linux/arch/x86/crypto/sha256-mb/sha256_mb.c
<<
>>
Prefs
   1/*
   2 * Multi buffer SHA256 algorithm Glue Code
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 *  Copyright(c) 2016 Intel Corporation.
  10 *
  11 *  This program is free software; you can redistribute it and/or modify
  12 *  it under the terms of version 2 of the GNU General Public License as
  13 *  published by the Free Software Foundation.
  14 *
  15 *  This program is distributed in the hope that it will be useful, but
  16 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  17 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 *  General Public License for more details.
  19 *
  20 *  Contact Information:
  21 *      Megha Dey <megha.dey@linux.intel.com>
  22 *
  23 *  BSD LICENSE
  24 *
  25 *  Copyright(c) 2016 Intel Corporation.
  26 *
  27 *  Redistribution and use in source and binary forms, with or without
  28 *  modification, are permitted provided that the following conditions
  29 *  are met:
  30 *
  31 *    * Redistributions of source code must retain the above copyright
  32 *      notice, this list of conditions and the following disclaimer.
  33 *    * Redistributions in binary form must reproduce the above copyright
  34 *      notice, this list of conditions and the following disclaimer in
  35 *      the documentation and/or other materials provided with the
  36 *      distribution.
  37 *    * Neither the name of Intel Corporation nor the names of its
  38 *      contributors may be used to endorse or promote products derived
  39 *      from this software without specific prior written permission.
  40 *
  41 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  42 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  43 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  44 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  45 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  46 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  47 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  48 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  49 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  50 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  52 */
  53
  54#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  55
  56#include <crypto/internal/hash.h>
  57#include <linux/init.h>
  58#include <linux/module.h>
  59#include <linux/mm.h>
  60#include <linux/cryptohash.h>
  61#include <linux/types.h>
  62#include <linux/list.h>
  63#include <crypto/scatterwalk.h>
  64#include <crypto/sha.h>
  65#include <crypto/mcryptd.h>
  66#include <crypto/crypto_wq.h>
  67#include <asm/byteorder.h>
  68#include <linux/hardirq.h>
  69#include <asm/fpu/api.h>
  70#include "sha256_mb_ctx.h"
  71
  72#define FLUSH_INTERVAL 1000 /* in usec */
  73
  74static struct mcryptd_alg_state sha256_mb_alg_state;
  75
  76struct sha256_mb_ctx {
  77        struct mcryptd_ahash *mcryptd_tfm;
  78};
  79
  80static inline struct mcryptd_hash_request_ctx
  81                *cast_hash_to_mcryptd_ctx(struct sha256_hash_ctx *hash_ctx)
  82{
  83        struct ahash_request *areq;
  84
  85        areq = container_of((void *) hash_ctx, struct ahash_request, __ctx);
  86        return container_of(areq, struct mcryptd_hash_request_ctx, areq);
  87}
  88
  89static inline struct ahash_request
  90                *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
  91{
  92        return container_of((void *) ctx, struct ahash_request, __ctx);
  93}
  94
  95static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
  96                                struct ahash_request *areq)
  97{
  98        rctx->flag = HASH_UPDATE;
  99}
 100
 101static asmlinkage void (*sha256_job_mgr_init)(struct sha256_mb_mgr *state);
 102static asmlinkage struct job_sha256* (*sha256_job_mgr_submit)
 103                        (struct sha256_mb_mgr *state, struct job_sha256 *job);
 104static asmlinkage struct job_sha256* (*sha256_job_mgr_flush)
 105                        (struct sha256_mb_mgr *state);
 106static asmlinkage struct job_sha256* (*sha256_job_mgr_get_comp_job)
 107                        (struct sha256_mb_mgr *state);
 108
 109inline uint32_t sha256_pad(uint8_t padblock[SHA256_BLOCK_SIZE * 2],
 110                         uint64_t total_len)
 111{
 112        uint32_t i = total_len & (SHA256_BLOCK_SIZE - 1);
 113
 114        memset(&padblock[i], 0, SHA256_BLOCK_SIZE);
 115        padblock[i] = 0x80;
 116
 117        i += ((SHA256_BLOCK_SIZE - 1) &
 118              (0 - (total_len + SHA256_PADLENGTHFIELD_SIZE + 1)))
 119             + 1 + SHA256_PADLENGTHFIELD_SIZE;
 120
 121#if SHA256_PADLENGTHFIELD_SIZE == 16
 122        *((uint64_t *) &padblock[i - 16]) = 0;
 123#endif
 124
 125        *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
 126
 127        /* Number of extra blocks to hash */
 128        return i >> SHA256_LOG2_BLOCK_SIZE;
 129}
 130
 131static struct sha256_hash_ctx
 132                *sha256_ctx_mgr_resubmit(struct sha256_ctx_mgr *mgr,
 133                                        struct sha256_hash_ctx *ctx)
 134{
 135        while (ctx) {
 136                if (ctx->status & HASH_CTX_STS_COMPLETE) {
 137                        /* Clear PROCESSING bit */
 138                        ctx->status = HASH_CTX_STS_COMPLETE;
 139                        return ctx;
 140                }
 141
 142                /*
 143                 * If the extra blocks are empty, begin hashing what remains
 144                 * in the user's buffer.
 145                 */
 146                if (ctx->partial_block_buffer_length == 0 &&
 147                    ctx->incoming_buffer_length) {
 148
 149                        const void *buffer = ctx->incoming_buffer;
 150                        uint32_t len = ctx->incoming_buffer_length;
 151                        uint32_t copy_len;
 152
 153                        /*
 154                         * Only entire blocks can be hashed.
 155                         * Copy remainder to extra blocks buffer.
 156                         */
 157                        copy_len = len & (SHA256_BLOCK_SIZE-1);
 158
 159                        if (copy_len) {
 160                                len -= copy_len;
 161                                memcpy(ctx->partial_block_buffer,
 162                                       ((const char *) buffer + len),
 163                                       copy_len);
 164                                ctx->partial_block_buffer_length = copy_len;
 165                        }
 166
 167                        ctx->incoming_buffer_length = 0;
 168
 169                        /* len should be a multiple of the block size now */
 170                        assert((len % SHA256_BLOCK_SIZE) == 0);
 171
 172                        /* Set len to the number of blocks to be hashed */
 173                        len >>= SHA256_LOG2_BLOCK_SIZE;
 174
 175                        if (len) {
 176
 177                                ctx->job.buffer = (uint8_t *) buffer;
 178                                ctx->job.len = len;
 179                                ctx = (struct sha256_hash_ctx *)
 180                                sha256_job_mgr_submit(&mgr->mgr, &ctx->job);
 181                                continue;
 182                        }
 183                }
 184
 185                /*
 186                 * If the extra blocks are not empty, then we are
 187                 * either on the last block(s) or we need more
 188                 * user input before continuing.
 189                 */
 190                if (ctx->status & HASH_CTX_STS_LAST) {
 191
 192                        uint8_t *buf = ctx->partial_block_buffer;
 193                        uint32_t n_extra_blocks =
 194                                sha256_pad(buf, ctx->total_length);
 195
 196                        ctx->status = (HASH_CTX_STS_PROCESSING |
 197                                       HASH_CTX_STS_COMPLETE);
 198                        ctx->job.buffer = buf;
 199                        ctx->job.len = (uint32_t) n_extra_blocks;
 200                        ctx = (struct sha256_hash_ctx *)
 201                                sha256_job_mgr_submit(&mgr->mgr, &ctx->job);
 202                        continue;
 203                }
 204
 205                ctx->status = HASH_CTX_STS_IDLE;
 206                return ctx;
 207        }
 208
 209        return NULL;
 210}
 211
 212static struct sha256_hash_ctx
 213                *sha256_ctx_mgr_get_comp_ctx(struct sha256_ctx_mgr *mgr)
 214{
 215        /*
 216         * If get_comp_job returns NULL, there are no jobs complete.
 217         * If get_comp_job returns a job, verify that it is safe to return to
 218         * the user. If it is not ready, resubmit the job to finish processing.
 219         * If sha256_ctx_mgr_resubmit returned a job, it is ready to be
 220         * returned. Otherwise, all jobs currently being managed by the
 221         * hash_ctx_mgr still need processing.
 222         */
 223        struct sha256_hash_ctx *ctx;
 224
 225        ctx = (struct sha256_hash_ctx *) sha256_job_mgr_get_comp_job(&mgr->mgr);
 226        return sha256_ctx_mgr_resubmit(mgr, ctx);
 227}
 228
 229static void sha256_ctx_mgr_init(struct sha256_ctx_mgr *mgr)
 230{
 231        sha256_job_mgr_init(&mgr->mgr);
 232}
 233
 234static struct sha256_hash_ctx *sha256_ctx_mgr_submit(struct sha256_ctx_mgr *mgr,
 235                                          struct sha256_hash_ctx *ctx,
 236                                          const void *buffer,
 237                                          uint32_t len,
 238                                          int flags)
 239{
 240        if (flags & ~(HASH_UPDATE | HASH_LAST)) {
 241                /* User should not pass anything other than UPDATE or LAST */
 242                ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
 243                return ctx;
 244        }
 245
 246        if (ctx->status & HASH_CTX_STS_PROCESSING) {
 247                /* Cannot submit to a currently processing job. */
 248                ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
 249                return ctx;
 250        }
 251
 252        if (ctx->status & HASH_CTX_STS_COMPLETE) {
 253                /* Cannot update a finished job. */
 254                ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
 255                return ctx;
 256        }
 257
 258        /* If we made it here, there was no error during this call to submit */
 259        ctx->error = HASH_CTX_ERROR_NONE;
 260
 261        /* Store buffer ptr info from user */
 262        ctx->incoming_buffer = buffer;
 263        ctx->incoming_buffer_length = len;
 264
 265        /*
 266         * Store the user's request flags and mark this ctx as currently
 267         * being processed.
 268         */
 269        ctx->status = (flags & HASH_LAST) ?
 270                        (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
 271                        HASH_CTX_STS_PROCESSING;
 272
 273        /* Advance byte counter */
 274        ctx->total_length += len;
 275
 276        /*
 277         * If there is anything currently buffered in the extra blocks,
 278         * append to it until it contains a whole block.
 279         * Or if the user's buffer contains less than a whole block,
 280         * append as much as possible to the extra block.
 281         */
 282        if (ctx->partial_block_buffer_length || len < SHA256_BLOCK_SIZE) {
 283                /*
 284                 * Compute how many bytes to copy from user buffer into
 285                 * extra block
 286                 */
 287                uint32_t copy_len = SHA256_BLOCK_SIZE -
 288                                        ctx->partial_block_buffer_length;
 289                if (len < copy_len)
 290                        copy_len = len;
 291
 292                if (copy_len) {
 293                        /* Copy and update relevant pointers and counters */
 294                        memcpy(
 295                &ctx->partial_block_buffer[ctx->partial_block_buffer_length],
 296                                buffer, copy_len);
 297
 298                        ctx->partial_block_buffer_length += copy_len;
 299                        ctx->incoming_buffer = (const void *)
 300                                        ((const char *)buffer + copy_len);
 301                        ctx->incoming_buffer_length = len - copy_len;
 302                }
 303
 304                /* The extra block should never contain more than 1 block */
 305                assert(ctx->partial_block_buffer_length <= SHA256_BLOCK_SIZE);
 306
 307                /*
 308                 * If the extra block buffer contains exactly 1 block,
 309                 * it can be hashed.
 310                 */
 311                if (ctx->partial_block_buffer_length >= SHA256_BLOCK_SIZE) {
 312                        ctx->partial_block_buffer_length = 0;
 313
 314                        ctx->job.buffer = ctx->partial_block_buffer;
 315                        ctx->job.len = 1;
 316                        ctx = (struct sha256_hash_ctx *)
 317                                sha256_job_mgr_submit(&mgr->mgr, &ctx->job);
 318                }
 319        }
 320
 321        return sha256_ctx_mgr_resubmit(mgr, ctx);
 322}
 323
 324static struct sha256_hash_ctx *sha256_ctx_mgr_flush(struct sha256_ctx_mgr *mgr)
 325{
 326        struct sha256_hash_ctx *ctx;
 327
 328        while (1) {
 329                ctx = (struct sha256_hash_ctx *)
 330                                        sha256_job_mgr_flush(&mgr->mgr);
 331
 332                /* If flush returned 0, there are no more jobs in flight. */
 333                if (!ctx)
 334                        return NULL;
 335
 336                /*
 337                 * If flush returned a job, resubmit the job to finish
 338                 * processing.
 339                 */
 340                ctx = sha256_ctx_mgr_resubmit(mgr, ctx);
 341
 342                /*
 343                 * If sha256_ctx_mgr_resubmit returned a job, it is ready to
 344                 * be returned. Otherwise, all jobs currently being managed by
 345                 * the sha256_ctx_mgr still need processing. Loop.
 346                 */
 347                if (ctx)
 348                        return ctx;
 349        }
 350}
 351
 352static int sha256_mb_init(struct ahash_request *areq)
 353{
 354        struct sha256_hash_ctx *sctx = ahash_request_ctx(areq);
 355
 356        hash_ctx_init(sctx);
 357        sctx->job.result_digest[0] = SHA256_H0;
 358        sctx->job.result_digest[1] = SHA256_H1;
 359        sctx->job.result_digest[2] = SHA256_H2;
 360        sctx->job.result_digest[3] = SHA256_H3;
 361        sctx->job.result_digest[4] = SHA256_H4;
 362        sctx->job.result_digest[5] = SHA256_H5;
 363        sctx->job.result_digest[6] = SHA256_H6;
 364        sctx->job.result_digest[7] = SHA256_H7;
 365        sctx->total_length = 0;
 366        sctx->partial_block_buffer_length = 0;
 367        sctx->status = HASH_CTX_STS_IDLE;
 368
 369        return 0;
 370}
 371
 372static int sha256_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
 373{
 374        int     i;
 375        struct  sha256_hash_ctx *sctx = ahash_request_ctx(&rctx->areq);
 376        __be32  *dst = (__be32 *) rctx->out;
 377
 378        for (i = 0; i < 8; ++i)
 379                dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
 380
 381        return 0;
 382}
 383
 384static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
 385                        struct mcryptd_alg_cstate *cstate, bool flush)
 386{
 387        int     flag = HASH_UPDATE;
 388        int     nbytes, err = 0;
 389        struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
 390        struct sha256_hash_ctx *sha_ctx;
 391
 392        /* more work ? */
 393        while (!(rctx->flag & HASH_DONE)) {
 394                nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
 395                if (nbytes < 0) {
 396                        err = nbytes;
 397                        goto out;
 398                }
 399                /* check if the walk is done */
 400                if (crypto_ahash_walk_last(&rctx->walk)) {
 401                        rctx->flag |= HASH_DONE;
 402                        if (rctx->flag & HASH_FINAL)
 403                                flag |= HASH_LAST;
 404
 405                }
 406                sha_ctx = (struct sha256_hash_ctx *)
 407                                                ahash_request_ctx(&rctx->areq);
 408                kernel_fpu_begin();
 409                sha_ctx = sha256_ctx_mgr_submit(cstate->mgr, sha_ctx,
 410                                                rctx->walk.data, nbytes, flag);
 411                if (!sha_ctx) {
 412                        if (flush)
 413                                sha_ctx = sha256_ctx_mgr_flush(cstate->mgr);
 414                }
 415                kernel_fpu_end();
 416                if (sha_ctx)
 417                        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 418                else {
 419                        rctx = NULL;
 420                        goto out;
 421                }
 422        }
 423
 424        /* copy the results */
 425        if (rctx->flag & HASH_FINAL)
 426                sha256_mb_set_results(rctx);
 427
 428out:
 429        *ret_rctx = rctx;
 430        return err;
 431}
 432
 433static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
 434                            struct mcryptd_alg_cstate *cstate,
 435                            int err)
 436{
 437        struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
 438        struct sha256_hash_ctx *sha_ctx;
 439        struct mcryptd_hash_request_ctx *req_ctx;
 440        int ret;
 441
 442        /* remove from work list */
 443        spin_lock(&cstate->work_lock);
 444        list_del(&rctx->waiter);
 445        spin_unlock(&cstate->work_lock);
 446
 447        if (irqs_disabled())
 448                rctx->complete(&req->base, err);
 449        else {
 450                local_bh_disable();
 451                rctx->complete(&req->base, err);
 452                local_bh_enable();
 453        }
 454
 455        /* check to see if there are other jobs that are done */
 456        sha_ctx = sha256_ctx_mgr_get_comp_ctx(cstate->mgr);
 457        while (sha_ctx) {
 458                req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 459                ret = sha_finish_walk(&req_ctx, cstate, false);
 460                if (req_ctx) {
 461                        spin_lock(&cstate->work_lock);
 462                        list_del(&req_ctx->waiter);
 463                        spin_unlock(&cstate->work_lock);
 464
 465                        req = cast_mcryptd_ctx_to_req(req_ctx);
 466                        if (irqs_disabled())
 467                                req_ctx->complete(&req->base, ret);
 468                        else {
 469                                local_bh_disable();
 470                                req_ctx->complete(&req->base, ret);
 471                                local_bh_enable();
 472                        }
 473                }
 474                sha_ctx = sha256_ctx_mgr_get_comp_ctx(cstate->mgr);
 475        }
 476
 477        return 0;
 478}
 479
 480static void sha256_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
 481                             struct mcryptd_alg_cstate *cstate)
 482{
 483        unsigned long next_flush;
 484        unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
 485
 486        /* initialize tag */
 487        rctx->tag.arrival = jiffies;    /* tag the arrival time */
 488        rctx->tag.seq_num = cstate->next_seq_num++;
 489        next_flush = rctx->tag.arrival + delay;
 490        rctx->tag.expire = next_flush;
 491
 492        spin_lock(&cstate->work_lock);
 493        list_add_tail(&rctx->waiter, &cstate->work_list);
 494        spin_unlock(&cstate->work_lock);
 495
 496        mcryptd_arm_flusher(cstate, delay);
 497}
 498
 499static int sha256_mb_update(struct ahash_request *areq)
 500{
 501        struct mcryptd_hash_request_ctx *rctx =
 502                container_of(areq, struct mcryptd_hash_request_ctx, areq);
 503        struct mcryptd_alg_cstate *cstate =
 504                                this_cpu_ptr(sha256_mb_alg_state.alg_cstate);
 505
 506        struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
 507        struct sha256_hash_ctx *sha_ctx;
 508        int ret = 0, nbytes;
 509
 510        /* sanity check */
 511        if (rctx->tag.cpu != smp_processor_id()) {
 512                pr_err("mcryptd error: cpu clash\n");
 513                goto done;
 514        }
 515
 516        /* need to init context */
 517        req_ctx_init(rctx, areq);
 518
 519        nbytes = crypto_ahash_walk_first(req, &rctx->walk);
 520
 521        if (nbytes < 0) {
 522                ret = nbytes;
 523                goto done;
 524        }
 525
 526        if (crypto_ahash_walk_last(&rctx->walk))
 527                rctx->flag |= HASH_DONE;
 528
 529        /* submit */
 530        sha_ctx = (struct sha256_hash_ctx *) ahash_request_ctx(areq);
 531        sha256_mb_add_list(rctx, cstate);
 532        kernel_fpu_begin();
 533        sha_ctx = sha256_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
 534                                                        nbytes, HASH_UPDATE);
 535        kernel_fpu_end();
 536
 537        /* check if anything is returned */
 538        if (!sha_ctx)
 539                return -EINPROGRESS;
 540
 541        if (sha_ctx->error) {
 542                ret = sha_ctx->error;
 543                rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 544                goto done;
 545        }
 546
 547        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 548        ret = sha_finish_walk(&rctx, cstate, false);
 549
 550        if (!rctx)
 551                return -EINPROGRESS;
 552done:
 553        sha_complete_job(rctx, cstate, ret);
 554        return ret;
 555}
 556
 557static int sha256_mb_finup(struct ahash_request *areq)
 558{
 559        struct mcryptd_hash_request_ctx *rctx =
 560                container_of(areq, struct mcryptd_hash_request_ctx, areq);
 561        struct mcryptd_alg_cstate *cstate =
 562                                this_cpu_ptr(sha256_mb_alg_state.alg_cstate);
 563
 564        struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
 565        struct sha256_hash_ctx *sha_ctx;
 566        int ret = 0, flag = HASH_UPDATE, nbytes;
 567
 568        /* sanity check */
 569        if (rctx->tag.cpu != smp_processor_id()) {
 570                pr_err("mcryptd error: cpu clash\n");
 571                goto done;
 572        }
 573
 574        /* need to init context */
 575        req_ctx_init(rctx, areq);
 576
 577        nbytes = crypto_ahash_walk_first(req, &rctx->walk);
 578
 579        if (nbytes < 0) {
 580                ret = nbytes;
 581                goto done;
 582        }
 583
 584        if (crypto_ahash_walk_last(&rctx->walk)) {
 585                rctx->flag |= HASH_DONE;
 586                flag = HASH_LAST;
 587        }
 588
 589        /* submit */
 590        rctx->flag |= HASH_FINAL;
 591        sha_ctx = (struct sha256_hash_ctx *) ahash_request_ctx(areq);
 592        sha256_mb_add_list(rctx, cstate);
 593
 594        kernel_fpu_begin();
 595        sha_ctx = sha256_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
 596                                                                nbytes, flag);
 597        kernel_fpu_end();
 598
 599        /* check if anything is returned */
 600        if (!sha_ctx)
 601                return -EINPROGRESS;
 602
 603        if (sha_ctx->error) {
 604                ret = sha_ctx->error;
 605                goto done;
 606        }
 607
 608        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 609        ret = sha_finish_walk(&rctx, cstate, false);
 610        if (!rctx)
 611                return -EINPROGRESS;
 612done:
 613        sha_complete_job(rctx, cstate, ret);
 614        return ret;
 615}
 616
 617static int sha256_mb_final(struct ahash_request *areq)
 618{
 619        struct mcryptd_hash_request_ctx *rctx =
 620                        container_of(areq, struct mcryptd_hash_request_ctx,
 621                        areq);
 622        struct mcryptd_alg_cstate *cstate =
 623                                this_cpu_ptr(sha256_mb_alg_state.alg_cstate);
 624
 625        struct sha256_hash_ctx *sha_ctx;
 626        int ret = 0;
 627        u8 data;
 628
 629        /* sanity check */
 630        if (rctx->tag.cpu != smp_processor_id()) {
 631                pr_err("mcryptd error: cpu clash\n");
 632                goto done;
 633        }
 634
 635        /* need to init context */
 636        req_ctx_init(rctx, areq);
 637
 638        rctx->flag |= HASH_DONE | HASH_FINAL;
 639
 640        sha_ctx = (struct sha256_hash_ctx *) ahash_request_ctx(areq);
 641        /* flag HASH_FINAL and 0 data size */
 642        sha256_mb_add_list(rctx, cstate);
 643        kernel_fpu_begin();
 644        sha_ctx = sha256_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0,
 645                                                                HASH_LAST);
 646        kernel_fpu_end();
 647
 648        /* check if anything is returned */
 649        if (!sha_ctx)
 650                return -EINPROGRESS;
 651
 652        if (sha_ctx->error) {
 653                ret = sha_ctx->error;
 654                rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 655                goto done;
 656        }
 657
 658        rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 659        ret = sha_finish_walk(&rctx, cstate, false);
 660        if (!rctx)
 661                return -EINPROGRESS;
 662done:
 663        sha_complete_job(rctx, cstate, ret);
 664        return ret;
 665}
 666
 667static int sha256_mb_export(struct ahash_request *areq, void *out)
 668{
 669        struct sha256_hash_ctx *sctx = ahash_request_ctx(areq);
 670
 671        memcpy(out, sctx, sizeof(*sctx));
 672
 673        return 0;
 674}
 675
 676static int sha256_mb_import(struct ahash_request *areq, const void *in)
 677{
 678        struct sha256_hash_ctx *sctx = ahash_request_ctx(areq);
 679
 680        memcpy(sctx, in, sizeof(*sctx));
 681
 682        return 0;
 683}
 684
 685static int sha256_mb_async_init_tfm(struct crypto_tfm *tfm)
 686{
 687        struct mcryptd_ahash *mcryptd_tfm;
 688        struct sha256_mb_ctx *ctx = crypto_tfm_ctx(tfm);
 689        struct mcryptd_hash_ctx *mctx;
 690
 691        mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha256-mb",
 692                                                CRYPTO_ALG_INTERNAL,
 693                                                CRYPTO_ALG_INTERNAL);
 694        if (IS_ERR(mcryptd_tfm))
 695                return PTR_ERR(mcryptd_tfm);
 696        mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
 697        mctx->alg_state = &sha256_mb_alg_state;
 698        ctx->mcryptd_tfm = mcryptd_tfm;
 699        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 700                                sizeof(struct ahash_request) +
 701                                crypto_ahash_reqsize(&mcryptd_tfm->base));
 702
 703        return 0;
 704}
 705
 706static void sha256_mb_async_exit_tfm(struct crypto_tfm *tfm)
 707{
 708        struct sha256_mb_ctx *ctx = crypto_tfm_ctx(tfm);
 709
 710        mcryptd_free_ahash(ctx->mcryptd_tfm);
 711}
 712
 713static int sha256_mb_areq_init_tfm(struct crypto_tfm *tfm)
 714{
 715        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 716                                sizeof(struct ahash_request) +
 717                                sizeof(struct sha256_hash_ctx));
 718
 719        return 0;
 720}
 721
 722static void sha256_mb_areq_exit_tfm(struct crypto_tfm *tfm)
 723{
 724        struct sha256_mb_ctx *ctx = crypto_tfm_ctx(tfm);
 725
 726        mcryptd_free_ahash(ctx->mcryptd_tfm);
 727}
 728
 729static struct ahash_alg sha256_mb_areq_alg = {
 730        .init           =       sha256_mb_init,
 731        .update         =       sha256_mb_update,
 732        .final          =       sha256_mb_final,
 733        .finup          =       sha256_mb_finup,
 734        .export         =       sha256_mb_export,
 735        .import         =       sha256_mb_import,
 736        .halg           =       {
 737        .digestsize     =       SHA256_DIGEST_SIZE,
 738        .statesize      =       sizeof(struct sha256_hash_ctx),
 739                .base           =       {
 740                        .cra_name        = "__sha256-mb",
 741                        .cra_driver_name = "__intel_sha256-mb",
 742                        .cra_priority    = 100,
 743                        /*
 744                         * use ASYNC flag as some buffers in multi-buffer
 745                         * algo may not have completed before hashing thread
 746                         * sleep
 747                         */
 748                        .cra_flags      = CRYPTO_ALG_ASYNC |
 749                                          CRYPTO_ALG_INTERNAL,
 750                        .cra_blocksize  = SHA256_BLOCK_SIZE,
 751                        .cra_module     = THIS_MODULE,
 752                        .cra_list       = LIST_HEAD_INIT
 753                                        (sha256_mb_areq_alg.halg.base.cra_list),
 754                        .cra_init       = sha256_mb_areq_init_tfm,
 755                        .cra_exit       = sha256_mb_areq_exit_tfm,
 756                        .cra_ctxsize    = sizeof(struct sha256_hash_ctx),
 757                }
 758        }
 759};
 760
 761static int sha256_mb_async_init(struct ahash_request *req)
 762{
 763        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 764        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 765        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 766        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 767
 768        memcpy(mcryptd_req, req, sizeof(*req));
 769        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 770        return crypto_ahash_init(mcryptd_req);
 771}
 772
 773static int sha256_mb_async_update(struct ahash_request *req)
 774{
 775        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 776
 777        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 778        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 779        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 780
 781        memcpy(mcryptd_req, req, sizeof(*req));
 782        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 783        return crypto_ahash_update(mcryptd_req);
 784}
 785
 786static int sha256_mb_async_finup(struct ahash_request *req)
 787{
 788        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 789
 790        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 791        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 792        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 793
 794        memcpy(mcryptd_req, req, sizeof(*req));
 795        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 796        return crypto_ahash_finup(mcryptd_req);
 797}
 798
 799static int sha256_mb_async_final(struct ahash_request *req)
 800{
 801        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 802
 803        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 804        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 805        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 806
 807        memcpy(mcryptd_req, req, sizeof(*req));
 808        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 809        return crypto_ahash_final(mcryptd_req);
 810}
 811
 812static int sha256_mb_async_digest(struct ahash_request *req)
 813{
 814        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 815        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 816        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 817        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 818
 819        memcpy(mcryptd_req, req, sizeof(*req));
 820        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 821        return crypto_ahash_digest(mcryptd_req);
 822}
 823
 824static int sha256_mb_async_export(struct ahash_request *req, void *out)
 825{
 826        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 827        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 828        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 829        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 830
 831        memcpy(mcryptd_req, req, sizeof(*req));
 832        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 833        return crypto_ahash_export(mcryptd_req, out);
 834}
 835
 836static int sha256_mb_async_import(struct ahash_request *req, const void *in)
 837{
 838        struct ahash_request *mcryptd_req = ahash_request_ctx(req);
 839        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 840        struct sha256_mb_ctx *ctx = crypto_ahash_ctx(tfm);
 841        struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
 842        struct crypto_ahash *child = mcryptd_ahash_child(mcryptd_tfm);
 843        struct mcryptd_hash_request_ctx *rctx;
 844        struct ahash_request *areq;
 845
 846        memcpy(mcryptd_req, req, sizeof(*req));
 847        ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
 848        rctx = ahash_request_ctx(mcryptd_req);
 849        areq = &rctx->areq;
 850
 851        ahash_request_set_tfm(areq, child);
 852        ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_SLEEP,
 853                                        rctx->complete, req);
 854
 855        return crypto_ahash_import(mcryptd_req, in);
 856}
 857
 858static struct ahash_alg sha256_mb_async_alg = {
 859        .init           = sha256_mb_async_init,
 860        .update         = sha256_mb_async_update,
 861        .final          = sha256_mb_async_final,
 862        .finup          = sha256_mb_async_finup,
 863        .export         = sha256_mb_async_export,
 864        .import         = sha256_mb_async_import,
 865        .digest         = sha256_mb_async_digest,
 866        .halg = {
 867                .digestsize     = SHA256_DIGEST_SIZE,
 868                .statesize      = sizeof(struct sha256_hash_ctx),
 869                .base = {
 870                        .cra_name               = "sha256",
 871                        .cra_driver_name        = "sha256_mb",
 872                        /*
 873                         * Low priority, since with few concurrent hash requests
 874                         * this is extremely slow due to the flush delay.  Users
 875                         * whose workloads would benefit from this can request
 876                         * it explicitly by driver name, or can increase its
 877                         * priority at runtime using NETLINK_CRYPTO.
 878                         */
 879                        .cra_priority           = 50,
 880                        .cra_flags              = CRYPTO_ALG_ASYNC,
 881                        .cra_blocksize          = SHA256_BLOCK_SIZE,
 882                        .cra_module             = THIS_MODULE,
 883                        .cra_list               = LIST_HEAD_INIT
 884                                (sha256_mb_async_alg.halg.base.cra_list),
 885                        .cra_init               = sha256_mb_async_init_tfm,
 886                        .cra_exit               = sha256_mb_async_exit_tfm,
 887                        .cra_ctxsize            = sizeof(struct sha256_mb_ctx),
 888                        .cra_alignmask          = 0,
 889                },
 890        },
 891};
 892
 893static unsigned long sha256_mb_flusher(struct mcryptd_alg_cstate *cstate)
 894{
 895        struct mcryptd_hash_request_ctx *rctx;
 896        unsigned long cur_time;
 897        unsigned long next_flush = 0;
 898        struct sha256_hash_ctx *sha_ctx;
 899
 900
 901        cur_time = jiffies;
 902
 903        while (!list_empty(&cstate->work_list)) {
 904                rctx = list_entry(cstate->work_list.next,
 905                                struct mcryptd_hash_request_ctx, waiter);
 906                if (time_before(cur_time, rctx->tag.expire))
 907                        break;
 908                kernel_fpu_begin();
 909                sha_ctx = (struct sha256_hash_ctx *)
 910                                        sha256_ctx_mgr_flush(cstate->mgr);
 911                kernel_fpu_end();
 912                if (!sha_ctx) {
 913                        pr_err("sha256_mb error: nothing got"
 914                                        " flushed for non-empty list\n");
 915                        break;
 916                }
 917                rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
 918                sha_finish_walk(&rctx, cstate, true);
 919                sha_complete_job(rctx, cstate, 0);
 920        }
 921
 922        if (!list_empty(&cstate->work_list)) {
 923                rctx = list_entry(cstate->work_list.next,
 924                                struct mcryptd_hash_request_ctx, waiter);
 925                /* get the hash context and then flush time */
 926                next_flush = rctx->tag.expire;
 927                mcryptd_arm_flusher(cstate, get_delay(next_flush));
 928        }
 929        return next_flush;
 930}
 931
 932static int __init sha256_mb_mod_init(void)
 933{
 934
 935        int cpu;
 936        int err;
 937        struct mcryptd_alg_cstate *cpu_state;
 938
 939        /* check for dependent cpu features */
 940        if (!boot_cpu_has(X86_FEATURE_AVX2) ||
 941            !boot_cpu_has(X86_FEATURE_BMI2))
 942                return -ENODEV;
 943
 944        /* initialize multibuffer structures */
 945        sha256_mb_alg_state.alg_cstate = alloc_percpu
 946                                                (struct mcryptd_alg_cstate);
 947
 948        sha256_job_mgr_init = sha256_mb_mgr_init_avx2;
 949        sha256_job_mgr_submit = sha256_mb_mgr_submit_avx2;
 950        sha256_job_mgr_flush = sha256_mb_mgr_flush_avx2;
 951        sha256_job_mgr_get_comp_job = sha256_mb_mgr_get_comp_job_avx2;
 952
 953        if (!sha256_mb_alg_state.alg_cstate)
 954                return -ENOMEM;
 955        for_each_possible_cpu(cpu) {
 956                cpu_state = per_cpu_ptr(sha256_mb_alg_state.alg_cstate, cpu);
 957                cpu_state->next_flush = 0;
 958                cpu_state->next_seq_num = 0;
 959                cpu_state->flusher_engaged = false;
 960                INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
 961                cpu_state->cpu = cpu;
 962                cpu_state->alg_state = &sha256_mb_alg_state;
 963                cpu_state->mgr = kzalloc(sizeof(struct sha256_ctx_mgr),
 964                                        GFP_KERNEL);
 965                if (!cpu_state->mgr)
 966                        goto err2;
 967                sha256_ctx_mgr_init(cpu_state->mgr);
 968                INIT_LIST_HEAD(&cpu_state->work_list);
 969                spin_lock_init(&cpu_state->work_lock);
 970        }
 971        sha256_mb_alg_state.flusher = &sha256_mb_flusher;
 972
 973        err = crypto_register_ahash(&sha256_mb_areq_alg);
 974        if (err)
 975                goto err2;
 976        err = crypto_register_ahash(&sha256_mb_async_alg);
 977        if (err)
 978                goto err1;
 979
 980
 981        return 0;
 982err1:
 983        crypto_unregister_ahash(&sha256_mb_areq_alg);
 984err2:
 985        for_each_possible_cpu(cpu) {
 986                cpu_state = per_cpu_ptr(sha256_mb_alg_state.alg_cstate, cpu);
 987                kfree(cpu_state->mgr);
 988        }
 989        free_percpu(sha256_mb_alg_state.alg_cstate);
 990        return -ENODEV;
 991}
 992
 993static void __exit sha256_mb_mod_fini(void)
 994{
 995        int cpu;
 996        struct mcryptd_alg_cstate *cpu_state;
 997
 998        crypto_unregister_ahash(&sha256_mb_async_alg);
 999        crypto_unregister_ahash(&sha256_mb_areq_alg);
1000        for_each_possible_cpu(cpu) {
1001                cpu_state = per_cpu_ptr(sha256_mb_alg_state.alg_cstate, cpu);
1002                kfree(cpu_state->mgr);
1003        }
1004        free_percpu(sha256_mb_alg_state.alg_cstate);
1005}
1006
1007module_init(sha256_mb_mod_init);
1008module_exit(sha256_mb_mod_fini);
1009
1010MODULE_LICENSE("GPL");
1011MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm, multi buffer accelerated");
1012
1013MODULE_ALIAS_CRYPTO("sha256");
1014