linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES        32
  25#define BHRB_TARGET             0x0000000000000002
  26#define BHRB_PREDICTION         0x0000000000000001
  27#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30        int n_events;
  31        int n_percpu;
  32        int disabled;
  33        int n_added;
  34        int n_limited;
  35        u8  pmcs_enabled;
  36        struct perf_event *event[MAX_HWEVENTS];
  37        u64 events[MAX_HWEVENTS];
  38        unsigned int flags[MAX_HWEVENTS];
  39        /*
  40         * The order of the MMCR array is:
  41         *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42         *  - 32-bit, MMCR0, MMCR1, MMCR2
  43         */
  44        unsigned long mmcr[4];
  45        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51        unsigned int txn_flags;
  52        int n_txn_start;
  53
  54        /* BHRB bits */
  55        u64                             bhrb_filter;    /* BHRB HW branch filter */
  56        unsigned int                    bhrb_users;
  57        void                            *bhrb_context;
  58        struct  perf_branch_stack       bhrb_stack;
  59        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  60        u64                             ic_init;
  61};
  62
  63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  64
  65static struct power_pmu *ppmu;
  66
  67/*
  68 * Normally, to ignore kernel events we set the FCS (freeze counters
  69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  70 * hypervisor bit set in the MSR, or if we are running on a processor
  71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  72 * then we need to use the FCHV bit to ignore kernel events.
  73 */
  74static unsigned int freeze_events_kernel = MMCR0_FCS;
  75
  76/*
  77 * 32-bit doesn't have MMCRA but does have an MMCR2,
  78 * and a few other names are different.
  79 */
  80#ifdef CONFIG_PPC32
  81
  82#define MMCR0_FCHV              0
  83#define MMCR0_PMCjCE            MMCR0_PMCnCE
  84#define MMCR0_FC56              0
  85#define MMCR0_PMAO              0
  86#define MMCR0_EBE               0
  87#define MMCR0_BHRBA             0
  88#define MMCR0_PMCC              0
  89#define MMCR0_PMCC_U6           0
  90
  91#define SPRN_MMCRA              SPRN_MMCR2
  92#define MMCRA_SAMPLE_ENABLE     0
  93
  94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  95{
  96        return 0;
  97}
  98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 100{
 101        return 0;
 102}
 103static inline void perf_read_regs(struct pt_regs *regs)
 104{
 105        regs->result = 0;
 106}
 107static inline int perf_intr_is_nmi(struct pt_regs *regs)
 108{
 109        return 0;
 110}
 111
 112static inline int siar_valid(struct pt_regs *regs)
 113{
 114        return 1;
 115}
 116
 117static bool is_ebb_event(struct perf_event *event) { return false; }
 118static int ebb_event_check(struct perf_event *event) { return 0; }
 119static void ebb_event_add(struct perf_event *event) { }
 120static void ebb_switch_out(unsigned long mmcr0) { }
 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 122{
 123        return cpuhw->mmcr[0];
 124}
 125
 126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 130static void pmao_restore_workaround(bool ebb) { }
 131#endif /* CONFIG_PPC32 */
 132
 133static bool regs_use_siar(struct pt_regs *regs)
 134{
 135        /*
 136         * When we take a performance monitor exception the regs are setup
 137         * using perf_read_regs() which overloads some fields, in particular
 138         * regs->result to tell us whether to use SIAR.
 139         *
 140         * However if the regs are from another exception, eg. a syscall, then
 141         * they have not been setup using perf_read_regs() and so regs->result
 142         * is something random.
 143         */
 144        return ((TRAP(regs) == 0xf00) && regs->result);
 145}
 146
 147/*
 148 * Things that are specific to 64-bit implementations.
 149 */
 150#ifdef CONFIG_PPC64
 151
 152static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 153{
 154        unsigned long mmcra = regs->dsisr;
 155
 156        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 157                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 158                if (slot > 1)
 159                        return 4 * (slot - 1);
 160        }
 161
 162        return 0;
 163}
 164
 165/*
 166 * The user wants a data address recorded.
 167 * If we're not doing instruction sampling, give them the SDAR
 168 * (sampled data address).  If we are doing instruction sampling, then
 169 * only give them the SDAR if it corresponds to the instruction
 170 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 171 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 172 */
 173static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 174{
 175        unsigned long mmcra = regs->dsisr;
 176        bool sdar_valid;
 177
 178        if (ppmu->flags & PPMU_HAS_SIER)
 179                sdar_valid = regs->dar & SIER_SDAR_VALID;
 180        else {
 181                unsigned long sdsync;
 182
 183                if (ppmu->flags & PPMU_SIAR_VALID)
 184                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 185                else if (ppmu->flags & PPMU_ALT_SIPR)
 186                        sdsync = POWER6_MMCRA_SDSYNC;
 187                else if (ppmu->flags & PPMU_NO_SIAR)
 188                        sdsync = MMCRA_SAMPLE_ENABLE;
 189                else
 190                        sdsync = MMCRA_SDSYNC;
 191
 192                sdar_valid = mmcra & sdsync;
 193        }
 194
 195        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 196                *addrp = mfspr(SPRN_SDAR);
 197
 198        if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 199                is_kernel_addr(mfspr(SPRN_SDAR)))
 200                *addrp = 0;
 201}
 202
 203static bool regs_sihv(struct pt_regs *regs)
 204{
 205        unsigned long sihv = MMCRA_SIHV;
 206
 207        if (ppmu->flags & PPMU_HAS_SIER)
 208                return !!(regs->dar & SIER_SIHV);
 209
 210        if (ppmu->flags & PPMU_ALT_SIPR)
 211                sihv = POWER6_MMCRA_SIHV;
 212
 213        return !!(regs->dsisr & sihv);
 214}
 215
 216static bool regs_sipr(struct pt_regs *regs)
 217{
 218        unsigned long sipr = MMCRA_SIPR;
 219
 220        if (ppmu->flags & PPMU_HAS_SIER)
 221                return !!(regs->dar & SIER_SIPR);
 222
 223        if (ppmu->flags & PPMU_ALT_SIPR)
 224                sipr = POWER6_MMCRA_SIPR;
 225
 226        return !!(regs->dsisr & sipr);
 227}
 228
 229static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 230{
 231        if (regs->msr & MSR_PR)
 232                return PERF_RECORD_MISC_USER;
 233        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 234                return PERF_RECORD_MISC_HYPERVISOR;
 235        return PERF_RECORD_MISC_KERNEL;
 236}
 237
 238static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 239{
 240        bool use_siar = regs_use_siar(regs);
 241
 242        if (!use_siar)
 243                return perf_flags_from_msr(regs);
 244
 245        /*
 246         * If we don't have flags in MMCRA, rather than using
 247         * the MSR, we intuit the flags from the address in
 248         * SIAR which should give slightly more reliable
 249         * results
 250         */
 251        if (ppmu->flags & PPMU_NO_SIPR) {
 252                unsigned long siar = mfspr(SPRN_SIAR);
 253                if (is_kernel_addr(siar))
 254                        return PERF_RECORD_MISC_KERNEL;
 255                return PERF_RECORD_MISC_USER;
 256        }
 257
 258        /* PR has priority over HV, so order below is important */
 259        if (regs_sipr(regs))
 260                return PERF_RECORD_MISC_USER;
 261
 262        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 263                return PERF_RECORD_MISC_HYPERVISOR;
 264
 265        return PERF_RECORD_MISC_KERNEL;
 266}
 267
 268/*
 269 * Overload regs->dsisr to store MMCRA so we only need to read it once
 270 * on each interrupt.
 271 * Overload regs->dar to store SIER if we have it.
 272 * Overload regs->result to specify whether we should use the MSR (result
 273 * is zero) or the SIAR (result is non zero).
 274 */
 275static inline void perf_read_regs(struct pt_regs *regs)
 276{
 277        unsigned long mmcra = mfspr(SPRN_MMCRA);
 278        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 279        int use_siar;
 280
 281        regs->dsisr = mmcra;
 282
 283        if (ppmu->flags & PPMU_HAS_SIER)
 284                regs->dar = mfspr(SPRN_SIER);
 285
 286        /*
 287         * If this isn't a PMU exception (eg a software event) the SIAR is
 288         * not valid. Use pt_regs.
 289         *
 290         * If it is a marked event use the SIAR.
 291         *
 292         * If the PMU doesn't update the SIAR for non marked events use
 293         * pt_regs.
 294         *
 295         * If the PMU has HV/PR flags then check to see if they
 296         * place the exception in userspace. If so, use pt_regs. In
 297         * continuous sampling mode the SIAR and the PMU exception are
 298         * not synchronised, so they may be many instructions apart.
 299         * This can result in confusing backtraces. We still want
 300         * hypervisor samples as well as samples in the kernel with
 301         * interrupts off hence the userspace check.
 302         */
 303        if (TRAP(regs) != 0xf00)
 304                use_siar = 0;
 305        else if ((ppmu->flags & PPMU_NO_SIAR))
 306                use_siar = 0;
 307        else if (marked)
 308                use_siar = 1;
 309        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 310                use_siar = 0;
 311        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 312                use_siar = 0;
 313        else
 314                use_siar = 1;
 315
 316        regs->result = use_siar;
 317}
 318
 319/*
 320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 321 * it as an NMI.
 322 */
 323static inline int perf_intr_is_nmi(struct pt_regs *regs)
 324{
 325        return (regs->softe & IRQS_DISABLED);
 326}
 327
 328/*
 329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 330 * must be sampled only if the SIAR-valid bit is set.
 331 *
 332 * For unmarked instructions and for processors that don't have the SIAR-Valid
 333 * bit, assume that SIAR is valid.
 334 */
 335static inline int siar_valid(struct pt_regs *regs)
 336{
 337        unsigned long mmcra = regs->dsisr;
 338        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 339
 340        if (marked) {
 341                if (ppmu->flags & PPMU_HAS_SIER)
 342                        return regs->dar & SIER_SIAR_VALID;
 343
 344                if (ppmu->flags & PPMU_SIAR_VALID)
 345                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 346        }
 347
 348        return 1;
 349}
 350
 351
 352/* Reset all possible BHRB entries */
 353static void power_pmu_bhrb_reset(void)
 354{
 355        asm volatile(PPC_CLRBHRB);
 356}
 357
 358static void power_pmu_bhrb_enable(struct perf_event *event)
 359{
 360        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 361
 362        if (!ppmu->bhrb_nr)
 363                return;
 364
 365        /* Clear BHRB if we changed task context to avoid data leaks */
 366        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 367                power_pmu_bhrb_reset();
 368                cpuhw->bhrb_context = event->ctx;
 369        }
 370        cpuhw->bhrb_users++;
 371        perf_sched_cb_inc(event->ctx->pmu);
 372}
 373
 374static void power_pmu_bhrb_disable(struct perf_event *event)
 375{
 376        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 377
 378        if (!ppmu->bhrb_nr)
 379                return;
 380
 381        WARN_ON_ONCE(!cpuhw->bhrb_users);
 382        cpuhw->bhrb_users--;
 383        perf_sched_cb_dec(event->ctx->pmu);
 384
 385        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 386                /* BHRB cannot be turned off when other
 387                 * events are active on the PMU.
 388                 */
 389
 390                /* avoid stale pointer */
 391                cpuhw->bhrb_context = NULL;
 392        }
 393}
 394
 395/* Called from ctxsw to prevent one process's branch entries to
 396 * mingle with the other process's entries during context switch.
 397 */
 398static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 399{
 400        if (!ppmu->bhrb_nr)
 401                return;
 402
 403        if (sched_in)
 404                power_pmu_bhrb_reset();
 405}
 406/* Calculate the to address for a branch */
 407static __u64 power_pmu_bhrb_to(u64 addr)
 408{
 409        unsigned int instr;
 410        int ret;
 411        __u64 target;
 412
 413        if (is_kernel_addr(addr)) {
 414                if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
 415                        return 0;
 416
 417                return branch_target(&instr);
 418        }
 419
 420        /* Userspace: need copy instruction here then translate it */
 421        pagefault_disable();
 422        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 423        if (ret) {
 424                pagefault_enable();
 425                return 0;
 426        }
 427        pagefault_enable();
 428
 429        target = branch_target(&instr);
 430        if ((!target) || (instr & BRANCH_ABSOLUTE))
 431                return target;
 432
 433        /* Translate relative branch target from kernel to user address */
 434        return target - (unsigned long)&instr + addr;
 435}
 436
 437/* Processing BHRB entries */
 438static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 439{
 440        u64 val;
 441        u64 addr;
 442        int r_index, u_index, pred;
 443
 444        r_index = 0;
 445        u_index = 0;
 446        while (r_index < ppmu->bhrb_nr) {
 447                /* Assembly read function */
 448                val = read_bhrb(r_index++);
 449                if (!val)
 450                        /* Terminal marker: End of valid BHRB entries */
 451                        break;
 452                else {
 453                        addr = val & BHRB_EA;
 454                        pred = val & BHRB_PREDICTION;
 455
 456                        if (!addr)
 457                                /* invalid entry */
 458                                continue;
 459
 460                        /*
 461                         * BHRB rolling buffer could very much contain the kernel
 462                         * addresses at this point. Check the privileges before
 463                         * exporting it to userspace (avoid exposure of regions
 464                         * where we could have speculative execution)
 465                         */
 466                        if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
 467                                is_kernel_addr(addr))
 468                                continue;
 469
 470                        /* Branches are read most recent first (ie. mfbhrb 0 is
 471                         * the most recent branch).
 472                         * There are two types of valid entries:
 473                         * 1) a target entry which is the to address of a
 474                         *    computed goto like a blr,bctr,btar.  The next
 475                         *    entry read from the bhrb will be branch
 476                         *    corresponding to this target (ie. the actual
 477                         *    blr/bctr/btar instruction).
 478                         * 2) a from address which is an actual branch.  If a
 479                         *    target entry proceeds this, then this is the
 480                         *    matching branch for that target.  If this is not
 481                         *    following a target entry, then this is a branch
 482                         *    where the target is given as an immediate field
 483                         *    in the instruction (ie. an i or b form branch).
 484                         *    In this case we need to read the instruction from
 485                         *    memory to determine the target/to address.
 486                         */
 487
 488                        if (val & BHRB_TARGET) {
 489                                /* Target branches use two entries
 490                                 * (ie. computed gotos/XL form)
 491                                 */
 492                                cpuhw->bhrb_entries[u_index].to = addr;
 493                                cpuhw->bhrb_entries[u_index].mispred = pred;
 494                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 495
 496                                /* Get from address in next entry */
 497                                val = read_bhrb(r_index++);
 498                                addr = val & BHRB_EA;
 499                                if (val & BHRB_TARGET) {
 500                                        /* Shouldn't have two targets in a
 501                                           row.. Reset index and try again */
 502                                        r_index--;
 503                                        addr = 0;
 504                                }
 505                                cpuhw->bhrb_entries[u_index].from = addr;
 506                        } else {
 507                                /* Branches to immediate field 
 508                                   (ie I or B form) */
 509                                cpuhw->bhrb_entries[u_index].from = addr;
 510                                cpuhw->bhrb_entries[u_index].to =
 511                                        power_pmu_bhrb_to(addr);
 512                                cpuhw->bhrb_entries[u_index].mispred = pred;
 513                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 514                        }
 515                        u_index++;
 516
 517                }
 518        }
 519        cpuhw->bhrb_stack.nr = u_index;
 520        return;
 521}
 522
 523static bool is_ebb_event(struct perf_event *event)
 524{
 525        /*
 526         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 527         * check that the PMU supports EBB, meaning those that don't can still
 528         * use bit 63 of the event code for something else if they wish.
 529         */
 530        return (ppmu->flags & PPMU_ARCH_207S) &&
 531               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 532}
 533
 534static int ebb_event_check(struct perf_event *event)
 535{
 536        struct perf_event *leader = event->group_leader;
 537
 538        /* Event and group leader must agree on EBB */
 539        if (is_ebb_event(leader) != is_ebb_event(event))
 540                return -EINVAL;
 541
 542        if (is_ebb_event(event)) {
 543                if (!(event->attach_state & PERF_ATTACH_TASK))
 544                        return -EINVAL;
 545
 546                if (!leader->attr.pinned || !leader->attr.exclusive)
 547                        return -EINVAL;
 548
 549                if (event->attr.freq ||
 550                    event->attr.inherit ||
 551                    event->attr.sample_type ||
 552                    event->attr.sample_period ||
 553                    event->attr.enable_on_exec)
 554                        return -EINVAL;
 555        }
 556
 557        return 0;
 558}
 559
 560static void ebb_event_add(struct perf_event *event)
 561{
 562        if (!is_ebb_event(event) || current->thread.used_ebb)
 563                return;
 564
 565        /*
 566         * IFF this is the first time we've added an EBB event, set
 567         * PMXE in the user MMCR0 so we can detect when it's cleared by
 568         * userspace. We need this so that we can context switch while
 569         * userspace is in the EBB handler (where PMXE is 0).
 570         */
 571        current->thread.used_ebb = 1;
 572        current->thread.mmcr0 |= MMCR0_PMXE;
 573}
 574
 575static void ebb_switch_out(unsigned long mmcr0)
 576{
 577        if (!(mmcr0 & MMCR0_EBE))
 578                return;
 579
 580        current->thread.siar  = mfspr(SPRN_SIAR);
 581        current->thread.sier  = mfspr(SPRN_SIER);
 582        current->thread.sdar  = mfspr(SPRN_SDAR);
 583        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 584        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 585}
 586
 587static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 588{
 589        unsigned long mmcr0 = cpuhw->mmcr[0];
 590
 591        if (!ebb)
 592                goto out;
 593
 594        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 595        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 596
 597        /*
 598         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 599         * with pmao_restore_workaround() because we may add PMAO but we never
 600         * clear it here.
 601         */
 602        mmcr0 |= current->thread.mmcr0;
 603
 604        /*
 605         * Be careful not to set PMXE if userspace had it cleared. This is also
 606         * compatible with pmao_restore_workaround() because it has already
 607         * cleared PMXE and we leave PMAO alone.
 608         */
 609        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 610                mmcr0 &= ~MMCR0_PMXE;
 611
 612        mtspr(SPRN_SIAR, current->thread.siar);
 613        mtspr(SPRN_SIER, current->thread.sier);
 614        mtspr(SPRN_SDAR, current->thread.sdar);
 615
 616        /*
 617         * Merge the kernel & user values of MMCR2. The semantics we implement
 618         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 619         * but not clear bits. If a task wants to be able to clear bits, ie.
 620         * unfreeze counters, it should not set exclude_xxx in its events and
 621         * instead manage the MMCR2 entirely by itself.
 622         */
 623        mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 624out:
 625        return mmcr0;
 626}
 627
 628static void pmao_restore_workaround(bool ebb)
 629{
 630        unsigned pmcs[6];
 631
 632        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 633                return;
 634
 635        /*
 636         * On POWER8E there is a hardware defect which affects the PMU context
 637         * switch logic, ie. power_pmu_disable/enable().
 638         *
 639         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 640         * by the hardware. Sometime later the actual PMU exception is
 641         * delivered.
 642         *
 643         * If we context switch, or simply disable/enable, the PMU prior to the
 644         * exception arriving, the exception will be lost when we clear PMAO.
 645         *
 646         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 647         * set, and this _should_ generate an exception. However because of the
 648         * defect no exception is generated when we write PMAO, and we get
 649         * stuck with no counters counting but no exception delivered.
 650         *
 651         * The workaround is to detect this case and tweak the hardware to
 652         * create another pending PMU exception.
 653         *
 654         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 655         * enabling the PMU. That causes a new exception to be generated in the
 656         * chip, but we don't take it yet because we have interrupts hard
 657         * disabled. We then write back the PMU state as we want it to be seen
 658         * by the exception handler. When we reenable interrupts the exception
 659         * handler will be called and see the correct state.
 660         *
 661         * The logic is the same for EBB, except that the exception is gated by
 662         * us having interrupts hard disabled as well as the fact that we are
 663         * not in userspace. The exception is finally delivered when we return
 664         * to userspace.
 665         */
 666
 667        /* Only if PMAO is set and PMAO_SYNC is clear */
 668        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 669                return;
 670
 671        /* If we're doing EBB, only if BESCR[GE] is set */
 672        if (ebb && !(current->thread.bescr & BESCR_GE))
 673                return;
 674
 675        /*
 676         * We are already soft-disabled in power_pmu_enable(). We need to hard
 677         * disable to actually prevent the PMU exception from firing.
 678         */
 679        hard_irq_disable();
 680
 681        /*
 682         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 683         * Using read/write_pmc() in a for loop adds 12 function calls and
 684         * almost doubles our code size.
 685         */
 686        pmcs[0] = mfspr(SPRN_PMC1);
 687        pmcs[1] = mfspr(SPRN_PMC2);
 688        pmcs[2] = mfspr(SPRN_PMC3);
 689        pmcs[3] = mfspr(SPRN_PMC4);
 690        pmcs[4] = mfspr(SPRN_PMC5);
 691        pmcs[5] = mfspr(SPRN_PMC6);
 692
 693        /* Ensure all freeze bits are unset */
 694        mtspr(SPRN_MMCR2, 0);
 695
 696        /* Set up PMC6 to overflow in one cycle */
 697        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 698
 699        /* Enable exceptions and unfreeze PMC6 */
 700        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 701
 702        /* Now we need to refreeze and restore the PMCs */
 703        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 704
 705        mtspr(SPRN_PMC1, pmcs[0]);
 706        mtspr(SPRN_PMC2, pmcs[1]);
 707        mtspr(SPRN_PMC3, pmcs[2]);
 708        mtspr(SPRN_PMC4, pmcs[3]);
 709        mtspr(SPRN_PMC5, pmcs[4]);
 710        mtspr(SPRN_PMC6, pmcs[5]);
 711}
 712
 713#endif /* CONFIG_PPC64 */
 714
 715static void perf_event_interrupt(struct pt_regs *regs);
 716
 717/*
 718 * Read one performance monitor counter (PMC).
 719 */
 720static unsigned long read_pmc(int idx)
 721{
 722        unsigned long val;
 723
 724        switch (idx) {
 725        case 1:
 726                val = mfspr(SPRN_PMC1);
 727                break;
 728        case 2:
 729                val = mfspr(SPRN_PMC2);
 730                break;
 731        case 3:
 732                val = mfspr(SPRN_PMC3);
 733                break;
 734        case 4:
 735                val = mfspr(SPRN_PMC4);
 736                break;
 737        case 5:
 738                val = mfspr(SPRN_PMC5);
 739                break;
 740        case 6:
 741                val = mfspr(SPRN_PMC6);
 742                break;
 743#ifdef CONFIG_PPC64
 744        case 7:
 745                val = mfspr(SPRN_PMC7);
 746                break;
 747        case 8:
 748                val = mfspr(SPRN_PMC8);
 749                break;
 750#endif /* CONFIG_PPC64 */
 751        default:
 752                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 753                val = 0;
 754        }
 755        return val;
 756}
 757
 758/*
 759 * Write one PMC.
 760 */
 761static void write_pmc(int idx, unsigned long val)
 762{
 763        switch (idx) {
 764        case 1:
 765                mtspr(SPRN_PMC1, val);
 766                break;
 767        case 2:
 768                mtspr(SPRN_PMC2, val);
 769                break;
 770        case 3:
 771                mtspr(SPRN_PMC3, val);
 772                break;
 773        case 4:
 774                mtspr(SPRN_PMC4, val);
 775                break;
 776        case 5:
 777                mtspr(SPRN_PMC5, val);
 778                break;
 779        case 6:
 780                mtspr(SPRN_PMC6, val);
 781                break;
 782#ifdef CONFIG_PPC64
 783        case 7:
 784                mtspr(SPRN_PMC7, val);
 785                break;
 786        case 8:
 787                mtspr(SPRN_PMC8, val);
 788                break;
 789#endif /* CONFIG_PPC64 */
 790        default:
 791                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 792        }
 793}
 794
 795/* Called from sysrq_handle_showregs() */
 796void perf_event_print_debug(void)
 797{
 798        unsigned long sdar, sier, flags;
 799        u32 pmcs[MAX_HWEVENTS];
 800        int i;
 801
 802        if (!ppmu) {
 803                pr_info("Performance monitor hardware not registered.\n");
 804                return;
 805        }
 806
 807        if (!ppmu->n_counter)
 808                return;
 809
 810        local_irq_save(flags);
 811
 812        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 813                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 814
 815        for (i = 0; i < ppmu->n_counter; i++)
 816                pmcs[i] = read_pmc(i + 1);
 817
 818        for (; i < MAX_HWEVENTS; i++)
 819                pmcs[i] = 0xdeadbeef;
 820
 821        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 822                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 823
 824        if (ppmu->n_counter > 4)
 825                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 826                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 827
 828        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 829                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 830
 831        sdar = sier = 0;
 832#ifdef CONFIG_PPC64
 833        sdar = mfspr(SPRN_SDAR);
 834
 835        if (ppmu->flags & PPMU_HAS_SIER)
 836                sier = mfspr(SPRN_SIER);
 837
 838        if (ppmu->flags & PPMU_ARCH_207S) {
 839                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 840                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 841                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 842                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 843        }
 844#endif
 845        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 846                mfspr(SPRN_SIAR), sdar, sier);
 847
 848        local_irq_restore(flags);
 849}
 850
 851/*
 852 * Check if a set of events can all go on the PMU at once.
 853 * If they can't, this will look at alternative codes for the events
 854 * and see if any combination of alternative codes is feasible.
 855 * The feasible set is returned in event_id[].
 856 */
 857static int power_check_constraints(struct cpu_hw_events *cpuhw,
 858                                   u64 event_id[], unsigned int cflags[],
 859                                   int n_ev)
 860{
 861        unsigned long mask, value, nv;
 862        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 863        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 864        int i, j;
 865        unsigned long addf = ppmu->add_fields;
 866        unsigned long tadd = ppmu->test_adder;
 867
 868        if (n_ev > ppmu->n_counter)
 869                return -1;
 870
 871        /* First see if the events will go on as-is */
 872        for (i = 0; i < n_ev; ++i) {
 873                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 874                    && !ppmu->limited_pmc_event(event_id[i])) {
 875                        ppmu->get_alternatives(event_id[i], cflags[i],
 876                                               cpuhw->alternatives[i]);
 877                        event_id[i] = cpuhw->alternatives[i][0];
 878                }
 879                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 880                                         &cpuhw->avalues[i][0]))
 881                        return -1;
 882        }
 883        value = mask = 0;
 884        for (i = 0; i < n_ev; ++i) {
 885                nv = (value | cpuhw->avalues[i][0]) +
 886                        (value & cpuhw->avalues[i][0] & addf);
 887                if ((((nv + tadd) ^ value) & mask) != 0 ||
 888                    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 889                     cpuhw->amasks[i][0]) != 0)
 890                        break;
 891                value = nv;
 892                mask |= cpuhw->amasks[i][0];
 893        }
 894        if (i == n_ev)
 895                return 0;       /* all OK */
 896
 897        /* doesn't work, gather alternatives... */
 898        if (!ppmu->get_alternatives)
 899                return -1;
 900        for (i = 0; i < n_ev; ++i) {
 901                choice[i] = 0;
 902                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 903                                                  cpuhw->alternatives[i]);
 904                for (j = 1; j < n_alt[i]; ++j)
 905                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 906                                             &cpuhw->amasks[i][j],
 907                                             &cpuhw->avalues[i][j]);
 908        }
 909
 910        /* enumerate all possibilities and see if any will work */
 911        i = 0;
 912        j = -1;
 913        value = mask = nv = 0;
 914        while (i < n_ev) {
 915                if (j >= 0) {
 916                        /* we're backtracking, restore context */
 917                        value = svalues[i];
 918                        mask = smasks[i];
 919                        j = choice[i];
 920                }
 921                /*
 922                 * See if any alternative k for event_id i,
 923                 * where k > j, will satisfy the constraints.
 924                 */
 925                while (++j < n_alt[i]) {
 926                        nv = (value | cpuhw->avalues[i][j]) +
 927                                (value & cpuhw->avalues[i][j] & addf);
 928                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 929                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 930                             & cpuhw->amasks[i][j]) == 0)
 931                                break;
 932                }
 933                if (j >= n_alt[i]) {
 934                        /*
 935                         * No feasible alternative, backtrack
 936                         * to event_id i-1 and continue enumerating its
 937                         * alternatives from where we got up to.
 938                         */
 939                        if (--i < 0)
 940                                return -1;
 941                } else {
 942                        /*
 943                         * Found a feasible alternative for event_id i,
 944                         * remember where we got up to with this event_id,
 945                         * go on to the next event_id, and start with
 946                         * the first alternative for it.
 947                         */
 948                        choice[i] = j;
 949                        svalues[i] = value;
 950                        smasks[i] = mask;
 951                        value = nv;
 952                        mask |= cpuhw->amasks[i][j];
 953                        ++i;
 954                        j = -1;
 955                }
 956        }
 957
 958        /* OK, we have a feasible combination, tell the caller the solution */
 959        for (i = 0; i < n_ev; ++i)
 960                event_id[i] = cpuhw->alternatives[i][choice[i]];
 961        return 0;
 962}
 963
 964/*
 965 * Check if newly-added events have consistent settings for
 966 * exclude_{user,kernel,hv} with each other and any previously
 967 * added events.
 968 */
 969static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 970                          int n_prev, int n_new)
 971{
 972        int eu = 0, ek = 0, eh = 0;
 973        int i, n, first;
 974        struct perf_event *event;
 975
 976        /*
 977         * If the PMU we're on supports per event exclude settings then we
 978         * don't need to do any of this logic. NB. This assumes no PMU has both
 979         * per event exclude and limited PMCs.
 980         */
 981        if (ppmu->flags & PPMU_ARCH_207S)
 982                return 0;
 983
 984        n = n_prev + n_new;
 985        if (n <= 1)
 986                return 0;
 987
 988        first = 1;
 989        for (i = 0; i < n; ++i) {
 990                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 991                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 992                        continue;
 993                }
 994                event = ctrs[i];
 995                if (first) {
 996                        eu = event->attr.exclude_user;
 997                        ek = event->attr.exclude_kernel;
 998                        eh = event->attr.exclude_hv;
 999                        first = 0;
1000                } else if (event->attr.exclude_user != eu ||
1001                           event->attr.exclude_kernel != ek ||
1002                           event->attr.exclude_hv != eh) {
1003                        return -EAGAIN;
1004                }
1005        }
1006
1007        if (eu || ek || eh)
1008                for (i = 0; i < n; ++i)
1009                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
1010                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
1011
1012        return 0;
1013}
1014
1015static u64 check_and_compute_delta(u64 prev, u64 val)
1016{
1017        u64 delta = (val - prev) & 0xfffffffful;
1018
1019        /*
1020         * POWER7 can roll back counter values, if the new value is smaller
1021         * than the previous value it will cause the delta and the counter to
1022         * have bogus values unless we rolled a counter over.  If a coutner is
1023         * rolled back, it will be smaller, but within 256, which is the maximum
1024         * number of events to rollback at once.  If we detect a rollback
1025         * return 0.  This can lead to a small lack of precision in the
1026         * counters.
1027         */
1028        if (prev > val && (prev - val) < 256)
1029                delta = 0;
1030
1031        return delta;
1032}
1033
1034static void power_pmu_read(struct perf_event *event)
1035{
1036        s64 val, delta, prev;
1037
1038        if (event->hw.state & PERF_HES_STOPPED)
1039                return;
1040
1041        if (!event->hw.idx)
1042                return;
1043
1044        if (is_ebb_event(event)) {
1045                val = read_pmc(event->hw.idx);
1046                local64_set(&event->hw.prev_count, val);
1047                return;
1048        }
1049
1050        /*
1051         * Performance monitor interrupts come even when interrupts
1052         * are soft-disabled, as long as interrupts are hard-enabled.
1053         * Therefore we treat them like NMIs.
1054         */
1055        do {
1056                prev = local64_read(&event->hw.prev_count);
1057                barrier();
1058                val = read_pmc(event->hw.idx);
1059                delta = check_and_compute_delta(prev, val);
1060                if (!delta)
1061                        return;
1062        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1063
1064        local64_add(delta, &event->count);
1065
1066        /*
1067         * A number of places program the PMC with (0x80000000 - period_left).
1068         * We never want period_left to be less than 1 because we will program
1069         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1070         * roll around to 0 before taking an exception. We have seen this
1071         * on POWER8.
1072         *
1073         * To fix this, clamp the minimum value of period_left to 1.
1074         */
1075        do {
1076                prev = local64_read(&event->hw.period_left);
1077                val = prev - delta;
1078                if (val < 1)
1079                        val = 1;
1080        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1081}
1082
1083/*
1084 * On some machines, PMC5 and PMC6 can't be written, don't respect
1085 * the freeze conditions, and don't generate interrupts.  This tells
1086 * us if `event' is using such a PMC.
1087 */
1088static int is_limited_pmc(int pmcnum)
1089{
1090        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1091                && (pmcnum == 5 || pmcnum == 6);
1092}
1093
1094static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1095                                    unsigned long pmc5, unsigned long pmc6)
1096{
1097        struct perf_event *event;
1098        u64 val, prev, delta;
1099        int i;
1100
1101        for (i = 0; i < cpuhw->n_limited; ++i) {
1102                event = cpuhw->limited_counter[i];
1103                if (!event->hw.idx)
1104                        continue;
1105                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1106                prev = local64_read(&event->hw.prev_count);
1107                event->hw.idx = 0;
1108                delta = check_and_compute_delta(prev, val);
1109                if (delta)
1110                        local64_add(delta, &event->count);
1111        }
1112}
1113
1114static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1115                                  unsigned long pmc5, unsigned long pmc6)
1116{
1117        struct perf_event *event;
1118        u64 val, prev;
1119        int i;
1120
1121        for (i = 0; i < cpuhw->n_limited; ++i) {
1122                event = cpuhw->limited_counter[i];
1123                event->hw.idx = cpuhw->limited_hwidx[i];
1124                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1125                prev = local64_read(&event->hw.prev_count);
1126                if (check_and_compute_delta(prev, val))
1127                        local64_set(&event->hw.prev_count, val);
1128                perf_event_update_userpage(event);
1129        }
1130}
1131
1132/*
1133 * Since limited events don't respect the freeze conditions, we
1134 * have to read them immediately after freezing or unfreezing the
1135 * other events.  We try to keep the values from the limited
1136 * events as consistent as possible by keeping the delay (in
1137 * cycles and instructions) between freezing/unfreezing and reading
1138 * the limited events as small and consistent as possible.
1139 * Therefore, if any limited events are in use, we read them
1140 * both, and always in the same order, to minimize variability,
1141 * and do it inside the same asm that writes MMCR0.
1142 */
1143static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1144{
1145        unsigned long pmc5, pmc6;
1146
1147        if (!cpuhw->n_limited) {
1148                mtspr(SPRN_MMCR0, mmcr0);
1149                return;
1150        }
1151
1152        /*
1153         * Write MMCR0, then read PMC5 and PMC6 immediately.
1154         * To ensure we don't get a performance monitor interrupt
1155         * between writing MMCR0 and freezing/thawing the limited
1156         * events, we first write MMCR0 with the event overflow
1157         * interrupt enable bits turned off.
1158         */
1159        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1160                     : "=&r" (pmc5), "=&r" (pmc6)
1161                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1162                       "i" (SPRN_MMCR0),
1163                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1164
1165        if (mmcr0 & MMCR0_FC)
1166                freeze_limited_counters(cpuhw, pmc5, pmc6);
1167        else
1168                thaw_limited_counters(cpuhw, pmc5, pmc6);
1169
1170        /*
1171         * Write the full MMCR0 including the event overflow interrupt
1172         * enable bits, if necessary.
1173         */
1174        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1175                mtspr(SPRN_MMCR0, mmcr0);
1176}
1177
1178/*
1179 * Disable all events to prevent PMU interrupts and to allow
1180 * events to be added or removed.
1181 */
1182static void power_pmu_disable(struct pmu *pmu)
1183{
1184        struct cpu_hw_events *cpuhw;
1185        unsigned long flags, mmcr0, val;
1186
1187        if (!ppmu)
1188                return;
1189        local_irq_save(flags);
1190        cpuhw = this_cpu_ptr(&cpu_hw_events);
1191
1192        if (!cpuhw->disabled) {
1193                /*
1194                 * Check if we ever enabled the PMU on this cpu.
1195                 */
1196                if (!cpuhw->pmcs_enabled) {
1197                        ppc_enable_pmcs();
1198                        cpuhw->pmcs_enabled = 1;
1199                }
1200
1201                /*
1202                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1203                 */
1204                val  = mmcr0 = mfspr(SPRN_MMCR0);
1205                val |= MMCR0_FC;
1206                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1207                         MMCR0_FC56);
1208
1209                /*
1210                 * The barrier is to make sure the mtspr has been
1211                 * executed and the PMU has frozen the events etc.
1212                 * before we return.
1213                 */
1214                write_mmcr0(cpuhw, val);
1215                mb();
1216                isync();
1217
1218                /*
1219                 * Disable instruction sampling if it was enabled
1220                 */
1221                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1222                        mtspr(SPRN_MMCRA,
1223                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1224                        mb();
1225                        isync();
1226                }
1227
1228                cpuhw->disabled = 1;
1229                cpuhw->n_added = 0;
1230
1231                ebb_switch_out(mmcr0);
1232
1233#ifdef CONFIG_PPC64
1234                /*
1235                 * These are readable by userspace, may contain kernel
1236                 * addresses and are not switched by context switch, so clear
1237                 * them now to avoid leaking anything to userspace in general
1238                 * including to another process.
1239                 */
1240                if (ppmu->flags & PPMU_ARCH_207S) {
1241                        mtspr(SPRN_SDAR, 0);
1242                        mtspr(SPRN_SIAR, 0);
1243                }
1244#endif
1245        }
1246
1247        local_irq_restore(flags);
1248}
1249
1250/*
1251 * Re-enable all events if disable == 0.
1252 * If we were previously disabled and events were added, then
1253 * put the new config on the PMU.
1254 */
1255static void power_pmu_enable(struct pmu *pmu)
1256{
1257        struct perf_event *event;
1258        struct cpu_hw_events *cpuhw;
1259        unsigned long flags;
1260        long i;
1261        unsigned long val, mmcr0;
1262        s64 left;
1263        unsigned int hwc_index[MAX_HWEVENTS];
1264        int n_lim;
1265        int idx;
1266        bool ebb;
1267
1268        if (!ppmu)
1269                return;
1270        local_irq_save(flags);
1271
1272        cpuhw = this_cpu_ptr(&cpu_hw_events);
1273        if (!cpuhw->disabled)
1274                goto out;
1275
1276        if (cpuhw->n_events == 0) {
1277                ppc_set_pmu_inuse(0);
1278                goto out;
1279        }
1280
1281        cpuhw->disabled = 0;
1282
1283        /*
1284         * EBB requires an exclusive group and all events must have the EBB
1285         * flag set, or not set, so we can just check a single event. Also we
1286         * know we have at least one event.
1287         */
1288        ebb = is_ebb_event(cpuhw->event[0]);
1289
1290        /*
1291         * If we didn't change anything, or only removed events,
1292         * no need to recalculate MMCR* settings and reset the PMCs.
1293         * Just reenable the PMU with the current MMCR* settings
1294         * (possibly updated for removal of events).
1295         */
1296        if (!cpuhw->n_added) {
1297                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1298                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1299                goto out_enable;
1300        }
1301
1302        /*
1303         * Clear all MMCR settings and recompute them for the new set of events.
1304         */
1305        memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1306
1307        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1308                               cpuhw->mmcr, cpuhw->event)) {
1309                /* shouldn't ever get here */
1310                printk(KERN_ERR "oops compute_mmcr failed\n");
1311                goto out;
1312        }
1313
1314        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1315                /*
1316                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1317                 * bits for the first event. We have already checked that all
1318                 * events have the same value for these bits as the first event.
1319                 */
1320                event = cpuhw->event[0];
1321                if (event->attr.exclude_user)
1322                        cpuhw->mmcr[0] |= MMCR0_FCP;
1323                if (event->attr.exclude_kernel)
1324                        cpuhw->mmcr[0] |= freeze_events_kernel;
1325                if (event->attr.exclude_hv)
1326                        cpuhw->mmcr[0] |= MMCR0_FCHV;
1327        }
1328
1329        /*
1330         * Write the new configuration to MMCR* with the freeze
1331         * bit set and set the hardware events to their initial values.
1332         * Then unfreeze the events.
1333         */
1334        ppc_set_pmu_inuse(1);
1335        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1336        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1337        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1338                                | MMCR0_FC);
1339        if (ppmu->flags & PPMU_ARCH_207S)
1340                mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1341
1342        /*
1343         * Read off any pre-existing events that need to move
1344         * to another PMC.
1345         */
1346        for (i = 0; i < cpuhw->n_events; ++i) {
1347                event = cpuhw->event[i];
1348                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1349                        power_pmu_read(event);
1350                        write_pmc(event->hw.idx, 0);
1351                        event->hw.idx = 0;
1352                }
1353        }
1354
1355        /*
1356         * Initialize the PMCs for all the new and moved events.
1357         */
1358        cpuhw->n_limited = n_lim = 0;
1359        for (i = 0; i < cpuhw->n_events; ++i) {
1360                event = cpuhw->event[i];
1361                if (event->hw.idx)
1362                        continue;
1363                idx = hwc_index[i] + 1;
1364                if (is_limited_pmc(idx)) {
1365                        cpuhw->limited_counter[n_lim] = event;
1366                        cpuhw->limited_hwidx[n_lim] = idx;
1367                        ++n_lim;
1368                        continue;
1369                }
1370
1371                if (ebb)
1372                        val = local64_read(&event->hw.prev_count);
1373                else {
1374                        val = 0;
1375                        if (event->hw.sample_period) {
1376                                left = local64_read(&event->hw.period_left);
1377                                if (left < 0x80000000L)
1378                                        val = 0x80000000L - left;
1379                        }
1380                        local64_set(&event->hw.prev_count, val);
1381                }
1382
1383                event->hw.idx = idx;
1384                if (event->hw.state & PERF_HES_STOPPED)
1385                        val = 0;
1386                write_pmc(idx, val);
1387
1388                perf_event_update_userpage(event);
1389        }
1390        cpuhw->n_limited = n_lim;
1391        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1392
1393 out_enable:
1394        pmao_restore_workaround(ebb);
1395
1396        mmcr0 = ebb_switch_in(ebb, cpuhw);
1397
1398        mb();
1399        if (cpuhw->bhrb_users)
1400                ppmu->config_bhrb(cpuhw->bhrb_filter);
1401
1402        write_mmcr0(cpuhw, mmcr0);
1403
1404        /*
1405         * Enable instruction sampling if necessary
1406         */
1407        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1408                mb();
1409                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1410        }
1411
1412 out:
1413
1414        local_irq_restore(flags);
1415}
1416
1417static int collect_events(struct perf_event *group, int max_count,
1418                          struct perf_event *ctrs[], u64 *events,
1419                          unsigned int *flags)
1420{
1421        int n = 0;
1422        struct perf_event *event;
1423
1424        if (group->pmu->task_ctx_nr == perf_hw_context) {
1425                if (n >= max_count)
1426                        return -1;
1427                ctrs[n] = group;
1428                flags[n] = group->hw.event_base;
1429                events[n++] = group->hw.config;
1430        }
1431        for_each_sibling_event(event, group) {
1432                if (event->pmu->task_ctx_nr == perf_hw_context &&
1433                    event->state != PERF_EVENT_STATE_OFF) {
1434                        if (n >= max_count)
1435                                return -1;
1436                        ctrs[n] = event;
1437                        flags[n] = event->hw.event_base;
1438                        events[n++] = event->hw.config;
1439                }
1440        }
1441        return n;
1442}
1443
1444/*
1445 * Add an event to the PMU.
1446 * If all events are not already frozen, then we disable and
1447 * re-enable the PMU in order to get hw_perf_enable to do the
1448 * actual work of reconfiguring the PMU.
1449 */
1450static int power_pmu_add(struct perf_event *event, int ef_flags)
1451{
1452        struct cpu_hw_events *cpuhw;
1453        unsigned long flags;
1454        int n0;
1455        int ret = -EAGAIN;
1456
1457        local_irq_save(flags);
1458        perf_pmu_disable(event->pmu);
1459
1460        /*
1461         * Add the event to the list (if there is room)
1462         * and check whether the total set is still feasible.
1463         */
1464        cpuhw = this_cpu_ptr(&cpu_hw_events);
1465        n0 = cpuhw->n_events;
1466        if (n0 >= ppmu->n_counter)
1467                goto out;
1468        cpuhw->event[n0] = event;
1469        cpuhw->events[n0] = event->hw.config;
1470        cpuhw->flags[n0] = event->hw.event_base;
1471
1472        /*
1473         * This event may have been disabled/stopped in record_and_restart()
1474         * because we exceeded the ->event_limit. If re-starting the event,
1475         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1476         * notification is re-enabled.
1477         */
1478        if (!(ef_flags & PERF_EF_START))
1479                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1480        else
1481                event->hw.state = 0;
1482
1483        /*
1484         * If group events scheduling transaction was started,
1485         * skip the schedulability test here, it will be performed
1486         * at commit time(->commit_txn) as a whole
1487         */
1488        if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1489                goto nocheck;
1490
1491        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1492                goto out;
1493        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1494                goto out;
1495        event->hw.config = cpuhw->events[n0];
1496
1497nocheck:
1498        ebb_event_add(event);
1499
1500        ++cpuhw->n_events;
1501        ++cpuhw->n_added;
1502
1503        ret = 0;
1504 out:
1505        if (has_branch_stack(event)) {
1506                power_pmu_bhrb_enable(event);
1507                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1508                                        event->attr.branch_sample_type);
1509        }
1510
1511        perf_pmu_enable(event->pmu);
1512        local_irq_restore(flags);
1513        return ret;
1514}
1515
1516/*
1517 * Remove an event from the PMU.
1518 */
1519static void power_pmu_del(struct perf_event *event, int ef_flags)
1520{
1521        struct cpu_hw_events *cpuhw;
1522        long i;
1523        unsigned long flags;
1524
1525        local_irq_save(flags);
1526        perf_pmu_disable(event->pmu);
1527
1528        power_pmu_read(event);
1529
1530        cpuhw = this_cpu_ptr(&cpu_hw_events);
1531        for (i = 0; i < cpuhw->n_events; ++i) {
1532                if (event == cpuhw->event[i]) {
1533                        while (++i < cpuhw->n_events) {
1534                                cpuhw->event[i-1] = cpuhw->event[i];
1535                                cpuhw->events[i-1] = cpuhw->events[i];
1536                                cpuhw->flags[i-1] = cpuhw->flags[i];
1537                        }
1538                        --cpuhw->n_events;
1539                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1540                        if (event->hw.idx) {
1541                                write_pmc(event->hw.idx, 0);
1542                                event->hw.idx = 0;
1543                        }
1544                        perf_event_update_userpage(event);
1545                        break;
1546                }
1547        }
1548        for (i = 0; i < cpuhw->n_limited; ++i)
1549                if (event == cpuhw->limited_counter[i])
1550                        break;
1551        if (i < cpuhw->n_limited) {
1552                while (++i < cpuhw->n_limited) {
1553                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1554                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1555                }
1556                --cpuhw->n_limited;
1557        }
1558        if (cpuhw->n_events == 0) {
1559                /* disable exceptions if no events are running */
1560                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1561        }
1562
1563        if (has_branch_stack(event))
1564                power_pmu_bhrb_disable(event);
1565
1566        perf_pmu_enable(event->pmu);
1567        local_irq_restore(flags);
1568}
1569
1570/*
1571 * POWER-PMU does not support disabling individual counters, hence
1572 * program their cycle counter to their max value and ignore the interrupts.
1573 */
1574
1575static void power_pmu_start(struct perf_event *event, int ef_flags)
1576{
1577        unsigned long flags;
1578        s64 left;
1579        unsigned long val;
1580
1581        if (!event->hw.idx || !event->hw.sample_period)
1582                return;
1583
1584        if (!(event->hw.state & PERF_HES_STOPPED))
1585                return;
1586
1587        if (ef_flags & PERF_EF_RELOAD)
1588                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1589
1590        local_irq_save(flags);
1591        perf_pmu_disable(event->pmu);
1592
1593        event->hw.state = 0;
1594        left = local64_read(&event->hw.period_left);
1595
1596        val = 0;
1597        if (left < 0x80000000L)
1598                val = 0x80000000L - left;
1599
1600        write_pmc(event->hw.idx, val);
1601
1602        perf_event_update_userpage(event);
1603        perf_pmu_enable(event->pmu);
1604        local_irq_restore(flags);
1605}
1606
1607static void power_pmu_stop(struct perf_event *event, int ef_flags)
1608{
1609        unsigned long flags;
1610
1611        if (!event->hw.idx || !event->hw.sample_period)
1612                return;
1613
1614        if (event->hw.state & PERF_HES_STOPPED)
1615                return;
1616
1617        local_irq_save(flags);
1618        perf_pmu_disable(event->pmu);
1619
1620        power_pmu_read(event);
1621        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1622        write_pmc(event->hw.idx, 0);
1623
1624        perf_event_update_userpage(event);
1625        perf_pmu_enable(event->pmu);
1626        local_irq_restore(flags);
1627}
1628
1629/*
1630 * Start group events scheduling transaction
1631 * Set the flag to make pmu::enable() not perform the
1632 * schedulability test, it will be performed at commit time
1633 *
1634 * We only support PERF_PMU_TXN_ADD transactions. Save the
1635 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1636 * transactions.
1637 */
1638static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1639{
1640        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1641
1642        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1643
1644        cpuhw->txn_flags = txn_flags;
1645        if (txn_flags & ~PERF_PMU_TXN_ADD)
1646                return;
1647
1648        perf_pmu_disable(pmu);
1649        cpuhw->n_txn_start = cpuhw->n_events;
1650}
1651
1652/*
1653 * Stop group events scheduling transaction
1654 * Clear the flag and pmu::enable() will perform the
1655 * schedulability test.
1656 */
1657static void power_pmu_cancel_txn(struct pmu *pmu)
1658{
1659        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1660        unsigned int txn_flags;
1661
1662        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1663
1664        txn_flags = cpuhw->txn_flags;
1665        cpuhw->txn_flags = 0;
1666        if (txn_flags & ~PERF_PMU_TXN_ADD)
1667                return;
1668
1669        perf_pmu_enable(pmu);
1670}
1671
1672/*
1673 * Commit group events scheduling transaction
1674 * Perform the group schedulability test as a whole
1675 * Return 0 if success
1676 */
1677static int power_pmu_commit_txn(struct pmu *pmu)
1678{
1679        struct cpu_hw_events *cpuhw;
1680        long i, n;
1681
1682        if (!ppmu)
1683                return -EAGAIN;
1684
1685        cpuhw = this_cpu_ptr(&cpu_hw_events);
1686        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1687
1688        if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1689                cpuhw->txn_flags = 0;
1690                return 0;
1691        }
1692
1693        n = cpuhw->n_events;
1694        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1695                return -EAGAIN;
1696        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1697        if (i < 0)
1698                return -EAGAIN;
1699
1700        for (i = cpuhw->n_txn_start; i < n; ++i)
1701                cpuhw->event[i]->hw.config = cpuhw->events[i];
1702
1703        cpuhw->txn_flags = 0;
1704        perf_pmu_enable(pmu);
1705        return 0;
1706}
1707
1708/*
1709 * Return 1 if we might be able to put event on a limited PMC,
1710 * or 0 if not.
1711 * An event can only go on a limited PMC if it counts something
1712 * that a limited PMC can count, doesn't require interrupts, and
1713 * doesn't exclude any processor mode.
1714 */
1715static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1716                                 unsigned int flags)
1717{
1718        int n;
1719        u64 alt[MAX_EVENT_ALTERNATIVES];
1720
1721        if (event->attr.exclude_user
1722            || event->attr.exclude_kernel
1723            || event->attr.exclude_hv
1724            || event->attr.sample_period)
1725                return 0;
1726
1727        if (ppmu->limited_pmc_event(ev))
1728                return 1;
1729
1730        /*
1731         * The requested event_id isn't on a limited PMC already;
1732         * see if any alternative code goes on a limited PMC.
1733         */
1734        if (!ppmu->get_alternatives)
1735                return 0;
1736
1737        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1738        n = ppmu->get_alternatives(ev, flags, alt);
1739
1740        return n > 0;
1741}
1742
1743/*
1744 * Find an alternative event_id that goes on a normal PMC, if possible,
1745 * and return the event_id code, or 0 if there is no such alternative.
1746 * (Note: event_id code 0 is "don't count" on all machines.)
1747 */
1748static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1749{
1750        u64 alt[MAX_EVENT_ALTERNATIVES];
1751        int n;
1752
1753        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1754        n = ppmu->get_alternatives(ev, flags, alt);
1755        if (!n)
1756                return 0;
1757        return alt[0];
1758}
1759
1760/* Number of perf_events counting hardware events */
1761static atomic_t num_events;
1762/* Used to avoid races in calling reserve/release_pmc_hardware */
1763static DEFINE_MUTEX(pmc_reserve_mutex);
1764
1765/*
1766 * Release the PMU if this is the last perf_event.
1767 */
1768static void hw_perf_event_destroy(struct perf_event *event)
1769{
1770        if (!atomic_add_unless(&num_events, -1, 1)) {
1771                mutex_lock(&pmc_reserve_mutex);
1772                if (atomic_dec_return(&num_events) == 0)
1773                        release_pmc_hardware();
1774                mutex_unlock(&pmc_reserve_mutex);
1775        }
1776}
1777
1778/*
1779 * Translate a generic cache event_id config to a raw event_id code.
1780 */
1781static int hw_perf_cache_event(u64 config, u64 *eventp)
1782{
1783        unsigned long type, op, result;
1784        int ev;
1785
1786        if (!ppmu->cache_events)
1787                return -EINVAL;
1788
1789        /* unpack config */
1790        type = config & 0xff;
1791        op = (config >> 8) & 0xff;
1792        result = (config >> 16) & 0xff;
1793
1794        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1795            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1796            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1797                return -EINVAL;
1798
1799        ev = (*ppmu->cache_events)[type][op][result];
1800        if (ev == 0)
1801                return -EOPNOTSUPP;
1802        if (ev == -1)
1803                return -EINVAL;
1804        *eventp = ev;
1805        return 0;
1806}
1807
1808static bool is_event_blacklisted(u64 ev)
1809{
1810        int i;
1811
1812        for (i=0; i < ppmu->n_blacklist_ev; i++) {
1813                if (ppmu->blacklist_ev[i] == ev)
1814                        return true;
1815        }
1816
1817        return false;
1818}
1819
1820static int power_pmu_event_init(struct perf_event *event)
1821{
1822        u64 ev;
1823        unsigned long flags;
1824        struct perf_event *ctrs[MAX_HWEVENTS];
1825        u64 events[MAX_HWEVENTS];
1826        unsigned int cflags[MAX_HWEVENTS];
1827        int n;
1828        int err;
1829        struct cpu_hw_events *cpuhw;
1830
1831        if (!ppmu)
1832                return -ENOENT;
1833
1834        if (has_branch_stack(event)) {
1835                /* PMU has BHRB enabled */
1836                if (!(ppmu->flags & PPMU_ARCH_207S))
1837                        return -EOPNOTSUPP;
1838        }
1839
1840        switch (event->attr.type) {
1841        case PERF_TYPE_HARDWARE:
1842                ev = event->attr.config;
1843                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1844                        return -EOPNOTSUPP;
1845
1846                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1847                        return -EINVAL;
1848                ev = ppmu->generic_events[ev];
1849                break;
1850        case PERF_TYPE_HW_CACHE:
1851                err = hw_perf_cache_event(event->attr.config, &ev);
1852                if (err)
1853                        return err;
1854
1855                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1856                        return -EINVAL;
1857                break;
1858        case PERF_TYPE_RAW:
1859                ev = event->attr.config;
1860
1861                if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1862                        return -EINVAL;
1863                break;
1864        default:
1865                return -ENOENT;
1866        }
1867
1868        event->hw.config_base = ev;
1869        event->hw.idx = 0;
1870
1871        /*
1872         * If we are not running on a hypervisor, force the
1873         * exclude_hv bit to 0 so that we don't care what
1874         * the user set it to.
1875         */
1876        if (!firmware_has_feature(FW_FEATURE_LPAR))
1877                event->attr.exclude_hv = 0;
1878
1879        /*
1880         * If this is a per-task event, then we can use
1881         * PM_RUN_* events interchangeably with their non RUN_*
1882         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1883         * XXX we should check if the task is an idle task.
1884         */
1885        flags = 0;
1886        if (event->attach_state & PERF_ATTACH_TASK)
1887                flags |= PPMU_ONLY_COUNT_RUN;
1888
1889        /*
1890         * If this machine has limited events, check whether this
1891         * event_id could go on a limited event.
1892         */
1893        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1894                if (can_go_on_limited_pmc(event, ev, flags)) {
1895                        flags |= PPMU_LIMITED_PMC_OK;
1896                } else if (ppmu->limited_pmc_event(ev)) {
1897                        /*
1898                         * The requested event_id is on a limited PMC,
1899                         * but we can't use a limited PMC; see if any
1900                         * alternative goes on a normal PMC.
1901                         */
1902                        ev = normal_pmc_alternative(ev, flags);
1903                        if (!ev)
1904                                return -EINVAL;
1905                }
1906        }
1907
1908        /* Extra checks for EBB */
1909        err = ebb_event_check(event);
1910        if (err)
1911                return err;
1912
1913        /*
1914         * If this is in a group, check if it can go on with all the
1915         * other hardware events in the group.  We assume the event
1916         * hasn't been linked into its leader's sibling list at this point.
1917         */
1918        n = 0;
1919        if (event->group_leader != event) {
1920                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1921                                   ctrs, events, cflags);
1922                if (n < 0)
1923                        return -EINVAL;
1924        }
1925        events[n] = ev;
1926        ctrs[n] = event;
1927        cflags[n] = flags;
1928        if (check_excludes(ctrs, cflags, n, 1))
1929                return -EINVAL;
1930
1931        cpuhw = &get_cpu_var(cpu_hw_events);
1932        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1933
1934        if (has_branch_stack(event)) {
1935                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1936                                        event->attr.branch_sample_type);
1937
1938                if (cpuhw->bhrb_filter == -1) {
1939                        put_cpu_var(cpu_hw_events);
1940                        return -EOPNOTSUPP;
1941                }
1942        }
1943
1944        put_cpu_var(cpu_hw_events);
1945        if (err)
1946                return -EINVAL;
1947
1948        event->hw.config = events[n];
1949        event->hw.event_base = cflags[n];
1950        event->hw.last_period = event->hw.sample_period;
1951        local64_set(&event->hw.period_left, event->hw.last_period);
1952
1953        /*
1954         * For EBB events we just context switch the PMC value, we don't do any
1955         * of the sample_period logic. We use hw.prev_count for this.
1956         */
1957        if (is_ebb_event(event))
1958                local64_set(&event->hw.prev_count, 0);
1959
1960        /*
1961         * See if we need to reserve the PMU.
1962         * If no events are currently in use, then we have to take a
1963         * mutex to ensure that we don't race with another task doing
1964         * reserve_pmc_hardware or release_pmc_hardware.
1965         */
1966        err = 0;
1967        if (!atomic_inc_not_zero(&num_events)) {
1968                mutex_lock(&pmc_reserve_mutex);
1969                if (atomic_read(&num_events) == 0 &&
1970                    reserve_pmc_hardware(perf_event_interrupt))
1971                        err = -EBUSY;
1972                else
1973                        atomic_inc(&num_events);
1974                mutex_unlock(&pmc_reserve_mutex);
1975        }
1976        event->destroy = hw_perf_event_destroy;
1977
1978        return err;
1979}
1980
1981static int power_pmu_event_idx(struct perf_event *event)
1982{
1983        return event->hw.idx;
1984}
1985
1986ssize_t power_events_sysfs_show(struct device *dev,
1987                                struct device_attribute *attr, char *page)
1988{
1989        struct perf_pmu_events_attr *pmu_attr;
1990
1991        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1992
1993        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1994}
1995
1996static struct pmu power_pmu = {
1997        .pmu_enable     = power_pmu_enable,
1998        .pmu_disable    = power_pmu_disable,
1999        .event_init     = power_pmu_event_init,
2000        .add            = power_pmu_add,
2001        .del            = power_pmu_del,
2002        .start          = power_pmu_start,
2003        .stop           = power_pmu_stop,
2004        .read           = power_pmu_read,
2005        .start_txn      = power_pmu_start_txn,
2006        .cancel_txn     = power_pmu_cancel_txn,
2007        .commit_txn     = power_pmu_commit_txn,
2008        .event_idx      = power_pmu_event_idx,
2009        .sched_task     = power_pmu_sched_task,
2010};
2011
2012/*
2013 * A counter has overflowed; update its count and record
2014 * things if requested.  Note that interrupts are hard-disabled
2015 * here so there is no possibility of being interrupted.
2016 */
2017static void record_and_restart(struct perf_event *event, unsigned long val,
2018                               struct pt_regs *regs)
2019{
2020        u64 period = event->hw.sample_period;
2021        s64 prev, delta, left;
2022        int record = 0;
2023
2024        if (event->hw.state & PERF_HES_STOPPED) {
2025                write_pmc(event->hw.idx, 0);
2026                return;
2027        }
2028
2029        /* we don't have to worry about interrupts here */
2030        prev = local64_read(&event->hw.prev_count);
2031        delta = check_and_compute_delta(prev, val);
2032        local64_add(delta, &event->count);
2033
2034        /*
2035         * See if the total period for this event has expired,
2036         * and update for the next period.
2037         */
2038        val = 0;
2039        left = local64_read(&event->hw.period_left) - delta;
2040        if (delta == 0)
2041                left++;
2042        if (period) {
2043                if (left <= 0) {
2044                        left += period;
2045                        if (left <= 0)
2046                                left = period;
2047                        record = siar_valid(regs);
2048                        event->hw.last_period = event->hw.sample_period;
2049                }
2050                if (left < 0x80000000LL)
2051                        val = 0x80000000LL - left;
2052        }
2053
2054        write_pmc(event->hw.idx, val);
2055        local64_set(&event->hw.prev_count, val);
2056        local64_set(&event->hw.period_left, left);
2057        perf_event_update_userpage(event);
2058
2059        /*
2060         * Finally record data if requested.
2061         */
2062        if (record) {
2063                struct perf_sample_data data;
2064
2065                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2066
2067                if (event->attr.sample_type &
2068                    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2069                        perf_get_data_addr(regs, &data.addr);
2070
2071                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2072                        struct cpu_hw_events *cpuhw;
2073                        cpuhw = this_cpu_ptr(&cpu_hw_events);
2074                        power_pmu_bhrb_read(cpuhw);
2075                        data.br_stack = &cpuhw->bhrb_stack;
2076                }
2077
2078                if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2079                                                ppmu->get_mem_data_src)
2080                        ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2081
2082                if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2083                                                ppmu->get_mem_weight)
2084                        ppmu->get_mem_weight(&data.weight);
2085
2086                if (perf_event_overflow(event, &data, regs))
2087                        power_pmu_stop(event, 0);
2088        }
2089}
2090
2091/*
2092 * Called from generic code to get the misc flags (i.e. processor mode)
2093 * for an event_id.
2094 */
2095unsigned long perf_misc_flags(struct pt_regs *regs)
2096{
2097        u32 flags = perf_get_misc_flags(regs);
2098
2099        if (flags)
2100                return flags;
2101        return user_mode(regs) ? PERF_RECORD_MISC_USER :
2102                PERF_RECORD_MISC_KERNEL;
2103}
2104
2105/*
2106 * Called from generic code to get the instruction pointer
2107 * for an event_id.
2108 */
2109unsigned long perf_instruction_pointer(struct pt_regs *regs)
2110{
2111        bool use_siar = regs_use_siar(regs);
2112
2113        if (use_siar && siar_valid(regs))
2114                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2115        else if (use_siar)
2116                return 0;               // no valid instruction pointer
2117        else
2118                return regs->nip;
2119}
2120
2121static bool pmc_overflow_power7(unsigned long val)
2122{
2123        /*
2124         * Events on POWER7 can roll back if a speculative event doesn't
2125         * eventually complete. Unfortunately in some rare cases they will
2126         * raise a performance monitor exception. We need to catch this to
2127         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2128         * cycles from overflow.
2129         *
2130         * We only do this if the first pass fails to find any overflowing
2131         * PMCs because a user might set a period of less than 256 and we
2132         * don't want to mistakenly reset them.
2133         */
2134        if ((0x80000000 - val) <= 256)
2135                return true;
2136
2137        return false;
2138}
2139
2140static bool pmc_overflow(unsigned long val)
2141{
2142        if ((int)val < 0)
2143                return true;
2144
2145        return false;
2146}
2147
2148/*
2149 * Performance monitor interrupt stuff
2150 */
2151static void perf_event_interrupt(struct pt_regs *regs)
2152{
2153        int i, j;
2154        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2155        struct perf_event *event;
2156        unsigned long val[8];
2157        int found, active;
2158        int nmi;
2159
2160        if (cpuhw->n_limited)
2161                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2162                                        mfspr(SPRN_PMC6));
2163
2164        perf_read_regs(regs);
2165
2166        nmi = perf_intr_is_nmi(regs);
2167        if (nmi)
2168                nmi_enter();
2169        else
2170                irq_enter();
2171
2172        /* Read all the PMCs since we'll need them a bunch of times */
2173        for (i = 0; i < ppmu->n_counter; ++i)
2174                val[i] = read_pmc(i + 1);
2175
2176        /* Try to find what caused the IRQ */
2177        found = 0;
2178        for (i = 0; i < ppmu->n_counter; ++i) {
2179                if (!pmc_overflow(val[i]))
2180                        continue;
2181                if (is_limited_pmc(i + 1))
2182                        continue; /* these won't generate IRQs */
2183                /*
2184                 * We've found one that's overflowed.  For active
2185                 * counters we need to log this.  For inactive
2186                 * counters, we need to reset it anyway
2187                 */
2188                found = 1;
2189                active = 0;
2190                for (j = 0; j < cpuhw->n_events; ++j) {
2191                        event = cpuhw->event[j];
2192                        if (event->hw.idx == (i + 1)) {
2193                                active = 1;
2194                                record_and_restart(event, val[i], regs);
2195                                break;
2196                        }
2197                }
2198                if (!active)
2199                        /* reset non active counters that have overflowed */
2200                        write_pmc(i + 1, 0);
2201        }
2202        if (!found && pvr_version_is(PVR_POWER7)) {
2203                /* check active counters for special buggy p7 overflow */
2204                for (i = 0; i < cpuhw->n_events; ++i) {
2205                        event = cpuhw->event[i];
2206                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2207                                continue;
2208                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2209                                /* event has overflowed in a buggy way*/
2210                                found = 1;
2211                                record_and_restart(event,
2212                                                   val[event->hw.idx - 1],
2213                                                   regs);
2214                        }
2215                }
2216        }
2217        if (!found && !nmi && printk_ratelimit())
2218                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2219
2220        /*
2221         * Reset MMCR0 to its normal value.  This will set PMXE and
2222         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2223         * and thus allow interrupts to occur again.
2224         * XXX might want to use MSR.PM to keep the events frozen until
2225         * we get back out of this interrupt.
2226         */
2227        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2228
2229        if (nmi)
2230                nmi_exit();
2231        else
2232                irq_exit();
2233}
2234
2235static int power_pmu_prepare_cpu(unsigned int cpu)
2236{
2237        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2238
2239        if (ppmu) {
2240                memset(cpuhw, 0, sizeof(*cpuhw));
2241                cpuhw->mmcr[0] = MMCR0_FC;
2242        }
2243        return 0;
2244}
2245
2246int register_power_pmu(struct power_pmu *pmu)
2247{
2248        if (ppmu)
2249                return -EBUSY;          /* something's already registered */
2250
2251        ppmu = pmu;
2252        pr_info("%s performance monitor hardware support registered\n",
2253                pmu->name);
2254
2255        power_pmu.attr_groups = ppmu->attr_groups;
2256
2257#ifdef MSR_HV
2258        /*
2259         * Use FCHV to ignore kernel events if MSR.HV is set.
2260         */
2261        if (mfmsr() & MSR_HV)
2262                freeze_events_kernel = MMCR0_FCHV;
2263#endif /* CONFIG_PPC64 */
2264
2265        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2266        cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2267                          power_pmu_prepare_cpu, NULL);
2268        return 0;
2269}
2270