_detection(regmap);
1551}
1552
1553static int nau8825_button_decode(int value)
1554{
1555        int buttons = 0;
1556
1557        /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1558        if (value & BIT(0))
1559                buttons |= SND_JACK_BTN_0;
1560        if (value & BIT(1))
1561                buttons |= SND_JACK_BTN_1;
1562        if (value & BIT(2))
1563                buttons |= SND_JACK_BTN_2;
1564        if (value & BIT(3))
1565                buttons |= SND_JACK_BTN_3;
1566        if (value & BIT(4))
1567                buttons |= SND_JACK_BTN_4;
1568        if (value & BIT(5))
1569                buttons |= SND_JACK_BTN_5;
1570
1571        return buttons;
1572}
1573
1574static int nau8825_jack_insert(struct nau8825 *nau8825)
1575{
1576        struct regmap *regmap = nau8825->regmap;
1577        struct snd_soc_dapm_context *dapm = nau8825->dapm;
1578        int jack_status_reg, mic_detected;
1579        int type = 0;
1580
1581        regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1582        mic_detected = (jack_status_reg >> 10) & 3;
1583        /* The JKSLV and JKR2 all detected in high impedance headset */
1584        if (mic_detected == 0x3)
1585                nau8825->high_imped = true;
1586        else
1587                nau8825->high_imped = false;
1588
1589        switch (mic_detected) {
1590        case 0:
1591                /* no mic */
1592                type = SND_JACK_HEADPHONE;
1593                break;
1594        case 1:
1595                dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1596                type = SND_JACK_HEADSET;
1597
1598                /* Unground MICGND1 */
1599                regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1600                        1 << 2);
1601                /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1602                regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1603                        NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1604                        NAU8825_MICBIAS_JKR2);
1605                /* Attach SARADC to MICGND1 */
1606                regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1607                        NAU8825_SAR_INPUT_MASK,
1608                        NAU8825_SAR_INPUT_JKR2);
1609
1610                snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1611                snd_soc_dapm_force_enable_pin(dapm, "SAR");
1612                snd_soc_dapm_sync(dapm);
1613                break;
1614        case 2:
1615                dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1616                type = SND_JACK_HEADSET;
1617
1618                /* Unground MICGND2 */
1619                regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1620                        2 << 2);
1621                /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1622                regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1623                        NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1624                        NAU8825_MICBIAS_JKSLV);
1625                /* Attach SARADC to MICGND2 */
1626                regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1627                        NAU8825_SAR_INPUT_MASK,
1628                        NAU8825_SAR_INPUT_JKSLV);
1629
1630                snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1631                snd_soc_dapm_force_enable_pin(dapm, "SAR");
1632                snd_soc_dapm_sync(dapm);
1633                break;
1634        case 3:
1635                /* detect error case */
1636                dev_err(nau8825->dev, "detection error; disable mic function\n");
1637                type = SND_JACK_HEADPHONE;
1638                break;
1639        }
1640
1641        /* Leaving HPOL/R grounded after jack insert by default. They will be
1642         * ungrounded as part of the widget power up sequence at the beginning
1643         * of playback to reduce pop.
1644         */
1645        return type;
1646}
1647
1648#define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1649                SND_JACK_BTN_2 | SND_JACK_BTN_3)
1650
1651static irqreturn_t nau8825_interrupt(int irq, void *data)
1652{
1653        struct nau8825 *nau8825 = (struct nau8825 *)data;
1654        struct regmap *regmap = nau8825->regmap;
1655        int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1656
1657        if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1658                dev_err(nau8825->dev, "failed to read irq status\n");
1659                return IRQ_NONE;
1660        }
1661
1662        if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1663                NAU8825_JACK_EJECTION_DETECTED) {
1664
1665                nau8825_eject_jack(nau8825);
1666                event_mask |= SND_JACK_HEADSET;
1667                clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1668        } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1669                int key_status;
1670
1671                regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1672                        &key_status);
1673
1674                /* upper 8 bits of the register are for short pressed keys,
1675                 * lower 8 bits - for long pressed buttons
1676                 */
1677                nau8825->button_pressed = nau8825_button_decode(
1678                        key_status >> 8);
1679
1680                event |= nau8825->button_pressed;
1681                event_mask |= NAU8825_BUTTONS;
1682                clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1683        } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1684                event_mask = NAU8825_BUTTONS;
1685                clear_irq = NAU8825_KEY_RELEASE_IRQ;
1686        } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1687                if (nau8825_is_jack_inserted(regmap)) {
1688                        event |= nau8825_jack_insert(nau8825);
1689                        if (!nau8825->xtalk_bypass && !nau8825->high_imped) {
1690                                /* Apply the cross talk suppression in the
1691                                 * headset without high impedance.
1692                                 */
1693                                if (!nau8825->xtalk_protect) {
1694                                        /* Raise protection for cross talk de-
1695                                         * tection if no protection before.
1696                                         * The driver has to cancel the pro-
1697                                         * cess and restore changes if process
1698                                         * is ongoing when ejection.
1699                                         */
1700                                        int ret;
1701                                        nau8825->xtalk_protect = true;
1702                                        ret = nau8825_sema_acquire(nau8825, 0);
1703                                        if (ret < 0)
1704                                                nau8825->xtalk_protect = false;
1705                                }
1706                                /* Startup cross talk detection process */
1707                                nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1708                                schedule_work(&nau8825->xtalk_work);
1709                        } else {
1710                                /* The cross talk suppression shouldn't apply
1711                                 * in the headset with high impedance. Thus,
1712                                 * relieve the protection raised before.
1713                                 */
1714                                if (nau8825->xtalk_protect) {
1715                                        nau8825_sema_release(nau8825);
1716                                        nau8825->xtalk_protect = false;
1717                                }
1718                        }
1719                } else {
1720                        dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1721                        nau8825_eject_jack(nau8825);
1722                }
1723
1724                event_mask |= SND_JACK_HEADSET;
1725                clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1726                /* Record the interruption report event for driver to report
1727                 * the event later. The jack report will delay until cross
1728                 * talk detection process is done.
1729                 */
1730                if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1731                        nau8825->xtalk_event = event;
1732                        nau8825->xtalk_event_mask = event_mask;
1733                }
1734        } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1735                schedule_work(&nau8825->xtalk_work);
1736                clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1737        } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1738                NAU8825_JACK_INSERTION_DETECTED) {
1739                /* One more step to check GPIO status directly. Thus, the
1740                 * driver can confirm the real insertion interruption because
1741                 * the intrruption at manual mode has bypassed debounce
1742                 * circuit which can get rid of unstable status.
1743                 */
1744                if (nau8825_is_jack_inserted(regmap)) {
1745                        /* Turn off insertion interruption at manual mode */
1746                        regmap_update_bits(regmap,
1747                                NAU8825_REG_INTERRUPT_DIS_CTRL,
1748                                NAU8825_IRQ_INSERT_DIS,
1749                                NAU8825_IRQ_INSERT_DIS);
1750                        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1751                                NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1752                        /* Enable interruption for jack type detection at audo
1753                         * mode which can detect microphone and jack type.
1754                         */
1755                        nau8825_setup_auto_irq(nau8825);
1756                }
1757        }
1758
1759        if (!clear_irq)
1760                clear_irq = active_irq;
1761        /* clears the rightmost interruption */
1762        regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1763
1764        /* Delay jack report until cross talk detection is done. It can avoid
1765         * application to do playback preparation when cross talk detection
1766         * process is still working. Otherwise, the resource like clock and
1767         * power will be issued by them at the same time and conflict happens.
1768         */
1769        if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1770                snd_soc_jack_report(nau8825->jack, event, event_mask);
1771
1772        return IRQ_HANDLED;
1773}
1774
1775static void nau8825_setup_buttons(struct nau8825 *nau8825)
1776{
1777        struct regmap *regmap = nau8825->regmap;
1778
1779        regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1780                NAU8825_SAR_TRACKING_GAIN_MASK,
1781                nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1782        regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1783                NAU8825_SAR_COMPARE_TIME_MASK,
1784                nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1785        regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1786                NAU8825_SAR_SAMPLING_TIME_MASK,
1787                nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1788
1789        regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1790                NAU8825_KEYDET_LEVELS_NR_MASK,
1791                (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1792        regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1793                NAU8825_KEYDET_HYSTERESIS_MASK,
1794                nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1795        regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1796                NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1797                nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1798
1799        regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1800                (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1801        regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1802                (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1803        regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1804                (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1805        regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1806                (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1807
1808        /* Enable short press and release interruptions */
1809        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1810                NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1811                0);
1812}
1813
1814static void nau8825_init_regs(struct nau8825 *nau8825)
1815{
1816        struct regmap *regmap = nau8825->regmap;
1817
1818        /* Latch IIC LSB value */
1819        regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1820        /* Enable Bias/Vmid */
1821        regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1822                NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1823        regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1824                NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1825
1826        /* VMID Tieoff */
1827        regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1828                NAU8825_BIAS_VMID_SEL_MASK,
1829                nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1830        /* Disable Boost Driver, Automatic Short circuit protection enable */
1831        regmap_update_bits(regmap, NAU8825_REG_BOOST,
1832                NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1833                NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1834                NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1835                NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1836
1837        regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1838                NAU8825_JKDET_OUTPUT_EN,
1839                nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1840        regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1841                NAU8825_JKDET_PULL_EN,
1842                nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1843        regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1844                NAU8825_JKDET_PULL_UP,
1845                nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1846        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1847                NAU8825_JACK_POLARITY,
1848                /* jkdet_polarity - 1  is for active-low */
1849                nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1850
1851        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1852                NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1853                nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1854        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1855                NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1856                nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1857
1858        /* Mask unneeded IRQs: 1 - disable, 0 - enable */
1859        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1860
1861        regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1862                NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1863
1864        if (nau8825->sar_threshold_num)
1865                nau8825_setup_buttons(nau8825);
1866
1867        /* Default oversampling/decimations settings are unusable
1868         * (audible hiss). Set it to something better.
1869         */
1870        regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1871                NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1872                NAU8825_ADC_SYNC_DOWN_64);
1873        regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1874                NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1875        /* Disable DACR/L power */
1876        regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1877                NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1878                NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1879        /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1880         * signal to avoid any glitches due to power up transients in both
1881         * the analog and digital DAC circuit.
1882         */
1883        regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1884                NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1885        /* CICCLP off */
1886        regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1887                NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1888
1889        /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1890        regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1891                NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1892                NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1893                NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1894                NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1895        /* Class G timer 64ms */
1896        regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1897                NAU8825_CLASSG_TIMER_MASK,
1898                0x20 << NAU8825_CLASSG_TIMER_SFT);
1899        /* DAC clock delay 2ns, VREF */
1900        regmap_update_bits(regmap, NAU8825_REG_RDAC,
1901                NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1902                (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1903                (0x3 << NAU8825_RDAC_VREF_SFT));
1904        /* Config L/R channel */
1905        regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1906                NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1907        regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1908                NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1909        /* Disable short Frame Sync detection logic */
1910        regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1911                NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1912}
1913
1914static const struct regmap_config nau8825_regmap_config = {
1915        .val_bits = NAU8825_REG_DATA_LEN,
1916        .reg_bits = NAU8825_REG_ADDR_LEN,
1917
1918        .max_register = NAU8825_REG_MAX,
1919        .readable_reg = nau8825_readable_reg,
1920        .writeable_reg = nau8825_writeable_reg,
1921        .volatile_reg = nau8825_volatile_reg,
1922
1923        .cache_type = REGCACHE_RBTREE,
1924        .reg_defaults = nau8825_reg_defaults,
1925        .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1926};
1927
1928static int nau8825_codec_probe(struct snd_soc_codec *codec)
1929{
1930        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1931        struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1932
1933        nau8825->dapm = dapm;
1934
1935        return 0;
1936}
1937
1938static int nau8825_codec_remove(struct snd_soc_codec *codec)
1939{
1940        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1941
1942        /* Cancel and reset cross tak suppresstion detection funciton */
1943        nau8825_xtalk_cancel(nau8825);
1944
1945        return 0;
1946}
1947
1948/**
1949 * nau8825_calc_fll_param - Calculate FLL parameters.
1950 * @fll_in: external clock provided to codec.
1951 * @fs: sampling rate.
1952 * @fll_param: Pointer to structure of FLL parameters.
1953 *
1954 * Calculate FLL parameters to configure codec.
1955 *
1956 * Returns 0 for success or negative error code.
1957 */
1958static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1959                struct nau8825_fll *fll_param)
1960{
1961        u64 fvco, fvco_max;
1962        unsigned int fref, i, fvco_sel;
1963
1964        /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1965         * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1966         * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1967         */
1968        for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1969                fref = fll_in / fll_pre_scalar[i].param;
1970                if (fref <= NAU_FREF_MAX)
1971                        break;
1972        }
1973        if (i == ARRAY_SIZE(fll_pre_scalar))
1974                return -EINVAL;
1975        fll_param->clk_ref_div = fll_pre_scalar[i].val;
1976
1977        /* Choose the FLL ratio based on FREF */
1978        for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1979                if (fref >= fll_ratio[i].param)
1980                        break;
1981        }
1982        if (i == ARRAY_SIZE(fll_ratio))
1983                return -EINVAL;
1984        fll_param->ratio = fll_ratio[i].val;
1985
1986        /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1987         * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1988         * guaranteed across the full range of operation.
1989         * FDCO = freq_out * 2 * mclk_src_scaling
1990         */
1991        fvco_max = 0;
1992        fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1993        for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1994                fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1995                if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1996                        fvco_max < fvco) {
1997                        fvco_max = fvco;
1998                        fvco_sel = i;
1999                }
2000        }
2001        if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
2002                return -EINVAL;
2003        fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
2004
2005        /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
2006         * input based on FDCO, FREF and FLL ratio.
2007         */
2008        fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
2009        fll_param->fll_int = (fvco >> 16) & 0x3FF;
2010        fll_param->fll_frac = fvco & 0xFFFF;
2011        return 0;
2012}
2013
2014static void nau8825_fll_apply(struct nau8825 *nau8825,
2015                struct nau8825_fll *fll_param)
2016{
2017        regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2018                NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
2019                NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
2020        /* Make DSP operate at high speed for better performance. */
2021        regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2022                NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2023                fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2024        /* FLL 16-bit fractional input */
2025        regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2026        /* FLL 10-bit integer input */
2027        regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2028                        NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2029        /* FLL pre-scaler */
2030        regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2031                        NAU8825_FLL_REF_DIV_MASK,
2032                        fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT);
2033        /* select divided VCO input */
2034        regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2035                NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2036        /* Disable free-running mode */
2037        regmap_update_bits(nau8825->regmap,
2038                NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2039        if (fll_param->fll_frac) {
2040                /* set FLL loop filter enable and cutoff frequency at 500Khz */
2041                regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2042                        NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2043                        NAU8825_FLL_FTR_SW_MASK,
2044                        NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2045                        NAU8825_FLL_FTR_SW_FILTER);
2046                regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2047                        NAU8825_SDM_EN | NAU8825_CUTOFF500,
2048                        NAU8825_SDM_EN | NAU8825_CUTOFF500);
2049        } else {
2050                /* disable FLL loop filter and cutoff frequency */
2051                regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2052                        NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2053                        NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2054                regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2055                        NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2056        }
2057}
2058
2059/* freq_out must be 256*Fs in order to achieve the best performance */
2060static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
2061                unsigned int freq_in, unsigned int freq_out)
2062{
2063        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2064        struct nau8825_fll fll_param;
2065        int ret, fs;
2066
2067        fs = freq_out / 256;
2068        ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2069        if (ret < 0) {
2070                dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
2071                return ret;
2072        }
2073        dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2074                fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2075                fll_param.fll_int, fll_param.clk_ref_div);
2076
2077        nau8825_fll_apply(nau8825, &fll_param);
2078        mdelay(2);
2079        regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2080                        NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2081        return 0;
2082}
2083
2084static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2085{
2086        int ret = 0;
2087
2088        nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2089        if (IS_ERR(nau8825->mclk)) {
2090                dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2091                return 0;
2092        }
2093
2094        if (!nau8825->mclk_freq) {
2095                ret = clk_prepare_enable(nau8825->mclk);
2096                if (ret) {
2097                        dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2098                        return ret;
2099                }
2100        }
2101
2102        if (nau8825->mclk_freq != freq) {
2103                freq = clk_round_rate(nau8825->mclk, freq);
2104                ret = clk_set_rate(nau8825->mclk, freq);
2105                if (ret) {
2106                        dev_err(nau8825->dev, "Unable to set mclk rate\n");
2107                        return ret;
2108                }
2109                nau8825->mclk_freq = freq;
2110        }
2111
2112        return 0;
2113}
2114
2115static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2116{
2117        regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2118                NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2119        regmap_update_bits(regmap, NAU8825_REG_FLL6,
2120                NAU8825_DCO_EN, 0);
2121        /* Make DSP operate as default setting for power saving. */
2122        regmap_update_bits(regmap, NAU8825_REG_FLL1,
2123                NAU8825_ICTRL_LATCH_MASK, 0);
2124}
2125
2126static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2127        unsigned int freq)
2128{
2129        struct regmap *regmap = nau8825->regmap;
2130        int ret;
2131
2132        switch (clk_id) {
2133        case NAU8825_CLK_DIS:
2134                /* Clock provided externally and disable internal VCO clock */
2135                nau8825_configure_mclk_as_sysclk(regmap);
2136                if (nau8825->mclk_freq) {
2137                        clk_disable_unprepare(nau8825->mclk);
2138                        nau8825->mclk_freq = 0;
2139                }
2140
2141                break;
2142        case NAU8825_CLK_MCLK:
2143                /* Acquire the semaphore to synchronize the playback and
2144                 * interrupt handler. In order to avoid the playback inter-
2145                 * fered by cross talk process, the driver make the playback
2146                 * preparation halted until cross talk process finish.
2147                 */
2148                nau8825_sema_acquire(nau8825, 3 * HZ);
2149                nau8825_configure_mclk_as_sysclk(regmap);
2150                /* MCLK not changed by clock tree */
2151                regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2152                        NAU8825_CLK_MCLK_SRC_MASK, 0);
2153                /* Release the semaphore. */
2154                nau8825_sema_release(nau8825);
2155
2156                ret = nau8825_mclk_prepare(nau8825, freq);
2157                if (ret)
2158                        return ret;
2159
2160                break;
2161        case NAU8825_CLK_INTERNAL:
2162                if (nau8825_is_jack_inserted(nau8825->regmap)) {
2163                        regmap_update_bits(regmap, NAU8825_REG_FLL6,
2164                                NAU8825_DCO_EN, NAU8825_DCO_EN);
2165                        regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2166                                NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2167                        /* Decrease the VCO frequency and make DSP operate
2168                         * as default setting for power saving.
2169                         */
2170                        regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2171                                NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2172                        regmap_update_bits(regmap, NAU8825_REG_FLL1,
2173                                NAU8825_ICTRL_LATCH_MASK |
2174                                NAU8825_FLL_RATIO_MASK, 0x10);
2175                        regmap_update_bits(regmap, NAU8825_REG_FLL6,
2176                                NAU8825_SDM_EN, NAU8825_SDM_EN);
2177                } else {
2178                        /* The clock turns off intentionally for power saving
2179                         * when no headset connected.
2180                         */
2181                        nau8825_configure_mclk_as_sysclk(regmap);
2182                        dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2183                }
2184                if (nau8825->mclk_freq) {
2185                        clk_disable_unprepare(nau8825->mclk);
2186                        nau8825->mclk_freq = 0;
2187                }
2188
2189                break;
2190        case NAU8825_CLK_FLL_MCLK:
2191                /* Acquire the semaphore to synchronize the playback and
2192                 * interrupt handler. In order to avoid the playback inter-
2193                 * fered by cross talk process, the driver make the playback
2194                 * preparation halted until cross talk process finish.
2195                 */
2196                nau8825_sema_acquire(nau8825, 3 * HZ);
2197                /* Higher FLL reference input frequency can only set lower
2198                 * gain error, such as 0000 for input reference from MCLK
2199                 * 12.288Mhz.
2200                 */
2201                regmap_update_bits(regmap, NAU8825_REG_FLL3,
2202                        NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2203                        NAU8825_FLL_CLK_SRC_MCLK | 0);
2204                /* Release the semaphore. */
2205                nau8825_sema_release(nau8825);
2206
2207                ret = nau8825_mclk_prepare(nau8825, freq);
2208                if (ret)
2209                        return ret;
2210
2211                break;
2212        case NAU8825_CLK_FLL_BLK:
2213                /* Acquire the semaphore to synchronize the playback and
2214                 * interrupt handler. In order to avoid the playback inter-
2215                 * fered by cross talk process, the driver make the playback
2216                 * preparation halted until cross talk process finish.
2217                 */
2218                nau8825_sema_acquire(nau8825, 3 * HZ);
2219                /* If FLL reference input is from low frequency source,
2220                 * higher error gain can apply such as 0xf which has
2221                 * the most sensitive gain error correction threshold,
2222                 * Therefore, FLL has the most accurate DCO to
2223                 * target frequency.
2224                 */
2225                regmap_update_bits(regmap, NAU8825_REG_FLL3,
2226                        NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2227                        NAU8825_FLL_CLK_SRC_BLK |
2228                        (0xf << NAU8825_GAIN_ERR_SFT));
2229                /* Release the semaphore. */
2230                nau8825_sema_release(nau8825);
2231
2232                if (nau8825->mclk_freq) {
2233                        clk_disable_unprepare(nau8825->mclk);
2234                        nau8825->mclk_freq = 0;
2235                }
2236
2237                break;
2238        case NAU8825_CLK_FLL_FS:
2239                /* Acquire the semaphore to synchronize the playback and
2240                 * interrupt handler. In order to avoid the playback inter-
2241                 * fered by cross talk process, the driver make the playback
2242                 * preparation halted until cross talk process finish.
2243                 */
2244                nau8825_sema_acquire(nau8825, 3 * HZ);
2245                /* If FLL reference input is from low frequency source,
2246                 * higher error gain can apply such as 0xf which has
2247                 * the most sensitive gain error correction threshold,
2248                 * Therefore, FLL has the most accurate DCO to
2249                 * target frequency.
2250                 */
2251                regmap_update_bits(regmap, NAU8825_REG_FLL3,
2252                        NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2253                        NAU8825_FLL_CLK_SRC_FS |
2254                        (0xf << NAU8825_GAIN_ERR_SFT));
2255                /* Release the semaphore. */
2256                nau8825_sema_release(nau8825);
2257
2258                if (nau8825->mclk_freq) {
2259                        clk_disable_unprepare(nau8825->mclk);
2260                        nau8825->mclk_freq = 0;
2261                }
2262
2263                break;
2264        default:
2265                dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2266                return -EINVAL;
2267        }
2268
2269        dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2270                clk_id);
2271        return 0;
2272}
2273
2274static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2275        int source, unsigned int freq, int dir)
2276{
2277        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2278
2279        return nau8825_configure_sysclk(nau8825, clk_id, freq);
2280}
2281
2282static int nau8825_resume_setup(struct nau8825 *nau8825)
2283{
2284        struct regmap *regmap = nau8825->regmap;
2285
2286        /* Close clock when jack type detection at manual mode */
2287        nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2288
2289        /* Clear all interruption status */
2290        nau8825_int_status_clear_all(regmap);
2291
2292        /* Enable both insertion and ejection interruptions, and then
2293         * bypass de-bounce circuit.
2294         */
2295        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2296                NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2297                NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2298                NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2299        regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2300                NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2301        regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2302                NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2303
2304        return 0;
2305}
2306
2307static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2308                                   enum snd_soc_bias_level level)
2309{
2310        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2311        int ret;
2312
2313        switch (level) {
2314        case SND_SOC_BIAS_ON:
2315                break;
2316
2317        case SND_SOC_BIAS_PREPARE:
2318                break;
2319
2320        case SND_SOC_BIAS_STANDBY:
2321                if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2322                        if (nau8825->mclk_freq) {
2323                                ret = clk_prepare_enable(nau8825->mclk);
2324                                if (ret) {
2325                                        dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2326                                        return ret;
2327                                }
2328                        }
2329                        /* Setup codec configuration after resume */
2330                        nau8825_resume_setup(nau8825);
2331                }
2332                break;
2333
2334        case SND_SOC_BIAS_OFF:
2335                /* Reset the configuration of jack type for detection */
2336                /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
2337                regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS,
2338                        NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
2339                /* ground HPL/HPR, MICGRND1/2 */
2340                regmap_update_bits(nau8825->regmap,
2341                        NAU8825_REG_HSD_CTRL, 0xf, 0xf);
2342                /* Cancel and reset cross talk detection funciton */
2343                nau8825_xtalk_cancel(nau8825);
2344                /* Turn off all interruptions before system shutdown. Keep the
2345                 * interruption quiet before resume setup completes.
2346                 */
2347                regmap_write(nau8825->regmap,
2348                        NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2349                /* Disable ADC needed for interruptions at audo mode */
2350                regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2351                        NAU8825_ENABLE_ADC, 0);
2352                if (nau8825->mclk_freq)
2353                        clk_disable_unprepare(nau8825->mclk);
2354                break;
2355        }
2356        return 0;
2357}
2358
2359static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2360{
2361        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2362
2363        disable_irq(nau8825->irq);
2364        snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2365        /* Power down codec power; don't suppoet button wakeup */
2366        snd_soc_dapm_disable_pin(nau8825->dapm, "SAR");
2367        snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS");
2368        snd_soc_dapm_sync(nau8825->dapm);
2369        regcache_cache_only(nau8825->regmap, true);
2370        regcache_mark_dirty(nau8825->regmap);
2371
2372        return 0;
2373}
2374
2375static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2376{
2377        struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2378        int ret;
2379
2380        regcache_cache_only(nau8825->regmap, false);
2381        regcache_sync(nau8825->regmap);
2382        nau8825->xtalk_protect = true;
2383        ret = nau8825_sema_acquire(nau8825, 0);
2384        if (ret < 0)
2385                nau8825->xtalk_protect = false;
2386        enable_irq(nau8825->irq);
2387
2388        return 0;
2389}
2390
2391static const struct snd_soc_codec_driver nau8825_codec_driver = {
2392        .probe = nau8825_codec_probe,
2393        .remove = nau8825_codec_remove,
2394        .set_sysclk = nau8825_set_sysclk,
2395        .set_pll = nau8825_set_pll,
2396        .set_bias_level = nau8825_set_bias_level,
2397        .suspend_bias_off = true,
2398        .suspend = nau8825_suspend,
2399        .resume = nau8825_resume,
2400
2401        .component_driver = {
2402                .controls               = nau8825_controls,
2403                .num_controls           = ARRAY_SIZE(nau8825_controls),
2404                .dapm_widgets           = nau8825_dapm_widgets,
2405                .num_dapm_widgets       = ARRAY_SIZE(nau8825_dapm_widgets),
2406                .dapm_routes            = nau8825_dapm_routes,
2407                .num_dapm_routes        = ARRAY_SIZE(nau8825_dapm_routes),
2408        },
2409};
2410
2411static void nau8825_reset_chip(struct regmap *regmap)
2412{
2413        regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2414        regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2415}
2416
2417static void nau8825_print_device_properties(struct nau8825 *nau8825)
2418{
2419        int i;
2420        struct device *dev = nau8825->dev;
2421
2422        dev_dbg(dev, "jkdet-enable:         %d\n", nau8825->jkdet_enable);
2423        dev_dbg(dev, "jkdet-pull-enable:    %d\n", nau8825->jkdet_pull_enable);
2424        dev_dbg(dev, "jkdet-pull-up:        %d\n", nau8825->jkdet_pull_up);
2425        dev_dbg(dev, "jkdet-polarity:       %d\n", nau8825->jkdet_polarity);
2426        dev_dbg(dev, "micbias-voltage:      %d\n", nau8825->micbias_voltage);
2427        dev_dbg(dev, "vref-impedance:       %d\n", nau8825->vref_impedance);
2428
2429        dev_dbg(dev, "sar-threshold-num:    %d\n", nau8825->sar_threshold_num);
2430        for (i = 0; i < nau8825->sar_threshold_num; i++)
2431                dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2432                                nau8825->sar_threshold[i]);
2433
2434        dev_dbg(dev, "sar-hysteresis:       %d\n", nau8825->sar_hysteresis);
2435        dev_dbg(dev, "sar-voltage:          %d\n", nau8825->sar_voltage);
2436        dev_dbg(dev, "sar-compare-time:     %d\n", nau8825->sar_compare_time);
2437        dev_dbg(dev, "sar-sampling-time:    %d\n", nau8825->sar_sampling_time);
2438        dev_dbg(dev, "short-key-debounce:   %d\n", nau8825->key_debounce);
2439        dev_dbg(dev, "jack-insert-debounce: %d\n",
2440                        nau8825->jack_insert_debounce);
2441        dev_dbg(dev, "jack-eject-debounce:  %d\n",
2442                        nau8825->jack_eject_debounce);
2443        dev_dbg(dev, "crosstalk-bypass:     %d\n",
2444                        nau8825->xtalk_bypass);
2445}
2446
2447static int nau8825_read_device_properties(struct device *dev,
2448        struct nau8825 *nau8825) {
2449        int ret;
2450
2451        nau8825->jkdet_enable = device_property_read_bool(dev,
2452                "nuvoton,jkdet-enable");
2453        nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2454                "nuvoton,jkdet-pull-enable");
2455        nau8825->jkdet_pull_up = device_property_read_bool(dev,
2456                "nuvoton,jkdet-pull-up");
2457        ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2458                &nau8825->jkdet_polarity);
2459        if (ret)
2460                nau8825->jkdet_polarity = 1;
2461        ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
2462                &nau8825->micbias_voltage);
2463        if (ret)
2464                nau8825->micbias_voltage = 6;
2465        ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
2466                &nau8825->vref_impedance);
2467        if (ret)
2468                nau8825->vref_impedance = 2;
2469        ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2470                &nau8825->sar_threshold_num);
2471        if (ret)
2472                nau8825->sar_threshold_num = 4;
2473        ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2474                nau8825->sar_threshold, nau8825->sar_threshold_num);
2475        if (ret) {
2476                nau8825->sar_threshold[0] = 0x08;
2477                nau8825->sar_threshold[1] = 0x12;
2478                nau8825->sar_threshold[2] = 0x26;
2479                nau8825->sar_threshold[3] = 0x73;
2480        }
2481        ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2482                &nau8825->sar_hysteresis);
2483        if (ret)
2484                nau8825->sar_hysteresis = 0;
2485        ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
2486                &nau8825->sar_voltage);
2487        if (ret)
2488                nau8825->sar_voltage = 6;
2489        ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
2490                &nau8825->sar_compare_time);
2491        if (ret)
2492                nau8825->sar_compare_time = 1;
2493        ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2494                &nau8825->sar_sampling_time);
2495        if (ret)
2496                nau8825->sar_sampling_time = 1;
2497        ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
2498                &nau8825->key_debounce);
2499        if (ret)
2500                nau8825->key_debounce = 3;
2501        ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2502                &nau8825->jack_insert_debounce);
2503        if (ret)
2504                nau8825->jack_insert_debounce = 7;
2505        ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2506                &nau8825->jack_eject_debounce);
2507        if (ret)
2508                nau8825->jack_eject_debounce = 0;
2509        nau8825->xtalk_bypass = device_property_read_bool(dev,
2510                "nuvoton,crosstalk-bypass");
2511
2512        nau8825->mclk = devm_clk_get(dev, "mclk");
2513        if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2514                return -EPROBE_DEFER;
2515        } else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2516                /* The MCLK is managed externally or not used at all */
2517                nau8825->mclk = NULL;
2518                dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2519        } else if (IS_ERR(nau8825->mclk)) {
2520                return -EINVAL;
2521        }
2522
2523        return 0;
2524}
2525
2526static int nau8825_setup_irq(struct nau8825 *nau8825)
2527{
2528        int ret;
2529
2530        ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2531                nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2532                "nau8825", nau8825);
2533
2534        if (ret) {
2535                dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2536                        nau8825->irq, ret);
2537                return ret;
2538        }
2539
2540        return 0;
2541}
2542
2543static int nau8825_i2c_probe(struct i2c_client *i2c,
2544        const struct i2c_device_id *id)
2545{
2546        struct device *dev = &i2c->dev;
2547        struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2548        int ret, value;
2549
2550        if (!nau8825) {
2551                nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2552                if (!nau8825)
2553                        return -ENOMEM;
2554                ret = nau8825_read_device_properties(dev, nau8825);
2555                if (ret)
2556                        return ret;
2557        }
2558
2559        i2c_set_clientdata(i2c, nau8825);
2560
2561        nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2562        if (IS_ERR(nau8825->regmap))
2563                return PTR_ERR(nau8825->regmap);
2564        nau8825->dev = dev;
2565        nau8825->irq = i2c->irq;
2566        /* Initiate parameters, semaphore and work queue which are needed in
2567         * cross talk suppression measurment function.
2568         */
2569        nau8825->xtalk_state = NAU8825_XTALK_DONE;
2570        nau8825->xtalk_protect = false;
2571        sema_init(&nau8825->xtalk_sem, 1);
2572        INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2573
2574        nau8825_print_device_properties(nau8825);
2575
2576        nau8825_reset_chip(nau8825->regmap);
2577        ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2578        if (ret < 0) {
2579                dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2580                        ret);
2581                return ret;
2582        }
2583        if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2584                        NAU8825_SOFTWARE_ID_NAU8825) {
2585                dev_err(dev, "Not a NAU8825 chip\n");
2586                return -ENODEV;
2587        }
2588
2589        nau8825_init_regs(nau8825);
2590
2591        if (i2c->irq)
2592                nau8825_setup_irq(nau8825);
2593
2594        return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2595                &nau8825_dai, 1);
2596}
2597
2598static int nau8825_i2c_remove(struct i2c_client *client)
2599{
2600        snd_soc_unregister_codec(&client->dev);
2601        return 0;
2602}
2603
2604static const struct i2c_device_id nau8825_i2c_ids[] = {
2605        { "nau8825", 0 },
2606        { }
2607};
2608MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2609
2610#ifdef CONFIG_OF
2611static const struct of_device_id nau8825_of_ids[] = {
2612        { .compatible = "nuvoton,nau8825", },
2613        {}
2614};
2615MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2616#endif
2617
2618#ifdef CONFIG_ACPI
2619static const struct acpi_device_id nau8825_acpi_match[] = {
2620        { "10508825", 0 },
2621        {},
2622};
2623MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2624#endif
2625
2626static struct i2c_driver nau8825_driver = {
2627        .driver = {
2628                .name = "nau8825",
2629                .of_match_table = of_match_ptr(nau8825_of_ids),
2630                .acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2631        },
2632        .probe = nau8825_i2c_probe,
2633        .remove = nau8825_i2c_remove,
2634        .id_table = nau8825_i2c_ids,
2635};
2636module_i2c_driver(nau8825_driver);
2637
2638MODULE_DESCRIPTION("ASoC nau8825 driver");
2639MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2640MODULE_LICENSE("GPL");
2641