linux/arch/c6x/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  Port on Texas Instruments TMS320C6x architecture
   3 *
   4 *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
   5 *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 as
   9 *  published by the Free Software Foundation.
  10 */
  11#include <linux/dma-mapping.h>
  12#include <linux/memblock.h>
  13#include <linux/seq_file.h>
  14#include <linux/bootmem.h>
  15#include <linux/clkdev.h>
  16#include <linux/initrd.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/of_fdt.h>
  20#include <linux/string.h>
  21#include <linux/errno.h>
  22#include <linux/cache.h>
  23#include <linux/delay.h>
  24#include <linux/sched.h>
  25#include <linux/clk.h>
  26#include <linux/cpu.h>
  27#include <linux/fs.h>
  28#include <linux/of.h>
  29#include <linux/console.h>
  30#include <linux/screen_info.h>
  31
  32#include <asm/sections.h>
  33#include <asm/div64.h>
  34#include <asm/setup.h>
  35#include <asm/dscr.h>
  36#include <asm/clock.h>
  37#include <asm/soc.h>
  38#include <asm/special_insns.h>
  39
  40static const char *c6x_soc_name;
  41
  42struct screen_info screen_info;
  43
  44int c6x_num_cores;
  45EXPORT_SYMBOL_GPL(c6x_num_cores);
  46
  47unsigned int c6x_silicon_rev;
  48EXPORT_SYMBOL_GPL(c6x_silicon_rev);
  49
  50/*
  51 * Device status register. This holds information
  52 * about device configuration needed by some drivers.
  53 */
  54unsigned int c6x_devstat;
  55EXPORT_SYMBOL_GPL(c6x_devstat);
  56
  57/*
  58 * Some SoCs have fuse registers holding a unique MAC
  59 * address. This is parsed out of the device tree with
  60 * the resulting MAC being held here.
  61 */
  62unsigned char c6x_fuse_mac[6];
  63
  64unsigned long memory_start;
  65unsigned long memory_end;
  66EXPORT_SYMBOL(memory_end);
  67
  68unsigned long ram_start;
  69unsigned long ram_end;
  70
  71/* Uncached memory for DMA consistent use (memdma=) */
  72static unsigned long dma_start __initdata;
  73static unsigned long dma_size __initdata;
  74
  75struct cpuinfo_c6x {
  76        const char *cpu_name;
  77        const char *cpu_voltage;
  78        const char *mmu;
  79        const char *fpu;
  80        char *cpu_rev;
  81        unsigned int core_id;
  82        char __cpu_rev[5];
  83};
  84
  85static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
  86
  87unsigned int ticks_per_ns_scaled;
  88EXPORT_SYMBOL(ticks_per_ns_scaled);
  89
  90unsigned int c6x_core_freq;
  91
  92static void __init get_cpuinfo(void)
  93{
  94        unsigned cpu_id, rev_id, csr;
  95        struct clk *coreclk = clk_get_sys(NULL, "core");
  96        unsigned long core_khz;
  97        u64 tmp;
  98        struct cpuinfo_c6x *p;
  99        struct device_node *node, *np;
 100
 101        p = &per_cpu(cpu_data, smp_processor_id());
 102
 103        if (!IS_ERR(coreclk))
 104                c6x_core_freq = clk_get_rate(coreclk);
 105        else {
 106                printk(KERN_WARNING
 107                       "Cannot find core clock frequency. Using 700MHz\n");
 108                c6x_core_freq = 700000000;
 109        }
 110
 111        core_khz = c6x_core_freq / 1000;
 112
 113        tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
 114        do_div(tmp, 1000000);
 115        ticks_per_ns_scaled = tmp;
 116
 117        csr = get_creg(CSR);
 118        cpu_id = csr >> 24;
 119        rev_id = (csr >> 16) & 0xff;
 120
 121        p->mmu = "none";
 122        p->fpu = "none";
 123        p->cpu_voltage = "unknown";
 124
 125        switch (cpu_id) {
 126        case 0:
 127                p->cpu_name = "C67x";
 128                p->fpu = "yes";
 129                break;
 130        case 2:
 131                p->cpu_name = "C62x";
 132                break;
 133        case 8:
 134                p->cpu_name = "C64x";
 135                break;
 136        case 12:
 137                p->cpu_name = "C64x";
 138                break;
 139        case 16:
 140                p->cpu_name = "C64x+";
 141                p->cpu_voltage = "1.2";
 142                break;
 143        case 21:
 144                p->cpu_name = "C66X";
 145                p->cpu_voltage = "1.2";
 146                break;
 147        default:
 148                p->cpu_name = "unknown";
 149                break;
 150        }
 151
 152        if (cpu_id < 16) {
 153                switch (rev_id) {
 154                case 0x1:
 155                        if (cpu_id > 8) {
 156                                p->cpu_rev = "DM640/DM641/DM642/DM643";
 157                                p->cpu_voltage = "1.2 - 1.4";
 158                        } else {
 159                                p->cpu_rev = "C6201";
 160                                p->cpu_voltage = "2.5";
 161                        }
 162                        break;
 163                case 0x2:
 164                        p->cpu_rev = "C6201B/C6202/C6211";
 165                        p->cpu_voltage = "1.8";
 166                        break;
 167                case 0x3:
 168                        p->cpu_rev = "C6202B/C6203/C6204/C6205";
 169                        p->cpu_voltage = "1.5";
 170                        break;
 171                case 0x201:
 172                        p->cpu_rev = "C6701 revision 0 (early CPU)";
 173                        p->cpu_voltage = "1.8";
 174                        break;
 175                case 0x202:
 176                        p->cpu_rev = "C6701/C6711/C6712";
 177                        p->cpu_voltage = "1.8";
 178                        break;
 179                case 0x801:
 180                        p->cpu_rev = "C64x";
 181                        p->cpu_voltage = "1.5";
 182                        break;
 183                default:
 184                        p->cpu_rev = "unknown";
 185                }
 186        } else {
 187                p->cpu_rev = p->__cpu_rev;
 188                snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
 189        }
 190
 191        p->core_id = get_coreid();
 192
 193        node = of_find_node_by_name(NULL, "cpus");
 194        if (node) {
 195                for_each_child_of_node(node, np)
 196                        if (!strcmp("cpu", np->name))
 197                                ++c6x_num_cores;
 198                of_node_put(node);
 199        }
 200
 201        node = of_find_node_by_name(NULL, "soc");
 202        if (node) {
 203                if (of_property_read_string(node, "model", &c6x_soc_name))
 204                        c6x_soc_name = "unknown";
 205                of_node_put(node);
 206        } else
 207                c6x_soc_name = "unknown";
 208
 209        printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
 210               p->core_id, p->cpu_name, p->cpu_rev,
 211               p->cpu_voltage, c6x_core_freq / 1000000);
 212}
 213
 214/*
 215 * Early parsing of the command line
 216 */
 217static u32 mem_size __initdata;
 218
 219/* "mem=" parsing. */
 220static int __init early_mem(char *p)
 221{
 222        if (!p)
 223                return -EINVAL;
 224
 225        mem_size = memparse(p, &p);
 226        /* don't remove all of memory when handling "mem={invalid}" */
 227        if (mem_size == 0)
 228                return -EINVAL;
 229
 230        return 0;
 231}
 232early_param("mem", early_mem);
 233
 234/* "memdma=<size>[@<address>]" parsing. */
 235static int __init early_memdma(char *p)
 236{
 237        if (!p)
 238                return -EINVAL;
 239
 240        dma_size = memparse(p, &p);
 241        if (*p == '@')
 242                dma_start = memparse(p, &p);
 243
 244        return 0;
 245}
 246early_param("memdma", early_memdma);
 247
 248int __init c6x_add_memory(phys_addr_t start, unsigned long size)
 249{
 250        static int ram_found __initdata;
 251
 252        /* We only handle one bank (the one with PAGE_OFFSET) for now */
 253        if (ram_found)
 254                return -EINVAL;
 255
 256        if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
 257                return 0;
 258
 259        ram_start = start;
 260        ram_end = start + size;
 261
 262        ram_found = 1;
 263        return 0;
 264}
 265
 266/*
 267 * Do early machine setup and device tree parsing. This is called very
 268 * early on the boot process.
 269 */
 270notrace void __init machine_init(unsigned long dt_ptr)
 271{
 272        void *dtb = __va(dt_ptr);
 273        void *fdt = _fdt_start;
 274
 275        /* interrupts must be masked */
 276        set_creg(IER, 2);
 277
 278        /*
 279         * Set the Interrupt Service Table (IST) to the beginning of the
 280         * vector table.
 281         */
 282        set_ist(_vectors_start);
 283
 284        /*
 285         * dtb is passed in from bootloader.
 286         * fdt is linked in blob.
 287         */
 288        if (dtb && dtb != fdt)
 289                fdt = dtb;
 290
 291        /* Do some early initialization based on the flat device tree */
 292        early_init_dt_scan(fdt);
 293
 294        parse_early_param();
 295}
 296
 297void __init setup_arch(char **cmdline_p)
 298{
 299        int bootmap_size;
 300        struct memblock_region *reg;
 301
 302        printk(KERN_INFO "Initializing kernel\n");
 303
 304        /* Initialize command line */
 305        *cmdline_p = boot_command_line;
 306
 307        memory_end = ram_end;
 308        memory_end &= ~(PAGE_SIZE - 1);
 309
 310        if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
 311                memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
 312
 313        /* add block that this kernel can use */
 314        memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
 315
 316        /* reserve kernel text/data/bss */
 317        memblock_reserve(PAGE_OFFSET,
 318                         PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
 319
 320        if (dma_size) {
 321                /* align to cacheability granularity */
 322                dma_size = CACHE_REGION_END(dma_size);
 323
 324                if (!dma_start)
 325                        dma_start = memory_end - dma_size;
 326
 327                /* align to cacheability granularity */
 328                dma_start = CACHE_REGION_START(dma_start);
 329
 330                /* reserve DMA memory taken from kernel memory */
 331                if (memblock_is_region_memory(dma_start, dma_size))
 332                        memblock_reserve(dma_start, dma_size);
 333        }
 334
 335        memory_start = PAGE_ALIGN((unsigned int) &_end);
 336
 337        printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
 338               memory_start, memory_end);
 339
 340#ifdef CONFIG_BLK_DEV_INITRD
 341        /*
 342         * Reserve initrd memory if in kernel memory.
 343         */
 344        if (initrd_start < initrd_end)
 345                if (memblock_is_region_memory(initrd_start,
 346                                              initrd_end - initrd_start))
 347                        memblock_reserve(initrd_start,
 348                                         initrd_end - initrd_start);
 349#endif
 350
 351        init_mm.start_code = (unsigned long) &_stext;
 352        init_mm.end_code   = (unsigned long) &_etext;
 353        init_mm.end_data   = memory_start;
 354        init_mm.brk        = memory_start;
 355
 356        /*
 357         * Give all the memory to the bootmap allocator,  tell it to put the
 358         * boot mem_map at the start of memory
 359         */
 360        bootmap_size = init_bootmem_node(NODE_DATA(0),
 361                                         memory_start >> PAGE_SHIFT,
 362                                         PAGE_OFFSET >> PAGE_SHIFT,
 363                                         memory_end >> PAGE_SHIFT);
 364        memblock_reserve(memory_start, bootmap_size);
 365
 366        unflatten_device_tree();
 367
 368        c6x_cache_init();
 369
 370        /* Set the whole external memory as non-cacheable */
 371        disable_caching(ram_start, ram_end - 1);
 372
 373        /* Set caching of external RAM used by Linux */
 374        for_each_memblock(memory, reg)
 375                enable_caching(CACHE_REGION_START(reg->base),
 376                               CACHE_REGION_START(reg->base + reg->size - 1));
 377
 378#ifdef CONFIG_BLK_DEV_INITRD
 379        /*
 380         * Enable caching for initrd which falls outside kernel memory.
 381         */
 382        if (initrd_start < initrd_end) {
 383                if (!memblock_is_region_memory(initrd_start,
 384                                               initrd_end - initrd_start))
 385                        enable_caching(CACHE_REGION_START(initrd_start),
 386                                       CACHE_REGION_START(initrd_end - 1));
 387        }
 388#endif
 389
 390        /*
 391         * Disable caching for dma coherent memory taken from kernel memory.
 392         */
 393        if (dma_size && memblock_is_region_memory(dma_start, dma_size))
 394                disable_caching(dma_start,
 395                                CACHE_REGION_START(dma_start + dma_size - 1));
 396
 397        /* Initialize the coherent memory allocator */
 398        coherent_mem_init(dma_start, dma_size);
 399
 400        /*
 401         * Free all memory as a starting point.
 402         */
 403        free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
 404
 405        /*
 406         * Then reserve memory which is already being used.
 407         */
 408        for_each_memblock(reserved, reg) {
 409                pr_debug("reserved - 0x%08x-0x%08x\n",
 410                         (u32) reg->base, (u32) reg->size);
 411                reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
 412        }
 413
 414        max_low_pfn = PFN_DOWN(memory_end);
 415        min_low_pfn = PFN_UP(memory_start);
 416        max_mapnr = max_low_pfn - min_low_pfn;
 417
 418        /* Get kmalloc into gear */
 419        paging_init();
 420
 421        /*
 422         * Probe for Device State Configuration Registers.
 423         * We have to do this early in case timer needs to be enabled
 424         * through DSCR.
 425         */
 426        dscr_probe();
 427
 428        /* We do this early for timer and core clock frequency */
 429        c64x_setup_clocks();
 430
 431        /* Get CPU info */
 432        get_cpuinfo();
 433
 434#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
 435        conswitchp = &dummy_con;
 436#endif
 437}
 438
 439#define cpu_to_ptr(n) ((void *)((long)(n)+1))
 440#define ptr_to_cpu(p) ((long)(p) - 1)
 441
 442static int show_cpuinfo(struct seq_file *m, void *v)
 443{
 444        int n = ptr_to_cpu(v);
 445        struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
 446
 447        if (n == 0) {
 448                seq_printf(m,
 449                           "soc\t\t: %s\n"
 450                           "soc revision\t: 0x%x\n"
 451                           "soc cores\t: %d\n",
 452                           c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
 453        }
 454
 455        seq_printf(m,
 456                   "\n"
 457                   "processor\t: %d\n"
 458                   "cpu\t\t: %s\n"
 459                   "core revision\t: %s\n"
 460                   "core voltage\t: %s\n"
 461                   "core id\t\t: %d\n"
 462                   "mmu\t\t: %s\n"
 463                   "fpu\t\t: %s\n"
 464                   "cpu MHz\t\t: %u\n"
 465                   "bogomips\t: %lu.%02lu\n\n",
 466                   n,
 467                   p->cpu_name, p->cpu_rev, p->cpu_voltage,
 468                   p->core_id, p->mmu, p->fpu,
 469                   (c6x_core_freq + 500000) / 1000000,
 470                   (loops_per_jiffy/(500000/HZ)),
 471                   (loops_per_jiffy/(5000/HZ))%100);
 472
 473        return 0;
 474}
 475
 476static void *c_start(struct seq_file *m, loff_t *pos)
 477{
 478        return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
 479}
 480static void *c_next(struct seq_file *m, void *v, loff_t *pos)
 481{
 482        ++*pos;
 483        return NULL;
 484}
 485static void c_stop(struct seq_file *m, void *v)
 486{
 487}
 488
 489const struct seq_operations cpuinfo_op = {
 490        c_start,
 491        c_stop,
 492        c_next,
 493        show_cpuinfo
 494};
 495
 496static struct cpu cpu_devices[NR_CPUS];
 497
 498static int __init topology_init(void)
 499{
 500        int i;
 501
 502        for_each_present_cpu(i)
 503                register_cpu(&cpu_devices[i], i);
 504
 505        return 0;
 506}
 507
 508subsys_initcall(topology_init);
 509